1
|
Tkemaladze T, Bregvadze K, Abashishvili L, Chikvinidze G, Delgado Vega AM, Akbar F, Khan S, Kirmani S. Clinical and Genetic Landscape of IGHMBP2-Related Disorders: From Novel Variants to Phenotypic Insights. Am J Med Genet A 2025:e64116. [PMID: 40353295 DOI: 10.1002/ajmg.a.64116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/20/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Pathogenic variants in IGHMBP2 have been associated with spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Autosomal Recessive Charcot-Marie-Tooth disease type 2S (AR-CMT2S), as well as a relatively wide spectrum of rare, atypical phenotypes. We describe clinical and molecular features of five patients who have diverse clinical findings associated with known and novel IGHMBP2 pathogenic variants. Genotype-phenotype correlations are evident, highlighting the association of specific variants with SMARD1 or AR-CMT2S. This study expands the spectrum of the IGHMBP2-related disease and highlights the necessity to study diverse populations to enhance diagnostic accuracy and refine genotype-phenotype correlations.
Collapse
Affiliation(s)
- Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
- Givi Zhvania Pediatric University Clinic, Tbilisi State Medical University, Tbilisi, Georgia
| | - Kakha Bregvadze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Luka Abashishvili
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Gocha Chikvinidze
- Department of Neurology, I.Tsitsishvili Children's New Clinic, Tbilisi, Georgia
| | - Angelica Maria Delgado Vega
- Department of Molecular Medicine and Surgery, Rare Diseases, Karolinska Institutet, Stockholm, Stockholm County, Sweden
| | - Fizza Akbar
- Division of Women & Child Health, Aga Khan University, Karachi, Pakistan
| | - Sara Khan
- Section of Neurology, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Salman Kirmani
- Division of Women & Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
2
|
Dai S, Zheng J, Chen Y, Zhu J, Wang X, Peng Y, Luo Y, Lin T, Li Y, Ma M, Shi Z, Meng X, Sun L, Zhou JC. A cross-sectional survey on the health status of patients with Charcot-Marie-Tooth disease in a Chinese national patient group. J Neurol 2025; 272:322. [PMID: 40198420 DOI: 10.1007/s00415-025-13063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a rare inherited peripheral neuropathy, and the health status of CMT patients in China is not well understood without a national disease registry system. We aimed to obtain the related epidemiological data to support effective work on CMT. METHODS The online cross-sectional study included patients definitively diagnosed with CMT nationwide. Descriptive analyses were conducted on CMT's disease characteristics, diagnostic results, walking condition, rehabilitation status, comorbidities, family history, etc. RESULTS: CMT1A, CMT2A, CMTX1, CMT2S, CMT1E, and CMT1B were the top six types accounting for 64.4% of the 523 eligible patients. PMP22, MFN2, GJB1, MPZ, GDAP1, and IGHMBP2 ranked as the top six genes among the collected 44 pathogenic genes. The median ages of symptom onset and diagnosis were 7.3 and 18.7 years, respectively, with a median interval of 3.8 years between symptom onset and genetic confirmation. Only 8.3% exhibited unaffected walking speed and balance, the remaining experienced varying degrees of motor impairment, and 42.1% employed rehabilitation. Moreover, 26.8% experienced initial misdiagnosis, and 47.0% were estimated to suffer from depression. Of comorbidities complained by the 94 patients, gastrointestinal was most common (17/94) followed by hypertension (13/94), and hiatal hernia (2/94) was first reported. Family history was documented in 35.2% of the surveyed patients. CONCLUSION Chinese patients with CMT were in complicated and poor health status with predominant disease types and pathogenic genes generally as anticipated. A national CMT registry system is highly wanted to collect comprehensive information to guide further research and improve patients' health status.
Collapse
Affiliation(s)
- Shimiao Dai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiayin Zheng
- China Alliance for Rare Diseases (CHARD), Beijing, 100020, China
| | - Yuqing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Junying Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinling Wang
- China Alliance for Rare Diseases (CHARD), Beijing, 100020, China
| | - Yuxuan Peng
- Qianlixing CMT Mutual Supporting Family, Kunming, 650500, China
| | - Yuping Luo
- Qianlixing CMT Mutual Supporting Family, Kunming, 650500, China
| | - Tian Lin
- Qianlixing CMT Mutual Supporting Family, Kunming, 650500, China
| | - Yao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Miaomiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Gansu Provincial Health Supervision and Security Center, Lanzhou, 730013, China
| | - Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinru Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- Guangdong Province Engineering Laboratory for Nutrition Translation, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
3
|
Lee D. Activators of the 26S proteasome when protein degradation increases. Exp Mol Med 2025; 57:41-49. [PMID: 39779978 PMCID: PMC11799193 DOI: 10.1038/s12276-024-01385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied. However, the activities of the 26S proteasome are also stimulated, especially under highly catabolic conditions such as those associated with atrophying skeletal muscle, proteotoxic stress such as heat shock and arsenite, or hormonal cues such as cAMP or cGMP agonists. Among the proteins that enhance proteasomal degradation are the PKA, PKG, UBL-UBA proteins and the Zn finger AN1-type domain (ZFAND) family proteins. ZFAND proteins are of particular interest because of their inducible expression in response to various stimuli and their abilities to control protein quality by stimulating the 26S proteasome and p97/VCP. The regulatory roles of ZFAND proteins appear to be important not only for the control of protein degradation but also for other cellular processes, such as mRNA stability and signaling pathways. This review summarizes the known functions of proteasome activators and discusses their possible roles in regulating proteostasis and other cellular processes.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
- Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University. 88 Daxue Road, 325060, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yavas C, Dogan M, Ozgor B, Akbulut E, Eroz R. Novel biallelic nonsense mutation in IGHMBP2 gene linked to neuropathy (CMT2S): A comprehensive clinical, genetic and bioinformatic analysis of a Turkish patient with literature review. Brain Dev 2025; 47:104313. [PMID: 39705914 DOI: 10.1016/j.braindev.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S) typically present before age 10. Genetic factors account for up to 50 % of neuropathies, which often display varied symptoms. Mutations in the IGHMBP2 gene are associated with both CMT2S and SMARD1, resulting in a rare clinical condition marked by axonal neuropathy, spinal muscular atrophy, respiratory distress, and muscle weakness. METHOD Detailed family histories and medical data were collected. Segregation analysis was performed using Sanger sequencing and whole exome sequencing. Additionally, a review of molecularly confirmed patients was conducted. Protein tertiary structures expressed in the IGHMBP2 gene were tested for topological and conformational changes using modeling programs and in-silico tools. RESULTS We identified a novel homozygous nonsense mutation (c.2568_2569del p.Gly857Alafs*27) in a family with a member showing neuropathy. This report details the clinical and genetic findings of the affected individuals, including a Turkish patient with neuropathy, and compares them with literature cases. CONCLUSION Understanding the clinical impact of the (c.2568_2569del p.Gly857Alafs*27) mutation will enhance our knowledge of IGHMBP2 gene defects role in neuropathy. This study aims to highlight this severe recessive disease caused by pathogenic IGHMBP2 gene mutations and to examine the mutation spectrum and phenotype differences.
Collapse
Affiliation(s)
- Cüneyd Yavas
- Department of Molecular Biology and Genetics Biruni University, Istanbul, Turkiye.
| | - Mustafa Dogan
- Basaksehir Cam and Sakura City Hospital, Genetic Diseases Assessment Center, Istanbul, Turkiye
| | - Bilge Ozgor
- Department of Pediatric Neurology, Inonu University Faculty of Medicine, Turkiye
| | - Ekrem Akbulut
- Department of Bioengineering, Malatya Turgut Ozal University, Malatya, Turkiye
| | - Recep Eroz
- Department of Medical Genetics Medical Faculty, Aksaray University, Aksaray, Turkiye
| |
Collapse
|
5
|
Nghia HTT, Umapathi T, Duc NM, Hieu NLT, Thao MP. Genetic landscape of Charcot-Marie-Tooth disease in Vietnam: A prospective multicenter study. J Neuromuscul Dis 2025; 12:22143602251313722. [PMID: 39973457 DOI: 10.1177/22143602251313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND In many developing regions, genetic data on Charcot-Marie-Tooth disease (CMT) remains scarce. OBJECTIVE This study aimed to investigate the genetic landscape of CMT in Vietnam to guide the development of cost-effective diagnostic algorithms for patients with suspected genetic neuropathies. METHODS We recruited 44 patients with a diagnosis of CMT from three tertiary centers between March 2021 and December 2023 and recorded their clinical and electrophysiological characteristics. All patients were analyzed for duplications or deletions of PMP22, GJB1, MPZ, and MFN2 via multiplex ligation-dependent probe amplification (MLPA) and for 94 genes via targeted next-generation sequencing (NGS). The identified variants were classified per the American College of Medical Genetics and Genomics 2015 guidelines using VarSome, a bioinformatics engine. RESULTS Among 44 patients, 24 carried a total of 26 variants. Of these 26 variants, 15 were (57.7%) pathogenic, 6 (23.1%) were likely pathogenic, and 5 (19.2%) were variants of uncertain significance (VUS). Excluding the VUS, the diagnostic yield of the targeted sequencing was 43.2% (19/44). Through MLPA, PMP22 duplications were identified in 10 patients with the demyelinating type of CMT and 1 patient with the unclassified CMT type. The combined yield of MLPA and gene panels was 68.2% (30/44). We detected three novel pathogenic/likely pathogenic variants in GJB1, INF2, and IGHMBP2, as well as three novel VUS in MPZ, PMP22, and INF2. IGHMBP2 may represent the most prevalent autosomal recessive gene associated with CMT in Vietnam. CONCLUSIONS We propose a sequential genetic testing approach for CMT in resource-limited settings, with the initial testing via MLPA for demyelinating CMT, followed by NGS for those who test negative. Our findings broaden the CMT genotype-phenotype profile of the Vietnamese population by identifying six novel candidate variants.
