1
|
Zhang Y, Lin S, Yu L, Lin X, Qu S, Ye Q, Yu M, Chen W, Wu W. Gene therapy shines light on congenital stationary night blindness for future cures. J Transl Med 2025; 23:392. [PMID: 40181393 PMCID: PMC11969737 DOI: 10.1186/s12967-025-06392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Congenital Stationary Night Blindness (CSNB) is a non-progressive hereditary eye disease that primarily affects the retinal signal processing, resulting in significantly reduced vision under low-light conditions. CSNB encompasses various subtypes, each with distinct genetic patterns and pathogenic genes. Over the past few decades, gene therapy for retinal genetic disorders has made substantial progress; however, effective clinical therapies for CSNB are yet to be discovered. With the continuous advancement of gene-therapy tools, there is potential for these methods to become effective treatments for CSNB. Nonetheless, challenges remain in the treatment of CSNB, including issues related to delivery vectors, therapeutic efficacy, and possible side effects. This article reviews the clinical diagnosis, pathogenesis, and associated mutated genes of CSNB, discusses existing animal models, and explores the application of gene therapy technologies in retinal genetic disorders, as well as the current state of research on gene therapy for CSNB.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Siqi Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiang Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shuai Qu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingyang Ye
- Hangzhou Bipolar Biotechnology Co., Ltd., Hangzhou, 311199, China
| | - Mengting Yu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wenjie Wu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China.
| |
Collapse
|
2
|
Wong WM, Mahroo OA. Monogenic Retinal Diseases Associated With Genes Encoding Phototransduction Proteins: A Review. Clin Exp Ophthalmol 2025; 53:260-280. [PMID: 40013354 PMCID: PMC11962696 DOI: 10.1111/ceo.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Phototransduction, the process by which captured photons elicit electrical changes in retinal rod and cone cells, represents the first neuronal step in vision and involves interactions between several highly specialised proteins. Pathogenic variants in genes encoding many of these proteins can give rise to significant vision impairment, accounting for a substantial portion of inherited retinal disease. Such genes include RHO, OPN1LW, OPN1MW, GNAT1, GNAT2, GNB3, PDE6A, PDE6B, PDE6G, PDE6C, PDE6H, CNGA1, CNGB1, CNGA3, CNGB3, GRK1, SAG, ARR3, RGS9, RGS9BP, GUCY2D, GUCA1A and SLC24A1. Many of these conditions have distinct mechanisms and clinical features. They follow several modes of inheritance (including in one case digenic, or tri-allelic, inheritance). Some conditions also entail myopia. Rod and cone phototransduction will be outlined, followed by the discussion of diseases associated with these genes. Some phenotypic features will be highlighted as well as their prevalence in a large genotyped inherited retinal disease cohort.
Collapse
Affiliation(s)
- Wendy M. Wong
- Institute of Ophthalmology, University College LondonLondonUK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of OphthalmologyLondonUK
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Ophthalmology, National University HospitalNational University Health SystemSingaporeSingapore
| | - Omar A. Mahroo
- Institute of Ophthalmology, University College LondonLondonUK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of OphthalmologyLondonUK
- Section of Ophthalmology, King's College LondonSt Thomas' Hospital CampusLondonUK
- Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Department of Translational OphthalmologyWills Eye HospitalPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Lu K, Wu J, Tang S, Peng D, Bibi A, Ding L, Zhang Y, Liang XF. Transcriptome analysis reveals the importance of phototransduction during the first-feeding in mandarin fish (Siniperca chuatsi). Funct Integr Genomics 2024; 24:197. [PMID: 39453417 DOI: 10.1007/s10142-024-01471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The mandarin fish (Siniperca chuatsi), as a typical freshwater carnivorous fish, has high economic value. Mandarin fish have a peculiar feeding habit of feeding on other live fry during the first-feeding period, while rejecting zooplankton or particulate feed, which may be attributed to the low expression of zooplankton-associated gene sws1 in mandarin fish. The domesticated strain of mandarin fish could feed on Artemia at 3 days post hatching (dph). However, the mechanism of mandarin fish larvae recognize and forage Artemia as food is still unclear. In this study, we employed transcriptional analysis to identify the representative differential pathways between mandarin fish larvae unfed and fed with Artemia at 3 dph. The comparative transcriptome analysis has unveiled a tapestry of genetic expression, highlighting 403 genes that have been up-regulated and 259 that have been down-regulated, all of which constitute the differentially expressed genes (DEGs). KEGG pathway analysis revealed that the number of differentially expressed genes in the photoconductive signaling pathway was the largest. Next, the Vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to assess whether sws1 induced ingestion of Artemia in mandarin fish larvae. We discovered that SAHA-treated larvae had more food intake of Artemia and up-regulated the transcription level of npy, which might have been associated with the up-regulated of sws1 opsin. Additionally, exposure to 0.5 µM SAHA increased the expression of genes involved in phototransduction pathway. These findings would provide insights on the molecular processes involved in mandarin fish larvae feeding on Artemia at the first-feeding stage.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Asma Bibi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Liyun Ding
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang, 330039, China
| | - Yanping Zhang
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang, 330039, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
4
|
Samoylov AN, Tumanova P, Pankratova SA, Ashryatova LS, Plotnikov D. Association of GNB3, ACE polymorphisms with POAG and NTG. Ophthalmic Genet 2024; 45:23-27. [PMID: 37997634 DOI: 10.1080/13816810.2023.2283415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE Primary open-angle glaucoma (POAG) represents the most prevalent form of glaucoma and stands as a foremost contributor to irreversible vision impairment on a global scale. Despite notable strides made in comprehending the genetic underpinnings of POAG, investigations within the context of Russia remain constrained. METHODS The study cohort comprised a total of 235 individuals, with 135 of them exhibiting various forms of glaucoma encompassing both POAG and (NTG, while the remaining 100 individuals served as control subjects. Each participant underwent a comprehensive ocular examination to ascertain their ocular health status. Genotyping of the relevant single nucleotide polymorphisms (SNPs) was carried out using the Taq Man genotyping assay. Specifically, the two SNPs under scrutiny were GNB3 rs5443 gene and ACE rs4646994. Statistical analysis was performed to evaluate the association of these SNPs with glaucoma risk. RESULTS The presence of the T allele of rs5443 was found to be associated with NTG (p = .004). However, no statistically significant correlation was identified between this SNP and POAG (p = .88). CONCLUSION This study provides evidence of an association between the T allele of rs5443 and a reduced susceptibility NTG within the Russian population. These observations augment the comprehension of the genetic underpinnings of glaucoma and hold potential implications for the prospective development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Alexander N Samoylov
- Kazan State Medical University, Kazan, Russian Federation
- Republican Clinical Ophthalmologic Hospital, Kazan, Russian Federation
| | - Polina Tumanova
- Republican Clinical Ophthalmologic Hospital, Kazan, Russian Federation
| | | | | | | |
Collapse
|
5
|
Shukla H, Suryamohan K, Khan A, Mohan K, Perumal RC, Mathew OK, Menon R, Dixon MD, Muraleedharan M, Kuriakose B, Michael S, Krishnankutty SP, Zachariah A, Seshagiri S, Ramakrishnan U. Near-chromosomal de novo assembly of Bengal tiger genome reveals genetic hallmarks of apex predation. Gigascience 2022; 12:giac112. [PMID: 36576130 PMCID: PMC9795480 DOI: 10.1093/gigascience/giac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022] Open
Abstract
The tiger, a poster child for conservation, remains an endangered apex predator. Continued survival and recovery will require a comprehensive understanding of genetic diversity and the use of such information for population management. A high-quality tiger genome assembly will be an important tool for conservation genetics, especially for the Indian tiger, the most abundant subspecies in the wild. Here, we present high-quality near-chromosomal genome assemblies of a female and a male wild Indian tiger (Panthera tigris tigris). Our assemblies had a scaffold N50 of >140 Mb, with 19 scaffolds corresponding to the 19 numbered chromosomes, containing 95% of the genome. Our assemblies also enabled detection of longer stretches of runs of homozygosity compared to previous assemblies, which will help improve estimates of genomic inbreeding. Comprehensive genome annotation identified 26,068 protein-coding genes, including several gene families involved in key morphological features such as the teeth, claws, vision, olfaction, taste, and body stripes. We also identified 301 microRNAs, 365 small nucleolar RNAs, 632 transfer RNAs, and other noncoding RNA elements, several of which are predicted to regulate key biological pathways that likely contribute to the tiger's apex predatory traits. We identify signatures of positive selection in the tiger genome that are consistent with the Panthera lineage. Our high-quality genome will enable use of noninvasive samples for comprehensive assessment of genetic diversity, thus supporting effective conservation and management of wild tiger populations.
