1
|
Wosnitzka E, Gambarotto L, Nikoletopoulou V. Macroautophagy at the service of synapses. Curr Opin Neurobiol 2025; 93:103054. [PMID: 40414166 DOI: 10.1016/j.conb.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/02/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Post-mitotic and highly polarized neurons are dependent on the fitness of their synapses, which are often found a long distance away from the soma. How the synaptic proteome is maintained, dynamically reshaped, and continuously turned over is a topic of intense investigation. Autophagy, a highly conserved, lysosome-mediated degradation pathway has emerged as a vital component of long-term neuronal maintenance, and now more specifically of synaptic homeostasis. Here, we review the most recent findings on how autophagy undergoes both dynamic and local regulation at the synapse, and how it contributes to pre- and post-synaptic proteostasis and function. We also discuss the insights and open questions that this new evidence brings.
Collapse
Affiliation(s)
- Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Vassiliki Nikoletopoulou
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
2
|
Pollini L, Pettenuzzo I, Tijssen MAJ, Koens LH, De Koning TJ, Leuzzi V, Eggink H. Eye movement disorders in genetic dystonia syndromes: A literature overview. Parkinsonism Relat Disord 2025; 133:107325. [PMID: 39966058 DOI: 10.1016/j.parkreldis.2025.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
With the growing possibilities in genetic testing, the number of genetic disorders associated with dystonia has constantly increased over the last few years. Accurate phenotyping is crucial to guide and interpret genetic analyses in the search for an etiological diagnosis. Although eye movements examination has proven a valuable tool in the assessment of patients with inherited movement disorders such as ataxia or parkinsonism, less is known about the association between eye movement disorders and genetic dystonia. This study aimed to summarize the most frequent eye movement disorders in monogenetic forms of dystonia as classified by the Movement Disorders Society (MDS). More than sixty genetic disorders causing dystonia were repeatedly associated with eye movement disorders. Among these, 24 are classified as DYT genes, 22 were classified by MDS as having another prominent movement disorder, and 19 are genetic disorders that manifest with dystonia but are not included in the MDS classification. Six different eye movement disorders have consistently been reported (saccadic slowing and supranuclear gaze palsy, saccadic initiation failure and oculomotor apraxia, saccadic dysmetria, oculogyric crisis, nystagmus and ophthalmoplegia). The phenotypic association of each disorder with monogenic dystonic diseases, as well as the possible underlying pathophysiological mechanisms, is described here. Our findings suggest that eye movement disorders, along with the movement phenotype, may help delineate subgroups of dystonia by reflecting disruptions in specific brain networks. Therefore, eye movement examination is a crucial part of the neurological evaluation, providing valuable insights into patients with inherited forms of dystonia.
Collapse
Affiliation(s)
- Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, 00185, Rome, Italy; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Ilaria Pettenuzzo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, U.O.C. Neuropsichiatria dell'età pediatrica, Bologna, Italy; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands
| | - Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Department of Neurology and Clinical Neurophysiology, Martini Ziekenhuis, Groningen, the Netherlands
| | - Tom J De Koning
- Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Pediatrics, department of Clinical Sciences, Lund University, Sweden
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, 00185, Rome, Italy
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
3
|
Rappe A, Vihinen HA, Suomi F, Hassinen AJ, Ehsan H, Jokitalo ES, McWilliams TG. Longitudinal autophagy profiling of the mammalian brain reveals sustained mitophagy throughout healthy aging. EMBO J 2024; 43:6199-6231. [PMID: 39367235 PMCID: PMC11612485 DOI: 10.1038/s44318-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024] Open
Abstract
Mitophagy neutralizes mitochondrial damage, thereby preventing cellular dysfunction and apoptosis. Defects in mitophagy have been strongly implicated in age-related neurodegenerative disorders such as Parkinson's and Alzheimer's disease. While mitophagy decreases throughout the lifespan of short-lived model organisms, it remains unknown whether such a decline occurs in the aging mammalian brain-a question of fundamental importance for understanding cell type- and region-specific susceptibility to neurodegeneration. Here, we define the longitudinal dynamics of basal mitophagy and macroautophagy across neuronal and non-neuronal cell types within the intact aging mouse brain in vivo. Quantitative profiling of reporter mouse cohorts from young to geriatric ages reveals cell- and tissue-specific alterations in mitophagy and macroautophagy between distinct subregions and cell populations, including dopaminergic neurons, cerebellar Purkinje cells, astrocytes, microglia and interneurons. We also find that healthy aging is hallmarked by the dynamic accumulation of differentially acidified lysosomes in several neural cell subsets. Our findings argue against any widespread age-related decline in mitophagic activity, instead demonstrating dynamic fluctuations in mitophagy across the aging trajectory, with strong implications for ongoing theragnostic development.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Helena A Vihinen
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Antti J Hassinen
- High Content Imaging and Analysis Unit (FIMM-HCA), Institute for Molecular Medicine, Helsinki Institute of Life Science, University of Helsinki, Tukholmankatu 8, Helsinki, 00290, Finland
| | - Homa Ehsan
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Eija S Jokitalo
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Thomas G McWilliams
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
4
|
Masuko S, Sato M, Nakamura K, Hamanaka K, Miyatake S, Inaba Y, Kosho T, Matsumoto N, Sekijima Y. A Novel Synonymous Variant in SQSTM1 Causes Neurodegeneration With Ataxia, Dystonia, and Gaze Palsy Revealed by Urine-Derived Cells-Based Functional Analysis. Mol Genet Genomic Med 2024; 12:e70044. [PMID: 39587727 PMCID: PMC11588856 DOI: 10.1002/mgg3.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Heterozygous variants of sequestosome-1 gene (SQSTM1) have been reported in patients with various neurological disorders, whereas biallelic pathogenic variants of SQSTM1 can cause child-onset and multisystem neurodegeneration, including cerebellar ataxia, dystonia, and vertical gaze palsy (NADGP). Here, we describe two cases of NADGP in a Japanese family. METHODS We performed clinical and genetic laboratory evaluations of the two patients and their healthy parents. RESULTS By whole-exome sequencing, we identified compound heterozygous variants in SQSTM1(NM_003900.5): c.1A>G p.(Met1?) in the initial codon, and c.969G>A, located at the 3' end of exon 6, which is novel and seemingly a synonymous but is actually a truncating variant causing aberrant splicing. An SQSTM1 protein expression assay using urine-derived cells (UDCs) demonstrated that both variants (c.1A>G and c.969G>A) were unable to induce normal splicing of premessenger RNA. Cerebellar ataxia is a characteristic manifestation of this disorder; however, brain magnetic resonance imaging studies have not shown significant cerebellar atrophy. Our patients experienced chorea during adolescence. CONCLUSIONS Only a few reports have highlighted the presence of chorea; however, our findings suggest that NADGP should be considered as a differential diagnosis of hereditary chorea. This study also demonstrates the utility of UDCs, obtained using noninvasive approaches, in functionally analyzing genetic diseases.
Collapse
Affiliation(s)
- Shinji Masuko
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| | - Mitsuto Sato
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| | - Katsuya Nakamura
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
- Center for Medical GeneticsShinshu University HospitalMatsumotoJapan
| | - Kohei Hamanaka
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Satoko Miyatake
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yuji Inaba
- Division of NeuropediatricsNagano Children's HospitalAzuminoJapan
- Life Science Research Center, Nagano Children's HospitalAzuminoJapan
| | - Tomoki Kosho
- Center for Medical GeneticsShinshu University HospitalMatsumotoJapan
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| |
Collapse
|
5
|
Esposito P, Dubé-Zinatelli E, Gandelman M, Liu E, Cappelletti L, Liang J, Ismail N. The enduring effects of antimicrobials and lipopolysaccharide on the cellular mechanisms and behaviours associated with neurodegeneration in pubertal male and female CD1 mice. Neuroscience 2024; 557:67-80. [PMID: 39127344 DOI: 10.1016/j.neuroscience.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Puberty is a sensitive developmental period during which stressors can cause lasting brain and behavioural deficits. While the acute effects of pubertal lipopolysaccharide (LPS) and antimicrobial (AMNS) treatments are known, their enduring impacts on neurodegeneration-related mechanisms and behaviours remain unclear. This study examined these effects in male and female mice. At five weeks old, mice received 200ul of either broad-spectrum antimicrobials or water through oral gavage twice daily for seven days. At six weeks of age, they received an intraperitoneal injection of either saline or LPS. Four weeks later, adult mice underwent neurodegeneration-related behavioural tests, including the rotarod, forepaw stride length, reversed grid hang, open field, and buried pellet tests. Two days after the final test, brain and ileal samples were collected. Results showed that female mice treated with both AMNS and LPS exhibited deficits in neuromuscular strength, while males treated with LPS alone showed increased anxiety-like behaviours. Males treated with AMNS alone had decreased sigma-1 receptor (S1R) expression in the cornu ammonis 1 (CA1) and dentate gyrus (DG), while females treated with both AMNS and LPS had decreased S1R expression. Additionally, males treated with either LPS or AMNS had lower glial-derived neurotrophic factor receptor alpha-1 (GFRA1) expression in the primary motor cortex (M1) than females. Mice treated with LPS alone had decreased GFRA1 expression in the DG and decreased S1R expression in the secondary motor cortex (M2). These findings suggest that pubertal AMNS and LPS treatments may lead to enduring changes in biomarkers and behaviours related to neurodegeneration.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eleni Dubé-Zinatelli
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Michelle Gandelman
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Ella Liu
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Luna Cappelletti
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
6
|
Ahmad I, Kapoor H, Kumar Srivastava A, Faruq M. Generation and characterization of human-derived induced pluripotent stem cell line (IGIBi010-A) from a patient with neurodegenerative disease phenotype carrying mutation in SQSTM1/p62 gene. Stem Cell Res 2024; 80:103520. [PMID: 39126919 DOI: 10.1016/j.scr.2024.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
SQSTM1 (Sequestosome 1) also known as p62, plays several important physiological roles in the cell. It regulates autophagy and mitochondrial homeostasis and can further lead to metabolic reprogramming. Pathogenic variants in SQSTM1 gene are known to cause Neurodegeneration with ataxia, dystonia, and gaze palsy in autosomal recessive inheritance fashion. We report here, the generation of induced pluripotent stem cell (iPSC) line (IGIBi010-A) carrying a novel homozygous frameshift variant in SQSTM1 i.e. p.Leu251SerfsTer4. In future, this iPSC line will be used as a resource to elucidate the molecular pathway, targeting strategies for disease biology derived by variation in SQSTM1 gene.
