1
|
Wang BM, Mills Z, Jones HF, Montgomery JM, Lee KY. Presymptomatic Biological, Structural, and Functional Diagnostic Biomarkers of Autism Spectrum Disorder. J Neurochem 2025; 169:e70088. [PMID: 40390287 PMCID: PMC12089747 DOI: 10.1111/jnc.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025]
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder clinically diagnosed by persistent deficits in three areas of social communication and interaction, plus at least two of four types of restricted repetitive behaviors. ASD has been shown to be caused by genetic predisposition and environmental factors; however, the heterogeneity of ASD complicates its diagnosis and treatment. Early behavioral interventions have shown significant benefits, emphasizing the urgent need for reliable diagnostic biomarkers to enhance long-term outcomes. Here we provide a systematic review that outlines current findings on genetic and neurological biomarkers for presymptomatic ASD diagnoses, assessed prior to the observation of behavioral manifestations. Specifically, we offer insights into the mechanisms of presymptomatic neurological, biological, structural, and functional markers for ASD, compare outcomes across studies, and critically assess their limitations and implications. Recent findings highlight genotype-guided therapeutic strategies in animal models, such as dietary zinc supplementation for reversing ASD-associated behaviors by synaptic deficits. However, the differential efficacy based on underlying genotypes, along with challenges in identifying reliable genomic biomarkers prior to symptom onset, indicates the need for further research. Notably, recent advancements in imaging technologies like magnetic resonance imaging, electroencephalography, and pupillometry have shown promising markers in neonates, and at 3 and 9 months old, respectively. Newer developments in magnetoencephalography hardware can facilitate the much-needed infant ASD studies. It is important to note that many of these biomarker findings are preliminary, and further validation for clinical use is required. Continued research is needed to advance the practicality, reliability, and acceptability of these biomarkers to improve ASD diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Bonnie M. Wang
- Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Zoe Mills
- Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain Research, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Hannah F. Jones
- Centre for Brain Research, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
- Department of NeuroservicesStarship Children's HospitalAucklandNew Zealand
| | - Johanna M. Montgomery
- Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain Research, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Kevin Y. Lee
- Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain Research, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
2
|
Gardner JC, Jovanovic K, Ottaviani D, Melo US, Jackson J, Guarascio R, Ziaka K, Hau KL, Lane A, Taylor RL, Chai N, Gkertsou C, Fernando O, Piwecka M, Georgiou M, Mundlos S, Black GC, Moore AT, Michaelides M, Cheetham ME, Hardcastle AJ. Inter-chromosomal insertions at Xq27.1 associated with retinal dystrophy induce dysregulation of LINC00632 and CDR1as/ciRS-7. Am J Hum Genet 2025; 112:523-536. [PMID: 39892393 PMCID: PMC11947168 DOI: 10.1016/j.ajhg.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/03/2025] Open
Abstract
In two unrelated families with X-linked inherited retinal dystrophy, identification of the causative variants was elusive. Interrogation of the next-generation sequencing (NGS) data revealed a "dark" intergenic region on Xq27.1 with poor coverage. Long-range PCR and DNA walking across this region revealed different inter-chromosomal insertions into the human-specific palindrome on Xq27.1: a 58 kb insertion of 9p24.3 [der(X)dir ins(X;9)(q27.1;p24.3)] in family 1 and a 169 kb insertion of 3p14.2 [der(X)inv ins(X;3)(q27.1;p14.2)] in family 2. To explore the functional consequence of these structural variants in genomic and cellular contexts, induced pluripotent stem cells were derived from affected and control fibroblasts and differentiated to retinal organoids (ROs) and retinal pigment epithelium. Transcriptional dysregulation was evaluated using RNA sequencing (RNA-seq) and RT-qPCR. A downstream long non-coding RNA, LINC00632 (Xq27.1), was upregulated in ROs from both families compared to control samples. In contrast, the circular RNA CDR1as/ciRS-7 (circular RNA sponge for miR-7), spliced from linear LINC00632, was downregulated. To investigate this tissue-specific dysregulation, we interrogated the landscape of the locus using Hi-C and cleavage under targets and tagmentation sequencing (CUT&Tag). This revealed active retinal enhancers within the insertions within a topologically associated domain that also contained the upstream promoter of LINC00632, permitting ectopic contact. Furthermore, CDR1as/ciRS-7 acts as a "sponge" for miR-7, and target genes of miR-7 were also dysregulated in ROs derived from both families. We describe a new genomic mechanism for retinal dystrophy, and our data support a convergent tissue-specific mechanism of altered regulation of LINC00632 and CDR1as/ciRS-7 as a consequence of the insertions within the palindrome on Xq27.1.
Collapse
Affiliation(s)
- Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK.
| | | | - Daniele Ottaviani
- UCL Institute of Ophthalmology, University College London, London, UK; Department of Biology, University of Padua, Padua, Italy
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
| | - Joshua Jackson
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kwan-Leong Hau
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Rachel L Taylor
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Niuzheng Chai
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Owen Fernando
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | |
Collapse
|
3
|
Qiao D, Mu C, Chen H, Wen D, Wang Z, Zhang B, Guo F, Wang C, Zhang R, Wang C, Cui H, Li S. Implications of prenatal exposure to hyperandrogen for hippocampal neurodevelopment and autism-like behavior in offspring. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111219. [PMID: 39694316 DOI: 10.1016/j.pnpbp.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder that significantly jeopardizes the physical and mental well-being of children. Autism spectrum disorder results from a combination of environmental and genetic factors. Hyperandrogenic exposure during pregnancy increases their risk of developing autism. Nevertheless, the prenatal exposure to androgens affects offspring neurodevelopment and the underlying mechanisms have not been fully elucidated. In the present study, administration of excessive dihydrotestosterone (DHT) to pregnant mice was found to impair neuronal development and dendritic spine formation in offspring, inducing autism-like behaviors. Furthermore, through mRNA transcriptome sequencing technology, the key molecule Nr4a2 was identified during this process of change. Overexpression of Nr4a2 and treatment with amodiaquine (AQ) significantly improved the abnormal phenotypes in offspring caused by prenatal exposure to androgens. Overall, Nr4a2 emerges as a crucial molecule involved in the impairment of offspring neurodevelopment due to prenatal androgen exposure, which provides a new perspective for the in-depth study of the influencing factors and underlying mechanisms.
Collapse
Affiliation(s)
- Dan Qiao
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Chenyu Mu
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Huan Chen
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, China
| | - Zhao Wang
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Bohan Zhang
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Fangzhen Guo
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Chang Wang
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Rong Zhang
- Autism Research Center; Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education of China, Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chongying Wang
- Autism Research Center, School of Sociology, Nankai University, Tianjin 300071, China
| | - Huixian Cui
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China
| | - Sha Li
- Department of Human Anatomy; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
4
|
Shi L, Zhang S, Li Y, Li H, Wang X, Du M, Zhang M, Ke L, Zhang Y, Xu C, Tan S, Zhang Z, Zhang D, Wang J, Qi C, Liu X, Wang X, Qian K, Cheng L, Zhang X. SV4GD: a comprehensive structural variation database specially for genetic diseases. Nucleic Acids Res 2025; 53:D1557-D1562. [PMID: 39526399 PMCID: PMC11701672 DOI: 10.1093/nar/gkae1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Structural variations (SVs) contribute to a large extent to genomic diversity and are highly relevant for various human genetic diseases. The sensitivity and specificity of SV identification have significantly improved with the development and widespread application of high-throughput sequencing, making clinical diagnosis and treatment more accurate. Therefore, the SV4GD (Structural Variation for Genetic Diseases, https://bio-computing.hrbmu.edu.cn/SV4GD/), a manually curated database, was constructed to provide a comprehensive, standardized and user-friendly data resource for selective batch browsing, searching, downloading and comparing those genetic disease-relevant SVs. This database compiles 10 305 records of germline structural variants from 58 human neoplastic diseases and 232 non-neoplastic genetic diseases, including 2695 disease-related SVs, and other 7610 pending research SVs detected from patients. SV4GD provides a browser and search engine to query for the detailed information of SVs, human genetic diseases and the clinical information of patients, providing an easy-to-use online tool for clinical and molecular genetics research.
Collapse
Affiliation(s)
- Lei Shi
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Ying Li
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Hailong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Xin Wang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- College of Basic Medical Sciences, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Meiyu Du
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Meiyi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Liyan Ke
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- College of Basic Medical Sciences, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Yueni Zhang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- College of Basic Medical Sciences, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Chao Xu
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin 150001, China
| | - Senwei Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Zitong Zhang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- College of Basic Medical Sciences, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Duoyi Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin 150001, China
| | - Jiaping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Xingwang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR 518172, China
| | - Kai Qian
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Liang Cheng
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
| | - Xue Zhang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin 150081, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 5 Dongdan Santiao, Dongcheng District, Beijing 100005, China
| |
Collapse
|
5
|
Mendes M, Chen DZ, Engchuan W, Leal TP, Thiruvahindrapuram B, Trost B, Howe JL, Pellecchia G, Nalpathamkalam T, Alexandrova R, Salazar NB, McKee EA, Rivera-Alfaro N, Lai MC, Bandres-Ciga S, Roshandel D, Bradley CA, Anagnostou E, Sun L, Scherer SW. Chromosome X-wide common variant association study in autism spectrum disorder. Am J Hum Genet 2025; 112:135-153. [PMID: 39706197 PMCID: PMC11739886 DOI: 10.1016/j.ajhg.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024] Open
Abstract
Autism spectrum disorder (ASD) displays a notable male bias in prevalence. Research into rare (<0.1) genetic variants on the X chromosome has implicated over 20 genes in ASD pathogenesis, such as MECP2, DDX3X, and DMD. The "female protective effect" in ASD suggests that females may require a higher genetic burden to manifest symptoms similar to those in males, yet the mechanisms remain unclear. Despite technological advances in genomics, the complexity of the biological nature of sex chromosomes leaves them underrepresented in genome-wide studies. Here, we conducted an X-chromosome-wide association study (XWAS) using whole-genome sequencing data from 6,873 individuals with ASD (82% males) across Autism Speaks MSSNG, Simons Simplex Collection (SSC), and Simons Powering Autism Research (SPARK), alongside 8,981 population controls (43% males). We analyzed 418,652 X chromosome variants, identifying 59 associated with ASD (p values 7.9 × 10-6 to 1.51 × 10-5), surpassing Bonferroni-corrected thresholds. Key findings include significant regions on Xp22.2 (lead SNP rs12687599, p = 3.57 × 10-7) harboring ASB9/ASB11 and another encompassing DDX53 and the PTCHD1-AS long non-coding RNA (lead SNP rs5926125, p = 9.47 × 10-6). When mapping genes within 10 kb of the 59 most significantly associated SNPs, 91 genes were found, 17 of which yielded association with ASD (GRPR, AP1S2, DDX53, HDAC8, PCDH19, PTCHD1, PCDH11X, PTCHD1-AS, DMD, SYAP1, CNKSR2, GLRA2, OFD1, CDKL5, GPRASP2, NXF5, and SH3KBP1). FGF13 emerged as an X-linked ASD candidate gene, highlighted by sex-specific differences in minor allele frequencies. These results reveal significant insights into X chromosome biology in ASD, confirming and nominating genes and pathways for further investigation.