Collapse
Affiliation(s)
| | | | - Nguyen Minh Duc
- Department of Neurology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Le Trung Hieu
- Department of Neurology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Neurology, Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Mai Phuong Thao
- Physiology - Pathophysiology - Immunology Department, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Vietnam
| |
Collapse
|
6
|
Lord J, Oquendo CJ, Wai HA, Holloway JG, Martin-Geary A, Blakes AJM, Arciero E, Domcke S, Childs AM, Low K, Rankin J, Baralle D, Martin HC, Whiffin N. Noncoding variants are a rare cause of recessive developmental disorders in trans with coding variants. Genet Med 2024; 26:101249. [PMID: 39243181 DOI: 10.1016/j.gim.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
PURPOSE Identifying pathogenic noncoding variants is challenging. A single protein-altering variant is often identified in a recessive gene in individuals with developmental disorders (DD), but the prevalence of pathogenic noncoding "second hits" in trans with these is unknown. METHODS In 4073 genetically undiagnosed rare-disease trio probands from the 100,000 Genomes project, we identified rare heterozygous protein-altering variants in recessive DD-associated genes. We identified rare noncoding variants on the other haplotype in introns, untranslated regions, promoters, and candidate enhancer regions. We clinically evaluated the top candidates for phenotypic fit and performed functional testing where possible. RESULTS We identified 3761 rare heterozygous loss-of-function or ClinVar pathogenic variants in recessive DD-associated genes in 2430 probands. For 1366 (36.3%) of these, we identified at least 1 rare noncoding variant in trans. Bioinformatic filtering and clinical review, revealed 7 to be a good clinical fit. After detailed characterization, we identified likely diagnoses for 3 probands (in GAA, NPHP3, and PKHD1) and candidate diagnoses in a further 3 (PAH, LAMA2, and IGHMBP2). CONCLUSION We developed a systematic approach to uncover new diagnoses involving compound heterozygous coding/noncoding variants and conclude that this mechanism is likely to be a rare cause of DDs.
Collapse
Affiliation(s)
- Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom.
| | - Carolina J Oquendo
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Htoo A Wai
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John G Holloway
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alexandra Martin-Geary
- Big Data Institute, University of Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, United Kingdom
| | - Alexander J M Blakes
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Elena Arciero
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Anne-Marie Childs
- Department of Paediatric Neurology, Leeds teaching Hospitals, United Kingdom
| | - Karen Low
- Department of Clinical Genetics, UHBW NHS Trust, Bristol, United Kingdom; Department of Academic Child Health, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Julia Rankin
- Peninsula Clinical Genetics Service, Royal Devon University Hospital, Exeter, United Kingdom
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust, University of Southampton, Southampton, United Kingdom
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, United Kingdom; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA.
| |
Collapse
|
7
|
Ricardez Hernandez SM, Ahmed B, Al Rawi Y, Torres FJL, Garro Kacher MO, Smith CL, Al Rawi Z, Garcia J, Nichols NL, Lorson CL, Lorson MA. Ighmbp2 mutations and disease pathology: Defining differences that differentiate SMARD1 and CMT2S. Exp Neurol 2024; 383:115025. [PMID: 39461706 DOI: 10.1016/j.expneurol.2024.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Mutations in the Immunoglobulin mu DNA binding protein 2 (IGHMBP2) gene result in two distinct diseases, SMA with Respiratory Distress Type I (SMARD1) and Charcot Marie Tooth Type 2S (CMT2S). To understand the phenotypic and molecular differences between SMARD1 and CMT2S, and the role of IGHMBP2 in disease development, we generated mouse models based on six IGHMBP2 patient mutations. Previously, we reported the development and characterization of Ighmbp2D564N/D564N mice and in this manuscript, we examine two mutations: D565N (D564N in mice) and H924Y (H922Y in mice) in the Ighmbp2H922Y/H922Y and Ighmbp2D564N/H922Y contexts. We found significant differences between these mouse models, providing critical insight into the role of IGHMBP2 in the pathogenesis of SMARD1 and CMT2S. Importantly, these studies also demonstrate how disease pathogenesis is significantly altered in the context of Ighmbp2 D564N and H922Y homozygous recessive and compound heterozygous mutations. Notably, there were short-lived and long-lived lifespan cohorts within Ighmbp2D564N/H922Y mice with early (P12/P16) respiratory pathology serving as a key predictor of lifespan. Despite differences in lifespan, motor function deficits initiated early and progressively worsened in all Ighmbp2D564N/H922Y mice. There was decreased limb skeletal muscle fiber area and increased neuromuscular junction (NMJ) denervation in Ighmbp2D564N/H922Y mice. Consistent with CMT2S, Ighmbp2H922Y/H922Y mice did not have altered lifespans nor respiratory pathology. Interestingly, Ighmbp2H922Y/H922Y limb muscle fibers demonstrated an increase in muscle fiber area followed by a reduction while changes in NMJ innervation were minimal even at P180. This is the first study that demonstrates differences associated with IGHMBP2 function within respiration with those within limb motor function. Significant to our understanding of IGHMBP2 function, we demonstrate that there is a direct correlation between disease pathogenesis associated with these IGHMBP2 patient mutations and IGHMBP2 biochemical activity. Importantly, these studies reveal the dynamic differences that are presented when either a single mutant protein is present (IGHMBP2-D564N or IGHMBP2-H922Y) or two mutant proteins are present (IGHMBP2-D564N and IGHMBP2-H922Y) within cells.
Collapse
Affiliation(s)
- Sara M Ricardez Hernandez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bassil Ahmed
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yaser Al Rawi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - F Javier Llorente Torres
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Mona O Garro Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Catherine L Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Zayd Al Rawi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jessica Garcia
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Monique A Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Ahmed AN, Rawlins LE, Khan N, Jan Z, Ubeyratna N, Voutsina N, Azeem A, Khan S, Baple EL, Crosby AH, Saleha S. Expanding the genetic spectrum of hereditary motor sensory neuropathies in Pakistan. BMC Neurol 2024; 24:394. [PMID: 39415096 PMCID: PMC11481789 DOI: 10.1186/s12883-024-03882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Hereditary motor and sensory neuropathy (HMSN) refers to a group of inherited progressive peripheral neuropathies characterized by reduced nerve conduction velocity with chronic segmental demyelination and/or axonal degeneration. HMSN is highly clinically and genetically heterogeneous with multiple inheritance patterns and phenotypic overlap with other inherited neuropathies and neurodegenerative diseases. Due to this high complexity and genetic heterogeneity, this study aimed to elucidate the genetic causes of HMSN in Pakistani families using Whole Exome Sequencing (WES) for variant identification and Sanger sequencing for validation and segregation analysis, facilitating accurate clinical diagnosis. METHODS Families from Khyber Pakhtunkhwa with at least two members showing HMSN symptoms, who had not previously undergone genetic analysis, were included. Referrals for genetic investigations were based on clinical features suggestive of HMSN by local neurologists. WES was performed on affected individuals from each family, with Sanger sequencing used to validate and analyze the segregation of identified variants among family members. Clinical data including age of onset were assessed for variability among affected individuals, and the success rate of genetic diagnosis was compared with existing literature using proportional differences and Cohen's h. RESULTS WES identified homozygous pathogenic variants in GDAP1 (c.310 + 4 A > G, p.?), SETX (c.5948_5949del, p.(Asn1984Profs*30), IGHMBP2 (c.1591 C > A, p.(Pro531Thr) and NARS1 (c.1633 C > T, p.(Arg545Cys) as causative for HMSN in five out of nine families, consistent with an autosomal recessive inheritance pattern. Additionally, in families with HMSN, a SETX variant was found to cause cerebellar ataxia, while a NARS1 variant was linked to intellectual disability. Based on American College of Medical Genetics and Genomics criteria, the GDAP1 variant is classified as a variant of uncertain significance, while variants in SETX and IGHMBP2 are classified as pathogenic, and the NARS1 variant is classified as likely pathogenic. The age of onset ranged from 1 to 15 years (Mean = 5.13, SD = 3.61), and a genetic diagnosis was achieved in 55.56% of families with HMSN, with small effect sizes compared to previous studies. CONCLUSIONS This study expands the molecular genetic spectrum of HMSN and HMSN plus type neuropathies in Pakistan and facilitates accurate diagnosis, genetic counseling, and clinical management for affected families.
Collapse
Affiliation(s)
- Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Lettie E Rawlins
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK.