Collapse
Affiliation(s)
- Istaq Ahmad
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi 110007, India; Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Himanshi Kapoor
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi 110007, India
| | - Achal Kumar Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Ng ASL, Tan AH, Tan YJ, Lim JL, Lian MM, Dy Closas AM, Ahmad-Annuar A, Viswanathan S, Chia YK, Foo JN, Lim WK, Tan EK, Lim SY. Identification of Genetic Variants in Progressive Supranuclear Palsy in Southeast Asia. Mov Disord 2024; 39:1829-1842. [PMID: 39149795 DOI: 10.1002/mds.29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is largely a sporadic disease with few reported familial cases. Genome-wide association studies (GWAS) in sporadic PSP in Caucasian populations have identified MAPT as the most commonly associated genetic risk locus with the strongest effect size. At present there are limited data on genetic factors associated with PSP in Asian populations. OBJECTIVES Our goal was to investigate the genetic factors associated with PSP in Southeast Asian PSP patients. METHODS Next-generation sequencing (whole-exome, whole-genome and targeted sequencing) was performed in two Asian cohorts, comprising 177 PSP patients. RESULTS We identified 17 pathogenic or likely pathogenic variants in 16 PSP patients (9%), eight of which were novel. The most common relevant genetic variants identified were in MAPT, GBA1, OPTN, SYNJ1, and SQSTM1. Other variants detected were in TBK1, PRNP, and ABCA7-genes that have been implicated in other neurodegenerative diseases. Eighteen patients had a positive family history, of whom two carried pathogenic MAPT variants, and one carried a likely pathogenic GBA1 variant. None of the patients had expanded repeats in C9orf72. Furthermore, we found 16 different variants of uncertain significance in 21 PSP patients in PSEN2, ABCA7, SMPD1, MAPT, ATP13A2, OPTN, SQSTM1, CYLD, and BSN. CONCLUSIONS The genetic findings in our PSP cohorts appear to be somewhat distinct from those in Western populations, and also suggest an overlap of the genetic architecture between PSP and other neurodegenerative diseases. Further functional studies and validation in independent Asian cohorts will be useful for improving our understanding of PSP genetics and guiding genetic screening strategies in these populations. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Alfand Marl Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Metro Davao Medical and Research Center, Davao Doctors Hospital, Davao City, Philippines
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weng Khong Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Wang S, Jiang Q, Zheng X, Wei Q, Lin J, Yang T, Xiao Y, Li C, Shang H. Genotype-phenotype correlation of SQSTM1 variants in patients with amyotrophic lateral sclerosis. J Med Genet 2024; 61:966-972. [PMID: 39122262 DOI: 10.1136/jmg-2023-109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Several variants of sequestosome 1 (SQSTM1) were screened in patients with amyotrophic lateral sclerosis (ALS), while the pathogenicity and genotype-phenotype correlation remains unclear. METHODS We screened variants of SQSTM1 gene in 2011 Chinese patients with ALS and performed a burden analysis focusing on the rare variants. Furthermore, we conducted a comprehensive analysis of patients with variants of SQSTM1 gene in patients with ALS from our cohort and published studies. RESULTS In our cohort, we identified 32 patients with 25 different SQSTM1 variants with a mutant frequency of 1.6%. Notably, 26% (5/19) of the patients with ALS with SQSTM1 variant in our cohort had comorbid cognitive impairment and 43% (3/7) of them had behavioural variant frontotemporal dementia (FTD). Our meta-analysis found a total frequency of SQSTM1 variants in 7183 patients with ALS was 2.4%; burden analysis indicated that patients with ALS had enrichment of ultra-rare (minor allele frequency<0.01%) probably pathogenic variants in SQSTM1. Most variants were missense variants and distributed in various domains of p62 protein, some of which might be related to comorbidities of Paget's disease of bone and FTD. CONCLUSION Our study established the largest cohort of patients with ALS with SQSTM1 variants, expanded the mutation spectrum and investigated the genotype-phenotype correlations of SQSTM1 variants.
Collapse
Affiliation(s)
- Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Esposito P, Dubé-Zinatelli E, Krnel R, Cappelletti L, Liang J, Ismail N. Sex-dependent effects of antimicrobials and lipopolysaccharide on blood-brain-barrier permeability in pubertal male and female CD1 mice. Horm Behav 2024; 165:105615. [PMID: 39154391 DOI: 10.1016/j.yhbeh.2024.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Exposure to stressors during puberty can disrupt normal development and possibly increase susceptibility to neurodegenerative disorders later in life. However, the mechanisms underlying the relationship between pubertal stress exposure and neurodegeneration remain unclear. As such, the current study was designed to examine the effects of pubertal antimicrobial (AMNS) and lipopolysaccharide (LPS) treatments on intestinal and blood-brain-barrier (BBB) permeability in male and female mice. Moreover, we also examined the sex-specific effects of pubertal AMNS and LPS treatments on gross motor activity, heart rate, and core body temperature. At four weeks of age, male and female CD1 mice were implanted with the G2 HR E-Mitter telemetry system. At five weeks of age, mice received 200 μL of broad-spectrum antimicrobial or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal injection of either saline or LPS at six weeks of age. BBB and intestinal permeability were examined 24 h, 72 h, and one week post-LPS/saline treatment. Telemetric data was collected for 48 h post-LPS/saline treatment. The results showed that pubertal AMNS and LPS treatments increased sickness behaviours and decreased body temperature and heart rate, in a sex-dependent manner. Furthermore, pubertal AMNS and LPS treatments resulted in sex-dependent regional increases in BBB permeability 24 h and 72 h post-LPS/saline treatment, while global increases in BBB permeability were only observed one week post-LPS/saline treatment. These results further our understanding of the combined effects of AMNS and LPS treatments on physiology and on the enduring negative changes observed following pubertal exposure to stressors.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eleni Dubé-Zinatelli
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Rebecca Krnel
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Luna Cappelletti
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
10
|
Mokhtari D, Jahanpanah M, Jabbari N, Azari H, Davarnia S, Mokaber H, Arish S, Molatefi R, Abbasi V, Davarnia B. Genetic investigation of patients with autosomal recessive ataxia and identification of two novel variants in the SQSTM1 and SYNE1 genes. Hum Genome Var 2024; 11:35. [PMID: 39214971 PMCID: PMC11364807 DOI: 10.1038/s41439-024-00292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Hereditary ataxias are classified by inheritance patterns into autosomal dominant, autosomal recessive, X-linked, and mitochondrial modes of inheritance. A large group of adult hereditary ataxias have autosomal dominant inheritance, and autosomal recessive cerebellar ataxias (ARCAs) are rare, with greater diversity in phenotypic and genotypic features. Therefore, comprehensive genetic testing is useful for identifying the genes responsible for ARCAs. We identified two novel pathogenic variants of the SQSTM1 and SYNE1 genes via whole-exome sequencing in patients with ARCAs.