Collapse
Affiliation(s)
- Harsh Shukla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Kushal Suryamohan
- MedGenome Inc., Department of Research and Development, Foster City, CA 94404, USA
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
| | - Anubhab Khan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Krishna Mohan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Rajadurai C Perumal
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Oommen K Mathew
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Ramesh Menon
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Mandumpala Davis Dixon
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Megha Muraleedharan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Boney Kuriakose
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Saju Michael
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Sajesh P Krishnankutty
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Arun Zachariah
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- Wayanad Wildlife Sanctuary, Sultan Bathery, Kerala 673592, India
| | - Somasekar Seshagiri
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
6
|
Xue Z, Yuan J, Chen F, Yao Y, Xing S, Yu X, Li K, Wang C, Bao J, Qu J, Su J, Chen H. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. EBioMedicine 2022; 82:104161. [PMID: 35841873 PMCID: PMC9297108 DOI: 10.1016/j.ebiom.2022.104161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Ocular diseases may exhibit common clinical symptoms and epidemiological comorbidity. However, the extent of pleiotropic mechanisms across ocular diseases remains unclear. We aim to examine shared genetic etiology in age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, retinal detachment (RD), and myopia. METHODS We analyzed genome-wide association analyses for the five ocular diseases in 43,877 cases and 44,373 controls of European ancestry from UK Biobank, estimated their genetic relationships (LDSC, GNOVA, and Genomic SEM), and identified pleiotropic loci (ASSET and METASOFT). FINDINGS The genetic correlation of common SNPs revealed a meaningful genetic structure within these diseases, identifying genetic correlations between AMD, DR, and glaucoma. Cross-trait meta-analysis identified 23 pleiotropic loci associated with at least two ocular diseases and 14 loci unique to individual disorders (non-pleiotropic). We found that the genes associated with these shared genetic loci are involved in neuron differentiation (P = 8.80 × 10-6) and eye development systems (P = 3.86 × 10-5), and single cell RNA sequencing data reveals their heightened gene expression from multipotent progenitors to other differentiated retinal cells during retina developmental process. INTERPRETATION These results highlighted the potential common genetic architectures among these ocular diseases and can deepen the understanding of the molecular mechanisms underlying the related diseases. FUNDING The National Natural Science Foundation of China (61871294), Zhejiang Provincial Natural Science Foundation of China (LR19C060001), and the Scientific Research Foundation for Talents of Wenzhou Medical University (QTJ18023).
Collapse
Affiliation(s)
- Zhengbo Xue
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jian Yuan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Fukun Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325105, Zhejiang, China
| | - Shilai Xing
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiangyi Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325105, Zhejiang, China
| | - Chenxiao Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jinhua Bao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China
| | - Jianzhong Su
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325105, Zhejiang, China.
| | - Hao Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
7
|
Genomic insights into the secondary aquatic transition of penguins. Nat Commun 2022; 13:3912. [PMID: 35853876 PMCID: PMC9296559 DOI: 10.1038/s41467-022-31508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth. This study examines the tempo and drivers of penguin diversification by combining genomes from all extant and recently extinct penguin lineages, stratigraphic data from fossil penguins and morphological and biogeographic data from all extant and extinct species. Together, these datasets provide new insights into the genetic basis and evolution of adaptations in penguins.
Collapse
|
8
|
Iosifidis C, Liu J, Gale T, Ellingford JM, Campbell C, Ingram S, Chandler K, Parry NRA, Black GC, Sergouniotis PI. Clinical and genetic findings in TRPM1-related congenital stationary night blindness. Acta Ophthalmol 2022; 100:e1332-e1339. [PMID: 35633130 DOI: 10.1111/aos.15186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Congenital stationary night blindness (CSNB) is a heterogeneous group of Mendelian retinal disorders that present in childhood. Biallelic variants altering the protein-coding region of the TRPM1 gene are one of the commonest causes of CSNB. Here, we report the clinical and genetic findings in 10 unrelated individuals with TRPM1-retinopathy. METHODS Study subjects were recruited through a tertiary clinical ophthalmic genetic service at Manchester, UK. All participants underwent visual electrodiagnostic testing and panel-based genetic analysis. RESULTS Study subjects had a median age of 8 years (range: 3-20 years). All probands were myopic and had electroretinographic findings in keeping with complete CSNB. Notably, three probands reported no night vision problems. Fourteen different disease-associated TRPM1 variants were detected. One individual was homozygous for the NM_001252024.2 (TRPM1):c.965 + 29G>A variant and a mini-gene assay highlighted that this change results in mis-splicing and premature protein termination. Additionally, two unrelated probands who had CSNB and mild neurodevelopmental abnormalities were found to carry a 15q13.3 microdeletion. This copy number variant encompasses seven genes, including TRPM1, and was encountered in the heterozygous state and in trans with a missense TRPM1 variant in each case. CONCLUSION Our findings highlight the importance of comprehensive genomic analysis, beyond the exons and protein-coding regions of genes, for individuals with CSNB. When this characteristic retinal phenotype is accompanied by extraocular findings (including learning and/or behavioural difficulties), a 15q13.3 microdeletion should be suspected. Focused analysis (e.g. microarray testing) is recommended to look for large-scale deletions encompassing TRPM1 in patients with CSNB and neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Christos Iosifidis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
- Manchester Royal Eye Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Jingshu Liu
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
| | - Theodora Gale
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Jamie M. Ellingford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Stuart Ingram
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Kate Chandler
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Neil R. A. Parry
- Manchester Royal Eye Hospital Manchester University NHS Foundation Trust Manchester UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
| | - Graeme C. Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
| | - Panagiotis I. Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicines and Health University of Manchester Manchester UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital Manchester University NHS Foundation Trust Manchester UK
- Manchester Royal Eye Hospital Manchester University NHS Foundation Trust Manchester UK
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| |
Collapse
|
9
|
De Nittis P, Efthymiou S, Sarre A, Guex N, Chrast J, Putoux A, Sultan T, Raza Alvi J, Ur Rahman Z, Zafar F, Rana N, Rahman F, Anwar N, Maqbool S, Zaki MS, Gleeson JG, Murphy D, Galehdari H, Shariati G, Mazaheri N, Sedaghat A, Lesca G, Chatron N, Salpietro V, Christoforou M, Houlden H, Simonds WF, Pedrazzini T, Maroofian R, Reymond A. Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. J Med Genet 2021; 58:815-831. [PMID: 33172956 PMCID: PMC8639930 DOI: 10.1136/jmedgenet-2020-107015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening.