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Zakir Jan
- Department of Neurology, Pakistan Institute of Medical Science, Islamabad, 44000, Pakistan
| | - Nishanka Ubeyratna
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Nikol Voutsina
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
9
|
Holbrook SE, Hicks AN, Martin PB, Hines TJ, Castro HP, Cox GA. Clinically relevant mouse models of severe spinal muscular atrophy with respiratory distress type 1. Hum Mol Genet 2024; 33:1800-1814. [PMID: 39128026 PMCID: PMC11457999 DOI: 10.1093/hmg/ddae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
Spinal Muscular Atrophy with Respiratory Distress (SMARD1) is a lethal infantile disease, characterized by the loss of motor neurons leading to muscular atrophy, diaphragmatic paralysis, and weakness in the trunk and limbs. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause a wide spectrum of motor neuron disease. Though mutations in IGHMBP2 are mostly associated with SMARD1, milder alleles cause the axonal neuropathy, Charcot-Marie-Tooth disease type 2S (CMT2S), and some null alleles are potentially a risk factor for sudden infant death syndrome (SIDS). Variant heterogeneity studied using an allelic series can be informative in order to create a broad spectrum of models that better exhibit the human variation. We previously identified the nmd2J mouse model of SMARD1, as well as two milder CMT2S mouse models. Here, we used CRISPR-Cas9 genome editing to create three new, more severe Ighmbp2 mouse models of SMARD1, including a null allele, a deletion of C495 (C495del) and a deletion of L362 (L362del). Phenotypic characterization of the IGHMBP2L362del homozygous mutants and IGHMBP2C495del homozygous mutants respectively show a more severe disease presentation than the previous nmd2J model. The IGHMBP2L362del mutants lack a clear denervation in the diaphragm while the IGHMBP2C495del mutants display a neurogenic diaphragmatic phenotype as observed in SMARD1 patients. Characterization of the Ighmbp2-null model indicated neo-natal lethality (median lifespan = 0.5 days). These novel strains expand the spectrum of SMARD1 models to better reflect the clinical continuum observed in the human patients with various IGHMBP2 recessive mutations.
Collapse
Affiliation(s)
- Sarah E Holbrook
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| | - Amy N Hicks
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Paige B Martin
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Timothy J Hines
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Harold P Castro
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| |
Collapse
|
10
|
Stavrou M, Kleopa KA. Gene therapies for CMT neuropathies: from the bench to the clinic. Curr Opin Neurol 2024; 37:445-454. [PMID: 38873808 DOI: 10.1097/wco.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth (CMT) neuropathies are rare, genetically heterogeneous and progressive diseases for which there are no approved treatments and their management remains mostly supportive and symptomatic. This review is intended to provide an update on recent developments in gene therapies for different CMT neuropathies. RECENT FINDINGS Increasing knowledge of disease pathomechanisms underlying several CMT types has facilitated the development of promising viral and nonviral gene therapy approaches. Some of these therapies are currently approaching the crucial step of moving from the bench to the clinic, having passed the proof-of-concept stage in rodent models and some also in larger animals. However, questions of optimal delivery route and dose, off-target effects, and possible payload toxicity remain to be clarified for several of these approaches. Furthermore, limited resources, the rarity of most CMT subtypes, and issues of safety and regulatory requirements, create the need for consensus guidelines and optimal clinical trial design. SUMMARY Promising gene therapies have been developed for several CMT neuropathies, with proof-of-principle demonstrated in relevant disease models. Advantages and drawbacks of each approach are discussed and remaining challenges are highlighted. Furthermore, we suggest important parameters that should be considered in order to successfully translate them into the clinic.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
11
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
12
|
Rzepnikowska W, Kaminska J, Kochański A. The molecular mechanisms that underlie IGHMBP2-related diseases. Neuropathol Appl Neurobiol 2024; 50:e13005. [PMID: 39119929 DOI: 10.1111/nan.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
13
|
Park J, Desai H, Liboy-Lugo JM, Gu S, Jowhar Z, Xu A, Floor SN. IGHMBP2 deletion suppresses translation and activates the integrated stress response. Life Sci Alliance 2024; 7:e202302554. [PMID: 38803225 PMCID: PMC11109757 DOI: 10.26508/lsa.202302554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
IGHMBP2 is a nonessential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 up-regulation. With recent studies showing the integrated stress response (ISR) can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.
Collapse
Affiliation(s)
- Jesslyn Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hetvee Desai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - José M Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Leśniak A, Glińska M, Patalan M, Ostrowska I, Świrska-Sobolewska M, Giżewska-Kacprzak K, Kotkowiak A, Leśniak A, Walczak M, Śmigiel R, Giżewska M. The Clinical Heterogeneity of Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1)-A Report of Three Cases, Including Twins. Genes (Basel) 2024; 15:997. [PMID: 39202358 PMCID: PMC11353554 DOI: 10.3390/genes15080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1; OMIM #604320, ORPHA:98920) is a rare autosomal recessive congenital motor neuron disease. It is caused by variants in the IGHMBP2 gene. Clinically, it presents with respiratory failure due to diaphragmatic paralysis, progressive muscle weakness starting in the distal parts of the limbs, dysphagia, and damage to sensory and autonomic nerves. Unlike spinal muscular atrophy (SMA), SMARD1 has a distinct genetic etiology and is not detected in the population newborn screening programs. Most children with SMARD1 do not survive beyond the first year of life due to progressive respiratory failure. Artificial ventilation can prolong survival, but no specific treatment is available. Therapy focuses on mechanical ventilation and improving the patient's quality of life. Research into gene therapy is ongoing. We report three female patients with SMARD1, including twins from a triplet pregnancy. In twin sisters (patient no. 1 and patient no. 2), two heterozygous variants in the IGHMBP2 gene were identified: c.595G>C/p.Ala199Pro and c.1615_1623del/p.Ser539_Tyr541del. In patient no. 3, a variant c.1478C>T/p.Thr493Ile and a variant c.439C>T/p.Arg147* in the IGHMBP2 gene were detected. Our findings underscore the variability of clinical presentations, even among patients sharing the same pathogenic variants in the IGHMBP2 gene, and emphasize the importance of early genetic diagnosis in patients presenting with respiratory failure, with or without associated diaphragmatic muscle paralysis.
Collapse
Affiliation(s)
- Alicja Leśniak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Marta Glińska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Michał Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Iwona Ostrowska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Monika Świrska-Sobolewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Kaja Giżewska-Kacprzak
- Department of Pediatric and Oncological Surgery, Urology and Hand Surgery, Pomeranian Medical University in Szczecin, Prof. Tadeusz Sokołowski University Clinical Hospital No. 1, 71-252 Szczecin, Poland
| | - Agata Kotkowiak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Anna Leśniak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| | - Robert Śmigiel
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (A.L.); (M.G.); (M.G.)
| |
Collapse
|
15
|
Liu L, Zeng S, Li X, Xie Y, Xu K, Yang H, Huang S, Zhao H, Zhang R. Genotype-phenotype correlations of AR-CMT2S in a cohort of axonal Charcot-Marie-Tooth patients from Central South China. J Peripher Nerv Syst 2024; 29:243-251. [PMID: 38772550 DOI: 10.1111/jns.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND AIMS This study aimed to report nine Charcot-Marie-Tooth disease (CMT) families with six novel IGHMBP2 mutations in our CMT2 cohort and to summarize the genetic and clinical features of all AR-CMT2S patients reported worldwide. METHODS General information, clinical and neurophysiological data of 275 axonal CMT families were collected. Genetic screening was performed by inherited peripheral neuropathy related genes panel or whole exome sequencing. The published papers reporting AR-CMT2S from 2014 to 2023 were searched in Pubmed and Wanfang databases. RESULTS In our CMT2 cohort, we detected 17 AR-CMT2S families carrying IGHMBP2 mutations and eight were published previously. Among these, c.743 T > A (p.Val248Glu), c.884A > G (p.Asp295Gly), c.1256C > A (p.Ser419*), c.2598_2599delGA (p.Lys868Sfs*16), c.1694_1696delATG (p.Asp565del) and c.2509A > T (p.Arg837*) were firstly reported. These patients prominently presented with early-onset typical axonal neuropathy and without respiratory dysfunction. So far, 56 AR-CMT2S patients and 57 different mutations coming from 43 families have been reported in the world. Twenty-nine of 32 missense mutations were clustered in helicase domain and ATPase region. The age at onset ranged from 0.11to 20 years (Mean ± SD: 3.43 ± 3.88 years) and the majority was infantile-onset (<2 years). The initial symptoms included weakness of limbs (19, 29.7%), delayed milestones (12, 18.8%), gait disturbance (11, 17.2%), feet deformity (8, 12.5%), feet drop (8, 12.5%), etc. INTERPRETATION: AR-CMT2S accounted for 6.2% in our CMT2 cohort. We firstly reported six novel IGHMBP2 mutations which expanded the genotypic spectrum of AR-CMT2S. Furthermore, 17 AR-CMT2S families could provide more resources for natural history study, drug research and development.