Collapse
Affiliation(s)
- Diana Mokhtari
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Jahanpanah
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasim Jabbari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Hamed Azari
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Haleh Mokaber
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Sara Arish
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali Children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Abbasi
- Department of Neurology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Davarnia
- Department of Genetics and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
11
|
Ieni A, Pizzimenti C, Fiorentino V, Franchina M, Germanò A, Raffa G, Martini M, Fadda G, Tuccari G. Immunohistochemical Profile of p62/SQSTM1/Sequestosome-1 in Human Low- and High-Grade Intracranial Meningiomas. Anal Cell Pathol (Amst) 2024; 2024:5573892. [PMID: 39131899 PMCID: PMC11315968 DOI: 10.1155/2024/5573892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Among autophagic-related proteins, p62/SQSTM1/Sequestosome-1 represents a relevant actor in cellular proliferation and neoplastic growth. Although, recently, p62 expression has been analyzed in different neurodegenerative and glial neoplastic diseases, no available information have been reported in meningiomas, which have an high epidemiological relevance being the second most common category of intracranial tumors after gliomas. Generally meningiomas have a benign behavior, but their recurrence is not uncommon mainly when atypical or anaplastic varieties occur. However, intranuclear vacuoles have been ultrastructurally observed in meningiomas, and they were labelled by p62 antibodies. Therefore, in the present study, we have investigated p62 immunohistochemical pattern in a cohort of 133 cases representative of low- and high-grade meningiomas, to verify if p62 expression may be related to clinicopathological data, thus achieving a potential prognostic role. The p62 immunoexpression was frequently found in the nucleus and cytoplasm of neoplastic elements, and utilizing an intensity-distribution score, 55 (41.3%) cases were considered as high expressors while 78 (58.7%) cases were instead recorded as low expressors. Fifteen cases exhibited recurrences of the disease, 14 of which were codified as high expressors. Moreover, a direct relationship between p62 and Mib-1 immunoexpression as well as between p62 and neoplastic grade have been documented. Finally, we suggest that impaired autophagic flux with an increase in p62 expression may be involved in the activation of NRF2 also contributing in the development of recurrence in meningioma patients.
Collapse
Affiliation(s)
- Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”Section of PathologyUniversity of Messina, Messina 98125, Italy
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, NeurosurgeryUniversity of Messina, Viale Gazzi, Messina 98125, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”Section of PathologyUniversity of Messina, Messina 98125, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”Section of PathologyUniversity of Messina, Messina 98125, Italy
| | - Antonino Germanò
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, NeurosurgeryUniversity of Messina, Viale Gazzi, Messina 98125, Italy
| | - Giovanni Raffa
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, NeurosurgeryUniversity of Messina, Viale Gazzi, Messina 98125, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”Section of PathologyUniversity of Messina, Messina 98125, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”Section of PathologyUniversity of Messina, Messina 98125, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”Section of PathologyUniversity of Messina, Messina 98125, Italy
| |
Collapse
|
12
|
Chacaltana‐Vinas C, Ramirez‐Pajares P, Manrique‐Palomino A, Clause AR, Chawla A, Thorpe E, Taft R, Rivera‐Valdivia A, Sarapura‐Castro E, Bazalar‐Montoya J, Cornejo‐Olivas M. A Novel Variant in SQSTM1 Gene Causing Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy in a Peruvian Family. Mov Disord Clin Pract 2024; 11:746-748. [PMID: 38532471 PMCID: PMC11145125 DOI: 10.1002/mdc3.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
| | - Patricia Ramirez‐Pajares
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurológicasLimaPeru
- Unidad Funcional de Genética y Biología MolecularInstituto Nacional de Enfermedades NeoplásicasLimaPeru
| | | | | | | | | | - Ryan Taft
- Illumina, Inc.San DiegoCaliforniaUSA
| | - Andrea Rivera‐Valdivia
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurológicasLimaPeru
- Neurogenetics Working GroupUniversidad Científica del SurLimaPeru
| | - Elison Sarapura‐Castro
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurológicasLimaPeru
- Neurogenetics Working GroupUniversidad Científica del SurLimaPeru
| | - Jeny Bazalar‐Montoya
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurológicasLimaPeru
- School of Public Health and AdministrationUniversidad Peruana Cayetano HerediaLimaPeru
| | - Mario Cornejo‐Olivas
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurológicasLimaPeru
- Neurogenetics Working GroupUniversidad Científica del SurLimaPeru
| |
Collapse
|
13
|
Garg D, Kapoor H, Ahmad I, Goel D, Zahra S, Sharma P, Srivastava AK, Faruq M. Cognitive Impairment, Ataxia, Dystonia, and Gaze Palsy Due to a Novel Variant in SQSTM1: New Lessons. Mov Disord 2024; 39:445-447. [PMID: 38279634 DOI: 10.1002/mds.29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/28/2024] Open
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Himanshi Kapoor
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Istaq Ahmad
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Goel
- Division of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), New Delhi, India
| | - Sana Zahra
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | | | - Mohammed Faruq
- Division of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), New Delhi, India
| |
Collapse
|
14
|
Abstract
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
15
|
Liénard C, Pintart A, Bomont P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024; 13:103. [PMID: 38201307 PMCID: PMC10778363 DOI: 10.3390/cells13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a major degradative pathway that plays a key role in sustaining cell homeostasis, integrity, and physiological functions. Macroautophagy, which ensures the clearance of cytoplasmic components engulfed in a double-membrane autophagosome that fuses with lysosomes, is orchestrated by a complex cascade of events. Autophagy has a particularly strong impact on the nervous system, and mutations in core components cause numerous neurological diseases. We first review the regulation of autophagy, from autophagosome biogenesis to lysosomal degradation and associated neurodevelopmental/neurodegenerative disorders. We then describe how this process is specifically regulated in the axon and in the somatodendritic compartment and how it is altered in diseases. In particular, we present the neuronal specificities of autophagy, with the spatial control of autophagosome biogenesis, the close relationship of maturation with axonal transport, and the regulation by synaptic activity. Finally, we discuss the physiological functions of autophagy in the nervous system, during development and in adulthood.
Collapse
Affiliation(s)
- Caroline Liénard
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
- CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Alexandre Pintart
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| | - Pascale Bomont
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| |
Collapse
|
16
|
Mollereau B, Hayflick SJ, Escalante R, Mauthe M, Papandreou A, Iuso A, Celle M, Aniorte S, Issa AR, Lasserre JP, Lesca G, Thobois S, Burger P, Walter L. A burning question from the first international BPAN symposium: is restoration of autophagy a promising therapeutic strategy for BPAN? Autophagy 2023; 19:3234-3239. [PMID: 37565733 PMCID: PMC10621268 DOI: 10.1080/15548627.2023.2247314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disease associated with severe cognitive and motor deficits. BPAN pathophysiology and phenotypic spectrum are still emerging due to the fact that mutations in the WDR45 (WD repeat domain 45) gene, a regulator of macroautophagy/autophagy, were only identified a decade ago. In the first international symposium dedicated to BPAN, which was held in Lyon, France, a panel of international speakers, including several researchers from the autophagy community, presented their work on human patients, cellular and animal models, carrying WDR45 mutations and their homologs. Autophagy researchers found an opportunity to explore the defective function of autophagy mechanisms associated with WDR45 mutations, which underlie neuronal dysfunction and early death. Importantly, BPAN is one of the few human monogenic neurological diseases targeting a regulator of autophagy, which raises the possibility that it is a relevant model to directly assess the roles of autophagy in neurodegeneration and to develop autophagy restorative therapeutic strategies for more common disorders.Abbreviations: ATG: autophagy related; BPAN: beta-propeller protein-associated neurodegeneration; ER: endoplasmic reticulum; KO: knockout; NBIA: neurodegeneration with brain iron accumulation; PtdIns3P: phosphatidylinositol-3-phosphate; ULK1: unc-51 like autophagy activating kinase 1; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Susan J Hayflick
- Departments of Molecular and Medical Genetics, Pediatrics, and Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Apostolos Papandreou
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Arcangela Iuso
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marion Celle
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Sahra Aniorte
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Abdul Raouf Issa
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Jean Paul Lasserre
- Laboratory of NRGEN, Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Institut Neuromyogene, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261-INSERM U1315, Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Thobois
- Service de Neurologie C, Movement disorders unit, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, Bron, France
- Faculté de Médecine et de Maieutique Charles Mérieux, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Burger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| |
Collapse
|
17
|
Kozhevnikova OS, Fursova AZ, Derbeneva AS, Nikulich IF, Devyatkin VA, Kolosova NG. Pharmacogenetic Association between Allelic Variants of the Autophagy-Related Genes and Anti-Vascular Endothelial Growth Factor Treatment Response in Neovascular Age-Related Macular Degeneration. Biomedicines 2023; 11:3079. [PMID: 38002079 PMCID: PMC10669692 DOI: 10.3390/biomedicines11113079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of late-onset blindness in elderly. The occurrence and development of AMD is a multifactorial complex process where autophagy plays an important role. The first-line drugs for neovascular AMD (nAMD) are inhibitors of VEGF, with up to 30% of patients having an incomplete response to treatment. Genetic factors may influence the response to anti-VEGF therapy and explain treatment outcome variability. We aimed to estimate the role of polymorphic markers of the MTOR (rs1064261, rs1057079, rs11121704, rs2295080), SQSTM1 (rs10277), ULK1 (rs11246867, rs3088051), MAP1LC3A (rs73105013) and ATG5 (rs573775) genes in the development of nAMD and the efficacy of anti-VEGF therapy response. METHODS Genotyping by allele-specific PCR was performed in 317 controls and 315 nAMD patients in the Russian population. Of them, 196 treatment-naive nAMD patients underwent three monthly intravitreal injections (IVIs) of aflibercept. Genotypic frequencies were compared with OCT markers of therapy effectiveness and best-corrected visual acuity (BCVA) measures. The main outcomes were the BCVA gain and decrease in central retinal thickness (CRT). RESULTS MTOR-rs1057079-C, MTOR-rs11121704-C and MTOR-rs2295080-G alleles were associated with an increased risk of nAMD. The BCVA was increased in 117 (59.7%) patients by 10 [5-20] letters, did not changed in 59 (30.1%), and was decreased in 20 (10.2%) patients. ULK1-rs3088051 was associated with BCVA change. Among patients with the TT and CT genotypes for ULK1-rs3088051, an improvement in visual acuity was noted in 67.6% and 53.8% of cases, while in patients with the CC genotype, an increase in BCVA was recorded in 37.5% of cases (p = 0.01). The decrease in CRT was associated with SQSTM1-rs10277 (p = 0.001): it was significantly higher in TT (93 [58-122] mkm) and CT (66 [30-105] mkm) carriers compared to the CC genotype (47 [24-68] mkm). Other SNPs did not show significant associations with the outcome of anti-VEGF treatment. CONCLUSIONS MTOR gene polymorphisms are moderately associated with the risk of nAMD. SQSTM1-rs10277 and ULK1-rs3088051 may influence short-term response to intravitreal anti-VEGF treatment. The results suggest that autophagy could be a target for future drugs to overcome resistance to anti-VEGF therapy.