Collapse
Affiliation(s)
- Marla Mendes
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Desmond Zeya Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 3E3, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jennifer L Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Roumiana Alexandrova
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ethan A McKee
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Natalia Rivera-Alfaro
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5G 2C1, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
| | - Delnaz Roshandel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Clarrisa A Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lei Sun
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 3E3, Canada; Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON M5G 1X6, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
D'Amico A, Sung H, Arbona-Lampaya A, Freifeld A, Hosey K, Garcia J, Lacbawan L, Besançon E, Kassem L, Akula N, Knowles EEM, Dickinson D, McMahon FJ. Independent inheritance of cognition and bipolar disorder in a family sample. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33001. [PMID: 39011872 DOI: 10.1002/ajmg.b.33001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Cognitive deficits in people with bipolar disorder (BD) may be the result of the illness or its treatment, but they could also reflect genetic risk factors shared between BD and cognition. We investigated this question using empirical genetic relationships within a sample of patients with BD and their unaffected relatives. Participants with bipolar I, II, or schizoaffective disorder ("narrow" BD, n = 69), related mood disorders ("broad" BD, n = 135), and their clinically unaffected relatives (n = 227) completed five cognitive tests. General cognitive function (g) was quantified via principal components analysis (PCA). Heritability and genetic correlations were estimated with SOLAR-Eclipse. Participants with "narrow" or "broad" diagnoses showed deficits in g, although affect recognition was unimpaired. Cognitive performance was significantly heritable (h2 = 0.322 for g, p < 0.005). Coheritability between psychopathology and g was small (0.0184 for narrow and 0.0327 for broad) and healthy relatives of those with BD were cognitively unimpaired. In this family sample, cognitive deficits were present in participants with BD but were not explained by substantial overlaps in genetic determinants of mood and cognition. These findings support the view that cognitive deficits in BD are largely the result of the illness or its treatment.
Collapse
Affiliation(s)
- Alexander D'Amico
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Heejong Sung
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Alejandro Arbona-Lampaya
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Ally Freifeld
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Katie Hosey
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Joshua Garcia
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Ley Lacbawan
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Emily Besançon
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | | | - Dwight Dickinson
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Miyake N, Tsurusaki Y, Fukai R, Kushima I, Okamoto N, Ohashi K, Nakamura K, Hashimoto R, Hiraki Y, Son S, Kato M, Sakai Y, Osaka H, Deguchi K, Matsuishi T, Takeshita S, Fattal-Valevski A, Ekhilevitch N, Tohyama J, Yap P, Keng WT, Kobayashi H, Takubo K, Okada T, Saitoh S, Yasuda Y, Murai T, Nakamura K, Ohga S, Matsumoto A, Inoue K, Saikusa T, Hershkovitz T, Kobayashi Y, Morikawa M, Ito A, Hara T, Uno Y, Seiwa C, Ishizuka K, Shirahata E, Fujita A, Koshimizu E, Miyatake S, Takata A, Mizuguchi T, Ozaki N, Matsumoto N. Molecular diagnosis of 405 individuals with autism spectrum disorder. Eur J Hum Genet 2024; 32:1551-1558. [PMID: 36973392 PMCID: PMC11606949 DOI: 10.1038/s41431-023-01335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is caused by combined genetic and environmental factors. Genetic heritability in ASD is estimated as 60-90%, and genetic investigations have revealed many monogenic factors. We analyzed 405 patients with ASD using family-based exome sequencing to detect disease-causing single-nucleotide variants (SNVs), small insertions and deletions (indels), and copy number variations (CNVs) for molecular diagnoses. All candidate variants were validated by Sanger sequencing or quantitative polymerase chain reaction and were evaluated using the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for molecular diagnosis. We identified 55 disease-causing SNVs/indels in 53 affected individuals and 13 disease-causing CNVs in 13 affected individuals, achieving a molecular diagnosis in 66 of 405 affected individuals (16.3%). Among the 55 disease-causing SNVs/indels, 51 occurred de novo, 2 were compound heterozygous (in one patient), and 2 were X-linked hemizygous variants inherited from unaffected mothers. The molecular diagnosis rate in females was significantly higher than that in males. We analyzed affected sibling cases of 24 quads and 2 quintets, but only one pair of siblings shared an identical pathogenic variant. Notably, there was a higher molecular diagnostic rate in simplex cases than in multiplex families. Our simulation indicated that the diagnostic yield is increasing by 0.63% (range 0-2.5%) per year. Based on our simple simulation, diagnostic yield is improving over time. Thus, periodical reevaluation of ES data should be strongly encouraged in undiagnosed ASD patients.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, National Center for Global Health and Medicine, Tokyo, Japan.
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yoshinori Tsurusaki
- Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Japan
| | - Ryoko Fukai
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kei Ohashi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Shuraku Son
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | | | - Toyojiro Matsuishi
- Departments of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics, St. Mary's Hospital, Kurume, Japan
| | - Saoko Takeshita
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Aviva Fattal-Valevski
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Center & Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Patrick Yap
- Genetic Health Service New Zealand, Auckland, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Wee Teik Keng
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Ken Inoue
- Deguchi Pediatric Clinic, Omura, Japan
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Tomoko Saikusa
- Departments of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics, St. Mary's Hospital, Kurume, Japan
| | - Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Yu Kobayashi
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aiko Ito
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | | | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chizuru Seiwa
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emi Shirahata
- Department of Pediatrics, Yamagata Prefectural Rehabilitation Center for Children with Disabilities, Yamagata, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
8
|
Eisfeldt J, Higginbotham EJ, Lenner F, Howe J, Fernandez BA, Lindstrand A, Scherer SW, Feuk L. Resolving complex duplication variants in autism spectrum disorder using long-read genome sequencing. Genome Res 2024; 34:1763-1773. [PMID: 39472019 DOI: 10.1101/gr.279263.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/27/2024] [Indexed: 11/22/2024]
Abstract
Rare or de novo structural variation, primarily in the form of copy number variants, is detected in 5%-10% of autism spectrum disorder (ASD) families. While complex structural variants involving duplications can generally be detected using microarray or short-read genome sequencing (GS), these methods frequently fail to characterize breakpoints at nucleotide resolution, requiring additional molecular methods for validation and fine-mapping. Here, we use Oxford Nanopore Technologies PromethION long-read GS to characterize complex genomic rearrangements (CGRs) involving large duplications that segregate with ASD in five families. In total, we investigated 13 CGR carriers and were able to resolve all breakpoint junctions at nucleotide resolution. While all breakpoints were identified, the precise genomic architecture of one rearrangement remained unresolved with three different potential structures. The findings in two families include potential fusion genes formed through duplication rearrangements, involving IL1RAPL1-DMD and SUPT16H-CHD8 In two of the families originating from the same geographical region, an identical rearrangement involving ANK2 was identified, which likely represents a founder variant. In addition, we analyze methylation status directly from the long-read data, allowing us to assess the activity of rearranged genes and regulatory regions. Investigation of methylation across the CGRs reveals aberrant methylation status in carriers across a rearrangement affecting the CREBBP locus. In aggregate, our results demonstrate the utility of nanopore sequencing to pinpoint CGRs associated with ASD in five unrelated families, and highlight the importance of a gene-centric description of disease-associated complex chromosomal rearrangements.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Felix Lenner
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, 751 85 Uppsala, Sweden
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Bridget A Fernandez
- Department of Pediatrics and The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, California 90033, USA
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, McLaughlin Centre, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, 751 85 Uppsala, Sweden;
| |
Collapse
|
9
|
Bajikar SS, Sztainberg Y, Trostle AJ, Tirumala HP, Wan YW, Harrop CL, Bengtsson JD, Carvalho CMB, Pehlivan D, Suter B, Neul JL, Liu Z, Jafar-Nejad P, Rigo F, Zoghbi HY. Modeling antisense oligonucleotide therapy in MECP2 duplication syndrome human iPSC-derived neurons reveals gene expression programs responsive to MeCP2 levels. Hum Mol Genet 2024; 33:1986-2001. [PMID: 39277796 PMCID: PMC11555823 DOI: 10.1093/hmg/ddae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Genomic copy-number variations (CNVs) that can cause neurodevelopmental disorders often encompass many genes, which complicates our understanding of how individual genes within a CNV contribute to pathology. MECP2 duplication syndrome (MDS or MRXSL in OMIM; OMIM#300260) is one such CNV disorder caused by duplications spanning methyl CpG-binding protein 2 (MECP2) and other genes on Xq28. Using an antisense oligonucleotide (ASO) to normalize MECP2 dosage is sufficient to rescue abnormal neurological phenotypes in mouse models overexpressing MECP2 alone, implicating the importance of increased MECP2 dosage within CNVs of Xq28. However, because MDS CNVs span MECP2 and additional genes, we generated human neurons from multiple MDS patient-derived induced pluripotent cells (iPSCs) to evaluate the benefit of using an ASO against MECP2 in a MDS human neuronal context. Importantly, we identified a signature of genes that is partially and qualitatively modulated upon ASO treatment, pinpointed genes sensitive to MeCP2 function, and altered in a model of Rett syndrome, a neurological disorder caused by loss of MeCP2 function. Furthermore, the signature contained genes that are aberrantly altered in unaffected control human neurons upon MeCP2 depletion, revealing gene expression programs qualitatively sensitive to MeCP2 levels in human neurons. Lastly, ASO treatment led to a partial rescue of abnormal neuronal morphology in MDS neurons. All together, these data demonstrate that ASOs targeting MECP2 benefit human MDS neurons. Moreover, our study establishes a paradigm by which to evaluate the contribution of individual genes within a CNV to pathogenesis and to assess their potential as a therapeutic target.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, United States
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22903, United States
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Harini P Tirumala
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Caroline L Harrop
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, United States
| | - Jesse D Bengtsson
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, United States
| | - Claudia M B Carvalho
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, United States
| | - Davut Pehlivan
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
| | - Bernhard Suter
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, 110 Magnolia Circle, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Paymaan Jafar-Nejad
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Texas Children’s Hospital, 6621 Fannin Street, Houston, TX 77030, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
10
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024; 29:3395-3411. [PMID: 38744992 PMCID: PMC11541222 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Wu Q, Morrow EM, Gamsiz Uzun ED. A deep learning model for prediction of autism status using whole-exome sequencing data. PLoS Comput Biol 2024; 20:e1012468. [PMID: 39514604 DOI: 10.1371/journal.pcbi.1012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/20/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Autism is a developmental disability. Research demonstrated that children with autism benefit from early diagnosis and early intervention. Genetic factors are considered major contributors to the development of autism. Machine learning (ML), including deep learning (DL), has been evaluated in phenotype prediction, but this method has been limited in its application to autism. We developed a DL model, the Separate Translated Autism Research Neural Network (STAR-NN) model to predict autism status. The model was trained and tested using whole exome sequencing data from 43,203 individuals (16,809 individuals with autism and 26,394 non-autistic controls). Polygenic scores from common variants and the aggregated count of rare variants on genes were used as input. In STAR-NN, protein truncating variants, possibly damaging missense variants and mild effect missense variants on the same gene were separated at the input level and merged to one gene node. In this way, rare variants with different level of pathogenic effects were treated separately. We further validated the performance of STAR-NN using an independent dataset, including 13,827 individuals with autism and 14,052 non-autistic controls. STAR-NN achieved a modest ROC-AUC of 0.7319 on the testing dataset and 0.7302 on the independent dataset. STAR-NN outperformed other traditional ML models. Gene Ontology analysis on the selected gene features showed an enrichment for potentially informative pathways including calcium ion transport.
