1
|
Herbst C, Bothe V, Wegler M, Axer-Schaefer S, Audebert-Bellanger S, Gecz J, Cogne B, Feldman HB, Horn AHC, Hurst ACE, Kelly MA, Kruer MC, Kurolap A, Laquerriere A, Li M, Mark PR, Morawski M, Nizon M, Pastinen T, Polster T, Saugier-Veber P, SeSong J, Sticht H, Stieler JT, Thifffault I, van Eyk CL, Marcorelles P, Vezain-Mouchard M, Abou Jamra R, Oppermann H. Heterozygous loss-of-function variants in DOCK4 cause neurodevelopmental delay and microcephaly. Hum Genet 2024; 143:455-469. [PMID: 38526744 PMCID: PMC11043173 DOI: 10.1007/s00439-024-02655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024]
Abstract
Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.
Collapse
Affiliation(s)
- Charlotte Herbst
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Viktoria Bothe
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Meret Wegler
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Susanne Axer-Schaefer
- Department of Epileptology, Krankenhaus Mara Bethel Epilepsy Center Medical School OWL, Bielefeld University, Campus Bethel, Bielefeld, Germany
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, 44000, Nantes, France
- l'institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, 44000, Nantes, France
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anselm H C Horn
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen National High Performance Computing Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melissa A Kelly
- HudsonAlpha Clinical Services Lab, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital University of Arizona College of Medicine, Phoenix, USA
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Annie Laquerriere
- Department of Anatomy, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Megan Li
- Invitae Corp, San Francisco, CA, USA
| | - Paul R Mark
- Division of Medical Genetics, Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI, USA
| | - Markus Morawski
- Center of Neuropathology and Brain Research, Medical Faculty, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44000, Nantes, France
- l'institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, 44000, Nantes, France
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, USA
- University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Tilman Polster
- Department of Epileptology, Krankenhaus Mara Bethel Epilepsy Center Medical School OWL, Bielefeld University, Campus Bethel, Bielefeld, Germany
| | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Jang SeSong
- Genomic Medicine Institute, Seoul National University, Seoul, Republic of Korea
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens T Stieler
- Center of Neuropathology and Brain Research, Medical Faculty, Paul Flechsig Institute, University of Leipzig, Leipzig, Germany
| | - Isabelle Thifffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, USA
- University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Clare L van Eyk
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Myriam Vezain-Mouchard
- Department of Genetics and Reference Center for Developmental Disorders, Inserm U1245 and CHU Rouen, Univ Rouen Normandie, 76000, Rouen, France
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Pagnamenta AT, Camps C, Giacopuzzi E, Taylor JM, Hashim M, Calpena E, Kaisaki PJ, Hashimoto A, Yu J, Sanders E, Schwessinger R, Hughes JR, Lunter G, Dreau H, Ferla M, Lange L, Kesim Y, Ragoussis V, Vavoulis DV, Allroggen H, Ansorge O, Babbs C, Banka S, Baños-Piñero B, Beeson D, Ben-Ami T, Bennett DL, Bento C, Blair E, Brasch-Andersen C, Bull KR, Cario H, Cilliers D, Conti V, Davies EG, Dhalla F, Dacal BD, Dong Y, Dunford JE, Guerrini R, Harris AL, Hartley J, Hollander G, Javaid K, Kane M, Kelly D, Kelly D, Knight SJL, Kreins AY, Kvikstad EM, Langman CB, Lester T, Lines KE, Lord SR, Lu X, Mansour S, Manzur A, Maroofian R, Marsden B, Mason J, McGowan SJ, Mei D, Mlcochova H, Murakami Y, Németh AH, Okoli S, Ormondroyd E, Ousager LB, Palace J, Patel SY, Pentony MM, Pugh C, Rad A, Ramesh A, Riva SG, Roberts I, Roy N, Salminen O, Schilling KD, Scott C, Sen A, Smith C, Stevenson M, Thakker RV, Twigg SRF, Uhlig HH, van Wijk R, Vona B, Wall S, Wang J, Watkins H, Zak J, Schuh AH, Kini U, Wilkie AOM, Popitsch N, Taylor JC. Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Med 2023; 15:94. [PMID: 37946251 PMCID: PMC10636885 DOI: 10.1186/s13073-023-01240-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edoardo Giacopuzzi
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Human Technopole, Viale Rita Levi Montalcini 1, 20157, Milan, Italy
| | - John M Taylor
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mona Hashim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Eduardo Calpena
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Pamela J Kaisaki
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Akiko Hashimoto
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jing Yu
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Edward Sanders
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Ron Schwessinger
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Jim R Hughes
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- University Medical Center Groningen, Groningen University, PO Box 72, 9700 AB, Groningen, The Netherlands
| | - Helene Dreau
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Matteo Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Lukas Lange
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Yesim Kesim
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Vassilis Ragoussis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Dimitrios V Vavoulis
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Holger Allroggen
- Neurosciences Department, UHCW NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Benito Baños-Piñero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Tal Ben-Ami
- Pediatric Hematology-Oncology Unit, Kaplan Medical Center, Rehovot, Israel
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Celeste Bento
- Hematology Department, Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - Edward Blair
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Charlotte Brasch-Andersen
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katherine R Bull
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Holger Cario
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Eythstrasse 24, 89075, Ulm, Germany
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valerio Conti
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Fatima Dhalla
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7TY, UK
| | - Beatriz Diez Dacal
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Yin Dong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - James E Dunford
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jane Hartley
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Georg Hollander
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Kassim Javaid
- Oxford NIHR Musculoskeletal BRC and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Old Road, Oxford, OX3 7HE, UK
| | - Maureen Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Pharmacy Hall North, Room 731, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's & Children's Hospital and University of Birmingham, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Dominic Kelly
- Children's Hospital, OUH NHS Foundation Trust, NIHR Oxford BRC, Headley Way, Oxford, OX3 9DU, UK
| | - Samantha J L Knight
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Alexandra Y Kreins
- Department of Immunology, Great Ormond Street Hospital for Children NHS Trust and UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, 2Nd Floor, 20C Guilford Street, London, WC1N 1DZ, UK
| | - Erika M Kvikstad
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Craig B Langman
- Feinberg School of Medicine, Northwestern University, 211 E Chicago Avenue, Chicago, IL, MS37, USA
| | - Tracy Lester
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Kate E Lines
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Department of Oncology, University of Oxford, Cancer and Haematology Centre, Level 2 Administration Area, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Xin Lu
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sahar Mansour
- St George's University Hospitals NHS Foundation Trust, Blackshore Road, Tooting, London, SW17 0QT, UK
| | - Adnan Manzur
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Brian Marsden
- Nuffield Department of Medicine, Kennedy Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Joanne Mason
- Yourgene Health Headquarters, Skelton House, Lloyd Street North, Manchester Science Park, Manchester, M15 6SH, UK
| | - Simon J McGowan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Florence, Italy
| | - Hana Mlcochova
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Steven Okoli
- Imperial College NHS Trust, Department of Haematology, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Elizabeth Ormondroyd
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Lilian Bomme Ousager
- Department of Clinical Genetics, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Smita Y Patel
- Clinical Immunology, John Radcliffe Hospital, Level 4A, Oxford, OX3 9DU, UK
| | - Melissa M Pentony
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Chris Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Aboulfazl Rad
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
| | - Archana Ramesh
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Simone G Riva
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Irene Roberts
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Noémi Roy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Level 4, Haematology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Outi Salminen
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Kyleen D Schilling
- Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Conrad Smith
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Mark Stevenson
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Rajesh V Thakker
- University of Oxford, Academic Endocrine Unit, OCDEM, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Stephen R F Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Holm H Uhlig
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Richard van Wijk
- UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Barbara Vona
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University, Elfriede-Aulhorn-Str. 5, 72076, Tübingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Steven Wall
- Oxford Craniofacial Unit, John Radcliffe Hospital, Level LG1, West Wing, Oxford, OX3 9DU, UK
| | - Jing Wang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Hugh Watkins
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- University of Oxford, Level 6 West Wing, Oxford, OX3 9DU, JR, UK
| | - Jaroslav Zak
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anna H Schuh
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Usha Kini
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Andrew O M Wilkie
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Niko Popitsch
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter(VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7BN, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK.