Collapse
Affiliation(s)
- Oyuna S. Kozhevnikova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (I.F.N.); (V.A.D.); (N.G.K.)
| | - Anzhella Zh. Fursova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (I.F.N.); (V.A.D.); (N.G.K.)
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko, 130, 630087 Novosibirsk, Russia
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny, 52, 630091 Novosibirsk, Russia
| | - Anna S. Derbeneva
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (I.F.N.); (V.A.D.); (N.G.K.)
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko, 130, 630087 Novosibirsk, Russia
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny, 52, 630091 Novosibirsk, Russia
| | - Ida F. Nikulich
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (I.F.N.); (V.A.D.); (N.G.K.)
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko, 130, 630087 Novosibirsk, Russia
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny, 52, 630091 Novosibirsk, Russia
| | - Vasiliy A. Devyatkin
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (I.F.N.); (V.A.D.); (N.G.K.)
| | - Nataliya G. Kolosova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (I.F.N.); (V.A.D.); (N.G.K.)
| |
Collapse
|
18
|
Colona VL, Bertini E, Digilio MC, D’Amico A, Novelli A, Pro S, Pisaneschi E, Nicita F. A New Case of Autosomal-Dominant POLR3B-Related Disorder: Widening Genotypic and Phenotypic Spectrum. Brain Sci 2023; 13:1567. [PMID: 38002527 PMCID: PMC10670162 DOI: 10.3390/brainsci13111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
POLR3B encodes the RPC2 subunit of RNA polymerase III. Pathogenic variants are associated with biallelic hypomyelinating leukodystrophy belonging to the POLR-related disorders. Recently, the association with dominant demyelinating neuropathy, classified as Charcot-Marie-Tooth syndrome type 1I (CMT1I), has been reported as well. Here we report on an additional patient presenting with developmental delay and generalized epilepsy, followed by the onset of mild pyramidal and cerebellar signs, vertical gaze palsy and subclinical demyelinating polyneuropathy. A new heterozygous de novo missense variant, c.1297C > G, p.Arg433Gly, in POLR3B was disclosed via trio-exome sequencing. In silico analysis confirms the hypothesis on the variant pathogenicity. Our research broadens both the genotypic and phenotypic spectrum of the autosomal-dominant POLR3B-related condition.
Collapse
Affiliation(s)
- Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy;
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.N.); (E.P.)
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.B.); (A.D.)
| | - Maria Cristina Digilio
- Genetics and Rare Disease Research Division, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy;
- Medical Genetics Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Adele D’Amico
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.B.); (A.D.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.N.); (E.P.)
| | - Stefano Pro
- Developmental Neurology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.N.); (E.P.)
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.B.); (A.D.)
| |
Collapse
|
19
|
Mastrapasqua M, Rossi R, De Cosmo L, Resta A, Errede M, Bizzoca A, Zampatti S, Resta N, Giardina E, Ruggieri M, Virgintino D, Annese T, Laforgia N, Girolamo F. Autophagy increase in Merosin-Deficient Congenital Muscular Dystrophy type 1A. Eur J Transl Myol 2023; 33:11501. [PMID: 37522802 PMCID: PMC10583158 DOI: 10.4081/ejtm.2023.11501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
The autophagy process recycles dysfunctional cellular components and protein aggregates by sequestering them in autophagosomes directed to lysosomes for enzymatic degradation. A basal level of autophagy is essential for skeletal muscle maintenance. Increased autophagy occurs in several forms of muscular dystrophy and in the merosin-deficient congenital muscular dystrophy 1A mouse model (dy3k/dy3k) lacking the laminin-α2 chain. This pilot study aimed to compare autophagy marker expression and autophagosomes presence using light and electron microscopes and western blotting in diagnostic muscle biopsies from newborns affected by different congenital muscular myopathies and dystrophies. Morphological examination showed dystrophic muscle features, predominance of type 2A myofibers, accumulation of autophagosomes in the subsarcolemmal areas, increased number of autophagosomes overexpressing LC3b, Beclin-1 and ATG5, in the merosin-deficient newborn suggesting an increased autophagy. In Duchenne muscular dystrophy, nemaline myopathy, and spinal muscular atrophy the predominant accumulation of p62+ puncta rather suggests an autophagy impairment.
Collapse
Affiliation(s)
- Mariangela Mastrapasqua
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Bari.
| | - Roberta Rossi
- Section of Pathology, Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari.
| | - Lucrezia De Cosmo
- Neonatology and Neonatal Intensive Care Unit, Ospedale SS. Annunziata, Taranto.
| | - Annalisa Resta
- Neonatology and Neonatal Intensive Care Unit, Ospedale Miulli, Acquaviva delle Fonti.
| | - Mariella Errede
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Bari.
| | - Antonella Bizzoca
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Bari.
| | - Stefania Zampatti
- Laboratory of Genomic Medicine - Santa Lucia Foundation - IRCCS, Roma.
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari.
| | - Emiliano Giardina
- Laboratory of Genomic Medicine - Santa Lucia Foundation - IRCCS, Roma.
| | - Maddalena Ruggieri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Bari.
| | - Daniela Virgintino
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Bari.
| | - Tiziana Annese
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Bari, Italy; Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, Bari.
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari.
| | - Francesco Girolamo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari 'Aldo Moro', Bari.
| |
Collapse
|
20
|
Fukushi M, Ohsawa R, Okinaka Y, Oikawa D, Kiyono T, Moriwaki M, Irie T, Oda K, Kamei Y, Tokunaga F, Sotomaru Y, Maruyama H, Kawakami H, Sakaguchi T. Optineurin deficiency impairs autophagy to cause interferon beta overproduction and increased survival of mice following viral infection. PLoS One 2023; 18:e0287545. [PMID: 37352136 PMCID: PMC10289332 DOI: 10.1371/journal.pone.0287545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNβ), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNβ than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNβ overproduction during optineurin deficiency both in vitro and in vivo. METHODS To investigate the mechanism of IFNβ overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS IFNβ overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNβ overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNβ overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNβ overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.
Collapse
Affiliation(s)
- Masaya Fukushi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masaya Moriwaki
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Irie
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Oda
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Gibertini S, Ruggieri A, Cheli M, Maggi L. Protein Aggregates and Aggrephagy in Myopathies. Int J Mol Sci 2023; 24:ijms24098456. [PMID: 37176163 PMCID: PMC10179229 DOI: 10.3390/ijms24098456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
A number of muscular disorders are hallmarked by the aggregation of misfolded proteins within muscle fibers. A specialized form of macroautophagy, termed aggrephagy, is designated to remove and degrade protein aggregates. This review aims to summarize what has been studied so far about the direct involvement of aggrephagy and the activation of the key players, among others, p62, NBR1, Alfy, Tollip, Optineurin, TAX1BP1 and CCT2 in muscular diseases. In the first part of the review, we describe the aggrephagy pathway with the involved proteins; then, we illustrate the muscular disorder histologically characterized by protein aggregates, highlighting the role of aggrephagy pathway abnormalities in these muscular disorders.