Collapse
Affiliation(s)
- Qing Wu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, Rhode Island, United States of America
| | - Ece D Gamsiz Uzun
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island, United States of America
| |
Collapse
|
12
|
Garrido-Torres N, Marqués Rodríguez R, Alemany-Navarro M, Sánchez-García J, García-Cerro S, Ayuso MI, González-Meneses A, Martinez-Mir A, Ruiz-Veguilla M, Crespo-Facorro B. Exploring genetic testing requests, genetic alterations and clinical associations in a cohort of children with autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:3829-3840. [PMID: 38587680 PMCID: PMC11588872 DOI: 10.1007/s00787-024-02413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Several studies show great heterogeneity in the type of genetic test requested and in the clinicopathological characteristics of patients with ASD. The following study aims, firstly, to explore the factors that might influence professionals' decisions about the appropriateness of requesting genetic testing for their patients with ASD and, secondly, to determine the prevalence of genetic alterations in a representative sample of children with a diagnosis of ASD. Methods: We studied the clinical factors associated with the request for genetic testing in a sample of 440 children with ASD and the clinical factors of present genetic alterations. Even though the main guidelines recommend genetic testing all children with an ASD diagnosis, only 56% of children with an ASD diagnosis were genetically tested. The prevalence of genetic alterations was 17.5%. These alterations were more often associated with intellectual disability and dysmorphic features. There are no objective data to explicitly justify the request for genetic testing, nor are there objective data to justify requesting one genetic study versus multiple studies. Remarkably, only 28% of males were genetically tested with the recommended tests (fragile X and CMA). Children with dysmorphic features and organic comorbidities were more likely to be genetic tested than those without. Previous diagnosis of ASD (family history of ASD) and attendance at specialist services were also associated with Genetically tested Autism Spectrum Disorder GTASD. Our findings emphasize the importance of establishing algorithms to facilitate targeted genetic consultation for individuals with ASD who are likely to benefit, considering clinical phenotypes, efficiency, ethics, and benefits.
Collapse
Affiliation(s)
- Nathalia Garrido-Torres
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - María Alemany-Navarro
- Instituto de Biomedicina de Sevilla, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - Javier Sánchez-García
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Seville, Spain
- Spanish National Research Council (CSIC), Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Susana García-Cerro
- Instituto de Biomedicina de Sevilla, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - María Irene Ayuso
- Instituto de Biomedicina de Sevilla, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
- Spanish National Research Council (CSIC), Seville, Spain
| | - Miguel Ruiz-Veguilla
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla, Seville, Spain.
- University of Seville, Seville, Spain.
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain.
- Hospital Universitario Virgen del Rocío, Seville, Spain.
| |
Collapse
|
13
|
Bryers A, Hawkes CA, Parkin E, Dawson N. Progress towards understanding risk factor mechanisms in the development of autism spectrum disorders. Biochem Soc Trans 2024; 52:2047-2058. [PMID: 39221783 PMCID: PMC11555714 DOI: 10.1042/bst20231004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Autism spectrum disorders (ASD) are a heterogenous set of syndromes characterised by social impairment and cognitive symptoms. Currently, there are limited treatment options available to help people with ASD manage their symptoms. Understanding the biological mechanisms that result in ASD diagnosis and symptomatology is an essential step in developing new interventional strategies. Human genetic studies have identified common gene variants of small effect and rare risk genes and copy number variants (CNVs) that substantially increase the risk of developing ASD. Reverse translational studies using rodent models based on these genetic variants provide new insight into the biological basis of ASD. Here we review recent findings from three ASD associated CNV mouse models (16p11.2, 2p16.3 and 22q11.2 deletion) that show behavioural and cognitive phenotypes relevant to ASD. These models have identified disturbed excitation-inhibition neurotransmitter balance, evidenced by dysfunctional glutamate and GABA signalling, as a key aetiological mechanism. These models also provide emerging evidence for serotoninergic neurotransmitter system dysfunction, although more work is needed to clarify the nature of this. At the brain network level, prefrontal cortex (PFC) dysfunctional connectivity is also evident across these models, supporting disturbed PFC function as a key nexus in ASD aetiology. Overall, published data highlight the utility and valuable insight gained into ASD aetiology from preclinical CNV mouse models. These have identified key aetiological mechanisms that represent putative novel therapeutic targets for the treatment of ASD symptoms, making them useful translational models for future drug discovery, development and validation.
Collapse
Affiliation(s)
- Amelia Bryers
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Cheryl A. Hawkes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Edward Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
14
|
Schultz LM, Knighton A, Huguet G, Saci Z, Jean-Louis M, Mollon J, Knowles EEM, Glahn DC, Jacquemont S, Almasy L. Copy-number variants differ in frequency across genetic ancestry groups. HGG ADVANCES 2024; 5:100340. [PMID: 39138864 PMCID: PMC11401192 DOI: 10.1016/j.xhgg.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Copy-number variants (CNVs) have been implicated in a variety of neuropsychiatric and cognitive phenotypes. We found that deleterious CNVs are less prevalent in non-European ancestry groups than they are in European ancestry groups of both the UK Biobank (UKBB) and a US replication cohort (SPARK). We also identified specific recurrent CNVs that consistently differ in frequency across ancestry groups in both the UKBB and SPARK. These ancestry-related differences in CNV prevalence present in both an unselected community population and a family cohort enriched with individuals diagnosed with autism spectrum disorder (ASD) strongly suggest that genetic ancestry should be considered when probing associations between CNVs and health outcomes.
Collapse
Affiliation(s)
- Laura M Schultz
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Alexys Knighton
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Zohra Saci
- CHU Sainte-Justine, Montréal, QC, Canada
| | | | - Josephine Mollon
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emma E M Knowles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David C Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sébastien Jacquemont
- CHU Sainte-Justine, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Andrawus M, David GB, Terziyska I, Sharvit L, Bergman A, Barzilai N, Raj SM, Govindaraju DR, Atzmon G. Genome integrity as a potential index of longevity in Ashkenazi Centenarian's families. GeroScience 2024; 46:4147-4162. [PMID: 38724875 PMCID: PMC11335978 DOI: 10.1007/s11357-024-01178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/24/2024] [Indexed: 06/19/2024] Open
Abstract
The aging process, or senescence, is characterized by age-specific decline in physical and physiological function, and increased frailty and genomic changes, including mutation accumulation. However, the mechanisms through which changes in genomic architecture influence human longevity have remained obscure. Copy number variants (CNVs), an abundant class of genomic variants, offer unique opportunities for understanding age-related genomic changes. Here we report the spectrum of CNVs in a cohort of 670 Ashkenazi Jewish centenarians, their progeny, and unrelated controls. The average ages of these groups were 97.4 ± 2.8, 69.2 ± 9.2, and 66.5 ± 7.0 respectively. For the first time, we compared different size classes of CNVs, from 1 kB to 100 MB in size. Using a high-resolution custom Affymetrix array, targeting 44,639 genomic regions, we identified a total of 12,166, 22,188, and 10,285 CNVs in centenarians, their progeny, and control groups, respectively. Interestingly, the offspring group showed the highest number of unique CNVs, followed by control and centenarians. While both gains and losses were found in all three groups, centenarians showed a significantly higher average number of both total gains and losses relative to their controls (p < 0.0327, 0.0182, respectively). Moreover, centenarians showed a lower total length of genomic material lost, suggesting that they may maintain superior genomic integrity over time. We also observe a significance fold increase of CNVs among the offspring, implying greater genomic integrity and a putative mechanism for longevity preservation. Genomic regions that experienced loss or gains appear to be distributed across many sites in the genome and contain genes involved in DNA transcription, cellular transport, developmental pathways, and metabolic functions. Our findings suggest that the exceptional longevity observed in centenarians may be attributed to the prolonged maintenance of functionally important genes. These genes are intrinsic to specific genomic regions as well as to the overall integrity of the genomic architecture. Additionally, a strong association between longer CNVs and differential gene expression observed in this study supports the notion that genomic integrity could positively influence longevity.