Collapse
Affiliation(s)
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Audrey Putoux
- Service de Génétique, Hopital Femme Mere Enfant, Bron, France
| | - Tipu Sultan
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Zia Ur Rahman
- Department of Pediatric Neurology, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, Pakistan
| | - Fatima Rahman
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Najwa Anwar
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Shazia Maqbool
- Department of Developmental-Behavioural Paediatrics, The Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neuroscience and Pediatrics, Howard Hughes Medical Institute, La Jolla, California, USA
| | - David Murphy
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran (the Islamic Republic of)
| | - Alireza Sedaghat
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of medical Sciences, Ahvaz, Iran (the Islamic Republic of)
| | - Gaetan Lesca
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Service de Genetique, Hospices Civils de Lyon, Lyon, France
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Marilena Christoforou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - William F Simonds
- Metabolic Diseases Branch/NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne, Lausanne, Switzerland
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Azhar Baig HM, Ansar M, Iqbal A, Naeem MA, Quinodoz M, Calzetti G, Iqbal M, Rivolta C. Genetic analysis of consanguineous Pakistani families with congenital stationary night blindness. Ophthalmic Res 2021; 65:104-110. [PMID: 34781300 DOI: 10.1159/000520895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022]
Abstract
AIM Congenital stationary night blindness (CSNB) is a rare, largely non progressive, inherited retinal disorder that can be clinically classified on the basis of fundus and electroretinogram (ERG) abnormalities. METHODS We analyzed four large consanguineous families from the Southern Punjab region of Pakistan including multiple individuals affected with CSNB. Exome sequencing (ES) was performed in probands of all four families; Sanger sequencing was performed in additional members to test co-segregation of the variants identified. RESULTS We identified two novel and likely pathogenic variants in two pedigrees, namely NM_002905.4:c.668A>C (p.Gln223Pro) in RDH5, and NM_022567.2:c.908del (p.Gly303ValfsTer45) in NYX. In the two other families, the variants NM_002905.4:c.319G>C (p.Gly107Arg) in RDH5 and NM_000541.5:c.874C>T (p.Arg292Ter) in SAG were identified. These variants have been reported previously, but not in the Pakistani population. CONCLUSIONS Our findings expand the mutational spectrum of CSNB, in particular within the population of Southern Punjab.
Collapse
Affiliation(s)
- Hafiz Muhammad Azhar Baig
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Muhammad Ansar
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Afia Iqbal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Asif Naeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Giacomo Calzetti
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Muhammad Iqbal
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
11
|
Almutairi F, Almeshari N, Ahmad K, Magliyah MS, Schatz P. Congenital stationary night blindness: an update and review of the disease spectrum in Saudi Arabia. Acta Ophthalmol 2021; 99:581-591. [PMID: 33369259 DOI: 10.1111/aos.14693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022]
Abstract
Congenital stationary night blindness (CSNB) is a group of rare, mainly stationary disorders of the retina, resulting from dysfunction of several specific and essential visual processing mechanisms. The inheritance is often recessive and as such, CSNB may be more common among populations with a high degree of consanguinity. Here, we present a topic update and a review of the clinical and molecular genetic spectrum of CSNB in Saudi Arabia. Since a major review article on CSNB in 2015, which described 17 genes underlying CSNB, an additional four genes have been incriminated in autosomal recessive CSNB: RIMS2, GNB3, GUCY2D and ABCA4. These have been associated with syndromic cone-rod synaptic disease, ON bipolar cell dysfunction with reduced cone sensitivity, CSNB with dysfunction of the phototransduction (Riggs type) and CSNB with cone-rod dystrophy, respectively. In Saudi Arabia, a total of 24 patients with CSNB were identified, using a combination of literature search and retrospective study of previously unpublished cases. Recessive mutations in TRPM1 and CABP4 accounted for the majority of cases (5 and 13 for each gene, respectively). These genes were associated with complete (cCSNB) and incomplete (icCSNB), respectively, and were associated with high myopia in the former and hyperopia in the latter. Four novel mutations were identified. For the first time, we describe the fundus albipunctatus in two patients from Saudi Arabia, caused by recessive mutation in RDH5 and RPE65, where the former in addition featured findings compatible with cone dystrophy. No cases were identified with any dominantly inherited CSNB.
Collapse
Affiliation(s)
- Faris Almutairi
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- King Khalid University Hospital Riyadh Saudi Arabia
| | | | - Khabir Ahmad
- Research Department King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
| | - Moustafa S. Magliyah
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Ophthalmology Department Prince Mohammed Medical City AlJouf Saudi Arabia
| | - Patrik Schatz
- Vitreoretinal Division King Khaled Eye Specialist Hospital Riyadh Saudi Arabia
- Department of Ophthalmology Clinical Sciences Skane University Hospital Lund University Lund Sweden
| |
Collapse
|
12
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
13
|
Ohno-Matsui K, Wu PC, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, Lai TYY, Ikuno Y, Cohen SY, Gaudric A, Jonas JB. IMI Pathologic Myopia. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 33909033 PMCID: PMC8083114 DOI: 10.1167/iovs.62.5.5] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathologic myopia is a major cause of visual impairment worldwide. Pathologic myopia is distinctly different from high myopia. High myopia is a high degree of myopic refractive error, whereas pathologic myopia is defined by a presence of typical complications in the fundus (posterior staphyloma or myopic maculopathy equal to or more serious than diffuse choroidal atrophy). Pathologic myopia often occurs in eyes with high myopia, however its complications especially posterior staphyloma can also occur in eyes without high myopia. Owing to a recent advance in ocular imaging, an objective and accurate diagnosis of pathologic myopia has become possible. Especially, optical coherence tomography has revealed novel lesions like dome-shaped macula and myopic traction maculopathy. Wide-field optical coherence tomography has succeeded in visualizing the entire extent of large staphylomas. The effectiveness of new therapies for complications have been shown, such as anti-VEGF therapies for myopic macular neovascularization and vitreoretinal surgery for myopic traction maculopathy. Myopia, especially childhood myopia, has been increasing rapidly in the world. In parallel with an increase in myopia, the prevalence of high myopia has also been increasing. However, it remains unclear whether or not pathologic myopia will increase in parallel with an increase of myopia itself. In addition, it has remained unclear whether genes responsible for pathologic myopia are the same as those for myopia in general, or whether pathologic myopia is genetically different from other myopia.
Collapse
Affiliation(s)
- Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan.,Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, Japan
| | | | - Yuxin Fang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Hong Kong
| | - Yasushi Ikuno
- Ikuno Eye Center, 2-9-10-3F Juso-Higashi, Yodogawa-Ku, Osaka 532-0023, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Ophthalmology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Salomon Yves Cohen
- Centre Ophtalmologique d'Imagerie et de Laser, Paris, France.,Department of Ophthalmology and University Paris Est, Creteil, France
| | - Alain Gaudric
- Department of Ophthalmology, APHP, Hôpital Lariboisière and Université de Paris, Paris, France.,Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Memmi B, Miere A, Zambrowski O, Souied EH. [Decreased visual acuity as presenting sign of a late case of congenital stationary night blindness: The role of ERG]. J Fr Ophtalmol 2021; 44:e365-e368. [PMID: 33608178 DOI: 10.1016/j.jfo.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022]
Affiliation(s)
- B Memmi
- Service d'ophtalmologie, centre hospitalier intercommunal de Créteil, université Paris Est-Créteil, 40, avenue de Verdun, 94000 Créteil, France.
| | - A Miere
- Service d'ophtalmologie, centre hospitalier intercommunal de Créteil, université Paris Est-Créteil, 40, avenue de Verdun, 94000 Créteil, France
| | - O Zambrowski
- Service d'ophtalmologie, centre hospitalier intercommunal de Créteil, université Paris Est-Créteil, 40, avenue de Verdun, 94000 Créteil, France
| | - E H Souied
- Service d'ophtalmologie, centre hospitalier intercommunal de Créteil, université Paris Est-Créteil, 40, avenue de Verdun, 94000 Créteil, France
| |
Collapse
|
15
|
Di Scipio M, Tavares E, Deshmukh S, Audo I, Green-Sanderson K, Zubak Y, Zine-Eddine F, Pearson A, Vig A, Tang CY, Mollica A, Karas J, Tumber A, Yu CW, Billingsley G, Wilson MD, Zeitz C, Héon E, Vincent A. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32881472 PMCID: PMC7443117 DOI: 10.1167/iovs.61.10.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. Methods Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. Results The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. Conclusions Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants.