| |
Collapse
|
3
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Ghate PS, Vacharasin JM, Ward JA, Nowling D, Kay V, Cowen MH, Lawlor MK, McCord M, Xu H, Carmona E, Cheon SH, Chukwurah E, Walla M, Lizarraga SB. The Warburg micro syndrome protein RAB3GAP1 modulates neuronal morphogenesis and interacts with axon elongation end ER-Golgi trafficking factors. Neurobiol Dis 2023; 184:106215. [PMID: 37385458 DOI: 10.1016/j.nbd.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
RAB3GAP1 is GTPase activating protein localized to the ER and Golgi compartments. In humans, mutations in RAB3GAP1 are the most common cause of Warburg Micro syndrome, a neurodevelopmental disorder associated with intellectual disability, microcephaly, and agenesis of the corpus callosum. We found that downregulation of RAB3GAP1 leads to a reduction in neurite outgrowth and complexity in human stem cell derived neurons. To further define the cellular function of RAB3GAP1, we sought to identify novel interacting proteins. We used a combination of mass spectrometry, co-immunoprecipitation and colocalization analysis and identified two novel interactors of RAB3GAP1: the axon elongation factor Dedicator of cytokinesis 7 (DOCK7) and the TATA modulatory factor 1 (TMF1) a modulator of Endoplasmic Reticulum (ER) to Golgi trafficking. To define the relationship between RAB3GAP1 and its two novel interactors, we analyzed their localization to different subcellular compartments in neuronal and non-neuronal cells with loss of RAB3GAP1. We find that RAB3GAP1 is important for the sub-cellular localization of TMF1 and DOCK7 across different compartments of the Golgi and endoplasmic reticulum. In addition, we find that loss of function mutations in RAB3GAP1 lead to dysregulation of pathways that are activated in response to the cellular stress like ATF6, MAPK, and PI3-AKT signaling. In summary, our findings suggest a novel role for RAB3GAP1 in neurite outgrowth that could encompass the regulation of proteins that control axon elongation, ER-Golgi trafficking, as well as pathways implicated in response to cellular stress.
Collapse
Affiliation(s)
- Pankaj S Ghate
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Janay M Vacharasin
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America; Center for Translational Neuroscience, Brown University, Providence, RI, United states of America
| | - Duncan Nowling
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Valerie Kay
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mara H Cowen
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mary-Kate Lawlor
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mikayla McCord
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Hailey Xu
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Esteban Carmona
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Seon-Hye Cheon
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Evelyn Chukwurah
- Department of Biology and Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States of America
| | - Mike Walla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States of America
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America; Center for Translational Neuroscience, Brown University, Providence, RI, United states of America.
| |
Collapse
|
5
|
A Proteome-Wide Effect of PHF8 Knockdown on Cortical Neurons Shows Downregulation of Parkinson's Disease-Associated Protein Alpha-Synuclein and Its Interactors. Biomedicines 2023; 11:biomedicines11020486. [PMID: 36831023 PMCID: PMC9953648 DOI: 10.3390/biomedicines11020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Synaptic dysfunction may underlie the pathophysiology of Parkinson's disease (PD), a presently incurable condition characterized by motor and cognitive symptoms. Here, we used quantitative proteomics to study the role of PHD Finger Protein 8 (PHF8), a histone demethylating enzyme found to be mutated in X-linked intellectual disability and identified as a genetic marker of PD, in regulating the expression of PD-related synaptic plasticity proteins. Amongst the list of proteins found to be affected by PHF8 knockdown were Parkinson's-disease-associated SNCA (alpha synuclein) and PD-linked genes DNAJC6 (auxilin), SYNJ1 (synaptojanin 1), and the PD risk gene SH3GL2 (endophilin A1). Findings in this study show that depletion of PHF8 in cortical neurons affects the activity-induced expression of proteins involved in synaptic plasticity, synaptic structure, vesicular release and membrane trafficking, spanning the spectrum of pre-synaptic and post-synaptic transmission. Given that the depletion of even a single chromatin-modifying enzyme can affect synaptic protein expression in such a concerted manner, more in-depth studies will be needed to show whether such a mechanism can be exploited as a potential disease-modifying therapeutic drug target in PD.
Collapse
|
6
|
Wang YJ, Di XJ, Mu TW. Quantitative interactome proteomics identifies a proteostasis network for GABA A receptors. J Biol Chem 2022; 298:102423. [PMID: 36030824 PMCID: PMC9493394 DOI: 10.1016/j.jbc.2022.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Li L, Liu Z, Yang H, Li Y, Zeng Q, Chen L, Liu Y, Chen Y, Zhu F, Cao D, Hu J, Shen X. Investigation of novel de novo KCNC2 variants causing severe developmental and early-onset epileptic encephalopathy. Seizure 2022; 101:218-224. [PMID: 36087422 DOI: 10.1016/j.seizure.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022] Open
Abstract
Purpose The voltage-gated potassium channel Kv3.2, encoded by KCNC2, facilitates fast-spiking GABAergic interneurons to fire action potentials at high frequencies. It is pivotal to maintaining excitation/inhibition balance in mammalian brains. This study identified two novel de novo KCNC2 variants, p.Pro470Ser (P470S) and p.Phe382Leu (F382L), in patients with early onset developmental and epileptic encephalopathy (DEE). Methods To examine the molecular basis of DEE, we studied the functional characteristics of variant channels using patch-clamp techniques and computational modeling. Results Whole-cell patch clamp recordings from infected HEK293 cells revealed that channel activation and deactivation kinetics strongly decreased in both Kv3.2 P470S and F382L variant channels. This decrease also occurred in Kv3.2 p.Val471Leu (V471L) channels, known to be associated with DEE. In addition, Kv3.2 F382L and V471L variants exhibited a significant increase in channel conductance and a ∼20 mV negative shift in the threshold for voltage-dependent activation. Simulations of model GABAergic interneurons revealed that all variants decreased neuronal firing frequency. Thus, the variants' net loss-of-function effects disinhibited neural networks. Conclusion Our findings provide compelling evidence supporting the role of KCNC2 as a disease-causing gene in human neurodevelopmental delay and epilepsy.