Collapse
Affiliation(s)
- Lei Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Sen Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongzhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ke Xu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Honglan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
16
|
Zhou C, Chen Z, Chen Q, Feng X. Case report: Heterozygous variation in the IGHMBP2 gene leading to spinal muscular atrophy with respiratory distress type 1. Front Neurol 2024; 15:1289625. [PMID: 38872814 PMCID: PMC11169606 DOI: 10.3389/fneur.2024.1289625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
A rare autosomal recessive genetic disease is spinal muscular atrophy with respiratory distress type 1 (SMARD 1; OMIM #604320), which is characterized by progressive distal limb muscle weakness, muscular atrophy, and early onset of respiratory failure. Herein, we report the case of a 4-month-old female infant with SMARD type 1 who was admitted to our hospital owing to unexplained distal limb muscle weakness and early respiratory failure. This report summarizes the characteristics of SMARD type 1 caused by heterozygous variation in the immunoglobulin mu DNA binding protein 2 (IGHMBP2) gene by analyzing its clinical manifestations, genetic variation characteristics, and related examinations, aiming to deepen clinicians' understanding of the disease, assisting pediatricians in providing medical information to parents and improving the decision-making process involved in establishing life support.
Collapse
Affiliation(s)
- Chaoai Zhou
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zefu Chen
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qiqing Chen
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiaowei Feng
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
17
|
Jablonka S, Yildirim E. Disease Mechanisms and Therapeutic Approaches in SMARD1-Insights from Animal Models and Cell Models. Biomedicines 2024; 12:845. [PMID: 38672198 PMCID: PMC11048220 DOI: 10.3390/biomedicines12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal childhood motoneuron disease caused by mutations in the IGHMBP2 gene. It is characterized by muscle weakness, initially affecting the distal extremities due to the degeneration of spinal α-motoneurons, and respiratory distress, due to the paralysis of the diaphragm. Infantile forms with a severe course of the disease can be distinguished from juvenile forms with a milder course. Mutations in the IGHMBP2 gene have also been found in patients with peripheral neuropathy Charcot-Marie-Tooth type 2S (CMT2S). IGHMBP2 is an ATP-dependent 5'→3' RNA helicase thought to be involved in translational mechanisms. In recent years, several animal models representing both SMARD1 forms and CMT2S have been generated to initially study disease mechanisms. Later, the models showed very well that both stem cell therapies and the delivery of the human IGHMBP2 cDNA by AAV9 approaches (AAV9-IGHMBP2) can lead to significant improvements in disease symptoms. Therefore, the SMARD1 animal models, in addition to the cellular models, provide an inexhaustible source for obtaining knowledge of disease mechanisms, disease progression at the cellular level, and deeper insights into the development of therapies against SMARD1.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany;
| | | |
Collapse
|
18
|
Vadla GP, Singh K, Lorson CL, Lorson MA. The contribution and therapeutic implications of IGHMBP2 mutations on IGHMBP2 biochemical activity and ABT1 association. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167091. [PMID: 38403020 PMCID: PMC10999323 DOI: 10.1016/j.bbadis.2024.167091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Mutations within immunoglobulin mu DNA binding protein (IGHMBP2), an RNA-DNA helicase, result in SMA with respiratory distress type I (SMARD1) and Charcot Marie Tooth type 2S (CMT2S). The underlying biochemical mechanism of IGHMBP2 is unknown as well as the functional significance of IGHMBP2 mutations in disease severity. Here we report the biochemical mechanisms of IGHMBP2 disease-causing mutations D565N and H924Y, and their potential impact on therapeutic strategies. The IGHMBP2-D565N mutation has been identified in SMARD1 patients, while the IGHMBP2-H924Y mutation has been identified in CMT2S patients. For the first time, we demonstrate a correlation between the altered IGHMBP2 biochemical activity associated with the D565N and H924Y mutations and disease severity and pathology in patients and our Ighmbp2 mouse models. We show that IGHMBP2 mutations that alter the association with activator of basal transcription (ABT1) impact the ATPase and helicase activities of IGHMBP2 and the association with the 47S pre-rRNA 5' external transcribed spacer. We demonstrate that the D565N mutation impairs IGHMBP2 ATPase and helicase activities consistent with disease pathology. The H924Y mutation alters IGHMBP2 activity to a lesser extent while maintaining association with ABT1. In the context of the compound heterozygous patient, we demonstrate that the total biochemical activity associated with IGHMBP2-D565N and IGHMBP2-H924Y proteins is improved over IGHMBP2-D565N alone. Importantly, we demonstrate that the efficacy of therapeutic applications may vary based on the underlying IGHMBP2 mutations and the relative biochemical activity of the mutant IGHMBP2 protein.
Collapse
Affiliation(s)
- Gangadhar P Vadla
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Monique A Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Tran VK, Cao MH, Nguyen TTH, Le PT, Tran HA, Vu DC, Nguyen HT, Nguyen MTP, Bui TH, Nguyen TB, Ta TV, Tran TH. A novel IGHMBP2 variant and clinical diversity in Vietnamese SMARD1 and CMT2S patients. Front Pediatr 2024; 12:1165492. [PMID: 38415210 PMCID: PMC10896978 DOI: 10.3389/fped.2024.1165492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024] Open
Abstract
Background Pathogenic variants in the IGHMBP2 gene are associated with two distinct autosomal recessive neuromuscular disorders: spinal muscular atrophy with respiratory distress type 1 (SMARD1; OMIM #604320) and Charcot-Marie-Tooth type 2S (CMT2S; OMIM #616155). SMARD1 is a severe and fatal condition characterized by infantile-onset respiratory distress, diaphragmatic palsy, and distal muscular weakness, while CMT2S follows a milder clinical course, with slowly progressive distal muscle weakness and sensory loss, without manifestations of respiratory disorder. Methods Whole-exome sequencing of the IGHMBP2 gene was performed for eight Vietnamese patients with IGHMBP2-related neuromuscular disorders including five patients with SMARD1 and the others with CMT2S. Results We identified one novel IGHMBP2 variant c.1574T > C (p.Leu525Pro) in a SMARD1 patient. Besides that, two patients shared the same pathogenic variants (c.1235 + 3A > G/c.1334A > C) but presented completely different clinical courses: one with SMARD1 who deceased at 8 months of age, the other with CMT2S was alive at 3 years old without any respiratory distress. Conclusion This study is the first to report IGHMBP-2-related neuromuscular disorders in Vietnam. A novel IGHMBP2 variant c.1574T > C (p.Leu525Pro) expressing SMARD1 phenotype was detected. The presence of three patients with the same genotype but distinct clinical outcomes suggested the interaction of variants and other factors including relating modified genes in the mechanism of various phenotypes.
Collapse
Affiliation(s)
- Van Khanh Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
- Department of Molecular Pathology, Faculty of Medical Laboratory Technology, Hanoi Medical University, Hanoi, Vietnam
| | - My Ha Cao
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | | | - Phuong Thi Le
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Hai Anh Tran
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Dung Chi Vu
- Department of Endocrinology, Metabolism and Genetics, National Hospital of Pediatrics, Hanoi, Vietnam
| | - Ha Thu Nguyen
- Department of Endocrinology, Metabolism and Genetics, National Hospital of Pediatrics, Hanoi, Vietnam
| | | | - The-Hung Bui
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
- Center for Molecular Medicine, Clinical Genetics Unit, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Thanh Binh Nguyen
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Thanh Van Ta
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
- Clinical Laboratory, Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| | - Thinh Huy Tran
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
- Clinical Laboratory, Hanoi Medical University Hospital, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
20
|
Park JE, Desai H, Liboy-Lugo J, Gu S, Jowhar Z, Xu A, Floor SN. IGHMBP2 deletion suppresses translation and activates the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571166. [PMID: 38168189 PMCID: PMC10760061 DOI: 10.1101/2023.12.11.571166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
IGHMBP2 is a non-essential, superfamily 1 DNA/RNA helicase that is mutated in patients with rare neuromuscular diseases SMARD1 and CMT2S. IGHMBP2 is implicated in translational and transcriptional regulation via biochemical association with ribosomal proteins, pre-rRNA processing factors, and tRNA-related species. To uncover the cellular consequences of perturbing IGHMBP2, we generated full and partial IGHMBP2 deletion K562 cell lines. Using polysome profiling and a nascent protein synthesis assay, we found that IGHMBP2 deletion modestly reduces global translation. We performed Ribo-seq and RNA-seq and identified diverse gene expression changes due to IGHMBP2 deletion, including ATF4 upregulation. With recent studies showing the ISR can contribute to tRNA metabolism-linked neuropathies, we asked whether perturbing IGHMBP2 promotes ISR activation. We generated ATF4 reporter cell lines and found IGHMBP2 knockout cells demonstrate basal, chronic ISR activation. Our work expands upon the impact of IGHMBP2 in translation and elucidates molecular mechanisms that may link mutant IGHMBP2 to severe clinical phenotypes.