Collapse
Affiliation(s)
- Sara Gibertini
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Alessandra Ruggieri
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Marta Cheli
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| |
Collapse
|
22
|
Salari M, Etemadifar M, Neshat Ghalibaf M, Azizi F, Davoodi M, Asadi S. Neurodegeneration, Ataxia, Dystonia, and Gaze Palsy (NADGP) Syndrome with Nocturnal Paroxysmal Head Tremor. Mov Disord Clin Pract 2023; 10:835-838. [PMID: 37205252 PMCID: PMC10186997 DOI: 10.1002/mdc3.13697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Affiliation(s)
- Mehri Salari
- Neurology DepartmentShahid Beheshti University of Medical SciencesTehranIran
- Department of Neurosurgery, Alzahra University Hospital, Isfahan University of Medical SciencesIsfahanIran
| | | | - Mostafa Neshat Ghalibaf
- Student Research Committee, School of MedicineShahid Beheshti University of Medical ScienceTehranIran
| | - Fatemeh Azizi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical ScienceTehranIran
| | - Maryam Davoodi
- Department of Neurosurgery, Alzahra University Hospital, Isfahan University of Medical SciencesIsfahanIran
- Student Research Committee, School of MedicineShahid Beheshti University of Medical ScienceTehranIran
| | - Sareh Asadi
- NeuroBiology Research Center, Shahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
23
|
Yu CH, Dainton‐Howard H, Mesaros M, Rodriguez‐Porcel F. SQSTM1 Mutation Presenting as a Progressive Supranuclear Palsy Mimic. Mov Disord Clin Pract 2023; 10:839-841. [PMID: 37205240 PMCID: PMC10187011 DOI: 10.1002/mdc3.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Affiliation(s)
- Cherry H. Yu
- Department of NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Helen Dainton‐Howard
- Department of NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Maysen Mesaros
- Department of NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | |
Collapse
|
24
|
Neurodegeneration with brain iron accumulation: a case series highlighting phenotypic and genotypic diversity in 20 Indian families. Neurogenetics 2023; 24:113-127. [PMID: 36790591 DOI: 10.1007/s10048-023-00712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is an umbrella term encompassing various inherited neurological disorders characterised by abnormal iron accumulation in basal ganglia. We aimed to study the clinical, radiological and molecular spectrum of disorders with NBIA. All molecular-proven cases of NBIA presented in the last 5 years at 2 tertiary care genetic centres were compiled. Demographic details and clinical and neuroimaging findings were collated. We describe 27 individuals from 20 unrelated Indian families with causative variants in 5 NBIA-associated genes. PLA2G6-associated neurodegeneration (PLAN) was the most common, observed in 13 individuals from 9 families. They mainly presented in infancy with neuroregression and hypotonia. A recurrent pathogenic variant in COASY was observed in two neonates with prenatal-onset severe neurodegeneration. Pathogenic bi-allelic variants in PANK2, FA2H and C19ORF12 genes were observed in the rest, and these individuals presented in late childhood and adolescence with gait abnormalities and extrapyramidal symptoms. No intrafamilial and interfamilial variability were observed. Iron deposition on neuroimaging was seen in only 6/17 (35.3%) patients. A total of 22 causative variants across 5 genes were detected including a multiexonic duplication in PLA2G6. The variants c.1799G > A and c.2370 T > G in PLA2G6 were observed in three unrelated families. In silico assessments of 8 amongst 9 novel variants were also performed. We present a comprehensive compilation of the phenotypic and genotypic spectrum of various subtypes of NBIA from the Indian subcontinent. Clinical presentation of NBIAs is varied and not restricted to extrapyramidal symptoms or iron accumulation on neuroimaging.
Collapse
|
25
|
Ko TK, Tan DJY. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Cureus 2023; 15:e35458. [PMID: 36860818 PMCID: PMC9969326 DOI: 10.7759/cureus.35458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Whilst the pathophysiology at a cellular level has been defined, the cause of Parkinson's disease (PD) remains poorly understood. This neurodegenerative disorder is associated with impaired dopamine transmission in the substantia nigra, and protein accumulations known as Lewy bodies are visible in affected neurons. Cell culture models of PD have indicated impaired mitochondrial function, so the focus of this paper is on the quality control processes involved in and around mitochondria. Mitochondrial autophagy (mitophagy) is the process through which defective mitochondria are removed from the cell by internalisation into autophagosomes which fuse with a lysosome. This process involves many proteins, notably including PINK1 and parkin, both of which are known to be coded on genes associated with PD. Normally in healthy individuals, PINK1 associates with the outer mitochondrial membrane, which then recruits parkin, activating it to attach ubiquitin proteins to the mitochondrial membrane. PINK1, parkin, and ubiquitin cooperate to form a positive feedback system which accelerates the deposition of ubiquitin on dysfunctional mitochondria, resulting in mitophagy. However, in hereditary PD, the genes encoding PINK1 and parkin are mutated, resulting in proteins that are less efficient at removing poorly performing mitochondria, leaving cells more vulnerable to oxidative stress and ubiquitinated inclusion bodies, such as Lewy bodies. Current research that looks into the connection between mitophagy and PD is promising, already yielding potentially therapeutic compounds; until now, pharmacological support for the mitophagy process has not been part of the therapeutic arsenal. Continued research in this area is warranted.
Collapse
Affiliation(s)
- Tsz Ki Ko
- Otolaryngology, College of Life Sciences, Leicester Medical School, George Davies Centre, Leicester, GBR
| | | |
Collapse
|
26
|
Abstract
Macroautophagy and microautophagy are highly conserved eukaryotic cellular processes that degrade cytoplasmic material in lysosomes. Both pathways involve characteristic membrane dynamics regulated by autophagy-related proteins and other molecules, some of which are shared between the two pathways. Over the past few years, the application of new technologies, such as cryo-electron microscopy, coevolution-based structural prediction and in vitro reconstitution, has revealed the functions of individual autophagy gene products, especially in autophagy induction, membrane reorganization and cargo recognition. Concomitantly, mutations in autophagy genes have been linked to human disorders, particularly neurodegenerative diseases, emphasizing the potential pathogenic implications of autophagy defects. Accumulating genome data have also illuminated the evolution of autophagy genes within eukaryotes as well as their transition from possible ancestral elements in prokaryotes.
Collapse
Affiliation(s)
- Hayashi Yamamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410821.e0000 0001 2173 8328Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sidi Zhang
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- grid.26999.3d0000 0001 2151 536XDepartment of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Yang H, Oh CK, Amal H, Wishnok JS, Lewis S, Schahrer E, Trudler D, Nakamura T, Tannenbaum SR, Lipton SA. Mechanistic insight into female predominance in Alzheimer's disease based on aberrant protein S-nitrosylation of C3. SCIENCE ADVANCES 2022; 8:eade0764. [PMID: 36516243 PMCID: PMC9750152 DOI: 10.1126/sciadv.ade0764] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein S-nitros(yl)ation (SNO) is a posttranslational modification involved in diverse processes in health and disease and can contribute to synaptic damage in Alzheimer's disease (AD). To identify SNO proteins in AD brains, we used triaryl phosphine (SNOTRAP) combined with mass spectrometry (MS). We detected 1449 SNO proteins with 2809 SNO sites, representing a wide range of S-nitrosylated proteins in 40 postmortem AD and non-AD human brains from patients of both sexes. Integrative protein ranking revealed the top 10 increased SNO proteins, including complement component 3 (C3), p62 (SQSTM1), and phospholipase D3. Increased levels of S-nitrosylated C3 were present in female over male AD brains. Mechanistically, we show that formation of SNO-C3 is dependent on falling β-estradiol levels, leading to increased synaptic phagocytosis and thus synapse loss and consequent cognitive decline. Collectively, we demonstrate robust alterations in the S-nitrosoproteome that contribute to AD pathogenesis in a sex-dependent manner.
Collapse
Affiliation(s)
- Hongmei Yang
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chang-ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haitham Amal
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - John S. Wishnok
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Lewis
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Schahrer
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dorit Trudler
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R. Tannenbaum
- Departments of Biological Engineering and Chemistry, and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (S.R.T.); (S.A.L.)
| | - Stuart A. Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla CA 92093, USA
- Corresponding author. (S.R.T.); (S.A.L.)
| |
Collapse
|
28
|
Esposito P, Gandelman M, Rodriguez C, Liang J, Ismail N. The acute effects of antimicrobials and lipopolysaccharide on the cellular mechanisms associated with neurodegeneration in pubertal male and female CD1 mice. Brain Behav Immun Health 2022; 26:100543. [PMID: 36345322 PMCID: PMC9636049 DOI: 10.1016/j.bbih.2022.100543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to stressors during puberty can cause enduring effects on brain functioning and behaviours related to neurodegeneration. However, the mechanisms underlying these effects remain unclear. The gut microbiome is a complex and dynamic system that could serve as a possible mechanism through which early life stress may increase the predisposition to neurodegeneration. Therefore, the current study was designed to examine the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatments on the cellular mechanisms associated with neurodegenerative disorders in male and female mice. At five weeks of age, male and female CD-1 mice received 200 μL of broad-spectrum antimicrobials or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal (i.p.) injection of either saline or LPS at 6 weeks of age (i.e., pubertal period). Sickness behaviours were recorded and mice were euthanized 8 h post-injection. Following euthanasia, brains and blood samples were collected. The results indicated that puberal antimicrobial and LPS treatment induced sex-dependent changes in biomarkers related to sickness behaviour, peripheral inflammation, intestinal permeability, and neurodegeneration. The findings suggest that pubertal LPS and antimicrobial treatment may increase susceptibility to neurodegenerative diseases later in life, particularly in males.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Michelle Gandelman
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Cloudia Rodriguez
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
29
|
Esposito P, Ismail N. Linking Puberty and the Gut Microbiome to the Pathogenesis of Neurodegenerative Disorders. Microorganisms 2022; 10:2163. [PMID: 36363755 PMCID: PMC9697368 DOI: 10.3390/microorganisms10112163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/31/2023] Open
Abstract
Puberty is a critical period of development marked by the maturation of the central nervous system, immune system, and hypothalamic-pituitary-adrenal axis. Due to the maturation of these fundamental systems, this is a period of development that is particularly sensitive to stressors, increasing susceptibility to neurodevelopmental and neurodegenerative disorders later in life. The gut microbiome plays a critical role in the regulation of stress and immune responses, and gut dysbiosis has been implicated in the development of neurodevelopmental and neurodegenerative disorders. The purpose of this review is to summarize the current knowledge about puberty, neurodegeneration, and the gut microbiome. We also examine the consequences of pubertal exposure to stress and gut dysbiosis on the development of neurodevelopmental and neurodegenerative disorders. Understanding how alterations to the gut microbiome, particularly during critical periods of development (i.e., puberty), influence the pathogenesis of these disorders may allow for the development of therapeutic strategies to prevent them.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
30
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
31
|
Ieni A, Pizzimenti C, Broggi G, Caltabiano R, Germanò A, Barbagallo G, Vigneri P, Giuffrè G, Tuccari G. Immunoexpression of p62/SQSTM1/Sequestosome‑1 in human primary and recurrent IDH1/2 wild‑type glioblastoma: A pilot study. Oncol Lett 2022; 24:336. [PMID: 36039055 PMCID: PMC9404704 DOI: 10.3892/ol.2022.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
p62/SQSTM1/Sequestosome-1 is an autophagic protein that serves a crucial role in cellular metabolism, proliferation and malignant growth. Notably, autophagy may influence the development and resistance to therapy of numerous types of human cancer. In the present pilot study, the immunohistochemical pattern of p62 was analyzed in a cohort of patients with isocitrate dehydrogenase (IDH)1/2 wild-type glioblastoma (GBM), in primary and recurrent samples, in order to verify the concordance or discordance between the primary and recurrent tumors. In addition, the association between p62, and patient outcome and O6-methylguanine-DNA methyltransferase (MGMT) status was assessed. The results revealed p62 immunoexpression in the nucleus and cytoplasm of neoplastic elements in 45% of primary and 55% of recurrent cases of GBM. A discordant p62 immunoreactivity was detected in 35% of cases, with a variation either with positive or negative conversion of p62 status. Statistically, p62 expression and MGMT status exhibited a significant prognostic value by univariate analysis, whereas only MGMT promoter methylation status emerged as an independent prognostic factor by multivariate analysis. Finally, the most favorable prognosis was documented when the same GBM case was positively concordant for both p62 expression and MGMT methylated status. Since little data are available regarding the association between p62 expression and MGMT in GBM, further investigations may be required to determine if new targeted therapies may be addressed against autophagy-related proteins, such as p62.