Collapse
Affiliation(s)
- Lin Li
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Zili Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Haiyang Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, CAS, Beijing 100101, China
| | - Qi Zeng
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yidi Liu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yan Chen
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Fengjun Zhu
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Dezhi Cao
- Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China; Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Jun Hu
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China.
| | - Xuefeng Shen
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Kivrak Pfiffner F, Koller S, Ménétrey A, Graf U, Bähr L, Maspoli A, Hackenberg A, Kottke R, Gerth-Kahlert C, Berger W. Homozygosity for a Novel DOCK7 Variant Due to Segmental Uniparental Isodisomy of Chromosome 1 Associated with Early Infantile Epileptic Encephalopathy (EIEE) and Cortical Visual Impairment. Int J Mol Sci 2022; 23:ijms23137382. [PMID: 35806387 PMCID: PMC9266905 DOI: 10.3390/ijms23137382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Early infantile epileptic encephalopathy (EIEE) is a severe neurologic and neurodevelopmental disease that manifests in the first year of life. It shows a high degree of genetic heterogeneity, but the genetic origin is only identified in half of the cases. We report the case of a female child initially diagnosed with Leber congenital amaurosis (LCA), an early-onset retinal dystrophy due to photoreceptor cell degeneration in the retina. The first examination at 9 months of age revealed no reaction to light or objects and showed wandering eye movements. Ophthalmological examination did not show any ocular abnormalities. The patient displayed mildly dysmorphic features and a global developmental delay. Brain MRI demonstrated pontine hypo-/dysplasia. The patient developed myoclonic epileptic seizures and epileptic spasms with focal and generalized epileptiform discharges on electroencephalogram (EEG) at the age of 16 months. Genetic screening for a potentially pathogenic DNA sequence variant by whole-exome sequencing (WES) revealed a novel, conserved, homozygous frameshift variant (c.5391delA, p.(Ala1798LeufsTer59)) in exon 42 of the DOCK7 gene (NM_001271999.1). Further analysis by SNP array (Karyomapping) showed loss of heterozygosity (LOH) in four segments of chromosome 1. WES data of the parents and the index patient (trio analysis) demonstrated that chromosome 1 was exclusively inherited from the mother. Four LOH segments of chromosome 1 alternately showed isodisomy (UPiD) and heterodisomy (UPhD). In WES data, the father was a noncarrier, and the mother was heterozygous for this DOCK7 variant. The DOCK7 gene is located in 1p31.3, a region situated in one of the four isodisomic segments of chromosome 1, explaining the homozygosity seen in the affected child. Finally, Sanger sequencing confirmed maternal UPiD for the DOCK7 variant. Homozygous or compound heterozygous pathogenic variants in the DOCK7 (dedicator of cytokinesis 7) gene are associated with autosomal recessive, early infantile epileptic encephalopathy 23 (EIEE23; OMIM #615,859), a rare and heterogeneous group of neurodevelopmental disorders diagnosed during early childhood. To our knowledge, this is the first report of segmental uniparental iso- and heterodisomy of chromosome 1, leading to homozygosity of the DOCK7 frameshift variant in the affected patient.
Collapse
Affiliation(s)
- Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (F.K.P.); (S.K.); (U.G.); (L.B.); (A.M.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (F.K.P.); (S.K.); (U.G.); (L.B.); (A.M.)
| | - Anika Ménétrey
- Department of Pediatric Neurology, University Children’s Hospital, University of Zurich, 8032 Zurich, Switzerland; (A.M.); (A.H.)
| | - Urs Graf
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (F.K.P.); (S.K.); (U.G.); (L.B.); (A.M.)
| | - Luzy Bähr
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (F.K.P.); (S.K.); (U.G.); (L.B.); (A.M.)
| | - Alessandro Maspoli
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (F.K.P.); (S.K.); (U.G.); (L.B.); (A.M.)
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children’s Hospital, University of Zurich, 8032 Zurich, Switzerland; (A.M.); (A.H.)
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children’s Hospital, University of Zurich, 8032 Zurich, Switzerland;
| | | | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (F.K.P.); (S.K.); (U.G.); (L.B.); (A.M.)
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Kapoor D, Anand A, Siddiqui S, Sharma S. A novel pathogenic variant in DOCK 7 gene in an infant with dysmorphism, epileptic encephalopathy and cortical blindness. Clin Dysmorphol 2022; 31:39-41. [PMID: 34561314 DOI: 10.1097/mcd.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi
| | - Aakanksha Anand
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi
| | - Shahyan Siddiqui
- Department of Neuroimaging and Intervention Radiology, STAR Institute of Neurosciences, STAR Hospitals, Hyderabad
| | | |
Collapse
|
10
|
Rahman MM, Fatema K. Genetic Diagnosis in Children with Epilepsy and Developmental Disorders by Targeted Gene Panel Analysis in a Developing Country. J Epilepsy Res 2021; 11:22-31. [PMID: 34395220 PMCID: PMC8357555 DOI: 10.14581/jer.21004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose In childhood epilepsy, genetic etiology is increasingly recognized in recent years with the advent of next generation sequencing. This has broadened the scope of precision medicine in intractable epilepsy, particularly epileptic encephalopathy (EE). Developmental disorder (DD) is an integral part of childhood uncontrolled epilepsy. This study was performed to investigate the genetic etiology of childhood epilepsy and DD. Methods In this study, 40 children with epilepsy and DD with positive genetic mutation were included retrospectively. It was done in a tertiary care referral hospital of Bangladesh from January 2019 to December 2020. Genetic study was done by next generation sequencing. In all cases electroencephalography, neuroimaging was done and reviewed. Results In total, 40 children were enrolled and the average age was 41.4±35.850 months with a male predominance (67.5%). Generalized seizure was the predominant type of seizure. Regarding the association, intellectual disability and attention deficit hyperactivity disorder was common. Seventeen cases had genetically identified early infantile EE and common mutations observed were SCN1A (3), SCN8A (2), SLC1A2 (2), KCNT1 (2), and etc. Five patients of progressive myoclonic epilepsy were diagnosed and the mutations identified were in KCTD7, MFSD8, and CLN6 genes. Three cases had mitochondrial gene mutation (MT-ND5, MT-CYB). Some rare syndromes like Gibbs syndrome, Kohlschütter-Tönz syndrome, Cockayne syndrome, Pitt-Hopkins syndrome and cerebral creatine deficiency were diagnosed. Conclusions This is the first study from Bangladesh on genetics of epilepsy and DD. This will help to improve the understanding of genetics epilepsy of this region as well as contribute in administering precision medicine in these patients.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
11
|
Magalhães PHM, Moraes HT, Athie MCP, Secolin R, Lopes-Cendes I. New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies. Epilepsy Behav 2021; 121:106428. [PMID: 31400936 DOI: 10.1016/j.yebeh.2019.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 11/22/2022]
Abstract
Genetic epidemiology studies have shown that most epilepsies involve some genetic cause. In addition, twin studies have helped strengthen the hypothesis that in most patients with epilepsy, a complex inheritance is involved. More recently, with the development of high-density single-nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously. Especially, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with large effect sizes, including inherited or de novo mutations in severe forms of childhood epilepsies. The identification of pathogenic variants in patients with these childhood epilepsies provides many benefits for patients and families, such as the confirmation of the genetic nature of the diseases. This process will allow for better genetic counseling, more accurate therapy decisions, and a significant positive emotional impact. However, to study the genetic component of the more common forms of epilepsy, the use of high-density SNP arrays in genome-wide association studies (GWAS) seems to be the strategy of choice. As such, researchers can identify loci containing genetic variants associated with the common forms of epilepsy. The knowledge generated over the past two decades about the effects of the mutations that cause the monogenic epilepsy is tremendous; however, the scientific community is just starting to apply this information in order to generate better target treatments.