Collapse
Affiliation(s)
| | - Gil Ben David
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., 3498838, Mount Carmel, Haifa, Israel
| | | | - Lital Sharvit
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Srilakshmi M Raj
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
16
|
Kong L, Chen Y, Shen Y, Zhang D, Wei C, Lai J, Hu S. Progress and Implications from Genetic Studies of Bipolar Disorder. Neurosci Bull 2024; 40:1160-1172. [PMID: 38206551 PMCID: PMC11306703 DOI: 10.1007/s12264-023-01169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancements in gene sequencing technologies, including genome-wide association studies, polygenetic risk scores, and high-throughput sequencing, there has been a tremendous advantage in mapping a detailed blueprint for the genetic model of bipolar disorder (BD). To date, intriguing genetic clues have been identified to explain the development of BD, as well as the genetic association that might be applied for the development of susceptibility prediction and pharmacogenetic intervention. Risk genes of BD, such as CACNA1C, ANK3, TRANK1, and CLOCK, have been found to be involved in various pathophysiological processes correlated with BD. Although the specific roles of these genes have yet to be determined, genetic research on BD will help improve the prevention, therapeutics, and prognosis in clinical practice. The latest preclinical and clinical studies, and reviews of the genetics of BD, are analyzed in this review, aiming to summarize the progress in this intriguing field and to provide perspectives for individualized, precise, and effective clinical practice.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Wei
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
17
|
Mendes M, Chen DZ, Engchuan W, Leal TP, Thiruvahindrapuram B, Trost B, Howe JL, Pellecchia G, Nalpathamkalam T, Alexandrova R, Salazar NB, McKee EA, Alfaro NR, Lai MC, Bandres-Ciga S, Roshandel D, Bradley CA, Anagnostou E, Sun L, Scherer SW. Chromosome X-Wide Common Variant Association Study (XWAS) in Autism Spectrum Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310640. [PMID: 39108515 PMCID: PMC11302709 DOI: 10.1101/2024.07.18.24310640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Autism Spectrum Disorder (ASD) displays a notable male bias in prevalence. Research into rare (<0.1) genetic variants on the X chromosome has implicated over 20 genes in ASD pathogenesis, such as MECP2, DDX3X, and DMD. The "female protective effect" in ASD suggests that females may require a higher genetic burden to manifest similar symptoms as males, yet the mechanisms remain unclear. Despite technological advances in genomics, the complexity of the biological nature of sex chromosomes leave them underrepresented in genome-wide studies. Here, we conducted an X chromosome-wide association study (XWAS) using whole-genome sequencing data from 6,873 individuals with ASD (82% males) across Autism Speaks MSSNG, Simons Simplex Cohort SSC, and Simons Foundation Powering Autism Research SPARK, alongside 8,981 population controls (43% males). We analyzed 418,652 X-chromosome variants, identifying 59 associated with ASD (p-values 7.9×10-6 to 1.51×10-5), surpassing Bonferroni-corrected thresholds. Key findings include significant regions on chrXp22.2 (lead SNP=rs12687599, p=3.57×10-7) harboring ASB9/ASB11, and another encompassing DDX53/PTCHD1-AS long non-coding RNA (lead SNP=rs5926125, p=9.47×10-6). When mapping genes within 10kb of the 59 most significantly associated SNPs, 91 genes were found, 17 of which yielded association with ASD (GRPR, AP1S2, DDX53, HDAC8, PCDH19, PTCHD1, PCDH11X, PTCHD1-AS, DMD, SYAP1, CNKSR2, GLRA2, OFD1, CDKL5, GPRASP2, NXF5, SH3KBP1). FGF13 emerged as a novel X-linked ASD candidate gene, highlighted by sex-specific differences in minor allele frequencies. These results reveal significant new insights into X chromosome biology in ASD, confirming and nominating genes and pathways for further investigation.
Collapse
Affiliation(s)
- Marla Mendes
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Desmond Zeya Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON, M5G 1X6, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Brett Trost
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jennifer L. Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Roumiana Alexandrova
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Nelson Bautista Salazar
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Ethan Alexander McKee
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Natalia Rivera Alfaro
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5G 2C1, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Delnaz Roshandel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Clarrisa A. Bradley
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, M4G 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Lei Sun
- Department of Statistical Sciences, Faculty of Arts and Science, University of Toronto, Toronto, ON, M5G 1X6, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 3E3, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
18
|
Nóbrega IDS, Teles e Silva AL, Yokota-Moreno BY, Sertié AL. The Importance of Large-Scale Genomic Studies to Unravel Genetic Risk Factors for Autism. Int J Mol Sci 2024; 25:5816. [PMID: 38892002 PMCID: PMC11172008 DOI: 10.3390/ijms25115816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common and highly heritable neurodevelopmental disorder. During the last 15 years, advances in genomic technologies and the availability of increasingly large patient cohorts have greatly expanded our knowledge of the genetic architecture of ASD and its neurobiological mechanisms. Over two hundred risk regions and genes carrying rare de novo and transmitted high-impact variants have been identified. Additionally, common variants with small individual effect size are also important, and a number of loci are now being uncovered. At the same time, these new insights have highlighted ongoing challenges. In this perspective article, we summarize developments in ASD genetic research and address the enormous impact of large-scale genomic initiatives on ASD gene discovery.
Collapse
Affiliation(s)
| | | | | | - Andréa Laurato Sertié
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, Rua Comendador Elias Jafet, 755. Morumbi, São Paulo 05653-000, Brazil; (I.d.S.N.); (A.L.T.e.S.); (B.Y.Y.-M.)
| |
Collapse
|
19
|
de Hoyos L, Barendse MT, Schlag F, van Donkelaar MMJ, Verhoef E, Shapland CY, Klassmann A, Buitelaar J, Verhulst B, Fisher SE, Rai D, St Pourcain B. Structural models of genome-wide covariance identify multiple common dimensions in autism. Nat Commun 2024; 15:1770. [PMID: 38413609 PMCID: PMC10899248 DOI: 10.1038/s41467-024-46128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Common genetic variation has been associated with multiple phenotypic features in Autism Spectrum Disorder (ASD). However, our knowledge of shared genetic factor structures contributing to this highly heterogeneous phenotypic spectrum is limited. Here, we developed and implemented a structural equation modelling framework to directly model genomic covariance across core and non-core ASD phenotypes, studying autistic individuals of European descent with a case-only design. We identified three independent genetic factors most strongly linked to language performance, behaviour and developmental motor delay, respectively, studying an autism community sample (N = 5331). The three-factorial structure was largely confirmed in independent ASD-simplex families (N = 1946), although we uncovered, in addition, simplex-specific genetic overlap between behaviour and language phenotypes. Multivariate models across cohorts revealed novel associations, including links between language and early mastering of self-feeding. Thus, the common genetic architecture in ASD is multi-dimensional with overarching genetic factors contributing, in combination with ascertainment-specific patterns, to phenotypic heterogeneity.
Collapse
Affiliation(s)
- Lucía de Hoyos
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Maria T Barendse
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Social Dentistry and Behavioural Sciences, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Fenja Schlag
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Chin Yang Shapland
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dheeraj Rai
- Population Health Sciences, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bristol, UK
- NIHR Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Sun J, Noss S, Banerjee D, Das M, Girirajan S. Strategies for dissecting the complexity of neurodevelopmental disorders. Trends Genet 2024; 40:187-202. [PMID: 37949722 PMCID: PMC10872993 DOI: 10.1016/j.tig.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are associated with a wide range of clinical features, affecting multiple pathways involved in brain development and function. Recent advances in high-throughput sequencing have unveiled numerous genetic variants associated with NDDs, which further contribute to disease complexity and make it challenging to infer disease causation and underlying mechanisms. Herein, we review current strategies for dissecting the complexity of NDDs using model organisms, induced pluripotent stem cells, single-cell sequencing technologies, and massively parallel reporter assays. We further highlight single-cell CRISPR-based screening techniques that allow genomic investigation of cellular transcriptomes with high efficiency, accuracy, and throughput. Overall, we provide an integrated review of experimental approaches that can be applicable for investigating a broad range of complex disorders.
Collapse
Affiliation(s)
- Jiawan Sun
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Serena Noss
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Deepro Banerjee
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Maitreya Das
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA
| | - Santhosh Girirajan
- Molecular, Cellular, and Integrative Biosciences Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Bioinformatics and Genomics Graduate Program, The Huck Institutes of Life Sciences, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Bar O, Vahey E, Mintz M, Frye RE, Boles RG. Reanalysis of Trio Whole-Genome Sequencing Data Doubles the Yield in Autism Spectrum Disorder: De Novo Variants Present in Half. Int J Mol Sci 2024; 25:1192. [PMID: 38256266 PMCID: PMC10816071 DOI: 10.3390/ijms25021192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common condition with lifelong implications. The last decade has seen dramatic improvements in DNA sequencing and related bioinformatics and databases. We analyzed the raw DNA sequencing files on the Variantyx® bioinformatics platform for the last 50 ASD patients evaluated with trio whole-genome sequencing (trio-WGS). "Qualified" variants were defined as coding, rare, and evolutionarily conserved. Primary Diagnostic Variants (PDV), additionally, were present in genes directly linked to ASD and matched clinical correlation. A PDV was identified in 34/50 (68%) of cases, including 25 (50%) cases with heterozygous de novo and 10 (20%) with inherited variants. De novo variants in genes directly associated with ASD were far more likely to be Qualifying than non-Qualifying versus a control group of genes (p = 0.0002), validating that most are indeed disease related. Sequence reanalysis increased diagnostic yield from 28% to 68%, mostly through inclusion of de novo PDVs in genes not yet reported as ASD associated. Thirty-three subjects (66%) had treatment recommendation(s) based on DNA analyses. Our results demonstrate a high yield of trio-WGS for revealing molecular diagnoses in ASD, which is greatly enhanced by reanalyzing DNA sequencing files. In contrast to previous reports, de novo variants dominate the findings, mostly representing novel conditions. This has implications to the cause and rising prevalence of autism.
Collapse
Affiliation(s)
- Omri Bar
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Elizabeth Vahey
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Mark Mintz
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA;
| | - Richard G. Boles
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
- NeuroNeeds, Old Lyme, CT 06371, USA
| |
Collapse
|
22
|
Lima MO, Saraiva LC, Ramos VR, Oliveira MC, Costa DLC, Fernandez TV, Crowley JJ, Storch EA, Shavitt RG, Miguel EC, Cappi C. Clinical characteristics of probands with obsessive-compulsive disorder from simplex and multiplex families. Psychiatry Res 2024; 331:115627. [PMID: 38113811 PMCID: PMC11129832 DOI: 10.1016/j.psychres.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Genetic and non-genetic factors contribute to obsessive-compulsive disorder (OCD), with strong evidence of familial clustering. Genomic studies in psychiatry have used the concepts of families that are "simplex" (one affected) versus "multiplex" (multiple affected). Our study compares demographic and clinical data from OCD probands in simplex and multiplex families to uncover potential differences. We analyzed 994 OCD probands (501 multiplex, 493 simplex) from the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders (C-TOC). Clinicians administered the Structured Clinical Interview for DSM-IV (SCID-IV) to diagnose, Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) to assess severity, and Dimensional Yale-Brown Obsessive-Compulsive Scale (DY-BOCS) to assess symptom dimensionality. Demographics, clinical history, and family data were collected. Compared to simplex probands, multiplex probands had earlier onset, higher sexual/religious and hoarding dimensions severity, increased comorbidity with other obsessive-compulsive-related disorders (OCRD), and higher family history of psychiatric disorders. These comparisons provide the first insights into demographic and clinical differences between Latin American simplex and multiplex families with OCD. Distinct clinical patterns may suggest diverse genetic and environmental influences. Further research is needed to clarify these differences, which have implications for symptom monitoring and management.