Collapse
Affiliation(s)
- Matteo Di Scipio
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Erika Tavares
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shriya Deshmukh
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, Paris, France
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Kit Green-Sanderson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yuliya Zubak
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Fayçal Zine-Eddine
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Alexander Pearson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anjali Vig
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Chen Yu Tang
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Antonio Mollica
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jonathan Karas
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caberry W. Yu
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Gail Billingsley
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elise Héon
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Grudzinska Pechhacker MK, Di Scipio M, Vig A, Tumber A, Roslin N, Tavares E, Vincent A, Hèon E. CRB1-related retinopathy overlapping the ocular phenotype of S-adenosylhomocysteine hydrolase deficiency. Ophthalmic Genet 2020; 41:457-464. [PMID: 32689861 DOI: 10.1080/13816810.2020.1790013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND S-adenosylhomocysteine hydrolase deficiency due to pathologic variants in AHCY gene is a rare neurometabolic disease for which no eye phenotype has been documented. Pathologic variants in CRB1 gene are known to cause a wide spectrum of autosomal recessive retinal diseases with Leber's congenital amaurosis as a most common. The aim of this study is to report co-inheritance of neurometabolic disease and eye disease in a pedigree. MATERIALS AND METHODS Comprehensive eye examination was performed in available family members together with color vision test, visual fields, fundus images, OCT, electroretinogram and visual evoked potentials. Genetic testing included whole-exome sequencing (WES), retinal dystrophy gene panel and segregation analysis. RESULTS Two children from a family not known to be consanguineous were affected with neurometabolic disease and one of them presented with reduced vision due to maculopathy. The mother had symptoms of retinal degeneration of unspecified cause. Clinical WES revealed homozygous missense pathologic variants in AHCY gene c.148G>A, p.(Ala50Thr) as a cause of S-adenosylhomocysteine hydrolase deficiency. Retinal dystrophy gene panel sequencing revealed two heterozygous missense pathologic variants in CRB1 gene c.1831T>C, p.(Ser611Pro) and c.3955T>C, p.(Phe1319Leu) in the proband and her mother. These variants segregated with disease phenotype in family members. CONCLUSIONS Establishing an ocular genetic diagnosis may be challenging with the co-existence of a rare systemic genetic disease with previously unknown eye involvement. Extensive phenotyping and genotyping of available family members showed that the proband and her mother shared a CRB1-related retinopathy at different stages while the brother did not.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto , Toronto, Canada
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Anjali Vig
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada
| | - Nicole Roslin
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Erika Tavares
- Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto , Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| | - Elise Hèon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children , Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto , Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children , Toronto, Canada
| |
Collapse
|
17
|
Abstract
PURPOSE To analyze the hallmark features of pathologic myopia developed in animal models and compare them with those seen in patients. METHODS A literature review was performed to identify animal models that exhibited key features of pathologic myopia, namely posterior staphyloma, myopic maculopathy, lacquer cracks, and choroidal neovascularization, either spontaneously or induced by monocular deprivation. Using imaging modalities, such as optical coherence tomography, confocal scanning laser ophthalmoscopy, fluorescein angiography, and electron microscopy, these features were compared with those found in myopic maculopathy of patients. RESULTS Three types of animals were identified. The LRP2 knockout mice exhibited posterior staphylomas and chorioretinal atrophy at 21 and 60 days after birth, respectively. Retinopathy globe enlarged (rge) chicks and normal lid-sutured chicks developed lacquer cracks and chorioretinal atrophy. Lacquer cracks detected in rge chicks subsequently progressed to patchy chorioretinal atrophy, which is also commonly seen in patients with pathologic myopia. CONCLUSION The LRP2 knockout mice, retinopathy globe enlarged (rge) chicks, and normal lid-sutured chicks exhibit features typical for myopic maculopathy in patients and could serve to further elucidate the pathogenesis of myopic maculopathy.
Collapse
|
18
|
Shao D, He S, Ye Z, Zhu X, Sun W, Fu W, Ma T, Li Z. Identification of potential molecular targets associated with proliferative diabetic retinopathy. BMC Ophthalmol 2020; 20:143. [PMID: 32290826 PMCID: PMC7155274 DOI: 10.1186/s12886-020-01381-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND This study aimed to identify and evaluate potential molecular targets associated with the development of proliferative diabetic retinopathy (DR). METHODS The microarray dataset "GSE60436" generated from fibrovascular membranes (FVMs) associated with proliferative DR was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) from the active FVMs and control or inactive FVMs and control were evaluated and co-DEGs were identified using VEEN analysis. Functional enrichment analysis, and protein-protein interactions (PPI) network and module analyses were performed on the upregulated and downregulated coDEGs. Finally, several predictions regarding microRNAs (miRNAs) and transcription factors (TFs) were made to construct a putative TF-miRNA-target network. RESULTS A total of 1475 co-DEGs were screened in active/inactive FVM samples, including 461 upregulated and 1014 downregulated genes, which were enriched for angiogenesis [Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A) and Placental Growth Factor (PGF)] and visual perception, respectively. In the case of the upregulated co-DEGs, Kinesin Family Member 11 (KIF11), and BUB1 Mitotic Checkpoint Serine/Threonine Kinase (BUB1) exhibited the highest values in both the PPI network and module analyses, as well as the genes related to mitosis. In the case of downregulated co-DEGs, several G protein subunits, including G Protein Subunit Beta 3 (GNB3), exhibited the highest values in both the PPI network and module analyses. The genes identified in the module analysis were found to be from the signal transduction-related pathways. In addition, we were able to identify four miRNAs and five TFs, including miR-136 and miR-374. CONCLUSIONS In brief, HIF1A, PGF, KIF11, G protein subunits, and miR-136, miR-374 may all be involved in angiogenesis, retinal endothelial cell proliferation, and visual signal transduction in proliferative DR. This study provides a number of novel insights that may aid the development of future studies dedicated to discovering novel therapeutic targets in proliferative DR.
Collapse
Affiliation(s)
- Dewang Shao
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China. .,Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China.
| | - Shouzhi He
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiaoquan Zhu
- Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China
| | - Wei Sun
- Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China
| | - Wei Fu
- Department of Ophthalmology, Air Force Medical Center, PLA, No.15 Chang Yun Gong, Haidian District, Beijing, 100089, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
19
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Ivanova ME, Zolnikova IV, Gorgisheli KV, Atarshchikov DS, Ghosh P, Barh D. Novel frameshift mutation in NYX gene in a Russian family with complete congenital stationary night blindness. Ophthalmic Genet 2019; 40:558-563. [PMID: 31826698 DOI: 10.1080/13816810.2019.1698617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The complete form of X-linked congenital stationary night blindness (CSNB1A) is a very rare genetic disease caused by mutation in the NYX gene. CSNB1A-associated several mutations in the NYX gene have been reported earlier.Methods: In this case report, we have clinically diagnosed and genetically confirmed a novel mutation associated with CSNB1A in four members of a Russian family. Two male siblings from a family of four siblings (two girls, two boys) with non-progressive stable night blindness since early childhood and high myopia underwent - visual acuity test, perimetry, biomicroscopy, OCT, ophthalmoscopy, electroretinography, color vision Hue test, NGS based whole exome analysis and Sanger sequencing for clinical characterization and genetic confirmation of CSNB.Results: The members are clinically diagnosed and genetically confirmed with CSNB1A. All the patients had a novel frameshift mutation in the NYX gene (c.283delC, p.His95fs, NM_022567.2) that is found to segregate in X-linked mannerConclusions: This is probably the first case report with a novel mutation from Russia associated with CSNB1A.