Collapse
Affiliation(s)
- Pedro H M Magalhães
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Helena T Moraes
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Maria C P Athie
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Rodrigo Secolin
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Gao M, Guo G, Huang J, Hou X, Ham H, Kim W, Zhao F, Tu X, Zhou Q, Zhang C, Zhu Q, Liu J, Yan Y, Xu Z, Yin P, Luo K, Weroha J, Deng M, Billadeau DD, Lou Z. DOCK7 protects against replication stress by promoting RPA stability on chromatin. Nucleic Acids Res 2021; 49:3322-3337. [PMID: 33704464 PMCID: PMC8034614 DOI: 10.1093/nar/gkab134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Ming Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinzhou Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaonan Hou
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyoungjun Ham
- Department of Biochemistry and Molecular Biology, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qin Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chao Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiaqi Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanliang Yan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhijie Xu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Weroha
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Thompson AP, Bitsina C, Gray JL, von Delft F, Brennan PE. RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. J Biol Chem 2021; 296:100521. [PMID: 33684443 PMCID: PMC8063744 DOI: 10.1016/j.jbc.2021.100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.
Collapse
Affiliation(s)
- Andrew P Thompson
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christina Bitsina
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Janine L Gray
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul E Brennan
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Benson CE, Southgate L. The DOCK protein family in vascular development and disease. Angiogenesis 2021; 24:417-433. [PMID: 33548004 PMCID: PMC8292242 DOI: 10.1007/s10456-021-09768-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The vascular network is established and maintained through the processes of vasculogenesis and angiogenesis, which are tightly regulated during embryonic and postnatal life. The formation of a functional vasculature requires critical cellular mechanisms, such as cell migration, proliferation and adhesion, which are dependent on the activity of small Rho GTPases, controlled in part by the dedicator of cytokinesis (DOCK) protein family. Whilst the majority of DOCK proteins are associated with neuronal development, a growing body of evidence has indicated that members of the DOCK family may have key functions in the control of vasculogenic and angiogenic processes. This is supported by the involvement of several angiogenic signalling pathways, including chemokine receptor type 4 (CXCR4), vascular endothelial growth factor (VEGF) and phosphatidylinositol 3-kinase (PI3K), in the regulation of specific DOCK proteins. This review summarises recent progress in understanding the respective roles of DOCK family proteins during vascular development. We focus on existing in vivo and in vitro models and known human disease phenotypes and highlight potential mechanisms of DOCK protein dysfunction in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Clare E Benson
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Laura Southgate
- Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
15
|
Haberlandt E, Valovka T, Janjic T, Müller T, Blatsios G, Karall D, Janecke AR. Characteristic facial features and cortical blindness distinguish the DOCK7-related epileptic encephalopathy. Mol Genet Genomic Med 2021; 9:e1607. [PMID: 33471954 PMCID: PMC8104163 DOI: 10.1002/mgg3.1607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background The epileptic encephalopathies display extensive locus and allelic heterogeneity. Biallelic truncating DOCK7 variants were recently reported in five children with early‐onset epilepsy, intellectual disability, and cortical blindness, indicating that DOCK7 deficiency causes a specific type of epileptic encephalopathy. Methods We identified 23‐ and 27‐year‐old siblings with the clinical pattern reported for DOCK7 deficiency, and conducted genome‐wide linkage analysis and WES. The consequences of a DOCK7 variant were analyzed on the transcript and protein level in patients’ fibroblasts. Results We identified a novel homozygous DOCK7 frameshift variant, an intragenic tandem duplication of 124‐kb, previously missed by CGH array, in adult patients. Patients display atrophy in the occipital lobe and pontine hypoplasia with marked pontobulbar sulcus, and focal atrophy of occasional cerebellar folia is a novel finding. Recognizable dysmorphic features include normo‐brachycephaly, narrow forehead, low anterior and posterior hairlines, prominent ears, full cheeks, and long eyelashes. Our patients function on the level of 4‐year‐old children, never showed signs of regression, and seizures are largely controlled with multi‐pharmacotherapy. Studies of patients’ fibroblasts showed nonsense‐mediated RNA decay and lack of DOCK7 protein. Conclusion DOCK7 deficiency causes a definable clinical entity, a recognizable type of epileptic encephalopathy.
Collapse
Affiliation(s)
- Edda Haberlandt
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Krankenhaus der Stadt Dornbirn, Kinder- und Jugendheilkunde, Dornbirn, Austria
| | - Taras Valovka
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Tanja Janjic
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Georgios Blatsios
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Emond MR, Biswas S, Morrow ML, Jontes JD. Proximity-dependent Proteomics Reveals Extensive Interactions of Protocadherin-19 with Regulators of Rho GTPases and the Microtubule Cytoskeleton. Neuroscience 2020; 452:26-36. [PMID: 33010346 DOI: 10.1016/j.neuroscience.2020.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Protocadherin-19 belongs to the cadherin family of cell surface receptors and has been shown to play essential roles in the development of the vertebrate nervous system. Mutations in human Protocadherin-19 (PCDH19) lead to PCDH19 Female-limited epilepsy (PCDH19 FLE) in humans, characterized by the early onset of epileptic seizures in children and a range of cognitive and behavioral problems in adults. Despite being considered the second most prevalent gene in epilepsy, very little is known about the intercellular pathways in which it participates. In order to characterize the protein complexes within which Pcdh19 functions, we generated Pcdh19-BioID fusion proteins and utilized proximity-dependent biotinylation to identify neighboring proteins. Proteomic identification and analysis revealed that the Pcdh19 interactome is enriched in proteins that regulate Rho family GTPases, microtubule binding proteins and proteins that regulate cell divisions. We cloned the centrosomal protein Nedd1 and the RacGEF Dock7 and verified their interactions with Pcdh19 in vitro. Our findings provide the first comprehensive insights into the interactome of Pcdh19, and provide a platform for future investigations into the cellular and molecular biology of this protein critical to the proper development of the nervous system.