Collapse
Affiliation(s)
- Jesslyn E. Park
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Hetvee Desai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
| | - José Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Sohyun Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Ziad Jowhar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Albert Xu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California, USA, 94143
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, USA, 94143
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA, 94143
| |
Collapse
|
21
|
Tian Y, Xing J, Shi Y, Yuan E. Exploring the relationship between IGHMBP2 gene mutations and spinal muscular atrophy with respiratory distress type 1 and Charcot-Marie-Tooth disease type 2S: a systematic review. Front Neurosci 2023; 17:1252075. [PMID: 38046662 PMCID: PMC10690808 DOI: 10.3389/fnins.2023.1252075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Background IGHMBP2 is a crucial gene for the development and maintenance of the nervous system, especially in the survival of motor neurons. Mutations in this gene have been associated with spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth disease type 2S (CMT2S). Methods We conducted a systematic literature search using the PubMed database to identify studies published up to April 1st, 2023, that investigated the association between IGHMBP2 mutations and SMARD1 or CMT2S. We compared the non-truncating mutations and truncating mutations of the IGHMBP2 gene and selected high-frequency mutations of the IGHMBP2 gene. Results We identified 52 articles that investigated the association between IGHMBP2 mutations and SMARD1/CMT2S. We found 6 hotspot mutations of the IGHMBP2 gene. The truncating mutations in trans were all associated with SMARD1. Conclusion This study provides evidence that the complete LOF mechanism of the IGHMBP2 gene defect may be an important cause of SMARD1.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfang Xing
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Akbar F, Saleem SM, Khalid E, Ibrahim S, Afroze B, Kirmani S, Khan S. The spectrum of hereditary neuromuscular disorders in the Pakistani population. Am J Med Genet A 2023; 191:2536-2550. [PMID: 37366078 DOI: 10.1002/ajmg.a.63332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Hereditary neuromuscular disorders (NMDs) are a broad group of clinically heterogeneous disorders with varying inheritance patterns, that are associated with over 500 implicated genes. In the context of a highly consanguineous Pakistani population, we expect that autosomal recessive NMDs may have a higher prevalence compared with patients of European descent. This is the first study to offer a detailed description of the spectrum of genes causing hereditary NMDs in the Pakistani population using NGS testing. To study the clinical and genetic profiles of patients presenting for evaluation of a hereditary neuromuscular disorder. This is a retrospective chart review of patients seen in the Neuromuscular Disorders Clinic and referred to the Genetics Clinic with a suspected hereditary neuromuscular disorder, between 2016 and 2020 at the Aga Khan University Hospital, Karachi and Mukhtiar A. Sheikh Hospital, Multan, Pakistan. The genetic testing for these patients included NGS-based single gene sequencing, NGS-based multi-gene panel and whole exome sequencing. In a total of 112 patients studied, 35 (31.3%) were female. The mean age of onset in all patients was 14.6 years (SD ±12.1 years), with the average age at presentation to the clinic of 22.4 years (SD ±14.10 years). Forty-seven (41.9%) patients had a positive genetic test result, 53 (47.3%) had one or more variants of uncertain significance (VUS), and 12 (10.7%) had a negative result. Upon further genotype-phenotype correlation and family segregation analysis, the diagnostic yield improved, with 59 (52.7%) patients reaching a diagnosis of a hereditary NMD. We also report probable founder variants in COL6A2, FKTN, GNE, and SGCB, previously reported in populations that have possible shared ancestry with the Pakistani population. Our findings reemphasizes that the rate of VUSs can be reduced by clinical correlation and family segregation studies.
Collapse
Affiliation(s)
- Fizza Akbar
- Division of Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | | | | | - Shahnaz Ibrahim
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Bushra Afroze
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Salman Kirmani
- Division of Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Sara Khan
- Department of Neurology, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
23
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
24
|
Sierra-Delgado JA, Sinha-Ray S, Kaleem A, Ganjibakhsh M, Parvate M, Powers S, Zhang X, Likhite S, Meyer K. In Vitro Modeling as a Tool for Testing Therapeutics for Spinal Muscular Atrophy and IGHMBP2-Related Disorders. BIOLOGY 2023; 12:867. [PMID: 37372153 DOI: 10.3390/biology12060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Spinal Muscular Atrophy (SMA) is the leading genetic cause of infant mortality. The most common form of SMA is caused by mutations in the SMN1 gene, located on 5q (SMA). On the other hand, mutations in IGHMBP2 lead to a large disease spectrum with no clear genotype-phenotype correlation, which includes Spinal Muscular Atrophy with Muscular Distress type 1 (SMARD1), an extremely rare form of SMA, and Charcot-Marie-Tooth 2S (CMT2S). We optimized a patient-derived in vitro model system that allows us to expand research on disease pathogenesis and gene function, as well as test the response to the AAV gene therapies we have translated to the clinic. We generated and characterized induced neurons (iN) from SMA and SMARD1/CMT2S patient cell lines. After establishing the lines, we treated the generated neurons with AAV9-mediated gene therapy (AAV9.SMN (Zolgensma) for SMA and AAV9.IGHMBP2 for IGHMBP2 disorders (NCT05152823)) to evaluate the response to treatment. The iNs of both diseases show a characteristic short neurite length and defects in neuronal conversion, which have been reported in the literature before with iPSC modeling. SMA iNs respond to treatment with AAV9.SMN in vitro, showing a partial rescue of the morphology phenotype. For SMARD1/CMT2S iNs, we were able to observe an improvement in the neurite length of neurons after the restoration of IGHMBP2 in all disease cell lines, albeit to a variable extent, with some lines showing better responses to treatment than others. Moreover, this protocol allowed us to classify a variant of uncertain significance on IGHMBP2 on a suspected SMARD1/CMT2S patient. This study will further the understanding of SMA, and SMARD1/CMT2S disease in particular, in the context of variable patient mutations, and might further the development of new treatments, which are urgently needed.
Collapse
Affiliation(s)
| | - Shrestha Sinha-Ray
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Meysam Ganjibakhsh
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mohini Parvate
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Samantha Powers
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
25
|
Martin PB, Holbrook SE, Hicks AN, Hines TJ, Bogdanik LP, Burgess RW, Cox GA. Clinically relevant mouse models of Charcot-Marie-Tooth type 2S. Hum Mol Genet 2023; 32:1276-1288. [PMID: 36413117 PMCID: PMC10077500 DOI: 10.1093/hmg/ddac283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Charcot-Marie-Tooth disease is an inherited peripheral neuropathy that is clinically and genetically heterogenous. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause the infantile motor neuron disease spinal muscular atrophy with respiratory distress type 1 (SMARD1), and, more recently, juvenile-onset Charcot-Marie-Tooth disease type 2S (CMT2S). Using CRISPR-cas9 mutagenesis, we developed the first mouse models of CMT2S [p.Glu365del (E365del) and p.Tyr918Cys (Y918C)]. E365del is the first CMT2S mouse model to be discovered and Y918C is the first human CMT2S allele knock-in model. Phenotypic characterization of the homozygous models found progressive peripheral motor and sensory axonal degeneration. Neuromuscular and locomotor assays indicate that both E365del and Y918C mice have motor deficits, while neurobehavioral characterization of sensory function found that E365del mutants have mechanical allodynia. Analysis of femoral motor and sensory nerves identified axonal degeneration, which does not impact nerve conduction velocities in E365del mice, but it does so in the Y918C model. Based on these results, the E365del mutant mouse, and the human allele knock-in, Y918C, represent mouse models with the hallmark phenotypes of CMT2S, which will be critical for understanding the pathogenic mechanisms of IGHMBP2. These mice will complement existing Ighmbp2 alleles modeling SMARD1 to help understand the complex phenotypic and genotypic heterogeneity that is observed in patients with IGHMBP2 variants.
Collapse
Affiliation(s)
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
26
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
27
|
Vadla GP, Ricardez Hernandez SM, Mao J, Garro-Kacher MO, Lorson ZC, Rice RP, Hansen SA, Lorson CL, Singh K, Lorson MA. ABT1 modifies SMARD1 pathology via interactions with IGHMBP2 and stimulation of ATPase and helicase activity. JCI Insight 2023; 8:e164608. [PMID: 36480289 PMCID: PMC9977310 DOI: 10.1172/jci.insight.164608] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
SMA with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S) are results of mutations in immunoglobulin mu DNA binding protein 2 (IGHMBP2). IGHMBP2 is a UPF1-like helicase with proposed roles in several cellular processes, including translation. This study examines activator of basal transcription 1 (ABT1), a modifier of SMARD1-nmd disease pathology. Microscale thermophoresis and dynamic light scattering demonstrate that IGHMBP2 and ABT1 proteins directly interact with high affinity. The association of ABT1 with IGHMBP2 significantly increases the ATPase and helicase activity as well as the processivity of IGHMBP2. The IGHMBP2/ABT1 complex interacts with the 47S pre-rRNA 5' external transcribed spacer and U3 small nucleolar RNA (snoRNA), suggesting that the IGHMBP2/ABT1 complex is important for pre-rRNA processing. Intracerebroventricular injection of scAAV9-Abt1 decreases FVB-Ighmbp2nmd/nmd disease pathology, significantly increases lifespan, and substantially decreases neuromuscular junction denervation. To our knowledge, ABT1 is the first disease-modifying gene identified for SMARD1. We provide a mechanism proposing that ABT1 decreases disease pathology in FVB-Ighmbp2nmd/nmd mutants by optimizing IGHMBP2 biochemical activity (ATPase and helicase activity). Our studies provide insight into SMARD1 pathogenesis, suggesting that ABT1 modifies IGHMBP2 activity as a means to regulate pre-rRNA processing.