Collapse
Affiliation(s)
| | | | | | | | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Debmalya Barh
- Oftalmic LLC, Moscow, Russia.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India
| |
Collapse
|
21
|
Malerba N, De Nittis P, Merla G. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Cells 2019; 8:E1567. [PMID: 31817184 PMCID: PMC6952978 DOI: 10.3390/cells8121567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Environmental stimuli are perceived and transduced inside the cell through the activation of signaling pathways. One common type of cell signaling transduction network is initiated by G-proteins. G-proteins are activated by G-protein-coupled receptors (GPCRs) and transmit signals from hormones, neurotransmitters, and other signaling factors, thus controlling a number of biological processes that include synaptic transmission, visual photoreception, hormone and growth factors release, regulation of cell contraction and migration, as well as cell growth and differentiation. G-proteins mainly act as heterotrimeric complexes, composed of alpha, beta, and gamma subunits. In the last few years, whole exome sequencing and biochemical studies have shown causality of disease-causing variants in genes encoding G-proteins and human genetic diseases. This review focuses on the G-protein β subunits and their emerging role in the etiology of genetically inherited rare diseases in humans.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Giuseppe Merla
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| |
Collapse
|
22
|
Unique retinal signaling defect in GNB5-related disease. Doc Ophthalmol 2019; 140:273-277. [PMID: 31720979 DOI: 10.1007/s10633-019-09735-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To report a unique retinal signaling defect in GNB5-related disease. METHODS A 3-year-old female child underwent detailed systemic and ophthalmological evaluation. The eye examination included fundus photography, spectral domain optical coherence tomography and an extended protocol full-field electroretinography (ERG) including the ISCEV recommended standard steps. The dark-adapted (DA) ERGs were performed to a series of white flashes (range 0.006-30.0 cd s m-2) and two red flashes. The DA ERGs to higher stimulus intensities (3.0, 10.0 and 30.0 cd s m-2) were tested using a range of inter-stimulus intervals (ISI) of up to 60 s. In addition to standard light-adapted (LA) ERGs, a short-duration (0.5 s) LA 3.0 30-Hz flicker ERG and a long-duration LA ON-OFF ERG were also performed. Genetic testing included microarray, mitochondrial genome testing and whole exome sequencing. RESULTS The child was diagnosed to have status epilepticus and bradycardia at 6 months of age. Subsequently, she was diagnosed to have global developmental delay and hypotonia. On ophthalmological evaluation, the child fixes and follows light. Fundus evaluation showed mild optic disk pallor; macular SD-OCT was normal. The dim flash DA ERGs (DA 0.006 and DA 0.01 cd s m-2) were non-detectable. DA red flash ERGs showed the presence of an x-wave (cone component) and no rod component. The DA 3.0, 10.0 and 30.0 ERGs showed electronegative configuration regardless of the ISI; the averaged a-wave amplitude (4 flashes) was smaller at shorter ISI but became normal at a prolonged ISI (60 s). The LA 30-Hz flicker ERG was severely reduced but detectable for the initial 0.5 s; this became non-detectable after 5 s of averaging. The LA 3.0 2-Hz ERG showed markedly reduced a- and b-wave amplitudes and a reduced b:a ratio; the LA ON-OFF ERGs were non-detectable. WES identified a homozygous null mutation in G protein subunit beta 5 (GNB5; c.1032C>A/p.Tyr344*). CONCLUSION This report identifies for the first time a unique retinopathy associated with biallelic mutations in GNB5. The observed phenotype is consistent with a dual retinal signaling defect reminiscent of features of bradyopsia and rod ON-bipolar dysfunction.
Collapse
|
23
|
Granadeiro L, Dirks RP, Ortiz-Delgado JB, Gavaia PJ, Sarasquete C, Laizé V, Cancela ML, Fernández I. Warfarin-exposed zebrafish embryos resembles human warfarin embryopathy in a dose and developmental-time dependent manner - From molecular mechanisms to environmental concerns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:559-571. [PMID: 31238190 DOI: 10.1016/j.ecoenv.2019.06.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Warfarin is the most worldwide used anticoagulant drug and rodenticide. Since it crosses placental barrier it can induce warfarin embryopathy (WE), a fetal mortality in neonates characterized by skeletal deformities in addition to brain hemorrhages. Although the effects of warfarin exposure in aquatic off target species were already described, the particular molecular toxicological mechanisms during early development are still unclear. Here, we used zebrafish (Danio rerio) to describe and compare the developmental effects of warfarin exposure (0, 15.13, 75.68 and 378.43 mM) on two distinct early developmental phases (embryos and eleuthero-embryos). Although exposure to both developmental phases induced fish mortality, only embryos exposed to the highest warfarin level exhibited features mimicking mammalian WE, e.g. high mortality, higher incidence of hemorrhages and altered skeletal development, among other effects. To gain insights into the toxic mechanisms underlying warfarin exposure, the transcriptome of embryos exposed to warfarin was explored through RNA-Seq and compared to that of control embryos. 766 differentially expressed (564 up- and 202 down-regulated) genes were identified. Gene Ontology analysis revealed particular cellular components (cytoplasm, extracellular matrix, lysosome and vacuole), biological processes (mainly amino acid and lipid metabolism and response to stimulus) and pathways (oxidative stress response and apoptosis signaling pathways) being significantly overrepresented in zebrafish embryos upon warfarin exposure. Protein-protein interaction further evidenced an altered redox system, blood coagulation and vasculogenesis, visual phototransduction and collagen formation upon warfarin exposure. The present study not only describes for the first time the WE in zebrafish, it provides new insights for a better risk assessment, and highlights the need for programming the rat eradication actions outside the fish spawning season to avoid an impact on off target fish community. The urge for the development of more species-specific anticoagulants for rodent pest control is also highlighted.
Collapse
Affiliation(s)
- Luis Granadeiro
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ron P Dirks
- ZF-screens B.V. J.H. Oortweg 19, 2333, CH Leiden, the Netherlands
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510, Puerto Real, Cádiz, Spain
| | - Paulo J Gavaia
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN/CSIC, Campus Universitario Río San Pedro, Apdo. Oficial, 11510, Puerto Real, Cádiz, Spain
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC) and Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, S/n. 40196 Zamarramala, Segovia, Spain.