Collapse
Affiliation(s)
- Michelle R Emond
- Department of Neuroscience, Ohio State University, United States
| | | | - Matthew L Morrow
- Department of Neuroscience, Ohio State University, United States
| | - James D Jontes
- Department of Neuroscience, Ohio State University, United States.
| |
Collapse
|
17
|
Sylvian fissure development is linked to differential genetic expression in the pre-folded brain. Sci Rep 2020; 10:14489. [PMID: 32879369 PMCID: PMC7468287 DOI: 10.1038/s41598-020-71535-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
The mechanisms by which the human cerebral cortex folds into its final form remain poorly understood. With most of the current models and evidence addressing secondary folds, we sought to focus on the global geometry of the mature brain by studying its most distinctive feature, the Sylvian fissure. A digital human fetal brain atlas was developed using previously obtained MRI imaging of 81 healthy fetuses between gestational ages 21 and 38 weeks. To account for the development of the Sylvian fissure, we compared the growth of the frontotemporal opercula over the insular cortex and compared the transcriptome of the developing cortices for both regions. Spatiotemporal mapping of the lateral hemispheric surface showed the highest rate of organized growth in regions bordering the Sylvian fissure of the frontal, parietal and temporal lobes. Volumetric changes were first observed in the posterior aspect of the fissure moving anteriorly to the frontal lobe and laterally in the direction of the temporal pole. The insular region, delineated by the limiting insular gyri, expanded to a much lesser degree. The gene expression profile, before folding begins in the maturing brain, was significantly different in the developing opercular cortex compared to the insula. The Sylvian fissure forms by the relative overgrowth of the frontal and temporal lobes over the insula, corresponding to domains of highly expressed transcription factors involved in neuroepithelial cell differentiation.
Collapse
|
18
|
Gallo NB, Paul A, Van Aelst L. Shedding Light on Chandelier Cell Development, Connectivity, and Contribution to Neural Disorders. Trends Neurosci 2020; 43:565-580. [PMID: 32564887 PMCID: PMC7392791 DOI: 10.1016/j.tins.2020.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 02/04/2023]
Abstract
Chandelier cells (ChCs) are a unique type of GABAergic interneuron that selectively innervate the axon initial segment (AIS) of excitatory pyramidal neurons; the subcellular domain where action potentials are initiated. The proper genesis and maturation of ChCs is critical for regulating neural ensemble firing in the neocortex throughout development and adulthood. Recently, genetic and molecular studies have shed new light on the complex innerworkings of ChCs in health and disease. This review presents an overview of recent studies on the developmental origins, migratory properties, and morphology of ChCs. In addition, attention is given to newly identified molecules regulating ChC morphogenesis and connectivity as well as recent work linking ChC dysfunction to neural disorders, including schizophrenia, epilepsy, and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Nicholas B Gallo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
| |
Collapse
|
19
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
20
|
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 2019; 10:2195. [PMID: 31097712 PMCID: PMC6522481 DOI: 10.1038/s41467-019-10182-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Cysteine modifications emerge as important players in cellular signaling and homeostasis. Here, we present a chemical proteomics strategy for quantitative analysis of reversibly modified Cysteines using bioorthogonal cleavable-linker and switch technique (Cys-BOOST). Compared to iodoTMT for total Cysteine analysis, Cys-BOOST shows a threefold higher sensitivity and considerably higher specificity and precision. Analyzing S-nitrosylation (SNO) in S-nitrosoglutathione (GSNO)-treated and non-treated HeLa extracts Cys-BOOST identifies 8,304 SNO sites on 3,632 proteins covering a wide dynamic range of the proteome. Consensus motifs of SNO sites with differential GSNO reactivity confirm the relevance of both acid-base catalysis and local hydrophobicity for NO targeting to particular Cysteines. Applying Cys-BOOST to SH-SY5Y cells, we identify 2,151 SNO sites under basal conditions and reveal significantly changed SNO levels as response to early nitrosative stress, involving neuro(axono)genesis, glutamatergic synaptic transmission, protein folding/translation, and DNA replication. Our work suggests SNO as a global regulator of protein function akin to phosphorylation and ubiquitination. Reversible cysteine modifications play important roles in cellular redox signaling. Here, the authors develop a chemical proteomics strategy that enables the quantitative analysis of endogenous cysteine nitrosylation sites and their dynamic regulation under nitrosative stress conditions.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stavroula Markoutsa
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kim Walbrunn
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany. .,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, Quebec, H4A 3T2, Canada. .,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
21
|
Nashabat M, Al Qahtani XS, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K, Al Hashem A, Al Tala S, Maddirevula S, Alkuraya FS, Tabarki B, Alfadhel M. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 2019; 69:154-172. [PMID: 31054490 DOI: 10.1016/j.seizure.2019.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Xena S Al Qahtani
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Salwa Almakdob
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Duaa M Ba-Armah
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Division of Genetics, Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Bai B, Guo YR, Zhang YH, Jin CC, Zhang JM, Chen H, Zhu BS. Novel DOCK7 mutations in a Chinese patient with early infantile epileptic encephalopathy 23. Chin Med J (Engl) 2019; 132:600-603. [PMID: 30807358 PMCID: PMC6415993 DOI: 10.1097/cm9.0000000000000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Bing Bai
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, China.,National Health Commission's Key Laboratory for Western Healthy Birth, Kunming, Yunnan 650032, China
| | - Yi-Ran Guo
- Center for Applied Genomics at the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yin-Hong Zhang
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, China.,National Health Commission's Key Laboratory for Western Healthy Birth, Kunming, Yunnan 650032, China
| | - Chan-Chan Jin
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, China.,National Health Commission's Key Laboratory for Western Healthy Birth, Kunming, Yunnan 650032, China
| | - Jin-Man Zhang
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, China.,National Health Commission's Key Laboratory for Western Healthy Birth, Kunming, Yunnan 650032, China
| | - Hong Chen
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, China.,National Health Commission's Key Laboratory for Western Healthy Birth, Kunming, Yunnan 650032, China
| | - Bao-Sheng Zhu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan 650032, China.,National Health Commission's Key Laboratory for Western Healthy Birth, Kunming, Yunnan 650032, China
| |
Collapse
|
23
|
Turkdogan D, Turkyilmaz A, Gormez Z, Sager G, Ekinci G. A novel truncating mutation of DOCK7 gene with an early-onset non-encephalopathic epilepsy. Seizure 2019; 66:12-14. [PMID: 30771731 DOI: 10.1016/j.seizure.2019.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 01/12/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dilsad Turkdogan
- Marmara University, Medical Faculty, Department of Pediatric Neurology, Pendik, Istanbul, Turkey.