Collapse
Affiliation(s)
- Monicke O Lima
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil
| | - Leonardo C Saraiva
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil
| | - Vanessa R Ramos
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil
| | - Melaine C Oliveira
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil
| | - Daniel L C Costa
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil
| | - Thomas V Fernandez
- Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - James J Crowley
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Roseli G Shavitt
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil
| | - Carolina Cappi
- Department & Institute of Psychiatry, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo (SP), Brazil; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy, New York, NY, USA.
| |
Collapse
|
23
|
Li R, Qiu X, Shi Q, Wang W, He M, Qiao J, He J, Wang Q. Isolated aberrant right subclavian artery: an underlying clue for genetic anomalies. J Matern Fetal Neonatal Med 2023; 36:2183762. [PMID: 36860092 DOI: 10.1080/14767058.2023.2183762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
OBJECTIVE Aberrant right subclavian artery (ARSA) is known to be associated with specific chromosomal abnormalities. However, there is no agreement regarding clinical decisions related to isolated ARSA. This study evaluated the association between ARSA and genetic abnormalities to provide evidence for prenatal consultation and the postpartum management of isolated ARSA. METHODS This single-center cross-sectional study involved fetuses diagnosed with ARSA between January 2014 and May 2021. A range of data was recorded for each patient, including screening ultrasound, fetal echocardiograms, genetic results, postnatal information, and follow-up records. RESULTS ARSA was detected in 151 fetuses, of which 136 were considered isolated cases. The remaining 9.9% (15/151) of cases had cardiac and/or extracardiac abnormalities or soft markers. Data from karyotype analysis and chromosomal microarray analysis (CMA) were available for 56 and 33 (out of 56) fetuses, respectively. Genetic abnormalities were detected in 10.7% of fetuses (6/56). Of these, 4.4% (2/45) and 36.4% (4/11) were associated with isolated and non-isolated ARSA, respectively, with a significant difference between these two groups regarding the frequency of genetic abnormality (p = 0.011). The analysis detected Klinefelter Syndrome (47, XXY) and 16p11.2 microdeletion in two isolated cases. One case each of trisomy 21 and 22q11.2 deletion, and another case of 47, XXY, were detected in fetuses with cardiac anomalies. Partial 5q deletion was found in a fetus with extracardiac malformations. In total, 141 of the fetuses survived after birth; termination of pregnancy was performed for 10 fetuses; only two fetuses had mild symptoms of dysphagia. CONCLUSION ARSA may be an underlying ultrasonic clue for genetic anomalies even in isolated ARSA. Fetuses with isolated ARSA cannot be ruled out for invasive antenatal diagnosis.
Collapse
Affiliation(s)
- Rui Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xia Qiu
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qi Shi
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wan Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mei He
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Qiao
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing He
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qi Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
24
|
Wright DC, Baluyot ML, Carmichael J, Darmanian A, Jose N, Ngo C, Heaps LS, Yendle A, Holman K, Ziso S, Khan F, Masi A, Silove N, Eapen V. Saliva DNA: An alternative biospecimen for single nucleotide polymorphism chromosomal microarray analysis in autism. Am J Med Genet A 2023; 191:2913-2920. [PMID: 37715344 DOI: 10.1002/ajmg.a.63400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Chromosomal microarray analysis (CMA) is typically performed for investigation of autism using blood DNA. However, blood collection poses significant challenges for autistic children with repetitive behaviors and sensory and communication issues, often necessitating physical restraint or sedation. Noninvasive saliva collection offers an alternative, however, no published studies to date have evaluated saliva DNA for CMA in autism. Furthermore, previous reports suggest that saliva is suboptimal for detecting copy number variation. We therefore aimed to evaluate saliva DNA for single nucleotide polymorphism (SNP) CMA in autistic children. Saliva DNA from 48 probands and parents (n = 133) was obtained with a mean concentration of 141.7 ng/μL. SNP CMA was successful in 131/133 (98.5%) patients from which we correlated the size and accuracy of a copy number variant(s) called between a proband and carrier parent, and for a subgroup (n = 17 probands) who had a previous CMA using blood sample. There were no discordant copy number variant results between the proband and carrier parent, or the subgroup, however, there was an acceptable mean size difference of 0.009 and 0.07 Mb, respectively. Our findings demonstrate that saliva DNA can be an alternative for SNP CMA in autism, which avoids blood collection with significant implications for clinical practice guidelines.
Collapse
Affiliation(s)
- Dale Cameron Wright
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Maria Lourdes Baluyot
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Johanna Carmichael
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Artur Darmanian
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ngaire Jose
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Con Ngo
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luke St Heaps
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Amber Yendle
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Katherine Holman
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Sylvia Ziso
- Cytogenetics Department, Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Feroza Khan
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Anne Masi
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
| | - Natalie Silove
- Child Development Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Valsa Eapen
- Academic Unit of Infant Child & Adolescent Psychiatry Services (AUCS), South Western Sydney Local Health District, Ingham Institute, Liverpool, Australia
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
25
|
Shil A, Levin L, Golan H, Meiri G, Michaelovski A, Sadaka Y, Aran A, Dinstein I, Menashe I. Comparison of three bioinformatics tools in the detection of ASD candidate variants from whole exome sequencing data. Sci Rep 2023; 13:18853. [PMID: 37914828 PMCID: PMC10620213 DOI: 10.1038/s41598-023-46258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogenous multifactorial neurodevelopmental condition with a significant genetic susceptibility component. Thus, identifying genetic variations associated with ASD is a complex task. Whole-exome sequencing (WES) is an effective approach for detecting extremely rare protein-coding single-nucleotide variants (SNVs) and short insertions/deletions (INDELs). However, interpreting these variants' functional and clinical consequences requires integrating multifaceted genomic information. We compared the concordance and effectiveness of three bioinformatics tools in detecting ASD candidate variants (SNVs and short INDELs) from WES data of 220 ASD family trios registered in the National Autism Database of Israel. We studied only rare (< 1% population frequency) proband-specific variants. According to the American College of Medical Genetics (ACMG) guidelines, the pathogenicity of variants was evaluated by the InterVar and TAPES tools. In addition, likely gene-disrupting (LGD) variants were detected based on an in-house bioinformatics tool, Psi-Variant, that integrates results from seven in-silico prediction tools. Overall, 372 variants in 311 genes distributed in 168 probands were detected by these tools. The overlap between the tools was 64.1, 22.9, and 23.1% for InterVar-TAPES, InterVar-Psi-Variant, and TAPES-Psi-Variant, respectively. The intersection between InterVar and Psi-Variant (I ∩ P) was the most effective approach in detecting variants in known ASD genes (PPV = 0.274; OR = 7.09, 95% CI = 3.92-12.22), while the union of InterVar and Psi Variant (I U P) achieved the highest diagnostic yield (20.5%).Our results suggest that integrating different variant interpretation approaches in detecting ASD candidate variants from WES data is superior to each approach alone. The inclusion of additional criteria could further improve the detection of ASD candidate variants.
Collapse
Affiliation(s)
- Apurba Shil
- Department of Epidemiology, Biostatistics, and Health Community Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liron Levin
- Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hava Golan
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Meiri
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Preschool Psychiatric Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Analya Michaelovski
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Child Development Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Yair Sadaka
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Child Development Center, Ministry of Health, Beer-Sheva, Israel
| | - Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Dinstein
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Psychology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idan Menashe
- Department of Epidemiology, Biostatistics, and Health Community Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
26
|
Zhu K, Bendl J, Rahman S, Vicari JM, Coleman C, Clarence T, Latouche O, Tsankova NM, Li A, Brennand KJ, Lee D, Yuan GC, Fullard JF, Roussos P. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. SCIENCE ADVANCES 2023; 9:eadg3754. [PMID: 37824614 PMCID: PMC10569714 DOI: 10.1126/sciadv.adg3754] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/01/2023] [Indexed: 10/14/2023]
Abstract
The cellular complexity of the human brain is established via dynamic changes in gene expression throughout development that is mediated, in part, by the spatiotemporal activity of cis-regulatory elements (CREs). We simultaneously profiled gene expression and chromatin accessibility in 45,549 cortical nuclei across six broad developmental time points from fetus to adult. We identified cell type-specific domains in which chromatin accessibility is highly correlated with gene expression. Differentiation pseudotime trajectory analysis indicates that chromatin accessibility at CREs precedes transcription and that dynamic changes in chromatin structure play a critical role in neuronal lineage commitment. In addition, we mapped cell type-specific and temporally specific genetic loci implicated in neuropsychiatric traits, including schizophrenia and bipolar disorder. Together, our results describe the complex regulation of cell composition at critical stages in lineage determination and shed light on the impact of spatiotemporal alterations in gene expression on neuropsychiatric disease.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James M. Vicari
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Claire Coleman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ovaun Latouche
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nadejda M. Tsankova
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aiqun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J. Brennand
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
27
|
Mudassir BU, Alotaibi MA, Kizilbash N, Alruwaili D, Alruwaili A, Alenezi M, Agha Z. Genome-wide CNV analysis uncovers novel pathogenic regions in cohort of five multiplex families with neurodevelopmental disorders. Heliyon 2023; 9:e19718. [PMID: 37810058 PMCID: PMC10558996 DOI: 10.1016/j.heliyon.2023.e19718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Structural reorganization of chromosomes by genomic duplications and/or deletions are known as copy number variations (CNVs). Pathogenic and disease susceptible CNVs alter gene dosage and its phenotypic expression that often leads to human genetic diseases including Neurological disorders. CNVs affecting same common genes in multiple neurodevelopmental disorders can better explain the shared clinical and genetic aetiology across brain diseases. Our study presents the novel copy number variations in a cohort of five multiplex consanguineous families with intellectual disability, microcephaly, ASD, epilepsy, and neurological syndromic features. Cytoscan HD microarray suite has revealed genome wide deletions, duplications and LOH regions which are co-segregating in the family members for the rare neurodevelopmental syndromic phenotypes. This study identifies 1q21.1 microduplication, 16p11.2 microduplication, Xp11.22 microduplication, 4p12 microdeletion and Xq21.1 microdeletion that significantly contribute to primary disease onset and its progression for the first time in Pakistani families. Our study has potential impact on the understanding of pathogenic genetic predisposition for appearance of complex and heterogeneous neurodevelopmental disorders with otherwise unexplained syndromic features. Identification of altered gene dosage across the genome is helpful in improved diagnosis, better disease management in day-to-day life activities of patients with cognitive impairment and genetic counselling of families where consanguinity is a tradition. Our study will contribute to expand the knowledge of genotype-phenotype expression and future gateways in therapeutics and precision medicine research will be open in Pakistan.