Collapse
Affiliation(s)
- Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, I‑98125 Messina, Italy
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, I‑98125 Messina, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies ‘G.F. Ingrassia’, Section of Anatomic Pathology, University of Catania, I‑95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies ‘G.F. Ingrassia’, Section of Anatomic Pathology, University of Catania, I‑95123 Catania, Italy
| | - Antonino Germanò
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, I‑98125 Messina, Italy
| | - Giuseppe Barbagallo
- Department of Medical, Surgical Sciences and Advanced Technologies ‘G.F. Ingrassia’, Section of Neurological Surgery, Policlinico ‘Rodolico‑San Marco’ University Hospital, University of Catania, I‑95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania; 7Center of Experimental Oncology and Hematology, A.O.U. Policlinico ‘G.Rodolico‑S.Marco’, I‑95123 Catania, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, I‑98125 Messina
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, I‑98125 Messina
| |
Collapse
|
32
|
Jalali H, Khoshaeen A, Mahdavi MR, Mahdavi M. First report of novel mutation (c.790del) on SQSTM1 gene on a family with childhood onset of progressive cerebellar ataxia with vertical gaze palsy. Clin Case Rep 2022; 10:e6203. [PMID: 35957775 PMCID: PMC9361805 DOI: 10.1002/ccr3.6203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
SQSTM1 gene encodes a protein called p62 that acts as an autophagy receptor in the degradation of protein molecules. A homozygous deletion variant that changes the frame shift in the SQSTM1 gene named c.790 Del A .T was detected in case childhood onset and progressive neurodegeneration with ataxia, and gaze palsy.
Collapse
Affiliation(s)
- Hossein Jalali
- Thalassemia Research Center, Hemoglobinopathies InstituteMazandaran University of Medical SciencesSariIran
- Sinayemehr Research CenterMazandaran UniversitySariIran
| | | | - Mohammad Reza Mahdavi
- Thalassemia Research Center, Hemoglobinopathies InstituteMazandaran University of Medical SciencesSariIran
| | - Mahan Mahdavi
- Sinayemehr Research CenterMazandaran UniversitySariIran
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
33
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
34
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
35
|
Papendorf JJ, Krüger E, Ebstein F. Proteostasis Perturbations and Their Roles in Causing Sterile Inflammation and Autoinflammatory Diseases. Cells 2022; 11:cells11091422. [PMID: 35563729 PMCID: PMC9103147 DOI: 10.3390/cells11091422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Proteostasis, a portmanteau of the words protein and homeostasis, refers to the ability of eukaryotic cells to maintain a stable proteome by acting on protein synthesis, quality control and/or degradation. Over the last two decades, an increasing number of disorders caused by proteostasis perturbations have been identified. Depending on their molecular etiology, such diseases may be classified into ribosomopathies, proteinopathies and proteasomopathies. Strikingly, most—if not all—of these syndromes exhibit an autoinflammatory component, implying a direct cause-and-effect relationship between proteostasis disruption and the initiation of innate immune responses. In this review, we provide a comprehensive overview of the molecular pathogenesis of these disorders and summarize current knowledge of the various mechanisms by which impaired proteostasis promotes autoinflammation. We particularly focus our discussion on the notion of how cells sense and integrate proteostasis perturbations as danger signals in the context of autoinflammatory diseases to provide insights into the complex and multiple facets of sterile inflammation.
Collapse
|
36
|
Deneubourg C, Ramm M, Smith LJ, Baron O, Singh K, Byrne SC, Duchen MR, Gautel M, Eskelinen EL, Fanto M, Jungbluth H. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy 2022; 18:496-517. [PMID: 34130600 PMCID: PMC9037555 DOI: 10.1080/15548627.2021.1943177] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Primary dysfunction of autophagy due to Mendelian defects affecting core components of the autophagy machinery or closely related proteins have recently emerged as an important cause of genetic disease. This novel group of human disorders may present throughout life and comprises severe early-onset neurodevelopmental and more common adult-onset neurodegenerative disorders. Early-onset (or congenital) disorders of autophagy often share a recognizable "clinical signature," including variable combinations of neurological, neuromuscular and multisystem manifestations. Structural CNS abnormalities, cerebellar involvement, spasticity and peripheral nerve pathology are prominent neurological features, indicating a specific vulnerability of certain neuronal populations to autophagic disturbance. A typically biphasic disease course of late-onset neurodegeneration occurring on the background of a neurodevelopmental disorder further supports a role of autophagy in both neuronal development and maintenance. Additionally, an associated myopathy has been characterized in several conditions. The differential diagnosis comprises a wide range of other multisystem disorders, including mitochondrial, glycogen and lysosomal storage disorders, as well as ciliopathies, glycosylation and vesicular trafficking defects. The clinical overlap between the congenital disorders of autophagy and these conditions reflects the multiple roles of the proteins and/or emerging molecular connections between the pathways implicated and suggests an exciting area for future research. Therapy development for congenital disorders of autophagy is still in its infancy but may result in the identification of molecules that target autophagy more specifically than currently available compounds. The close connection with adult-onset neurodegenerative disorders highlights the relevance of research into rare early-onset neurodevelopmental conditions for much more common, age-related human diseases.Abbreviations: AC: anterior commissure; AD: Alzheimer disease; ALR: autophagic lysosomal reformation; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ASD: autism spectrum disorder; ATG: autophagy related; BIN1: bridging integrator 1; BPAN: beta-propeller protein associated neurodegeneration; CC: corpus callosum; CHMP2B: charged multivesicular body protein 2B; CHS: Chediak-Higashi syndrome; CMA: chaperone-mediated autophagy; CMT: Charcot-Marie-Tooth disease; CNM: centronuclear myopathy; CNS: central nervous system; DNM2: dynamin 2; DPR: dipeptide repeat protein; DVL3: disheveled segment polarity protein 3; EPG5: ectopic P-granules autophagy protein 5 homolog; ER: endoplasmic reticulum; ESCRT: homotypic fusion and protein sorting complex; FIG4: FIG4 phosphoinositide 5-phosphatase; FTD: frontotemporal dementia; GBA: glucocerebrosidase; GD: Gaucher disease; GRN: progranulin; GSD: glycogen storage disorder; HC: hippocampal commissure; HD: Huntington disease; HOPS: homotypic fusion and protein sorting complex; HSPP: hereditary spastic paraparesis; LAMP2A: lysosomal associated membrane protein 2A; MEAX: X-linked myopathy with excessive autophagy; mHTT: mutant huntingtin; MSS: Marinesco-Sjoegren syndrome; MTM1: myotubularin 1; MTOR: mechanistic target of rapamycin kinase; NBIA: neurodegeneration with brain iron accumulation; NCL: neuronal ceroid lipofuscinosis; NPC1: Niemann-Pick disease type 1; PD: Parkinson disease; PtdIns3P: phosphatidylinositol-3-phosphate; RAB3GAP1: RAB3 GTPase activating protein catalytic subunit 1; RAB3GAP2: RAB3 GTPase activating non-catalytic protein subunit 2; RB1: RB1-inducible coiled-coil protein 1; RHEB: ras homolog, mTORC1 binding; SCAR20: SNX14-related ataxia; SENDA: static encephalopathy of childhood with neurodegeneration in adulthood; SNX14: sorting nexin 14; SPG11: SPG11 vesicle trafficking associated, spatacsin; SQSTM1: sequestosome 1; TBC1D20: TBC1 domain family member 20; TECPR2: tectonin beta-propeller repeat containing 2; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; UBQLN2: ubiquilin 2; VCP: valosin-containing protein; VMA21: vacuolar ATPase assembly factor VMA21; WDFY3/ALFY: WD repeat and FYVE domain containing protein 3; WDR45: WD repeat domain 45; WDR47: WD repeat domain 47; WMS: Warburg Micro syndrome; XLMTM: X-linked myotubular myopathy; ZFYVE26: zinc finger FYVE-type containing 26.