| | - Ayberk Turkyilmaz
- Marmara University, Medical Faculty, Department of Medical Genetics, Pendik, Istanbul, Turkey
| | | | - Gunes Sager
- Marmara University, Medical Faculty, Department of Pediatric Neurology, Pendik, Istanbul, Turkey
| | - Gazanfer Ekinci
- Marmara University, Medical Faculty, Department of Neuroradiology, Pendik, Istanbul, Turkey
| |
Collapse
|
24
|
Calhoun JD, Carvill GL. Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. J Neurogenet 2018; 32:295-312. [PMID: 30247086 DOI: 10.1080/01677063.2018.1513509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent with autosomal recessive (AR) inheritance. In this review, we touch on the classical AR epilepsy variants such as the inborn errors of metabolism and malformations of cortical development. However, we also highlight recently reported genes that are being identified by next-generation sequencing approaches and online 'matchmaking' platforms. Syndromes mainly characterized by seizures and complex neurodevelopmental disorders comorbid with epilepsy are discussed as an example of the wide phenotypic spectrum associated with the AR epilepsies. We conclude with a foray into the future, from the application of whole-genome sequencing to identify elusive epilepsy variants, to the promise of precision medicine initiatives to provide novel targeted therapeutics specific to the individual based on their clinical genetic testing.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Gemma L Carvill
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
25
|
Le PT, Bishop KA, Maridas DE, Motyl KJ, Brooks DJ, Nagano K, Baron R, Bouxsein ML, Rosen CJ. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice. Bone 2017; 105:103-114. [PMID: 28821457 PMCID: PMC5693233 DOI: 10.1016/j.bone.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 01/17/2023]
Abstract
Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow adipocytes were elevated 3.5 fold over +/+ (p=0.014). Consistent with reduced bone formation, osteoblast gene expression of Alp, Col1a1, Runx-2, Sp7, and Bglap was significantly decreased in m/m whole bone. Furthermore, markers of osteoclasts were either unchanged or suppressed. Bone marrow stromal cell migration and motility were inhibited in culture and changes in senescence markers suggest that osteoblast function may also be inhibited with loss of Dock7 expression in m/m. Finally, increased Oil Red O staining in m/m ear mesenchymal stem cells during adipogenesis highlights a potential shift of cells from the osteogenic to adipogenic lineages. In summary, loss of Dock7 in the aging m/m resulted in an impairment of periosteal and endocortical envelope expansion, but did not alter age-related trabecular bone loss. These studies establish Dock7 as a critical regulator of both cortical and trabecular bone mass, and demonstrate for the first time a novel role of Dock7 in modulating compensatory changes in the periosteum with aging.
Collapse
Affiliation(s)
- Phuong T Le
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States
| | - Kathleen A Bishop
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States.
| | - David E Maridas
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME 04469, United States
| | - Katherine J Motyl
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States
| | - Daniel J Brooks
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Kenichi Nagano
- Harvard School of Dental Medicine, Boston, MA 02215, United States
| | - Roland Baron
- Harvard School of Dental Medicine, Boston, MA 02215, United States; Harvard School of Medicine, Boston, MA 02215, United States
| | - Mary L Bouxsein
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME 04469, United States
| |
Collapse
|
26
|
Iwata-Otsubo A, Ritter AL, Weckselbatt B, Ryan NR, Burgess D, Conlin LK, Izumi K. DOCK3-related neurodevelopmental syndrome: Biallelic intragenic deletion of DOCK3 in a boy with developmental delay and hypotonia. Am J Med Genet A 2017; 176:241-245. [PMID: 29130632 DOI: 10.1002/ajmg.a.38517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 01/04/2023]
Abstract
Dedicator of cytokinesis (DOCK) family are evolutionary conserved guanine nucleotide exchange factors (GEFs) for the Rho GTPases, Rac, and Cdc42. DOCK3 functions as a GEF for Rac1, and plays an important role in promoting neurite and axonal growth by stimulating actin dynamics and microtubule assembly pathways in the central nervous system. Here we report a boy with developmental delay, hypotonia, and ataxia due to biallelic DOCK3 deletion. Chromosomal single nucleotide polymorphism (SNP) microarray analysis detected a 170 kb homozygous deletion including exons 6-12 of the DOCK3 gene at 3p21.2. Symptoms of our proband resembles a phenotype of Dock3 knockout mice exhibiting sensorimotor impairments. Furthermore, our proband has clinical similarities with two siblings with compound heterozygous loss-of-function mutations of DOCK3 reported in [Helbig, Mroske, Moorthy, Sajan, and Velinov (); https://doi.org/10.1111/cge.12995]. Biallelic DOCK3 mutations cause a neurodevelopmental disorder characterized by unsteady gait, hypotonia, and developmental delay.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - Alyssa L Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - Brooke Weckselbatt
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital, Pennsylvania, Philadelphia
| | - Nicole R Ryan
- Division of Neurology, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - David Burgess
- Division of Developmental Pediatrics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital, Pennsylvania, Philadelphia.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital, Pennsylvania, Philadelphia.,Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital, Pennsylvania, Philadelphia.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Helbig KL, Mroske C, Moorthy D, Sajan SA, Velinov M. Biallelic loss-of-function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability. Clin Genet 2017; 92:430-433. [PMID: 28195318 DOI: 10.1111/cge.12995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/30/2022]
Abstract
DOCK3 encodes the dedicator of cytokinesis 3 protein, a member of the DOCK180 family of proteins that are characterized by guanine-nucleotide exchange factor activity. DOCK3 is expressed exclusively in the central nervous system and plays an important role in axonal outgrowth and cytoskeleton reorganization. Dock3 knockout mice exhibit motor deficiencies with abnormal ataxic gait and impaired learning. We report 2 siblings with biallelic loss-of-function variants in DOCK3. Diagnostic whole-exome sequencing (WES) and chromosomal microarray were performed on a proband with severe developmental disability, hypotonia, and ataxic gait. Testing was also performed on the proband's similarly affected brother. A paternally inherited 458 kb deletion in chromosomal region 3p21.2 disrupting the DOCK3 gene was identified in both affected siblings. WES identified a nonsense variant c.382C>G (p.Gln128*) in the DOCK3 gene (NM_004947) on the maternal allele in both siblings. Common features in both affected individuals include severe developmental disability, ataxic gait, and severe hypotonia, which recapitulates the Dock3 knockout mouse phenotype. We show that complete DOCK3 deficiency in humans leads to developmental disability with significant hypotonia and gait ataxia, probably due to abnormal axonal development.
Collapse
Affiliation(s)
- K L Helbig
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - C Mroske
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - D Moorthy
- The George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - S A Sajan
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - M Velinov
- The George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
28
|
Eldomery MK, Coban-Akdemir Z, Harel T, Rosenfeld JA, Gambin T, Stray-Pedersen A, Küry S, Mercier S, Lessel D, Denecke J, Wiszniewski W, Penney S, Liu P, Bi W, Lalani SR, Schaaf CP, Wangler MF, Bacino CA, Lewis RA, Potocki L, Graham BH, Belmont JW, Scaglia F, Orange JS, Jhangiani SN, Chiang T, Doddapaneni H, Hu J, Muzny DM, Xia F, Beaudet AL, Boerwinkle E, Eng CM, Plon SE, Sutton VR, Gibbs RA, Posey JE, Yang Y, Lupski JR. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med 2017; 9:26. [PMID: 28327206 PMCID: PMC5361813 DOI: 10.1186/s13073-017-0412-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. METHODS We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. RESULTS Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). CONCLUSION An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.