Collapse
Affiliation(s)
- Gangadhar P. Vadla
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Sara M. Ricardez Hernandez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Mona O. Garro-Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Zachary C. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Ronin P. Rice
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Kamal Singh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Monique A. Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
28
|
Zambon AA, Pini V, Bosco L, Falzone YM, Munot P, Muntoni F, Previtali SC. Early onset hereditary neuronopathies: an update on non-5q motor neuron diseases. Brain 2022; 146:806-822. [PMID: 36445400 PMCID: PMC9976982 DOI: 10.1093/brain/awac452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/21/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.
Collapse
Affiliation(s)
- Alberto A Zambon
- Correspondence to: Alberto A. Zambon Neuromuscular Repair Unit InSpe and Division of Neuroscience IRCCS Ospedale San Raffaele, Milan, Italy E-mail:
| | - Veronica Pini
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Luca Bosco
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Yuri M Falzone
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Pinki Munot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 1EH, UK
| | - Stefano C Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
29
|
Rzepnikowska W, Kaminska J, Kochański A. Validation of the Pathogenic Effect of IGHMBP2 Gene Mutations Based on Yeast S. cerevisiae Model. Int J Mol Sci 2022; 23:ijms23179913. [PMID: 36077311 PMCID: PMC9456350 DOI: 10.3390/ijms23179913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a heritable neurodegenerative disease characterized by rapid respiratory failure within the first months of life and progressive muscle weakness and wasting. Although the causative gene, IGHMBP2, is well defined, information on IGHMBP2 mutations is not always sufficient to diagnose particular patients, as the gene is highly polymorphic and the pathogenicity of many gene variants is unknown. In this study, we generated a simple yeast model to establish the significance of IGHMBP2 variants for disease development, especially those that are missense mutations. We have shown that cDNA of the human gene encodes protein which is functional in yeast cells and different pathogenic mutations affect this functionality. Furthermore, there is a correlation between the phenotype estimated in in vitro studies and our results, indicating that our model may be used to quickly and simply distinguish between pathogenic and non-pathogenic mutations identified in IGHMBP2 in patients.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
30
|
Kabzińska D, Chabros K, Kamińska J, Kochański A. The GDAP1 p.Glu222Lys Variant-Weak Pathogenic Effect, Cumulative Effect of Weak Sequence Variants, or Synergy of Both Factors? Genes (Basel) 2022; 13:genes13091546. [PMID: 36140714 PMCID: PMC9498914 DOI: 10.3390/genes13091546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Charcot−Marie−Tooth disorders (CMT) represent a highly heterogeneous group of diseases of the peripheral nervous system in which more than 100 genes are involved. In some CMT patients, a few weak sequence variants toward other CMT genes are detected instead of one leading CMT mutation. Thus, the presence of a few variants in different CMT-associated genes raises the question concerning the pathogenic status of one of them. In this study, we aimed to analyze the pathogenic effect of c.664G>A, p.Glu222Lys variant in the GDAP1 gene, whose mutations are known to be causative for CMT type 4A (CMT4A). Due to low penetrance and a rare occurrence limited to five patients from two Polish families affected by the CMT phenotype, there is doubt as to whether we are dealing with real pathogenic mutation. Thus, we aimed to study the pathogenic effect of the c.664G>A, p.Glu222Lys variant in its natural environment, i.e., the neuronal SH-SY5Y cell line. Additionally, we have checked the pathogenic status of p.Glu222Lys in the broader context of the whole exome. We also have analyzed the impact of GDAP1 gene mutations on the morphology of the transfected cells. Despite the use of several tests to determine the pathogenicity of the p.Glu222Lys variant, we cannot point to one that would definitively solve the problem of pathogenicity.
Collapse
Affiliation(s)
- Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Chabros
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Kamińska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
31
|
Inoue Y, Machida O, Kita Y, Yamamoto T. Need for revision of the ACMG/AMP guidelines for interpretation of X-linked variants. Intractable Rare Dis Res 2022; 11:120-124. [PMID: 36200025 PMCID: PMC9437996 DOI: 10.5582/irdr.2022.01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
The guidelines provided by American College of Medical Genetics and Genomics (ACMG) and the Association of Molecular Pathology (AMP) (ACMG/AMP guidelines) suggest a framework for the classification of clinical variants. However, the interpretations can be inconsistent, with each definition sometimes proving to be ambiguous. In particular, there can be difficulty with interpretation of variants related to the X-linked recessive trait. To confirm whether there are biases in the interpretation of inherited traits, we reanalyzed variants reported prior to the release of the ACMG/AMP guidelines. As expected, the interpretation ratio as pathogenic or likely pathogenic was significantly lower for variants related to the X-linked recessive trait. Evaluation of variants related to the X-linked recessive trait, hence, need to consider whether the variant is identified only in males in accordance with the X-linked recessive trait. The ACMG/AMP guidelines should be revised to eliminate the bias revealed in this study.
Collapse
Affiliation(s)
- Yoko Inoue
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Osamu Machida
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yosuke Kita
- Department of Psychology, Faculty of Letters, Keio University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
32
|
Brooks JK, Porter NC, Bisordi KA, Miclat CE, Greene CL. Review of general and head and neck/oral and maxillofacial features of Charcot-Marie-Tooth disease and dental management considerations. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:e170-e177. [PMID: 35305937 DOI: 10.1016/j.oooo.2021.12.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 01/15/2023]
Abstract
Charcot-Marie-Tooth disease (CMTD) is an uncommon progressive neuromuscular disorder of the peripheral nervous system and primarily leads to distal extremity weakness and sensory deficits. Frequently, affected patients manifest pes cavus, drop foot, and digit contractures that may pose significant challenges in ambulation and grasping objects. Although there are numerous articles of this syndrome in the medical literature, there is a limited number of dental publications. The objective of this article is to review the general and head and neck/oral and maxillofacial features of CMTD. General guidelines for dental management are also provided.
Collapse
Affiliation(s)
- John K Brooks
- Clinical Professor, Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.
| | - Neil C Porter
- Assistant Professor, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katharine A Bisordi
- Instructor and Genetic Counselor, Department of Pediatrics, Division of Human Genetics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claire E Miclat
- Predoctoral student, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Carol L Greene
- Professor, Director of Clinical Genetics Service, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Clinical and genetic features of Charcot-Marie-Tooth disease patients with IGHMBP2 mutations. Neuromuscul Disord 2022; 32:564-571. [DOI: 10.1016/j.nmd.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
34
|
Smith CE, Lorson MA, Ricardez Hernandez SM, Al Rawi Z, Mao J, Marquez J, Villalón E, Keilholz AN, Smith CL, Garro-Kacher MO, Morcos T, Davis DJ, Bryda EC, Nichols NL, Lorson CL. The Ighmbp2D564N mouse model is the first SMARD1 model to demonstrate respiratory defects. Hum Mol Genet 2022; 31:1293-1307. [PMID: 34726235 PMCID: PMC9029233 DOI: 10.1093/hmg/ddab317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type I (SMARD1) is a neurodegenerative disease defined by respiratory distress, muscle atrophy and sensory and autonomic nervous system defects. SMARD1 is a result of mutations within the IGHMBP2 gene. We have generated six Ighmbp2 mouse models based on patient-derived mutations that result in SMARD1 and/or Charcot-Marie Tooth Type 2 (CMT2S). Here we describe the characterization of one of these models, Ighmbp2D564N (human D565N). The Ighmbp2D564N/D564N mouse model mimics important aspects of the SMARD1 disease phenotype, including motor neuron degeneration and muscle atrophy. Ighmbp2D564N/D564N is the first SMARD1 mouse model to demonstrate respiratory defects based on quantified plethysmography analyses. SMARD1 disease phenotypes, including the respiratory defects, are significantly diminished by intracerebroventricular (ICV) injection of ssAAV9-IGHMBP2 and the extent of phenotypic restoration is dose-dependent. Collectively, this model provides important biological insight into SMARD1 disease development.
Collapse
Affiliation(s)
- Caley E Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Monique A Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sara M Ricardez Hernandez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zayd Al Rawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jiude Mao
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jose Marquez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Amy N Keilholz
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Catherine L Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Mona O Garro-Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Toni Morcos
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, MO 65211, USA
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Animal Modeling Core, University of Missouri, Columbia, MO 65211, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
35
|
Lotti F, Przedborski S. Motoneuron Diseases. ADVANCES IN NEUROBIOLOGY 2022; 28:323-352. [PMID: 36066831 DOI: 10.1007/978-3-031-07167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.