Collapse
Affiliation(s)
- Celine Deneubourg
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Mauricio Ramm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Luke J. Smith
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Olga Baron
- Wolfson Centre for Age-Related Diseases, King’s College London, London, UK
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Susan C. Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
37
|
Fan X, Huang T, Tong Y, Fan Z, Yang Z, Yang D, Mao X, Yang M. p62 works as a hub modulation in the ageing process. Ageing Res Rev 2022; 73:101538. [PMID: 34890823 DOI: 10.1016/j.arr.2021.101538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
p62 (also known as SQSTM1) is widely used as a predictor of autophagic flux, a process that allows the degradation of harmful and unnecessary components through lysosomes to maintain protein homeostasis in cells. p62 is also a stress-induced scaffold protein that resists oxidative stress. The multiple domains in its structure allow it to be connected with a variety of vital signalling pathways, autophagy and the ubiquitin proteasome system (UPS), allowing p62 to play important roles in cell proliferation, apoptosis and survival. Recent studies have shown that p62 is also directly or indirectly involved in the ageing process. In this review, we summarize in detail the process by which p62 regulates ageing from multiple ageing-related signs with the aim of providing new insight for the study of p62 in ageing.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
38
|
Choubey V, Zeb A, Kaasik A. Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells 2021; 11:38. [PMID: 35011599 PMCID: PMC8750762 DOI: 10.3390/cells11010038] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria in the cell are the center for energy production, essential biomolecule synthesis, and cell fate determination. Moreover, the mitochondrial functional versatility enables cells to adapt to the changes in cellular environment and various stresses. In the process of discharging its cellular duties, mitochondria face multiple types of challenges, such as oxidative stress, protein-related challenges (import, folding, and degradation) and mitochondrial DNA damage. They mitigate all these challenges with robust quality control mechanisms which include antioxidant defenses, proteostasis systems (chaperones and proteases) and mitochondrial biogenesis. Failure of these quality control mechanisms leaves mitochondria as terminally damaged, which then have to be promptly cleared from the cells before they become a threat to cell survival. Such damaged mitochondria are degraded by a selective form of autophagy called mitophagy. Rigorous research in the field has identified multiple types of mitophagy processes based on targeting signals on damaged or superfluous mitochondria. In this review, we provide an in-depth overview of mammalian mitophagy and its importance in human health and diseases. We also attempted to highlight the future area of investigation in the field of mitophagy.
Collapse
Affiliation(s)
- Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (A.Z.); (A.K.)
| | | | | |
Collapse
|
39
|
Kilic MA, Kipoglu O, Coskun O, Karacabey BN, Yesilyurt A, Yildiz EP, Aydinli N, Caliskan MM. Homozygous SQSTM1 nonsense variant identified in a patient with brainstem involvement. Brain Dev 2021; 43:1039-1043. [PMID: 34147300 DOI: 10.1016/j.braindev.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
In recent years, with advances in molecular genetics, many new mutations with various ataxic syndromes have been identified. Recently, homozygous sequestosome 1 (SQSTM1) gene variant with a progressive childhood-onset cerebellar ataxia, dystonia and gaze palsy was described. Here we describe a patient with progressive cerebellar ataxia and gaze palsy, as well as myoclonus, cognitive impairment and growth retardation with a homozygous SQSTM1 variant NM_003900.5:c.55G > T (p.Glu19*). Our case had brainstem lesions on brain magnetic resonance imaging that have not been previously reported. This novel finding expands the SQSTM1 gene-associated neuroradiologic spectrum. Homozygous SQSTM1 variant should be considered in the differential diagnosis in patients presenting with cerebellar findings, gaze palsy, and cognitive impairment to facilitate early diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Mehmet Akif Kilic
- Department of Pediatric Neurology, Istanbul Medical Faculty, Turkey.
| | - Osman Kipoglu
- Department of Pediatric Neurology, Istanbul Medical Faculty, Turkey
| | - Orhan Coskun
- Department of Pediatric Neurology, Istanbul Medical Faculty, Turkey
| | | | | | - Edibe Pembegul Yildiz
- Department of Pediatric Neurology, Istanbul Medical Faculty, Turkey; Istanbul University Institute of Child Health, Istanbul, Turkey
| | - Nur Aydinli
- Department of Pediatric Neurology, Istanbul Medical Faculty, Turkey
| | - Meliha Mine Caliskan
- Department of Pediatric Neurology, Istanbul Medical Faculty, Turkey; Istanbul University Institute of Child Health, Istanbul, Turkey
| |
Collapse
|
40
|
Current Concepts on Genetic Aspects of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22189832. [PMID: 34575995 PMCID: PMC8469731 DOI: 10.3390/ijms22189832] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), neurodegenerative motor neuron disorder is characterized as multisystem disease with important contribution of genetic factors. The etiopahogenesis of ALS is not fully elucidate, but the dominant theory at present relates to RNA processing, as well as protein aggregation and miss-folding, oxidative stress, glutamate excitotoxicity, inflammation and epigenetic dysregulation. Additionally, as mitochondria plays a leading role in cellular homeostasis maintenance, a rising amount of evidence indicates mitochondrial dysfunction as a substantial contributor to disease onset and progression. The aim of this review is to summarize most relevant findings that link genetic factors in ALS pathogenesis with different mechanisms with mitochondrial involvement (respiratory chain, OXPHOS control, calcium buffering, axonal transport, inflammation, mitophagy, etc.). We highlight the importance of a widening perspective for better understanding overlapping pathophysiological pathways in ALS and neurodegeneration in general. Finally, current and potentially novel therapies, especially gene specific therapies, targeting mitochondrial dysfunction are discussed briefly.
Collapse
|
41
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Li N, Zhou P, Tang H, He L, Fang X, Zhao J, Wang X, Qi Y, Sun C, Lin Y, Qin F, Yang M, Zhang Z, Liao C, Zheng S, Peng X, Xue T, Zhu Q, Li H, Li Y, Liu L, Huang J, Liu L, Peng C, Kaindl AM, Gecz J, Han D, Liu D, Xu K, Hu H. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 2021; 145:119-141. [PMID: 34077496 PMCID: PMC8967106 DOI: 10.1093/brain/awab209] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral palsy is the most prevalent physical disability in children; however, its inherent molecular mechanisms remain unclear. In the present study, we performed in-depth clinical and molecular analysis on 120 idiopathic cerebral palsy families, and identified underlying detrimental genetic variants in 45% of these patients. In addition to germline variants, we found disease-related postzygotic mutations in ∼6.7% of cerebral palsy patients. We found that patients with more severe motor impairments or a comorbidity of intellectual disability had a significantly higher chance of harbouring disease-related variants. By a compilation of 114 known cerebral-palsy-related genes, we identified characteristic features in terms of inheritance and function, from which we proposed a dichotomous classification system according to the expression patterns of these genes and associated cognitive impairments. In two patients with both cerebral palsy and intellectual disability, we revealed that the defective TYW1, a tRNA hypermodification enzyme, caused primary microcephaly and problems in motion and cognition by hindering neuronal proliferation and migration. Furthermore, we developed an algorithm and demonstrated in mouse brains that this malfunctioning hypermodification specifically perturbed the translation of a subset of proteins involved in cell cycling. This finding provided a novel and interesting mechanism for congenital microcephaly. In another cerebral palsy patient with normal intelligence, we identified a mitochondrial enzyme GPAM, the hypomorphic form of which led to hypomyelination of the corticospinal tract in both human and mouse models. In addition, we confirmed that the aberrant Gpam in mice perturbed the lipid metabolism in astrocytes, resulting in suppressed astrocytic proliferation and a shortage of lipid contents supplied for oligodendrocytic myelination. Taken together, our findings elucidate novel aspects of the aetiology of cerebral palsy and provide insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jinxiang Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Yifei Qi
- Division of Uterine Vascular Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fengying Qin
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Zhan Zhang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaofang Peng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ting Xue
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Qianying Zhu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Jingyu Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 200029, Shanghai, China
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin, 13353, Berlin, Germany
| | - Jozef Gecz
- Adelaide Medical School, University of Adelaide, SA5005, Adelaide, Australia
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| |
Collapse
|
43
|
Lei L, Wu Z, Winklhofer KF. Protein quality control by the proteasome and autophagy: A regulatory role of ubiquitin and liquid-liquid phase separation. Matrix Biol 2021; 100-101:9-22. [DOI: 10.1016/j.matbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
|
44
|
Foster AD, Flynn LL, Cluning C, Cheng F, Davidson JM, Lee A, Polain N, Mejzini R, Farrawell N, Yerbury JJ, Layfield R, Akkari PA, Rea SL. p62 overexpression induces TDP-43 cytoplasmic mislocalisation, aggregation and cleavage and neuronal death. Sci Rep 2021; 11:11474. [PMID: 34075102 PMCID: PMC8169680 DOI: 10.1038/s41598-021-90822-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) that exist on a spectrum of neurodegenerative disease. A hallmark of pathology is cytoplasmic TDP-43 aggregates within neurons, observed in 97% of ALS cases and ~ 50% of FTLD cases. This mislocalisation from the nucleus into the cytoplasm and TDP-43 cleavage are associated with pathology, however, the drivers of these changes are unknown. p62 is invariably also present within these aggregates. We show that p62 overexpression causes TDP-43 mislocalisation into cytoplasmic aggregates, and aberrant TDP-43 cleavage that was dependent on both the PB1 and ubiquitin-associated (UBA) domains of p62. We further show that p62 overexpression induces neuron death. We found that stressors (proteasome inhibition and arsenic) increased p62 expression and that this shifted the nuclear:cytoplasmic TDP-43 ratio. Overall, our study suggests that environmental factors that increase p62 may thereby contribute to TDP-43 pathology in ALS and FTLD.