Collapse
Affiliation(s)
- Mohammad K. Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Present Address: Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 W. 11th Street, Indianapolis, IN 46202 USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Women and Children’s Division, Oslo University Hospital, 0424 Oslo, Norway
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, CEDEX 1 France
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, CEDEX 1 France
- Atlantic Gene Therapies, UMR1089, Nantes, France
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - John W. Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX USA
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Christine M. Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sharon E. Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 7703 USA
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor-Hopkins Center for Mendelian Genomics, Baltimore, MD USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030-3498 USA
| |
Collapse
|
29
|
Sobczak M, Chumak V, Pomorski P, Wojtera E, Majewski Ł, Nowak J, Yamauchi J, Rędowicz MJ. Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1589-600. [PMID: 27018747 DOI: 10.1016/j.bbamcr.2016.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/05/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity.
Collapse
Affiliation(s)
- Magdalena Sobczak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland; Laboratory of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, 14-16 Drahomanov St., 79005 Lviv, Ukraine
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Emilia Wojtera
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Łukasz Majewski
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
30
|
Labonne JDJ, Shen Y, Kong IK, Diamond MP, Layman LC, Kim HG. Comparative deletion mapping at 1p31.3-p32.2 implies NFIA responsible for intellectual disability coupled with macrocephaly and the presence of several other genes for syndromic intellectual disability. Mol Cytogenet 2016; 9:24. [PMID: 26997977 PMCID: PMC4797196 DOI: 10.1186/s13039-016-0234-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND While chromosome 1 is the largest chromosome in the human genome, less than two dozen cases of interstitial microdeletions in the short arm have been documented. More than half of the 1p microdeletion cases were reported in the pre-microarray era and as a result, the proximal and distal boundaries containing the exact number of genes involved in the microdeletions have not been clearly defined. RESULTS We revisited a previous case of a 10-year old female patient with a 1p32.1p32.3 microdeletion displaying syndromic intellectual disability. We performed microarray analysis as well as qPCR to define the proximal and distal deletion breakpoints and revised the karyotype from 1p32.1p32.3 to 1p31.3p32.2. The deleted chromosomal region contains at least 35 genes including NFIA. Comparative deletion mapping shows that this region can be dissected into five chromosomal segments containing at least six candidate genes (DAB1, HOOK1, NFIA, DOCK7, DNAJC6, and PDE4B) most likely responsible for syndromic intellectual disability, which was corroborated by their reduced transcript levels in RT-qPCR. Importantly, one patient with an intragenic microdeletion within NFIA and an additional patient with a balanced translocation disrupting NFIA display intellectual disability coupled with macrocephaly. CONCLUSION We propose NFIA is responsible for intellectual disability coupled with macrocephaly, and microdeletions at 1p31.3p32.2 constitute a contiguous gene syndrome with several genes contributing to syndromic intellectual disability.
Collapse
Affiliation(s)
- Jonathan D. J. Labonne
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Yiping Shen
- />Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Il-Keun Kong
- />Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do Korea
| | - Michael P. Diamond
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Lawrence C. Layman
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hyung-Goo Kim
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| |
Collapse
|
31
|
Guo T, Yin RX, Lin WX, Wang W, Huang F, Pan SL. Association of the variants and haplotypes in the DOCK7, PCSK9 and GALNT2 genes and the risk of hyperlipidaemia. J Cell Mol Med 2016; 20:243-65. [PMID: 26493351 PMCID: PMC4727555 DOI: 10.1111/jcmm.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023] Open
Abstract
Little is known about the association between the single nucleotide polymorphisms (SNPs) and haplotypes of the dedicator of cytokinesis 7 (DOCK7), pro-protein convertase subtilisin/kexin type 9 (PCSK9) and polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2) and serum lipid traits in the Chinese populations. This study was to determine the association between nine SNPs in the three genes and their haplotypes and hypercholesterolaemia (HCH)/hypertriglyceridaemia (HTG), and to identify the possible gene-gene interactions among these SNPs. Genotyping was performed in 733 HCH and 540 HTG participants. The haplotype of C-C-G-C-T-G-C-C-G [in the order of DOCK7 rs1168013 (G>C), rs10889332 (C>T); PCSK9 rs615563 (G>A), rs7552841 (C>T), rs11206517 (T>G); and GALNT2 rs1997947 (G>A), rs2760537 (C>T), rs4846913 (C>A) and rs11122316 (G>A) SNPs] was associated with increased risk of HCH and HTG. The haplotypes of C-C-G-C-T-G-C-C-A and G-C-G-T-T-G-T-C-G were associated with a reduced risk of HCH and HTG. The haplotypes of G-C-G-C-T-G-C-C-A and G-C-G-C-T-G-T-C-G were associated with increased risk of HCH. The haplotypes of C-T-G-C-T-G-C-C-G, G-C-A-C-T-G-C-C-G and G-C-G-C-T-G-C-C-A were associated with an increased risk of HTG. The haplotypes of G-C-G-C-T-G-T-C-A and G-C-G-T-T-G-T-C-G were associated with a reduced risk of HTG. In addition, possible inter-locus interactions among the DOCK7, PCSK9 and GALNT2 SNPs were also noted. However, further functional studies of these genes are still required to clarify which SNPs are functional and how these genes actually affect the serum lipid levels.
Collapse
Affiliation(s)
- Tao Guo
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei-Xiong Lin
- Department of Molecular Genetics, Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Genetic discovery has been extremely rapid over the last year, with many new discoveries illuminating novel mechanisms and pathways. In particular, the application of whole exome and whole genome sequencing has identified many new genetic causes of the epilepsies. As such methods become increasingly available, it will be critical for practicing neurologists to be acquainted with them. This review surveys some important developments over the last year. RECENT FINDINGS The range of tests available to the clinician is wide, and likely soon to be dominated by whole exome and whole genome sequencing. Both whole exome and whole genome sequencing have usually proven to be more powerful than most existing tests. Many new genes have been implicated in the epilepsies, with emerging evidence of the involvement of particular multigene pathways. SUMMARY For the practicing clinician, it will be important to appreciate progress in the field, and to prepare for the application of novel genetic testing in clinical practice, as genetic data are likely to contribute importantly for many people with epilepsy.
Collapse
|
33
|
Gonsales MC, Montenegro MA, Soler CV, Coan AC, Guerreiro MM, Lopes-Cendes I. Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:946-958. [PMID: 26517219 DOI: 10.1590/0004-282x20150122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
Recent advances in molecular genetics led to the discovery of several genes for childhood epileptic encephalopathies (CEEs). As the knowledge about the genes associated with this group of disorders develops, it becomes evident that CEEs present a number of specific genetic characteristics, which will influence the use of molecular testing for clinical purposes. Among these, there are the presence of marked genetic heterogeneity and the high frequency of de novo mutations. Therefore, the main objectives of this review paper are to present and discuss current knowledge regarding i) new genetic findings in CEEs, ii) phenotype-genotype correlations in different forms of CEEs; and, most importantly, iii) the impact of these new findings in clinical practice. Accompanying this text we have included a comprehensive table, containing the list of genes currently known to be involved in the etiology of CEEs.