Collapse
Affiliation(s)
- Francesco Lotti
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
36
|
Castelli LM, Benson BC, Huang WP, Lin YH, Hautbergue GM. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration. Front Genet 2022; 13:886563. [PMID: 35646086 PMCID: PMC9133428 DOI: 10.3389/fgene.2022.886563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Short repeated sequences of 3-6 nucleotides are causing a growing number of over 50 microsatellite expansion disorders, which mainly present with neurodegenerative features. Although considered rare diseases in relation to the relatively low number of cases, these primarily adult-onset conditions, often debilitating and fatal in absence of a cure, collectively pose a large burden on healthcare systems in an ageing world population. The pathological mechanisms driving disease onset are complex implicating several non-exclusive mechanisms of neuronal injury linked to RNA and protein toxic gain- and loss- of functions. Adding to the complexity of pathogenesis, microsatellite repeat expansions are polymorphic and found in coding as well as in non-coding regions of genes. They form secondary and tertiary structures involving G-quadruplexes and atypical helices in repeated GC-rich sequences. Unwinding of these structures by RNA helicases plays multiple roles in the expression of genes including repeat-associated non-AUG (RAN) translation of polymeric-repeat proteins with aggregating and cytotoxic properties. Here, we will briefly review the pathogenic mechanisms mediated by microsatellite repeat expansions prior to focus on the RNA helicases eIF4A, DDX3X and DHX36 which act as modifiers of RAN translation in C9ORF72-linked amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72-ALS/FTD) and Fragile X-associated tremor/ataxia syndrome (FXTAS). We will further review the RNA helicases DDX5/17, DHX9, Dicer and UPF1 which play additional roles in the dysregulation of RNA metabolism in repeat expansion disorders. In addition, we will contrast these with the roles of other RNA helicases such as DDX19/20, senataxin and others which have been associated with neurodegeneration independently of microsatellite repeat expansions. Finally, we will discuss the challenges and potential opportunities that are associated with the targeting of RNA helicases for the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bridget C Benson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
37
|
Neurogenic arthrogryposis and the power of phenotyping. Neuromuscul Disord 2021; 31:1062-1069. [PMID: 34736627 DOI: 10.1016/j.nmd.2021.07.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
In this article we review the commonest cause of neurogenic arthrogryposis, termed Spinal Muscular Atrophy Lower Extremity Dominant (SMALED), due to variants in DYNC1H1 and BICD2. We discuss the characteristic clinical and radiological phenotype of this disorder and how this has facilitated the identification of the genetic cause of SMALED2. We also review the similarities and differences between the human SMALED phenotype and mouse models and how this has informed our understanding of the potential mechanisms governing motor neuron loss in these disorders.
Collapse
|
38
|
Chandrasekharan SV, Nair SS, Ganapathy A, Mannan AU, Sundaram S. Charcot-Marie-Tooth disease type 2S: identical novel missense mutation of IGHMBP2 gene in two unrelated families. Neurol Sci 2021; 43:719-722. [PMID: 34668123 DOI: 10.1007/s10072-021-05668-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Soumya V Chandrasekharan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Sruthi S Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | | | | | - Soumya Sundaram
- Pediatric Neurology and Neurodevelopmental Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
39
|
Rzepnikowska W, Kochański A. Models for IGHMBP2-associated diseases: an overview and a roadmap for the future. Neuromuscul Disord 2021; 31:1266-1278. [PMID: 34785121 DOI: 10.1016/j.nmd.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Models are practical tools with which to establish the basic aspects of a diseases. They allow systematic research into the significance of mutations, of cellular and molecular pathomechanisms, of therapeutic options and of functions of diseases associated proteins. Thus, disease models are an integral part of the study of enigmatic proteins such as immunoglobulin mu-binding protein 2 (IGHMBP2). IGHMBP2 has been well defined as a helicase, however there is little known about its role in cellular processes. Notably, it is unclear why changes in such an abundant protein lead to specific neuronal disorders including spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S). SMARD1 is caused by a loss of motor neurons in the spinal cord that results in muscle atrophy and is accompanied by rapid respiratory failure. In contrast, CMT2S manifests as a severe neuropathy, but typically without critical breathing problems. Here, we present the clinical manifestation of IGHMBP2 mutations, function of protein and models that may be used for the study of IGHMBP2-associated disorders. We highlight the strengths and weaknesses of specific models and discuss the orthologs of IGHMBP2 that are found in different systems with regard to their similarity to human IGHMBP2.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
40
|
Felice KJ, Whitaker CH, Khorasanizadeh S. Diagnostic yield of advanced genetic testing in patients with hereditary neuropathies: A retrospective single-site study. Muscle Nerve 2021; 64:454-461. [PMID: 34232518 DOI: 10.1002/mus.27368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIMS Advanced genetic testing including next-generation sequencing (AGT/NGS) has facilitated DNA testing in the clinical setting and greatly expanded new gene discovery for the Charcot-Marie-Tooth neuropathies and other hereditary neuropathies (CMT/HN). Herein, we report AGT/NGS results, clinical findings, and diagnostic yield in a cohort of CMT/HN patients evaluated at our neuropathy care center. METHODS We reviewed the medical records of all patients with suspected CMT/HN who underwent AGT/NGS at the Hospital for Special Care from January 2017 through January 2020. Patients with variants reported as pathogenic or likely pathogenic were included for further clinical review. RESULTS We ordered AGT/NGS on 108 patients with suspected CMT/HN. Of these, pathogenic or likely pathogenic variants were identified in 17 patients (diagnostic yield, 15.7%), including 6 (35%) with PMP22 duplications; 3 (18%) with MPZ variants; 2 (12%) with MFN2 variants; and 1 each with NEFL, IGHMBP2, GJB1, BSCL2, DNM2, and TTR variants. Diagnostic yield increased to 31.0% for patients with a positive family history. DISCUSSION AGT/NGS panels can provide specific genetic diagnoses for a subset of patients with CMT/HN disorders, which improves disease and genetic counseling and prepares patients for disease-focused therapies. Despite these advancements, many patients with known or suspected CMT/HN disorders remain without a specific genetic diagnosis. Continued advancements in genetic testing, such as multiomic technology and better understanding of genotype-phenotype correlation, will further improve detection rates for patients with suspected CMT/HN disorders.
Collapse
Affiliation(s)
- Kevin J Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Sadaf Khorasanizadeh
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| |
Collapse
|
41
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
42
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
43
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
44
|
Mutations in GDAP1 Influence Structure and Function of the Trans-Golgi Network. Int J Mol Sci 2021; 22:ijms22020914. [PMID: 33477664 PMCID: PMC7831947 DOI: 10.3390/ijms22020914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease that displays great genetic heterogeneity. The genes and mutations that underlie this heterogeneity have been extensively characterized by molecular genetics. However, the molecular pathogenesis of the vast majority of CMT subtypes remains terra incognita. Any attempts to perform experimental therapy for CMT disease are limited by a lack of understanding of the pathogenesis at a molecular level. In this study, we aim to identify the molecular pathways that are disturbed by mutations in the gene encoding GDAP1 using both yeast and human cell, based models of CMT-GDAP1 disease. We found that some mutations in GDAP1 led to a reduced expression of the GDAP1 protein and resulted in a selective disruption of the Golgi apparatus. These structural alterations are accompanied by functional disturbances within the Golgi. We screened over 1500 drugs that are available on the market using our yeast-based CMT-GDAP1 model. Drugs were identified that had both positive and negative effects on cell phenotypes. To the best of our knowledge, this study is the first report of the Golgi apparatus playing a role in the pathology of CMT disorders. The drugs we identified, using our yeast-based CMT-GDAP1 model, may be further used in translational research.
Collapse
|
45
|
Reddy C, Paria P, Chatterjee D, Saini AG, Suthar R, Singanamalla B, Kochar G. Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1): Are We Diagnosing Yet? JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0040-1721800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe spectrum of disorders associated with the IGHMBP2 (immunoglobulin μ-binding protein 2) gene pathogenic variants is still unknown. In this case report, we discussed an interesting case of genetically confirmed spinal muscular atrophy with respiratory distress type 1 (SMARD1) with atypical sparing of the diaphragm, thus expanding the phenotypic spectrum of this intriguing disorder and also highlight the importance of reconsidering the selection criteria for considering IGHMBP2 pathogenic variants.
Collapse
Affiliation(s)
- Chaithanya Reddy
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pradip Paria
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arushi G. Saini
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Renu Suthar
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhanudeep Singanamalla
- Department of Pediatrics, Pediatric Neurology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurpreet Kochar
- Department of Pediatric Neurology, Satguru Partap Singh Hospital, Ludhiana, Punjab, India
| |
Collapse
|
46
|
Bodle EE, Zhu W, Velez-Bartolomei F, Tesi-Rocha A, Liu P, Bernstein JA. Combined Genome Sequencing and RNA Analysis Reveals and Characterizes a Deep Intronic Variant in IGHMBP2 in a Patient With Spinal Muscular Atrophy With Respiratory Distress Type 1. Pediatr Neurol 2021; 114:16-20. [PMID: 33189025 DOI: 10.1016/j.pediatrneurol.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pathogenic variants in the IGHMBP2 gene cause recessive spinal motor neuropathies of variable phenotype, including a predominantly distal motor impairment of Charcot-Marie-Tooth type 2S and the more severe condition of spinal muscular atrophy with respiratory distress type 1 in which infantile respiratory failure predominates. METHODS We describe the first reported case of spinal muscular atrophy with respiratory distress type 1 caused by a novel deep intronic variant in IGHMBP2 (NM_002180c.712-610A>G). RESULTS The variant was detected by whole genome sequencing. Reverse transcription-polymerase chain reaction and complimentary DNA sequencing were used to characterize the impact of the novel variant. CONCLUSIONS This report illustrates the utility in clinical practice of genome sequencing and RNA analysis, compared with exome sequencing alone.