Collapse
Affiliation(s)
- Behjat Ul Mudassir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Nadeem Kizilbash
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Daliyah Alruwaili
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Anwar Alruwaili
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Modhi Alenezi
- Department of Medical Laboratory Technology, Northern Border University, Arar, Saudi Arabia
| | - Zehra Agha
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
28
|
Cohenour TL, Gulsrud A, Kasari C. Heterogeneity of autism symptoms in community-referred infants and toddlers at elevated or low familial likelihood of autism. Autism Res 2023; 16:1739-1749. [PMID: 37408377 PMCID: PMC10527623 DOI: 10.1002/aur.2973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
Evidence suggests autistic individuals at elevated familial likelihood of autism spectrum disorder (by virtue of having an autistic sibling) have stronger cognitive abilities on average than autistic individuals with no family history of the condition, who have a low familial likelihood of autism. Investigating phenotypic differences between community-referred infants and toddlers with autism symptoms at elevated or low familial likelihood of autism may provide important insight into heterogeneity in the emerging autism phenotype. This study compared behavioral, cognitive, and language abilities of community-referred infants and toddlers with confirmed autism symptoms at elevated (EL) or low familial likelihood of autism (LL). Participants were 121 children aged 12 to 36 months who participated in two larger randomized trials of parent-mediated interventions for children with autism symptoms. Behavioral phenotypes were compared across three groups: children with at least one autistic sibling (EL-Sibs, n = 30), those with at least one older, non-autistic sibling and no family history of autism (LL-Sibs, n = 40), and first-born children with no family history of autism (LL-FB, n = 51). EL-Sibs had less severe autism symptoms and stronger cognitive abilities than children in LL groups. While the rate of receptive language delay was similar across groups, the rate of expressive language delay was markedly lower among EL-Sibs. After controlling for age and nonverbal cognitive ability, EL-Sibs were significantly less likely to present with expressive language delay than LL-Sibs. Familial likelihood of autism may play an important role in shaping the emerging autism phenotype in infancy and toddlerhood.
Collapse
Affiliation(s)
| | - Amanda Gulsrud
- University of California, Los Angeles, Los Angeles, California, USA
| | - Connie Kasari
- University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
29
|
Milutinovic L, Grujicic R, Mandic Maravic V, Joksic I, Ljubomirovic N, Pejovic Milovancevic M. Autism spectrum disorder and Coffin-Siris syndrome-Case report. Front Psychiatry 2023; 14:1199710. [PMID: 37692302 PMCID: PMC10483805 DOI: 10.3389/fpsyt.2023.1199710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Autism spectrum disorders (ASDs) are a group of developmental disorders characterized by deficits in social communicative skills and the occurrence of repetitive and/or stereotyped behaviors. Coffin-Siris syndrome (CSS) is classically characterized by aplasia or hypoplasia of the distal phalanx or nail of the fifth and additional digits, developmental or cognitive delay of varying degrees, distinctive facial features, hypotonia, hirsutism/hypertrichosis, and sparse scalp hair. In this study, we present a detailed description of autistic traits in a boy diagnosed with CSS and further discuss their genetic backgrounds. Case description An 8-year-old boy with ASD, congenital anomalies, and neurological problems had been diagnosed with Coffin-Siris syndrome after genetic testing. Genetic testing revealed a heterozygous de novo pathogenic variant (class 5) c.1638_1647del in the ARID1B gene that is causative of Coffin-Siris syndrome but also other intellectual disability (ID)-related disorders, including autism. Tests that preceded the diagnoses, as well as congenital anomalies and developmental issues, were further described in an attempt to better present his phenotype. Conclusion Both autism and ARID1B-related disorders are on a spectrum. This report points out the importance and necessity of further research regarding the genetic backgrounds of these disorders to understand their complex etiology.
Collapse
Affiliation(s)
- Luka Milutinovic
- Clinical Department for Children and Adolescents, Institute of Mental Health, Belgrade, Serbia
| | - Roberto Grujicic
- Clinical Department for Children and Adolescents, Institute of Mental Health, Belgrade, Serbia
| | - Vanja Mandic Maravic
- Day Hospital for Psychotic Disorders, Institute of Mental Health, Belgrade, Serbia
| | - Ivana Joksic
- Clinic for Gynecology and Obstetrics “Narodni Front”, Belgrade, Serbia
| | - Natasa Ljubomirovic
- Clinical Department for Children and Adolescents, Institute of Mental Health, Belgrade, Serbia
| | | |
Collapse
|
30
|
Cirnigliaro M, Chang TS, Arteaga SA, Pérez-Cano L, Ruzzo EK, Gordon A, Bicks LK, Jung JY, Lowe JK, Wall DP, Geschwind DH. The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proc Natl Acad Sci U S A 2023; 120:e2215632120. [PMID: 37506195 PMCID: PMC10400943 DOI: 10.1073/pnas.2215632120] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Timothy S. Chang
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Stephanie A. Arteaga
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Laura Pérez-Cano
- STALICLA Discovery and Data Science Unit, World Trade Center, Barcelona08039, Spain
| | - Elizabeth K. Ruzzo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Aaron Gordon
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Lucy K. Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Jae-Yoon Jung
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Jennifer K. Lowe
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Dennis P. Wall
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Stanford, CA94304
- Department of Biomedical Data Science, Stanford University, Stanford, CA94305
| | - Daniel H. Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Movement Disorders Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
31
|
Montanucci L, Lewis-Smith D, Collins RL, Niestroj LM, Parthasarathy S, Xian J, Ganesan S, Macnee M, Brünger T, Thomas RH, Talkowski M, Helbig I, Leu C, Lal D. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat Commun 2023; 14:4392. [PMID: 37474567 PMCID: PMC10359300 DOI: 10.1038/s41467-023-39539-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | | | - Shridhar Parthasarathy
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie Xian
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Ganesan
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie Macnee
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Clinical Neurosciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA.
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US.
| |
Collapse
|
32
|
Wroten M, Yoon S, Andrews P, Yamrom B, Ronemus M, Buja A, Krieger AM, Levy D, Ye K, Wigler M, Iossifov I. Sharing parental genomes by siblings concordant or discordant for autism. CELL GENOMICS 2023; 3:100319. [PMID: 37388917 PMCID: PMC10300587 DOI: 10.1016/j.xgen.2023.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/30/2022] [Accepted: 04/12/2023] [Indexed: 07/01/2023]
Abstract
Studying thousands of families, we find siblings concordant for autism share more of their parental genomes than expected by chance, and discordant siblings share less, consistent with a role of transmission in autism incidence. The excess sharing of the father is highly significant (p value of 0.0014), with less significance for the mother (p value of 0.31). To compare parental sharing, we adjust for differences in meiotic recombination to obtain a p value of 0.15 that they are shared equally. These observations are contrary to certain models in which the mother carries a greater load than the father. Nevertheless, we present models in which greater sharing of the father is observed even though the mother carries a greater load. More generally, our observations of sharing establish quantitative constraints that any complete genetic model of autism must satisfy, and our methods may be applicable to other complex disorders.
Collapse
Affiliation(s)
- Mathew Wroten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Seungtai Yoon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Boris Yamrom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Andreas Buja
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Abba M. Krieger
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kenny Ye
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- New York Genome Center, New York, NY, USA
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- New York Genome Center, New York, NY, USA
| |
Collapse
|
33
|
Apte M, Kumar A. Correlation of mutated gene and signalling pathways in ASD. IBRO Neurosci Rep 2023; 14:384-392. [PMID: 37101819 PMCID: PMC10123338 DOI: 10.1016/j.ibneur.2023.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autism is a complicated spectrum of neurodevelopmental illnesses characterized by repetitive and constrained behaviors and interests, as well as social interaction and communication difficulties that are first shown in infancy. More than 18 million Indians, according to the National Health Portal of India, and 1 in 160 children worldwide, according to the WHO, are diagnosed with autism spectrum disorders. This review aims to discuss the complex genetic architecture that underlies autism and summarizes the role of proteins likely to play in the development of autism. We also consider how genetic mutations can affect convergent signaling pathways and hinder the development of brain circuitry and the role of cognition development and theory of mind with Cognition-behavior therapy benefits in autism.
Collapse
Affiliation(s)
- Madhavi Apte
- Quality Assurance and Pharmacognosy and Phytochemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| | - Aayush Kumar
- Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, 400056 Mumbai, India
| |
Collapse
|
34
|
More RP, Warrier V, Brunel H, Buckingham C, Smith P, Allison C, Holt R, Bradshaw CR, Baron-Cohen S. Identifying rare genetic variants in 21 highly multiplex autism families: the role of diagnosis and autistic traits. Mol Psychiatry 2023; 28:2148-2157. [PMID: 36702863 PMCID: PMC10575770 DOI: 10.1038/s41380-022-01938-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
Autism is a highly heritable, heterogeneous, neurodevelopmental condition. Large-scale genetic studies, predominantly focussing on simplex families and clinical diagnoses of autism have identified hundreds of genes associated with autism. Yet, the contribution of these classes of genes to multiplex families and autistic traits still warrants investigation. Here, we conducted whole-genome sequencing of 21 highly multiplex autism families, with at least three autistic individuals in each family, to prioritise genes associated with autism. Using a combination of both autistic traits and clinical diagnosis of autism, we identify rare variants in genes associated with autism, and related neurodevelopmental conditions in multiple families. We identify a modest excess of these variants in autistic individuals compared to individuals without an autism diagnosis. Finally, we identify a convergence of the genes identified in molecular pathways related to development and neurogenesis. In sum, our analysis provides initial evidence to demonstrate the value of integrating autism diagnosis and autistic traits to prioritise genes.
Collapse
Affiliation(s)
- Ravi Prabhakar More
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Helena Brunel
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Clara Buckingham
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Paula Smith
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Carrie Allison
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
35
|
Singer A, Lutz A, Escher J, Halladay A. A full semantic toolbox is essential for autism research and practice to thrive. Autism Res 2023; 16:497-501. [PMID: 36508163 DOI: 10.1002/aur.2876] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Individuals diagnosed with autism spectrum disorder (ASD) present with a highly diverse set of challenges, disabilities, impairments and strengths. Recently, it has been suggested that researchers and practitioners avoid using certain words to describe the difficulties and impairments experienced by individuals with ASD to reduce stigma. The proposed limitations on terminology were developed by only a subset of the autism community, and the recommendations are already causing negative consequences that may be harmful to future scientific and clinical endeavors and, ultimately, to people with ASD. No one should have the power to censor language to exclude the observable realities of autism. Scientists and clinicians must be able to use any scientifically accurate terms necessary to describe the wide range of autistic people they study and support, without fear of censure or retribution.