| |
Collapse
|
24
|
Malerba N, Towner S, Keating K, Squeo GM, Wilson W, Merla G. A NGS-Targeted Autism/ID Panel Reveals Compound Heterozygous GNB5 Variants in a Novel Patient. Front Genet 2018; 9:626. [PMID: 30631341 PMCID: PMC6315145 DOI: 10.3389/fgene.2018.00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Homozygous and compound heterozygous pathogenic variants in GNB5 have been recently associated with a spectrum of clinical presentations varying from a severe multisystem form of the disorder including intellectual disability, early infantile developmental and epileptic encephalopathy, retinal abnormalities and cardiac arrhythmias (IDDCA) to a milder form with language delay, attention-deficit/hyperactivity disorder, cognitive impairment, with or without cardiac arrhythmia (LADCI). Approximately twenty patients have been described so far; here we report a novel case of a 2.5-year-old female who is a compound heterozygote for a frameshift and a missense variant in the GNB5 gene. Her clinical presentation is consistent with a moderate phenotype, corroborating the direct correlation between the type and pathogenic mechanism of the GNB5 genetic variant and the severity of related phenotype.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Shelley Towner
- Division of Medical Genetics, University of Virginia, Charlottesville, VA, United States
| | - Katherine Keating
- Division of Medical Genetics, University of Virginia, Charlottesville, VA, United States
| | - Gabriella Maria Squeo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - William Wilson
- Division of Medical Genetics, University of Virginia, Charlottesville, VA, United States
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
25
|
Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJ, Iglesias AI, Meester-Smoor MA, Tompson SW, Fan Q, Khawaja AP, Cheng CY, Höhn R, Yamashiro K, Wenocur A, Grazal C, Haller T, Metspalu A, Wedenoja J, Jonas JB, Wang YX, Xie J, Mitchell P, Foster PJ, Klein BE, Klein R, Paterson AD, Hosseini SM, Shah RL, Williams C, Teo YY, Tham YC, Gupta P, Zhao W, Shi Y, Saw WY, Tai ES, Sim XL, Huffman JE, Polašek O, Hayward C, Bencic G, Rudan I, Wilson JF, CREAM, 23andMe Research Team, UK Biobank Eye and Vision Consortium, Joshi PK, Tsujikawa A, Matsuda F, Whisenhunt KN, Zeller T, van der Spek PJ, Haak R, Meijers-Heijboer H, van Leeuwen EM, Iyengar SK, Lass JH, Hofman A, Rivadeneira F, Uitterlinden AG, Vingerling JR, Lehtimäki T, Raitakari OT, Biino G, Concas MP, Schwantes-An TH, Igo RP, Cuellar-Partida G, Martin NG, Craig JE, Gharahkhani P, Williams KM, Nag A, Rahi JS, Cumberland PM, Delcourt C, Bellenguez C, Ried JS, Bergen AA, Meitinger T, Gieger C, Wong TY, Hewitt AW, Mackey DA, Simpson CL, Pfeiffer N, Pärssinen O, Baird PN, Vitart V, Amin N, van Duijn CM, Bailey-Wilson JE, Young TL, Saw SM, Stambolian D, MacGregor S, Guggenheim JA, Tung JY, Hammond CJ, et alTedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJ, Iglesias AI, Meester-Smoor MA, Tompson SW, Fan Q, Khawaja AP, Cheng CY, Höhn R, Yamashiro K, Wenocur A, Grazal C, Haller T, Metspalu A, Wedenoja J, Jonas JB, Wang YX, Xie J, Mitchell P, Foster PJ, Klein BE, Klein R, Paterson AD, Hosseini SM, Shah RL, Williams C, Teo YY, Tham YC, Gupta P, Zhao W, Shi Y, Saw WY, Tai ES, Sim XL, Huffman JE, Polašek O, Hayward C, Bencic G, Rudan I, Wilson JF, CREAM, 23andMe Research Team, UK Biobank Eye and Vision Consortium, Joshi PK, Tsujikawa A, Matsuda F, Whisenhunt KN, Zeller T, van der Spek PJ, Haak R, Meijers-Heijboer H, van Leeuwen EM, Iyengar SK, Lass JH, Hofman A, Rivadeneira F, Uitterlinden AG, Vingerling JR, Lehtimäki T, Raitakari OT, Biino G, Concas MP, Schwantes-An TH, Igo RP, Cuellar-Partida G, Martin NG, Craig JE, Gharahkhani P, Williams KM, Nag A, Rahi JS, Cumberland PM, Delcourt C, Bellenguez C, Ried JS, Bergen AA, Meitinger T, Gieger C, Wong TY, Hewitt AW, Mackey DA, Simpson CL, Pfeiffer N, Pärssinen O, Baird PN, Vitart V, Amin N, van Duijn CM, Bailey-Wilson JE, Young TL, Saw SM, Stambolian D, MacGregor S, Guggenheim JA, Tung JY, Hammond CJ, Klaver CC. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet 2018; 50:834-848. [PMID: 29808027 PMCID: PMC5980758 DOI: 10.1038/s41588-018-0127-7] [Show More Authors] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
Refractive errors, including myopia, are the most frequent eye disorders worldwide and an increasingly common cause of blindness. This genome-wide association meta-analysis in 160,420 participants and replication in 95,505 participants increased the number of established independent signals from 37 to 161 and showed high genetic correlation between Europeans and Asians (>0.78). Expression experiments and comprehensive in silico analyses identified retinal cell physiology and light processing as prominent mechanisms, and also identified functional contributions to refractive-error development in all cell types of the neurosensory retina, retinal pigment epithelium, vascular endothelium and extracellular matrix. Newly identified genes implicate novel mechanisms such as rod-and-cone bipolar synaptic neurotransmission, anterior-segment morphology and angiogenesis. Thirty-one loci resided in or near regions transcribing small RNAs, thus suggesting a role for post-transcriptional regulation. Our results support the notion that refractive errors are caused by a light-dependent retina-to-sclera signaling cascade and delineate potential pathobiological molecular drivers.
Collapse
Affiliation(s)
- Milly S. Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert Wojciechowski
- Department of Epidemiology and Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Pirro G. Hysi
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | | | | | - Virginie J.M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stuart W. Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Qiao Fan
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
| | - Anthony P. Khawaja
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Ching-Yu Cheng
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - René Höhn
- Department of Ophthalmology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Adam Wenocur
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Clare Grazal
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Juho Wedenoja
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jost B. Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Xie
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Barbara E.K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - S. Mohsen Hosseini
- Program in Genetics and Genome Biology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Rupal L. Shah
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, UK
| | - Cathy Williams
- Department of Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Yik Ying Teo
- Department of Statistics and Applied Probability, National University of Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Yih Chung Tham
- Ocular Epidemiology Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Preeti Gupta
- Department of Health Service Research, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Wanting Zhao
- Centre for Quantitative Medicine, DUKE-National University of Singapore, Singapore
- Statistics Support Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Yuan Shi
- Statistics Support Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Woei-Yuh Saw
- Life Sciences Institute, National University of Singapore, Singapore
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Xue Ling Sim
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
| | - Jennifer E. Huffman
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Goran Bencic
- Department of Ophthalmology, Sisters of Mercy University Hospital, Zagreb, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kristina N. Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | | | - Roxanna Haak
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth M. van Leeuwen
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sudha K. Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio, USA
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jonathan H. Lass
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, Ohio, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T.HChan School of Public Health, Boston, Massachusetts, USA
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, the Hague, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Sassari, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Tae-Hwi Schwantes-An
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Robert P. Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katie M. Williams
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Jugnoo S. Rahi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Ulverscroft Vision Research Group, University College London, London, UK
| | | | - Cécile Delcourt
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, F-33000 Bordeaux, France
| | - Céline Bellenguez
- Institut Pasteur de Lille, Lille, France
- Inserm, U1167, RID-AGE - Risk factors and molecular determinants of aging-related diseases, Lille, France
- Université de Lille, U1167 - Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Janina S. Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Arthur A. Bergen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
- The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Tien Yin Wong
- Academic Medicine Research Institute, Singapore
- Retino Center, Singapore National Eye Centre, Singapore, Singapore
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Claire L. Simpson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tenessee
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Mainz, Germany
| | - Olavi Pärssinen
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Paul N. Baird
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University Health Systems, National University of Singapore, Singapore
- Myopia Research Group, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, UK
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Gore AV, Tomins KA, Iben J, Ma L, Castranova D, Davis AE, Parkhurst A, Jeffery WR, Weinstein BM. An epigenetic mechanism for cavefish eye degeneration. Nat Ecol Evol 2018; 2:1155-1160. [PMID: 29807993 PMCID: PMC6023768 DOI: 10.1038/s41559-018-0569-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Abstract
Coding and non-coding mutations in DNA contribute significantly to phenotypic variability during evolution. However, less is known about the role of epigenetics in this process. Although previous studies have identified eye development genes associated with the loss-of-eyes phenotype in the Pachón blind cave morph of the Mexican tetra Astyanax mexicanus, no inactivating mutations have been found in any of these genes. Here, we show that excess DNA methylation-based epigenetic silencing promotes eye degeneration in blind cave A. mexicanus. By performing parallel analyses in A. mexicanus cave and surface morphs, and in the zebrafish Danio rerio, we have discovered that DNA methylation mediates eye-specific gene repression and globally regulates early eye development. The most significantly hypermethylated and downregulated genes in the cave morph are also linked to human eye disorders, suggesting that the function of these genes is conserved across vertebrates. Our results show that changes in DNA methylation-based gene repression can serve as an important molecular mechanism generating phenotypic diversity during development and evolution.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| | - Kelly A Tomins
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Laboratory, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Andrew E Davis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Amy Parkhurst
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
27
|
Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis 2017; 23:1048-1080. [PMID: 29386878 PMCID: PMC5757860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Emerling CA, Widjaja AD, Nguyen NN, Springer MS. Their loss is our gain: regressive evolution in vertebrates provides genomic models for uncovering human disease loci. J Med Genet 2017; 54:787-794. [PMID: 28814606 DOI: 10.1136/jmedgenet-2017-104837] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Throughout Earth's history, evolution's numerous natural 'experiments' have resulted in a diverse range of phenotypes. Though de novo phenotypes receive widespread attention, degeneration of traits inherited from an ancestor is a very common, yet frequently neglected, evolutionary path. The latter phenomenon, known as regressive evolution, often results in vertebrates with phenotypes that mimic inherited disease states in humans. Regressive evolution of anatomical and/or physiological traits is typically accompanied by inactivating mutations underlying these traits, which frequently occur at loci identical to those implicated in human diseases. Here we discuss the potential utility of examining the genomes of vertebrates that have experienced regressive evolution to inform human medical genetics. This approach is low cost and high throughput, giving it the potential to rapidly improve knowledge of disease genetics. We discuss two well-described examples, rod monochromacy (congenital achromatopsia) and amelogenesis imperfecta, to demonstrate the utility of this approach, and then suggest methods to equip non-experts with the ability to corroborate candidate genes and uncover new disease loci.