Collapse
Affiliation(s)
- A D Foster
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Harry Perkins Institute of Medical Research, University of Western Australia, Crawley, WA, Australia
| | - L L Flynn
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - C Cluning
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - F Cheng
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - J M Davidson
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - A Lee
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - N Polain
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - R Mejzini
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - N Farrawell
- School of Biological Sciences, University of Wollongong, Wollongong, 2522, Australia
| | - J J Yerbury
- School of Biological Sciences, University of Wollongong, Wollongong, 2522, Australia
| | - R Layfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - P A Akkari
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia
| | - S L Rea
- Harry Perkins Institute of Medical Research, University of Western Australia, Crawley, WA, Australia.
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch, WA, 6150, Australia.
| |
Collapse
|
45
|
Llamas-Velasco S, Arteche-López A, Méndez-Guerrero A, Puertas Martín V, Quesada Espinosa JF, Lezana Rosales JM, González-Sánchez M, Blanco-Palmero VA, Palma Milla C, Herrero-San Martín A, Borrego-Hernández D, García-Redondo A, Pérez-Martínez DA, Villarejo-Galende A. Expanding the clinical and genetic spectrum of SQSTM1-related disorders in family with personality disorder and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:552-560. [PMID: 34009082 DOI: 10.1080/21678421.2021.1927101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: SQSTM1-variants associated with frontotemporal lobar degeneration have been described recently. In this study, we investigated a heterozygous in-frame duplication c.436_462dup p. (Pro146_Cys154dup) in the SQSTM1 gene in a family with a new phenotype characterized by a personality disorder and behavioral variant frontotemporal dementia (bvFTD). We review the literature on frontotemporal dementia (FTD) associated with SQSTM1. Methods: The index case and relatives were described, and a genetic study through Whole Exome Sequencing was performed. The literature was reviewed using Medline and Web of Science. Case reports, case series, and cohort studies were included if they provided information on SQSTM1 mutations associated with FTD. Results: Our patient is a 70-year-old man with a personality disorder since youth, familial history of dementia, and personality disorders with a 10-year history of cognitive decline and behavioral disturbances. A diagnosis of probable bvFTD was established, and the in-frame duplication c.436_462dup in the SQSTM1 gene was identified. Segregation analysis in the family confirmed that both affected sons with personality disorder were heterozygous carriers, but not his healthy 65-year-old brother. A total of 14 publications about 57 patients with SQSTM1-related FTD were reviewed, in which the bvFTD subtype was the main phenotype described (66.6%), with a predominance in men (63%) and positive family history in 61.4% of the cases. Conclusions: We describe a heterozygous in-frame duplication c.436_462dup p.(Pro146_Cys154dup) in the SQSTM1 gene, which affects the zinc-finger domain of p62, in a family with a personality disorder and bvFTD, expanding the genetics and clinical phenotype related to SQSTM1.
Collapse
Affiliation(s)
- Sara Llamas-Velasco
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | - Ana Arteche-López
- Genetic Service, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Verónica Puertas Martín
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Universidad Internacional de la Rioja, Logroño, Spain
| | | | | | - Marta González-Sánchez
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | - Victor Antonio Blanco-Palmero
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | | | - Alejandro Herrero-San Martín
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12)
| | - Daniel Borrego-Hernández
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Biomedical Research Networking Centre on Rare Diseases (CIBERER)
| | - Alberto García-Redondo
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Biomedical Research Networking Centre on Rare Diseases (CIBERER)
| | - David Andrés Pérez-Martínez
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Alberto Villarejo-Galende
- Neurology Service, Hospital Universitario 12 de Octubre, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED).,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i + 12).,Department of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
46
|
Mishra B, Rajan R, Gupta A, Faruq M, Shamim U, Parveen S, Garg A, Tripathi M, Vishnu VY, Singh MB, Bhatia R, Srivastava P. Cerebellar Ataxia in Adults with SQSTM1-Associated Frontotemporal Dementia-Amyotrophic Lateral Sclerosis Spectrum of Disorders. Mov Disord Clin Pract 2021; 8:800-802. [PMID: 34307757 DOI: 10.1002/mdc3.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Roopa Rajan
- All India Institute of Medical Sciences New Delhi India
| | - Anu Gupta
- All India Institute of Medical Sciences New Delhi India
| | - Mohammed Faruq
- Genomics and Molecular Medicine Council of Scientific and Industrial Research Institute of Genomics and Integrative Biology New Delhi India
| | - Uzma Shamim
- Genomics and Molecular Medicine Council of Scientific and Industrial Research Institute of Genomics and Integrative Biology New Delhi India
| | - Shaista Parveen
- Genomics and Molecular Medicine Council of Scientific and Industrial Research Institute of Genomics and Integrative Biology New Delhi India
| | - Ajay Garg
- All India Institute of Medical Sciences New Delhi India
| | | | | | | | - Rohit Bhatia
- All India Institute of Medical Sciences New Delhi India
| | | |
Collapse
|
47
|
Poon A, Saini H, Sethi S, O'Sullivan GA, Plun-Favreau H, Wray S, Dawson LA, McCarthy JM. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports 2021; 16:1276-1289. [PMID: 33891871 PMCID: PMC8185463 DOI: 10.1016/j.stemcr.2021.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022] Open
Abstract
Sequestosome-1 (SQSTM1/p62) is involved in cellular processes such as autophagy and metabolic reprogramming. Mutations resulting in the loss of function of SQSTM1 lead to neurodegenerative diseases including frontotemporal dementia. The pathogenic mechanism that contributes to SQSTM1-related neurodegeneration has been linked to its role as an autophagy adaptor, but this is poorly understood, and its precise role in mitochondrial function and clearance remains to be clarified. Here, we assessed the importance of SQSTM1 in human induced pluripotent stem cell (iPSC)-derived cortical neurons through the knockout of SQSTM1. We show that SQSTM1 depletion causes altered mitochondrial gene expression and functionality, as well as autophagy flux, in iPSC-derived neurons. However, SQSTM1 is not essential for mitophagy despite having a significant impact on early PINK1-dependent mitophagy processes including PINK1 recruitment and phosphorylation of ubiquitin on depolarized mitochondria. These findings suggest that SQSTM1 is important for mitochondrial function rather than clearance. SQSTM1 is dispensable for cortical neuron differentiation, modeled with human iPSCs Expression of bioenergetic genes is altered in human cortical neurons lacking SQSTM1 Loss of SQSTM1 causes aberration in mitochondrial functionality SQSTM1 affects mitophagic processes but is not required for mitochondrial clearance
Collapse
Affiliation(s)
- Anna Poon
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Siddharth Sethi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Gregory A O'Sullivan
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - Hélène Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lee A Dawson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK
| | - James M McCarthy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, UK.
| |
Collapse
|
48
|
Monfrini E, Zech M, Steel D, Kurian MA, Winkelmann J, Di Fonzo A. HOPS-associated neurological disorders (HOPSANDs): linking endolysosomal dysfunction to the pathogenesis of dystonia. Brain 2021; 144:2610-2615. [PMID: 33871597 DOI: 10.1093/brain/awab161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The "homotypic fusion and protein sorting" (HOPS) complex is the structural bridge necessary for the fusion of late endosomes and autophagosomes with lysosomes. Recent publications linked mutations in genes encoding HOPS complex proteins with the etiopathogenesis of inherited dystonias (i.e., VPS16, VPS41, and VPS11). Functional and microstructural studies conducted on patient-derived fibroblasts carrying mutations of HOPS complex subunits displayed clear abnormalities of the lysosomal and autophagic compartments. We propose to name HOPS-associated Neurological Disorders (HOPSANDs) this group of diseases, which are mainly characterized by dystonic presentations. The delineation of HOPSANDs further confirms the connection of lysosomal and autophagic dysfunction with the pathogenesis of dystonia, prompting researchers to find innovative therapies targeting this pathway.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Dora Steel
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
49
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
50
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|