Collapse
Affiliation(s)
| | - Amy Lutz
- History and Sociology of Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill Escher
- National Council on Severe Autism, San Jose, California, USA
| | - Alycia Halladay
- Autism Science Foundation, New York, New York, USA
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
36
|
Joseph RM, Lai ER, Bishop S, Yi J, Bauman ML, Frazier JA, Santos HP, Douglas LM, Kuban KK, Fry RC, O’Shea MT. Comparing autism phenotypes in children born extremely preterm and born at term. Autism Res 2023; 16:653-666. [PMID: 36595641 PMCID: PMC10551822 DOI: 10.1002/aur.2885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
Children born preterm are at increased risk for autism spectrum disorder (ASD). There is limited knowledge about whether ASD phenotypes in children born preterm differ from children born at term. The objective of this study was to compare ASD core symptoms and associated characteristics among extremely preterm (EP) and term-born children with ASD. EP participants (n = 59) from the Extremely Low Gestational Age Newborn Study who met diagnostic criteria for ASD at approximately 10 years of age were matched with term-born participants from the Simons Simplex Collection on age, sex, spoken language level, and nonverbal IQ. Core ASD symptomatology was evaluated with the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS). Developmental milestones, anthropometrics, seizure disorder, and psychiatric symptoms were also investigated. The EP group had lower parent-reported symptom scores on ADI-R verbal communication, specifically stereotyped language, and restricted, repetitive behaviors. There were no between-group differences on ADI-R nonverbal communication and ADI-R reciprocal social interaction or with direct observation on the ADOS-2. The EP group was more likely to have delayed speech milestones and lower physical growth parameters. Results from female-only analyses were similar to those from whole-group analyses. In sum, behavioral presentation was similar between EP and IQ- and sex-matched term-born children assessed at age 10 years, with the exception of less severe retrospectively reported stereotyped behaviors, lower physical growth parameters, and increased delays in language milestones among EP-born children with ASD.
Collapse
Affiliation(s)
- Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Emily R. Lai
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Somer Bishop
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joe Yi
- Department of Allied Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L. Bauman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hudson P. Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | | | - Karl K.C. Kuban
- Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael T. O’Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Tamura T, Yamamoto Shimojima K, Shiihara T, Sakazume S, Okamoto N, Yagasaki H, Morioka I, Kanno H, Yamamoto T. Interstitial microdeletions of 3q26.2q26.31 in two patients with neurodevelopmental delay and distinctive features. Am J Med Genet A 2023; 191:400-407. [PMID: 36345653 DOI: 10.1002/ajmg.a.63034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Interstitial microdeletions in the long arm of chromosome 3 are rare. In this study, we identified two patients with approximately 5-Mb overlapping deletions in the 3q26.2q26.31 region. Both patients showed neurodevelopmental delays, congenital heart defects, and distinctive facial features. One of them showed growth deficiency and brain abnormalities, as shown on a magnetic resonance imaging scan. Haploinsufficiency of NLGN1 and FNDC3B present in the common deletion region was considered to be responsible for neurodevelopmental delay and the distinctive features, respectively. The possibility of unmasked variants in PLD1 was considered and analyzed, but no possible pathogenic variant was found, and the mechanism of the congenital heart defects observed in the patients is unknown. Because 3q26.2q26.31 deletions are rare, more information is required to establish genotype-phenotype correlations associated with microdeletions in this region.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Yamamoto Shimojima
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Shiihara
- Department of Neurology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Satoru Sakazume
- Department of Pediatrics, Japanese Red Cross Haramachi Hospital, Gunma, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
38
|
Barone R, Cirnigliaro L, Saccuzzo L, Valdese S, Pettinato F, Prato A, Bernardini L, Fichera M, Rizzo R. PARK2 microdeletion in a multiplex family with autism spectrum disorder. Int J Dev Neurosci 2023; 83:121-131. [PMID: 36478299 DOI: 10.1002/jdn.10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND PARK2 (PRKN; MIM*602544) encodes Parkin protein, an ubiquitin-protein ligase required for proteasomal degradation and operating in the synaptic compartments. Copy number variations (CNVs) involving PARK2 have been associated with autism spectrum disorder (ASD). We report on a family with ASD (multiplex family) harbouring a microdeletion at chr. 6q26 causing PARK2 disruption. METHODS CNV analyses were performed using CGH/SNP-array platforms, and the detected microdeletion was confirmed by real-time quantitative PCR. Standardized psychometric evaluation was used for neurobehavioral characterization. RESULTS We found an intragenic ~157 kb microdeletion of the chromosomal region 6q26 causing PARK2 disruption in two male sibs with ASD and syndromic phenotype. They both had dysmorphic facial features with coarse faces, deeply set eyes with long horizontal palpebral fissures, long eyelashes and thick eyebrows, fleshy lips and mild skeletal problems. We found an intrafamilial clinical heterogeneity owing to different severity of the autism symptoms between the affected sibs: the younger one had minimally verbal autism and severe intellectual disability, whereas his older brother presented high-functioning autism and preserved speech. Parental analysis and real-time PCR using a PRKN fragment mapping within the deletion demonstrated that the deletion was inherited from their father having subthreshold features of ASD consisting with broad autism phenotype. CONCLUSIONS The study corroborates the hypothesis that PARK2 aberrations may be associated with ASD and highlights correlations between CNV affecting PARK2 and ASD in a multiplex family. We show remarkable intrafamilial variability in the severity of inherited ASD associated with PARK2 microdeletion.
Collapse
Affiliation(s)
- Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lucia Saccuzzo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Silvia Valdese
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Fabio Pettinato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Adriana Prato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Laura Bernardini
- Cytogenetics Unit, IRCCS Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Marco Fichera
- Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy.,Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
39
|
Song AY, Bakulski K, Feinberg JI, Newschaffer C, Croen LA, Hertz-Picciotto I, Schmidt RJ, Farzadegan H, Lyall K, Fallin MD, Volk HE, Ladd-Acosta C. Associations between accelerated parental biologic age, autism spectrum disorder, social traits, and developmental and cognitive outcomes in their children. Autism Res 2022; 15:2359-2370. [PMID: 36189953 PMCID: PMC9722613 DOI: 10.1002/aur.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Parental age is a known risk factor for autism spectrum disorder (ASD), however, studies to identify the biologic changes underpinning this association are limited. In recent years, "epigenetic clock" algorithms have been developed to estimate biologic age and to evaluate how the epigenetic aging impacts health and disease. In this study, we examined the relationship between parental epigenetic aging and their child's prospective risk of ASD and autism related quantitative traits in the Early Autism Risk Longitudinal Investigation study. Estimates of epigenetic age were computed using three robust clock algorithms and DNA methylation measures from the Infinium HumanMethylation450k platform for maternal blood and paternal blood specimens collected during pregnancy. Epigenetic age acceleration was defined as the residual of regressing chronological age on epigenetic age while accounting for cell type proportions. Multinomial logistic regression and linear regression models were completed adjusting for potential confounders for both maternal epigenetic age acceleration (n = 163) and paternal epigenetic age acceleration (n = 80). We found accelerated epigenetic aging in mothers estimated by Hannum's clock was significantly associated with lower cognitive ability and function in offspring at 12 months, as measured by Mullen Scales of Early Learning scores (β = -1.66, 95% CI: -3.28, -0.04 for a one-unit increase). We also observed a marginal association between accelerated maternal epigenetic aging by Horvath's clock and increased odds of ASD in offspring at 36 months of age (aOR = 1.12, 95% CI: 0.99, 1.26). By contrast, fathers accelerated aging was marginally associated with decreased ASD risk in their offspring (aOR = 0.83, 95% CI: 0.68, 1.01). Our findings suggest epigenetic aging could play a role in parental age risks on child brain development.
Collapse
Affiliation(s)
- Ashley Y. Song
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann
Arbor, MI
| | - Jason I. Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Craig Newschaffer
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- College of Health and Human Development, Pennsylvania State
University, State College, PA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and The MIND
Institute, School of Medicine, University of California-Davis, Davis, CA
| | - Homayoon Farzadegan
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University,
Philadelphia, PA
| | - M. Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta,
Georgia, USA
| | - Heather E. Volk
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Christine Ladd-Acosta
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
- Wendy Klag Center for Autism and Developmental
Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD
| |
Collapse
|
40
|
Wang Y, Ling Y, Gong J, Zhao X, Zhou H, Xie B, Lou H, Zhuang X, Jin L, The Han100K Initiative, Fan S, Zhang G, Xu S. PGG.SV: a whole-genome-sequencing-based structural variant resource and data analysis platform. Nucleic Acids Res 2022; 51:D1109-D1116. [PMID: 36243989 PMCID: PMC9825616 DOI: 10.1093/nar/gkac905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 01/30/2023] Open
Abstract
Structural variations (SVs) play important roles in human evolution and diseases, but there is a lack of data resources concerning representative samples, especially for East Asians. Taking advantage of both next-generation sequencing and third-generation sequencing data at the whole-genome level, we developed the database PGG.SV to provide a practical platform for both regionally and globally representative structural variants. In its current version, PGG.SV archives 584 277 SVs obtained from whole-genome sequencing data of 6048 samples, including 1030 long-read sequencing genomes representing 177 global populations. PGG.SV provides (i) high-quality SVs with fine-scale and precise genomic locations in both GRCh37 and GRCh38, covering underrepresented SVs in existing sequencing and microarray data; (ii) hierarchical estimation of SV prevalence in geographical populations; (iii) informative annotations of SV-related genes, potential functions and clinical effects; (iv) an analysis platform to facilitate SV-based case-control association studies and (v) various visualization tools for understanding the SV structures in the human genome. Taken together, PGG.SV provides a user-friendly online interface, easy-to-use analysis tools and a detailed presentation of results. PGG.SV is freely accessible via https://www.biosino.org/pggsv.
Collapse
Affiliation(s)
| | | | | | - Xiaohan Zhao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Hanwen Zhou
- Key Laboratory of Computational Biology, National Genomics Data Center & Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Xie
- Key Laboratory of Computational Biology, National Genomics Data Center & Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyi Lou
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xinhao Zhuang
- Key Laboratory of Computational Biology, National Genomics Data Center & Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | | | - Shaohua Fan
- Correspondence may also be addressed to Shaohua Fan.
| | - Guoqing Zhang
- Correspondence may also be addressed to Guoqing Zhang.
| | - Shuhua Xu
- To whom correspondence should be addressed. Tel: +86 21 31246617; Fax: +86 21 31246617;
| |
Collapse
|
41
|
Lee IH, Koelliker E, Kong SW. Quantitative trait locus analysis for endophenotypes reveals genetic substrates of core symptom domains and neurocognitive function in autism spectrum disorder. Transl Psychiatry 2022; 12:407. [PMID: 36153334 PMCID: PMC9509384 DOI: 10.1038/s41398-022-02179-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a heterogeneous group of neurodevelopmental disorders and is largely attributable to genetic risk factors. Phenotypic and genetic heterogeneity of ASD have been well-recognized; however, genetic substrates for endophenotypes that constitute phenotypic heterogeneity are not yet known. In the present study, we compiled data from the Autism Genetic Resource Exchange, which contains the demographic and detailed phenotype information of 11,961 individuals. Notably, the whole-genome sequencing data available from MSSNG and iHART for 3833 individuals in this dataset was used to perform an endophenotype-wide association study. Using a linear mixed model, genome-wide association analyses were performed for 29 endophenotype scores and 0.58 million common variants with variant allele frequency ≥ 5%. We discovered significant associations between 9 genetic variants and 6 endophenotype scores comprising neurocognitive development and severity scores for core symptoms of ASD at a significance threshold of p < 5 × 10-7. Of note, the Stereotyped Behaviors and Restricted Interests total score in Autism Diagnostic Observation Schedule Module 3 was significantly associated with multiple variants in the VPS13B gene, a causal gene for Cohen syndrome and a candidate gene for syndromic ASD. Our findings yielded loci with small effect sizes due to the moderate sample size and, thus, require validation in another cohort. Nonetheless, our endophenotype-wide association analysis extends previous candidate gene discovery in the context of genotype and endophenotype association. As a result, these candidate genes may be responsible for specific traits that constitute core symptoms and neurocognitive function of ASD rather than the disorder itself.