Collapse
Affiliation(s)
- Marina C Gonsales
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Maria Augusta Montenegro
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Camila V Soler
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Ana Carolina Coan
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Marilisa M Guerreiro
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Instituto Brasileiro de Neurociências e Neurotecnologia, Faculdade de Ciências Médicas, Universidade de Campinas, Campinas, SP, Brazil
| |
Collapse
|
34
|
Mastrangelo M. Novel Genes of Early-Onset Epileptic Encephalopathies: From Genotype to Phenotypes. Pediatr Neurol 2015; 53:119-29. [PMID: 26073591 DOI: 10.1016/j.pediatrneurol.2015.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Early-onset epileptic encephalopathies are severe disorders in which seizure recurrence impairs motor, cognitive, and sensory development. In recent years, next-generation sequencing technologies have led to the detection of several pathogenic new genes. METHODS AND RESULTS A PubMed search was carried out using the entries "early onset epileptic encephalopathies," "early infantile epileptic encephalopathies," and "next generation sequencing." The most relevant articles written on this subject between 2000 and 2015 were selected. Here we summarize the related contents concerning the pathogenic role and the phenotypic features of 20 novel gene-related syndromes involved in the pathogenesis of early-onset epileptic encephalopathy variants. CONCLUSIONS Despite the increasing number of single early-onset epileptic encephalopathy genes, the clinical presentations of these disorders frequently overlap, making it difficult to picture a systematic diagnostic evaluation. In any case, a progressive approach should guide the choice of molecular genetic investigations. It is suggested that clinicians pay particular attention to mutated genes causing potentially treatable conditions in order to take advantage of expert counseling.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Pediatric Neurology Division, Department of Pediatrics, Child Neurology and Psychiatry, "Sapienza-University of Rome", Rome, Italy.
| |
Collapse
|
35
|
Lesca G, Depienne C. Epilepsy genetics: the ongoing revolution. Rev Neurol (Paris) 2015; 171:539-557. [PMID: 26003806 DOI: 10.1016/j.neurol.2015.01.569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/24/2014] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
Epilepsies have long remained refractory to gene identification due to several obstacles, including a highly variable inter- and intrafamilial expressivity of the phenotypes, a high frequency of phenocopies, and a huge genetic heterogeneity. Recent technological breakthroughs, such as array comparative genomic hybridization and next generation sequencing, have been leading, in the past few years, to the identification of an increasing number of genomic regions and genes in which mutations or copy-number variations cause various epileptic disorders, revealing an enormous diversity of pathophysiological mechanisms. The field that has undergone the most striking revolution is that of epileptic encephalopathies, for which most of causing genes have been discovered since the year 2012. Some examples are the continuous spike-and-waves during slow-wave sleep and Landau-Kleffner syndromes for which the recent discovery of the role of GRIN2A mutations has finally confirmed the genetic bases. These new technologies begin to be used for diagnostic applications, and the main challenge now resides in the interpretation of the huge mass of variants detected by these methods. The identification of causative mutations in epilepsies provides definitive confirmation of the clinical diagnosis, allows accurate genetic counselling, and sometimes permits the development of new appropriate and specific antiepileptic therapies. Future challenges include the identification of the genetic or environmental factors that modify the epileptic phenotypes caused by mutations in a given gene and the understanding of the role of somatic mutations in sporadic epilepsies.
Collapse
Affiliation(s)
- G Lesca
- Service de génétique, groupement hospitalier Est, hospices civils de Lyon, 59, boulevard Pinel, 69677 Bron, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11-Novembre-1918, 69100 Villeurbanne, France; CRNL, CNRS UMR 5292, Inserm U1028, bâtiment IMBL, 11, avenue Jean-Capelle, 69621 Villeurbanne cedex, France.
| | - C Depienne
- Département de génétique et cytogénétique, hôpital Pitié-Salpêtrière, AP-HP, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; ICM, CNRS UMR 7225, Inserm U1127, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
36
|
Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632450. [PMID: 25879033 PMCID: PMC4388020 DOI: 10.1155/2015/632450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
Collapse
|
37
|
Andrews T, Meader S, Vulto-van Silfhout A, Taylor A, Steinberg J, Hehir-Kwa J, Pfundt R, de Leeuw N, de Vries BBA, Webber C. Gene networks underlying convergent and pleiotropic phenotypes in a large and systematically-phenotyped cohort with heterogeneous developmental disorders. PLoS Genet 2015; 11:e1005012. [PMID: 25781962 PMCID: PMC4362763 DOI: 10.1371/journal.pgen.1005012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/17/2015] [Indexed: 12/05/2022] Open
Abstract
Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects. Developmental disorders occur in ∼3% of live births, and exhibit a broad range of abnormalities including: intellectual disability, autism, heart defects, and other neurological and morphological problems. Often, patients are grouped into genetic syndromes which are defined by a specific set of mutations and a common set of abnormalities. However, many mutations are unique to a single patient and many patients present a range of abnormalities which do not fit one of the recognized genetic syndromes, making diagnosis difficult. Using a dataset of 197 patients with systematically described abnormalities, we identified molecular pathways whose disruption was associated with specific abnormalities among many patients. Importantly, patients with mutations in the same pathway often exhibited similar co-morbid symptoms and thus the commonly disrupted pathway appeared responsible for the broad range of shared abnormalities amongst these patients. These findings support the general concept that patients with mutations in distinct genes could be etiologically grouped together through the common pathway that these mutated genes participate in, with a view to improving diagnoses, prognoses and therapeutic outcomes.
Collapse
Affiliation(s)
- Tallulah Andrews
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephen Meader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Avigail Taylor
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Julia Steinberg
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jayne Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B. A. de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail: (BBAdV); (CW)
| | - Caleb Webber
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (BBAdV); (CW)
| |
Collapse
|
38
|
de Curtis I. Roles of Rac1 and Rac3 GTPases during the development of cortical and hippocampal GABAergic interneurons. Front Cell Neurosci 2014; 8:307. [PMID: 25309333 PMCID: PMC4174739 DOI: 10.3389/fncel.2014.00307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022] Open
Abstract
Rac GTPases are regulators of the cytoskeleton that play an important role in several aspects of neuronal and brain development. Two distinct Rac GTPases are expressed in the developing nervous system, the widely expressed Rac1 and the neural-specific Rac3 proteins. Recent experimental evidence supports a central role of these two Rac proteins in the development of inhibitory GABAergic interneurons, important modulatory elements of the brain circuitry. The combined inactivation of the genes for the two Rac proteins has profound effects on distinct aspects of interneuron development, and has highlighted a synergistic contribution of the two proteins to the postmitotic maturation of specific populations of cortical and hippocampal interneurons. Rac function is modulated by different types of regulators, and can influence the activity of specific effectors. Some of these proteins have been associated to the development and maturation of interneurons. Cortical interneuron dysfunction is implicated in several neurological and psychiatric diseases characterized by cognitive impairment. Therefore the description of the cellular processes regulated by the Rac GTPases, and the identification of the molecular networks underlying these processes during interneuron development is relevant to the understanding of the role of GABAergic interneurons in cognitive functions.
Collapse
Affiliation(s)
- Ivan de Curtis
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University Milano, Italy
| |
Collapse
|