Collapse
Affiliation(s)
- Christopher A Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Biology, University of California, Riverside, California, USA
| | - Andrew D Widjaja
- Department of Biochemistry, University of California, Riverside, California, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Nancy N Nguyen
- Department of Bioengineering, University of California, Riverside, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mark S Springer
- Department of Biology, University of California, Riverside, California, USA
| |
Collapse
|
29
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
30
|
Fu H, LianpingYang, Zhang X. Noncoding Variants Functional Prioritization Methods Based on Predicted Regulatory Factor Binding Sites. Curr Genomics 2017; 18:322-331. [PMID: 29081688 PMCID: PMC5635616 DOI: 10.2174/1389202918666170228143619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/16/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS With the advent of the post genomic era, the research for the genetic mechanism of the diseases has found to be increasingly depended on the studies of the genes, the gene-networks and gene-protein interaction networks. To explore gene expression and regulation, the researchers have carried out many studies on transcription factors and their binding sites (TFBSs). Based on the large amount of transcription factor binding sites predicting values in the deep learning models, further computation and analysis have been done to reveal the relationship between the gene mutation and the occurrence of the disease. It has been demonstrated that based on the deep learning methods, the performances of the prediction for the functions of the noncoding variants are outperforming than those of the conventional methods. The research on the prediction for functions of Single Nucleotide Polymorphisms (SNPs) is expected to uncover the mechanism of the gene mutation affection on traits and diseases of human beings. RESULTS We reviewed the conventional TFBSs identification methods from different perspectives. As for the deep learning methods to predict the TFBSs, we discussed the related problems, such as the raw data preprocessing, the structure design of the deep convolution neural network (CNN) and the model performance measure et al. And then we summarized the techniques that usually used in finding out the functional noncoding variants from de novo sequence. CONCLUSION Along with the rapid development of the high-throughout assays, more and more sample data and chromatin features would be conducive to improve the prediction accuracy of the deep convolution neural network for TFBSs identification. Meanwhile, getting more insights into the deep CNN framework itself has been proved useful for both the promotion on model performance and the development for more suitable design to sample data. Based on the feature values predicted by the deep CNN model, the prioritization model for functional noncoding variants would contribute to reveal the affection of gene mutation on the diseases.
Collapse
Affiliation(s)
- Haoyue Fu
- College of Sciences, Northeastern University, Shenyang, China
| | - LianpingYang
- College of Sciences, Northeastern University, Shenyang, China
- University of Southern California, Dept. Biol. Sci., Program Mol & Computat Biol, USA
| | - Xiangde Zhang
- College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
31
|
Lodder EM, Verkerk AO, Bezzina CR. Pacing Discovery: G-Protein β Subunit Mutations in Sinus Node Dysfunction. Circ Res 2017; 120:1524-1526. [PMID: 28495981 DOI: 10.1161/circresaha.117.310953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elisabeth M Lodder
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands
| | - Arie O Verkerk
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Kurata K, Hosono K, Hotta Y. Long-Term Clinical Course in a Patient with Complete Congenital Stationary Night Blindness. Case Rep Ophthalmol 2017; 8:237-244. [PMID: 28512427 PMCID: PMC5422747 DOI: 10.1159/000462961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Indexed: 11/30/2022] Open
Abstract
Background This report describes a 45-year-old man with complete congenital stationary night blindness (CSNB1) who has been followed up for 38 years. Case The patient first visited our hospital as a 7-year-old boy with a complaint of low visual acuity. Best corrected visual acuity (BCVA) was 0.5 in the right eye and 0.6 in the left eye. The refractive error was approximately −5.0 D in both eyes. The fundus showed only myopic changes. A bright-flash electroretinogram (ERG) revealed a negative configuration. We diagnosed CSNB and corrected the refractive error with glasses. We continued to monitor the ERG and various waveform components as well as visual acuity and the appearance of the fundus. All NYX exons were screened for a causative mutation by polymerase chain reaction amplification, and direct sequencing was performed. Results By 10 years of age, BCVA had increased to 0.8 on the right and 0.9 on the left, with little change thereafter. The fundus continued to show only myopic changes. No changes were seen in the amplitude or implicit time of the a-wave or b-wave or in the b/a-wave ratio. A novel hemizygous insertion mutation, c.1205_1206insT, p.(Glu404Argfs*89), was detected in exon 2 of the NYX gene. Conclusion To our knowledge, this is the longest follow-up of a patient with CSNB1. No changes in the clinical course have been seen during follow-up. We believe that it is important to continue observations and accumulate clinical data for prognostic purposes on patients with CSNB1.