Collapse
Affiliation(s)
- In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | | | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
42
|
Fitzgerald T, Birney E. CNest: A novel copy number association discovery method uncovers 862 new associations from 200,629 whole-exome sequence datasets in the UK Biobank. CELL GENOMICS 2022; 2:100167. [PMID: 36779085 PMCID: PMC9903682 DOI: 10.1016/j.xgen.2022.100167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/11/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Copy number variation (CNV) is known to influence human traits, having a rich history of research into common and rare genetic disease, and although CNV is accepted as an important class of genomic variation, progress on copy-number-based genome-wide association studies (GWASs) from next-generation sequencing (NGS) data has been limited. Here we present a novel method for large-scale copy number analysis from NGS data generating robust copy number estimates and allowing copy number GWASs (CN-GWASs) to be performed genome-wide in discovery mode. We provide a detailed analysis in the UK Biobank resource and a specifically designed software package. We use these methods to perform CN-GWAS analysis across 78 human traits, discovering over 800 genetic associations that are likely to contribute strongly to trait distributions. Finally, we compare CNV and SNP association signals across the same traits and samples, defining specific CNV association classes.
Collapse
Affiliation(s)
- Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| |
Collapse
|
43
|
Transcriptomic analysis in the striatum reveals the involvement of Nurr1 in the social behavior of prenatally valproic acid-exposed male mice. Transl Psychiatry 2022; 12:324. [PMID: 35945212 PMCID: PMC9363495 DOI: 10.1038/s41398-022-02056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that exhibits neurobehavioral deficits characterized by abnormalities in social interactions, deficits in communication as well as restricted interests, and repetitive behaviors. The basal ganglia is one of the brain regions implicated as dysfunctional in ASD. In particular, the defects in corticostriatal function have been reported to be involved in the pathogenesis of ASD. Surface deformation of the striatum in the brains of patients with ASD and their correlation with behavioral symptoms was reported in magnetic resonance imaging (MRI) studies. We demonstrated that prenatal valproic acid (VPA) exposure induced synaptic and molecular changes and decreased neuronal activity in the striatum. Using RNA sequencing (RNA-Seq), we analyzed transcriptome alterations in striatal tissues from 10-week-old prenatally VPA-exposed BALB/c male mice. Among the upregulated genes, Nurr1 was significantly upregulated in striatal tissues from prenatally VPA-exposed mice. Viral knockdown of Nurr1 by shRNA significantly rescued the reduction in dendritic spine density and the number of mature dendritic spines in the striatum and markedly improved social deficits in prenatally VPA-exposed mice. In addition, treatment with amodiaquine, which is a known ligand for Nurr1, mimicked the social deficits and synaptic abnormalities in saline-exposed mice as observed in prenatally VPA-exposed mice. Furthermore, PatDp+/- mice, a commonly used ASD genetic mouse model, also showed increased levels of Nurr1 in the striatum. Taken together, these results suggest that the increase in Nurr1 expression in the striatum is a mechanism related to the changes in synaptic deficits and behavioral phenotypes of the VPA-induced ASD mouse model.
Collapse
|
44
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
45
|
Song X, Xu W, Xiao M, Lu Y, Lan X, Tang X, Xu N, Yu G, Zhang H, Wu S. Two novel heterozygous truncating variants in NR4A2 identified in patients with neurodevelopmental disorder and brief literature review. Front Neurosci 2022; 16:956429. [PMID: 35992907 PMCID: PMC9383035 DOI: 10.3389/fnins.2022.956429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022] Open
Abstract
Pathogenic variants in the nuclear receptor superfamily 4 group A member 2 (NR4A2) cause an autosomal dominant neurodevelopmental disorder with or without seizures. Here, we described two patients presenting with developmental delay, language impairment, and attention-deficit hyperactivity disorder. Trio-based whole exome sequencing revealed two novel heterozygous variants, c.1541-2A > C and c.915C > A, in NR4A2. Both variants were identified as de novo and confirmed by Sanger sequencing. In vitro functional analyses were performed to assess their effects on expression of mRNA or protein. The canonical splicing variant c.1541-2A > C caused aberrant splicing, leading to the retention of intron 7 and a truncated protein due to an early termination codon within intron 7 with decreased protein expression, while the variant c.915C > A was shown to result in a shorter protein with increased expression level unexpectedly. The clinical and genetic characteristics of the previously published patients were briefly reviewed for highlighting the potential link between mutations and phenotypes. Our research further confirms that NR4A2 is a disease-causing gene of neurodevelopmental disorders and suggests alterations in different domains of NR4A2 cause various severity of symptoms.
Collapse
Affiliation(s)
- Xiaozhen Song
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuhen Xu
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Man Xiao
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfen Lu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Lan
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Tang
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nanjie Xu
- Research Center of Translational Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hong Zhang,
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shengnan Wu,
| |
Collapse
|
46
|
Li X, Ma S, Yan W, Wu Y, Kong H, Zhang M, Luo X, Xia J. dbBIP: a comprehensive bipolar disorder database for genetic research. Database (Oxford) 2022; 2022:baac049. [PMID: 35779245 PMCID: PMC9250320 DOI: 10.1093/database/baac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/28/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Bipolar disorder (BIP) is one of the most common hereditary psychiatric disorders worldwide. Elucidating the genetic basis of BIP will play a pivotal role in mechanistic delineation. Genome-wide association studies (GWAS) have successfully reported multiple susceptibility loci conferring BIP risk, thus providing insight into the effects of its underlying pathobiology. However, difficulties remain in the extrication of important and biologically relevant data from genetic discoveries related to psychiatric disorders such as BIP. There is an urgent need for an integrated and comprehensive online database with unified access to genetic and multi-omics data for in-depth data mining. Here, we developed the dbBIP, a database for BIP genetic research based on published data. The dbBIP consists of several modules, i.e.: (i) single nucleotide polymorphism (SNP) module, containing large-scale GWAS genetic summary statistics and functional annotation information relevant to risk variants; (ii) gene module, containing BIP-related candidate risk genes from various sources and (iii) analysis module, providing a simple and user-friendly interface to analyze one's own data. We also conducted extensive analyses, including functional SNP annotation, integration (including summary-data-based Mendelian randomization and transcriptome-wide association studies), co-expression, gene expression, tissue expression, protein-protein interaction and brain expression quantitative trait loci analyses, thus shedding light on the genetic causes of BIP. Finally, we developed a graphical browser with powerful search tools to facilitate data navigation and access. The dbBIP provides a comprehensive resource for BIP genetic research as well as an integrated analysis platform for researchers and can be accessed online at http://dbbip.xialab.info. Database URL: http://dbbip.xialab.info.
Collapse
Affiliation(s)
- Xiaoyan Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Shunshuai Ma
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Wenhui Yan
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Yong Wu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 93 Youyi Road, Qiaokou District, Wuhan, Hubei 430030, China
| | - Hui Kong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Mingshan Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Xiongjian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang East Road, Wuhua District, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Panlong District, Kunming, Yunnan 650204, China
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| |
Collapse
|
47
|
Integrative analysis prioritised oxytocin-related biomarkers associated with the aetiology of autism spectrum disorder. EBioMedicine 2022; 81:104091. [PMID: 35665681 PMCID: PMC9301877 DOI: 10.1016/j.ebiom.2022.104091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high phenotypic and genetic heterogeneity. The common variants of specific oxytocin-related genes (OTRGs), particularly OXTR, are associated with the aetiology of ASD. The contribution of rare genetic variations in OTRGs to ASD aetiology remains unclear. Methods We catalogued publicly available de novo mutations (DNMs) [from 6,511 patients with ASD and 3,391 controls], rare inherited variants (RIVs) [from 1,786 patients with ASD and 1,786 controls], and both de novo copy number variations (dnCNVs) and inherited CNVs (ihCNVs) [from 15,581 patients with ASD and 6,017 controls] in 963 curated OTRGs to explore their contribution to ASD pathology, respectively. Finally, a combined model was designed to prioritise the contribution of each gene to ASD aetiology by integrating DNMs and CNVs. Findings The rare genetic variations of OTRGs were significantly associated with ASD aetiology, in the order of dnCNVs > ihCNVs > DNMs. Furthermore, 172 OTRGs and their connected 286 ASD core genes were prioritised to positively contribute to ASD aetiology, including top-ranked MAPK3. Probands carrying rare disruptive variations in these genes were estimated to account for 10∼11% of all ASD probands. Interpretation Our findings suggest that rare disruptive variations in 172 OTRGs and their connected 286 ASD core genes are associated with ASD aetiology and may be potential biomarkers predicting the effects of oxytocin treatment. Funding Guangdong Key Project, National Natural Science Foundation of China, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province.
Collapse
|
48
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Terashima H, Minatohara K, Maruoka H, Okabe S. Imaging neural circuit pathology of autism spectrum disorders: autism-associated genes, animal models and the application of in vivo two-photon imaging. Microscopy (Oxf) 2022; 71:i81-i99. [DOI: 10.1093/jmicro/dfab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent advances in human genetics identified genetic variants involved in causing autism spectrum disorders (ASDs). Mouse models that mimic mutations found in patients with ASD exhibit behavioral phenotypes consistent with ASD symptoms. These mouse models suggest critical biological factors of ASD etiology. Another important implication of ASD genetics is the enrichment of ASD risk genes in molecules involved in developing synapses and regulating neural circuit function. Sophisticated in vivo imaging technologies applied to ASD mouse models identify common synaptic impairments in the neocortex, with genetic-mutation-specific defects in local neural circuits. In this article, we review synapse- and circuit-level phenotypes identified by in vivo two-photon imaging in multiple mouse models of ASD and discuss the contributions of altered synapse properties and neural circuit activity to ASD pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Terashima
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichiro Minatohara
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisato Maruoka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|