Collapse
Affiliation(s)
- Ethan E Bodle
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, California.
| | | | - Frances Velez-Bartolomei
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Ana Tesi-Rocha
- Department of Neurology, Stanford University School of Medicine, Stanford, California
| | - Pengfei Liu
- Baylor Genetics, Houston, Texas; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jonathan A Bernstein
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
47
|
Perego MGL, Galli N, Nizzardo M, Govoni A, Taiana M, Bresolin N, Comi GP, Corti S. Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cell Mol Life Sci 2020; 77:3351-3367. [PMID: 32123965 PMCID: PMC11104977 DOI: 10.1007/s00018-020-03492-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease that is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, infants with the severe form of the disease die before 2 years of age. SMARD1 is caused by mutations in the IGHMBP2 gene that determine a deficiency in the encoded IGHMBP2 protein, which plays a critical role in motor neuron survival because of its functions in mRNA processing and maturation. Although it is rare, SMARD1 is the second most common motor neuron disease of infancy, and currently, treatment is primarily supportive. No effective therapy is available for this devastating disease, although multidisciplinary care has been an essential element of the improved quality of life and life span extension in these patients in recent years. The objectives of this review are to discuss the current understanding of SMARD1 through a summary of the presently known information regarding its clinical presentation and pathogenesis and to discuss emerging therapeutic approaches. Advances in clinical care management have significantly extended the lives of individuals affected by SMARD1 and research into the molecular mechanisms that lead to the disease has identified potential strategies for intervention that target the underlying causes of SMARD1. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to halt or possibly prevent neurodegenerative disease in SMARD1 patients. The recent approval of the first gene therapy approach for SMA associated with mutations in the SMN1 gene may be a turning point for the application of this strategy for SMARD1 and other genetic neurological diseases.
Collapse
Affiliation(s)
- Martina G L Perego
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Noemi Galli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michela Taiana
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
48
|
Kitao R, Honma Y, Hashiguchi A, Mizoguchi K, Takashima H, Komori T. [A case of motor and sensory polyneuropathy and respiratory failure with novel heterozygous mutation of the senataxin gene]. Rinsho Shinkeigaku 2020; 60:466-472. [PMID: 32536663 DOI: 10.5692/clinicalneurol.60.cn-001415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The patient was a 29-year-old male. He took his first steps at two-and-a-half years old, but his physical strength deteriorated and he became non-ambulatory at 12 years old. He had respiratory failure at the age of 20, and finally underwent tracheostomy with invasive positive-pressure ventilation (TPPV). He showed distal dominant muscle weakness and atrophy, including the face. Spinal scoliosis was recognized. He had peripheral predominance of sensory disorders. Nerve conduction studies showed a decrease of compound muscle action potential and a reduction of motor nerve conduction velocity. Sensory nerve action potential was not evoked. In genetic analysis, c.23 C> T (p. T8M) heterozygous mutation was found in the senataxin gene (SETX). Although SETX is a causative gene of familial amyotrophic lateral sclerosis type 4 (ALS4), this case suggests that SETX mutation can also cause motor and sensory polyneuropathy.
Collapse
Affiliation(s)
- Ruriko Kitao
- Department of Neurology, National Hospital Organization Hakone Hospital
| | - Yutaka Honma
- Department of Neurology, National Hospital Organization Shizuoka Fuji Hospital (Present address: Department of Neurology, National Hospital Organization Shizuoka Medical Center)
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Kouichi Mizoguchi
- Department of Neurology, National Hospital Organization Shizuoka Fuji Hospital (Present address: Department of Neurology, National Hospital Organization Shizuoka Medical Center)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Tetsuo Komori
- Department of Neurology, National Hospital Organization Hakone Hospital
| |
Collapse
|
49
|
Tunca C, Şeker T, Akçimen F, Coşkun C, Bayraktar E, Palvadeau R, Zor S, Koçoğlu C, Kartal E, Şen NE, Hamzeiy H, Özoğuz Erimiş A, Norman U, Karakahya O, Olgun G, Akgün T, Durmuş H, Şahin E, Çakar A, Başar Gürsoy E, Babacan Yıldız G, İşak B, Uluç K, Hanağası H, Bilgiç B, Turgut N, Aysal F, Ertaş M, Boz C, Kotan D, İdrisoğlu H, Soysal A, Uzun Adatepe N, Akalın MA, Koç F, Tan E, Oflazer P, Deymeer F, Taştan Ö, Çiçek AE, Kavak E, Parman Y, Başak AN. Revisiting the complex architecture of ALS in Turkey: Expanding genotypes, shared phenotypes, molecular networks, and a public variant database. Hum Mutat 2020; 41:e7-e45. [PMID: 32579787 DOI: 10.1002/humu.24055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
The last decade has proven that amyotrophic lateral sclerosis (ALS) is clinically and genetically heterogeneous, and that the genetic component in sporadic cases might be stronger than expected. This study investigates 1,200 patients to revisit ALS in the ethnically heterogeneous yet inbred Turkish population. Familial ALS (fALS) accounts for 20% of our cases. The rates of consanguinity are 30% in fALS and 23% in sporadic ALS (sALS). Major ALS genes explained the disease cause in only 35% of fALS, as compared with ~70% in Europe and North America. Whole exome sequencing resulted in a discovery rate of 42% (53/127). Whole genome analyses in 623 sALS cases and 142 population controls, sequenced within Project MinE, revealed well-established fALS gene variants, solidifying the concept of incomplete penetrance in ALS. Genome-wide association studies (GWAS) with whole genome sequencing data did not indicate a new risk locus. Coupling GWAS with a coexpression network of disease-associated candidates, points to a significant enrichment for cell cycle- and division-related genes. Within this network, literature text-mining highlights DECR1, ATL1, HDAC2, GEMIN4, and HNRNPA3 as important genes. Finally, information on ALS-related gene variants in the Turkish cohort sequenced within Project MinE was compiled in the GeNDAL variant browser (www.gendal.org).
Collapse
Affiliation(s)
- Ceren Tunca
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.,Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Tuncay Şeker
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Fulya Akçimen
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Cemre Coşkun
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Elif Bayraktar
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Robin Palvadeau
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Seyit Zor
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Cemile Koçoğlu
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Ece Kartal
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Nesli Ece Şen
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Aslıhan Özoğuz Erimiş
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Utku Norman
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Oğuzhan Karakahya
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Gülden Olgun
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Tahsin Akgün
- Department of Anesthesiology and Reanimation, American Hospital, Istanbul, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Erdi Şahin
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Esra Başar Gürsoy
- Department of Neurology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Gülsen Babacan Yıldız
- Department of Neurology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Barış İşak
- Department of Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Kayıhan Uluç
- Department of Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Haşmet Hanağası
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Başar Bilgiç
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Nilda Turgut
- Department of Neurology, Namık Kemal University School of Medicine, Tekirdağ, Turkey
| | - Fikret Aysal
- Department of Neurology, Medipol University School of Medicine, Istanbul, Turkey
| | - Mustafa Ertaş
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Cavit Boz
- Department of Neurology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Dilcan Kotan
- Department of Neurology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Halil İdrisoğlu
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, Istanbul, Turkey
| | - Nurten Uzun Adatepe
- Department of Neurology, Cerrahpaşa Medical School, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Ali Akalın
- Department of Neurology, Cerrahpaşa Medical School, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Filiz Koç
- Department of Neurology, Çukurova University Medical School, Adana, Turkey
| | - Ersin Tan
- Department of Neurology, Hacettepe University Medical School, Ankara, Turkey
| | - Piraye Oflazer
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Feza Deymeer
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Öznur Taştan
- Department of Computer Science and Engineering, Sabancı University, Istanbul, Turkey
| | - A Ercüment Çiçek
- Department of Computer Engineering, Bilkent University, Ankara, Turkey.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Erşen Kavak
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.,Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
50
|
Morelli KH, Hatton CL, Harper SQ, Burgess RW. Gene therapies for axonal neuropathies: Available strategies, successes to date, and what to target next. Brain Res 2020; 1732:146683. [PMID: 32001243 DOI: 10.1016/j.brainres.2020.146683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Nearly one-hundred loci in the human genome have been associated with different forms of Charcot-Marie-Tooth disease (CMT) and related inherited neuropathies. Despite this wealth of gene targets, treatment options are still extremely limited, and clear "druggable" pathways are not obvious for many of these mutations. However, recent advances in gene therapies are beginning to circumvent this challenge. Each type of CMT is a monogenic disorder, and the cellular targets are usually well-defined and typically include peripheral neurons or Schwann cells. In addition, the genetic mechanism is often also clear, with loss-of-function mutations requiring restoration of gene expression, and gain-of-function or dominant-negative mutations requiring silencing of the mutant allele. These factors combine to make CMT a good target for developing genetic therapies. Here we will review the state of relatively established gene therapy approaches, including viral vector-mediated gene replacement and antisense oligonucleotides for exon skipping, altering splicing, and gene knockdown. We will also describe earlier stage approaches for allele-specific knockdown and CRIPSR/Cas9 gene editing. We will next describe how these various approaches have been deployed in clinical and preclinical studies. Finally, we will evaluate various forms of CMT as candidates for gene therapy based on the current understanding of their genetics, cellular/tissue targets, validated animal models, and availability of patient populations and natural history data.
Collapse
Affiliation(s)
- Kathryn H Morelli
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | | | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|