Collapse
Affiliation(s)
- Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
33
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
34
|
Panel-Based Clinical Genetic Testing in 85 Children with Inherited Retinal Disease. Ophthalmology 2017; 124:985-991. [PMID: 28341476 DOI: 10.1016/j.ophtha.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess the clinical usefulness of genetic testing in a pediatric population with inherited retinal disease (IRD). DESIGN Single-center retrospective case series. PARTICIPANTS Eighty-five unrelated children with a diagnosis of isolated or syndromic IRD who were referred for clinical genetic testing between January 2014 and July 2016. METHODS Participants underwent a detailed ophthalmic examination, accompanied by electrodiagnostic testing (EDT) and dysmorphologic assessment where appropriate. Ocular and extraocular features were recorded using Human Phenotype Ontology terms. Subsequently, multigene panel testing (105 or 177 IRD-associated genes) was performed in an accredited diagnostic laboratory, followed by clinical variant interpretation. MAIN OUTCOME MEASURES Diagnostic yield and clinical usefulness of genetic testing. RESULTS Overall, 78.8% of patients (n = 67) received a probable molecular diagnosis; 7.5% (n = 5) of these had autosomal dominant disease, 25.4% (n = 17) had X-linked disease, and 67.2% (n = 45) had autosomal recessive disease. In a further 5.9% of patients (n = 5), a single heterozygous ABCA4 variant was identified; all these participants had a spectrum of clinical features consistent with ABCA4 retinopathy. Most participants (84.7%; n = 72) had undergone EDT and 81.9% (n = 59) of these patients received a probable molecular diagnosis. The genes most frequently mutated in the present cohort were CACNA1F and ABCA4, accounting for 14.9% (n = 10) and 11.9% (n = 8) of diagnoses respectively. Notably, in many cases, genetic testing helped to distinguish stationary from progressive IRD subtypes and to establish a precise diagnosis in a timely fashion. CONCLUSIONS Multigene panel testing pointed to a molecular diagnosis in 84.7% of children with IRD. The diagnostic yield in the study population was significantly higher compared with that in previously reported unselected IRD cohorts. Approaches similar to the one described herein are expected to become a standard component of care in pediatric ophthalmology. We propose the introduction of genetic testing early in the diagnostic pathway in children with clinical and/or electrophysiologic findings, suggestive of IRD.
Collapse
|
35
|
Dias MDS, Hamel CP, Meunier I, Varin J, Blanchard S, Boyard F, Sahel JA, Zeitz C. Novel splice-site mutation in TTLL5 causes cone dystrophy in a consanguineous family. Mol Vis 2017; 23:131-139. [PMID: 28356705 PMCID: PMC5360453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/16/2017] [Indexed: 11/03/2022] Open
Abstract
PURPOSE To report the clinical and genetic findings of one family with autosomal recessive cone dystrophy (CD) and to identify the causative mutation. METHODS An institutional study of three family members from two generations. The clinical examination included best-corrected Snellen visual acuity measurement, fundoscopy, the Farnsworth D-15 color vision test, a full-field electroretinogram (ERG) that incorporated the International Society for Clinical Electrophysiology of Vision standards and methodology, fundus autofluorescence (FAF) and infrared (IR), and spectral-domain optical coherence tomography (SD-OCT). Genetic findings were achieved with DNA analysis using whole exome sequencing (WES) and Sanger sequencing. RESULTS The proband, a 9-year-old boy, presented with a condition that appeared to be congenital and stationary. The clinical presentation initially reflected incomplete congenital stationary night blindness (icCSNB) because of myopia, a decrease in visual acuity, abnormal oscillatory potentials, and reduced amplitudes on the 30 Hz flicker ERG but was atypical because there were no clear electronegative responses. However, no disease-causing mutations in the genes underlying icCSNB were identified. Following WES analysis of family members, a homozygous splice-site mutation in intron 3 of TTLL5 (c.182-3_182-1delinsAA) was found cosegregating within the phenotype in the family. CONCLUSIONS The distinction between icCSNB and CD phenotypes is not always straightforward in young patients. The patient was quite young, which most likely explains why the progression of the CD was not obvious. WES analysis provided prompt diagnosis for this family; thus, the use of this technique to refine the diagnosis is highlighted in this study.
Collapse
Affiliation(s)
- Miguel de Sousa Dias
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| | - Christian P. Hamel
- INSERM U 1051, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, Montpellier, France,Affections Sensorielles Génétiques, CHU de Montpellier, 191 Avenue du Doyen Gaston Giraud, Montpellier, France,Université Montpellier, 163 Avenue Auguste Broussonnet, Montpellier, France
| | - Isabelle Meunier
- INSERM U 1051, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, Montpellier, France,Affections Sensorielles Génétiques, CHU de Montpellier, 191 Avenue du Doyen Gaston Giraud, Montpellier, France,Université Montpellier, 163 Avenue Auguste Broussonnet, Montpellier, France
| | - Juliette Varin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| | | | - Fiona Boyard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, 28 rue de Charenton, Paris, France,Institute of Ophthalmology, University College of London, London EC1V 9EL, UK,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France,Academie des Sciences, Institut de France, Paris, France,Department of Ophthalmology, The University of Pittsburghschool of Medicine, Pittsburg, PA
| | - Christina Zeitz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U968, CNRS UMR 7210, Institut de la Vision, 17 rue Moreau, Paris, France
| |
Collapse
|
36
|
Stallmeyer B, Kuß J, Kotthoff S, Zumhagen S, Vowinkel K, Rinné S, Matschke LA, Friedrich C, Schulze-Bahr E, Rust S, Seebohm G, Decher N, Schulze-Bahr E. A Mutation in the G-Protein Gene GNB2 Causes Familial Sinus Node and Atrioventricular Conduction Dysfunction. Circ Res 2017; 120:e33-e44. [PMID: 28219978 DOI: 10.1161/circresaha.116.310112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 11/16/2022]
Abstract
RATIONALE Familial sinus node and atrioventricular conduction dysfunction is a rare disorder that leads to paroxysmal dizziness, fatigue, and syncope because of a temporarily or permanently reduced heart rate. To date, only a few genes for familial sinus and atrioventricular conduction dysfunction are known, and the majority of cases remain pathogenically unresolved. OBJECTIVE We aim to identify the disease gene in a large 3-generation family (n=25) with autosomal dominant sinus node dysfunction (SND) and atrioventricular block (AVB) and to characterize the mutation-related pathomechanisms in familial SND+AVB. METHODS AND RESULTS Genome-wide linkage analysis mapped the SND+AVB disease locus to chromosome 7q21.1-q31.1 (2-point logarithm of the odds score: 4.64; θ=0); in this region, targeted exome sequencing identified a novel heterozygous mutation (p.Arg52Leu) in the GNB2 gene that strictly cosegregated with the SND+AVB phenotype. GNB2 encodes the β2 subunit (Gβ2) of the heterotrimeric G-protein complex that is being released from G-protein-coupled receptors on vagal stimulation. In 2 heterologous expression systems (HEK-293T cells and Xenopus laevis oocytes), an enhanced activation of the G-protein-activated K+ channel (GIRK; Kir3.1/Kir3.4) was shown when mutant Gβ2 was coexpressed with Gγ2; this was in contrast to coexpression of mutant Gβ2-Gγ2 with other cardiac ion channels (HCN4, HCN2, and Cav1.2). Molecular dynamics simulations suggested a reduced binding property of mutant Gβ2 to cardiac GIRK channels when compared with native Gβ2. CONCLUSIONS A GNB2 gene mutation is associated with familial SND+AVB and leads to a sustained activation of cardiac GIRK channels, which is likely to hyperpolarize the myocellular membrane potential and thus reduces their spontaneous activity. Our findings describe for the first time a role of a mutant G-protein in the nonsyndromic pacemaker disease because of GIRK channel activation.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Johanna Kuß
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Stefan Kotthoff
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Sven Zumhagen
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Kirsty Vowinkel
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Susanne Rinné
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Lina A Matschke
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Corinna Friedrich
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Ellen Schulze-Bahr
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Stephan Rust
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Guiscard Seebohm
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Niels Decher
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.)
| | - Eric Schulze-Bahr
- From the Institute for Genetics of Heart Diseases, Department of Cardiology and Angiology, University Hospital Muenster, Germany (B.S., J.K., S.Z., C.F., E.S.-B., G.S., E.S.-B.); Department of Pediatric Cardiology (S.K.) and Department of General Pediatrics (S.R.), University Children's Hospital Muenster, Germany; and Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University of Marburg, Germany (K.V., S.R., L.A.M., N.D.).
| |
Collapse
|
37
|
GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability. Am J Hum Genet 2016; 99:704-710. [PMID: 27523599 DOI: 10.1016/j.ajhg.2016.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.
Collapse
|