1
|
Kalailingam P, Rannikmae K, Hausman-Kedem M, Musolino PL, Ruigrok YM. Genetic Insights Into Hemorrhagic Stroke and Vascular Malformations: Pathogenesis and Emerging Therapeutic Strategies. Stroke 2025; 56:1298-1311. [PMID: 40084704 PMCID: PMC12037314 DOI: 10.1161/strokeaha.124.045182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Brain arteriovenous malformations (AVMs), cerebral cavernous malformations (CCMs), and intracranial aneurysms are major causes of hemorrhagic stroke, yet noninvasive therapies to prevent growth or rupture are lacking. Understanding the genetic basis of these malformations is critical for uncovering underlying mechanisms, developing targeted prevention strategies, and identifying novel therapeutic targets. This review highlights the causal genes and signaling pathways in AVMs, CCMs, and intracranial aneurysms, noting both their commonalities and differences. For AVMs, somatic mutations in the RAS (rat sarcoma virus)/MAPK (mitogen-activated protein kinase) and MAPK/ERK (extracellular signal-regulated kinase) pathway are key, particularly in sporadic cases, whereas hereditary conditions like hereditary hemorrhagic telangiectasia and capillary malformation-AVM involve the TGF-β (transforming growth factor β), Ephrin receptor, and angiopoietin-VEGF (vascular endothelial growth factor) signaling pathways. In CCMs, pathways affecting endothelial junctions and vascular stability, such as the ROCK (RhoA/Rho-associated coiled-coil containing kinases) pathway, play a central role. Although the genetic drivers of intracranial aneurysms are more diverse and less clearly linked to specific pathways, there is some overlap with genes in the TGF-β and endothelial function pathways seen in AVMs and CCMs. Emerging therapies for AVMs and CCMs include MAPK/ERK inhibitors, anti-VEGF treatments, and RhoA/ROCK inhibitors, showing potential in preclinical models. Due to the genetic overlap, these advancements may also offer future therapeutic strategies for intracranial aneurysms. As personalized medicine progresses, the development of reliable biomarkers, such as the candidate biomarker VEGF for AVMs and CCMs, will be crucial for guiding treatment decisions. In conclusion, ongoing research into genetic pathways holds promise for novel therapeutic targets that could transform the management of vascular malformations and reduce the risk of hemorrhagic stroke.
Collapse
Affiliation(s)
- Pazhanichamy Kalailingam
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kristiina Rannikmae
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Moran Hausman-Kedem
- Pediatric Neurology Institute, Tel Aviv Medical Center, Tel Aviv, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Patricia L. Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Hou W, Hou Y, Ren X, Liu J. Hereditary Haemorrhagic Cerebrovascular Disease: Implications for Clinical Management. Ann Neurosci 2025:09727531241308346. [PMID: 40115281 PMCID: PMC11920984 DOI: 10.1177/09727531241308346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2025] Open
Abstract
Background At present, treatment of hereditary haemorrhagic cerebrovascular disease remains in the symptomatic stage. It is more important to provide strategies for developing rational treatment methods, expanding our understanding with regard to the pathophysiology in the context of familial diseases. Summary In this article, the combined data from the literature on diseases, including familial cerebral cavernous haemangiomas, hereditary cerebral haemorrhage with amyloidosis, familial intracranial aneurysms, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, were reviewed to manage the haemorrhagic diseases discussed through genetic counselling and early prevention and treatment of these patients and their families, the genetics, pathogenesis, clinical manifestations and treatment. Key Messages It is important to understand and treat hereditary haemorrhagic cerebrovascular disease through genetic treatment options.
Collapse
Affiliation(s)
- Wanting Hou
- Department of Pathology, Medical College of Yanbian University, Gongyuan, Yanji, China
| | - Yanbo Hou
- Department of Pathology, Medical College of Yanbian University, Gongyuan, Yanji, China
| | - Xiangshan Ren
- Department of Pathology, Medical College of Yanbian University, Gongyuan, Yanji, China
| | - Jingyao Liu
- Department of Neurology, The First Hospital, Jilin University, Jilin, Changchun, China
| |
Collapse
|
3
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
4
|
Abulizi A, Su R, Wu P, Cheng X, Aisha M, Wang Z. Genetic Insights into the Enigma of Family Intracranial Aneurysms. World Neurosurg 2025; 193:135-140. [PMID: 39481842 DOI: 10.1016/j.wneu.2024.10.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Familial intracranial aneurysms (FIAs) are distinguished by significant genetic predisposition, leading to clustering of cases within families and heightening the risk of subarachnoid hemorrhage following aneurysm rupture. This review analyzes recent advancements in understanding the genetic and molecular mechanisms underlying FIAs, focusing on key genetic risk factors and environmental influences. We explore cutting-edge genome-wide association studies and next-generation sequencing technologies, which have identified susceptibility genes such as ANGPTL6, peptidyl proline cis-trans isomerase like protein 4, and NOTCH3 as crucial contributors to FIA pathophysiology. By incorporating findings from multiomics and gene-editing research, we highlight the potential for improved screening, preventive strategies, and therapeutic approaches. These insights are essential to advancing precision medicine in managing FIAs, paving the way for collaborative research and targeted interventions.
Collapse
Affiliation(s)
- Alimasi Abulizi
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Riqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojiang Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaitili Aisha
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
5
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 PMCID: PMC12146881 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 845] [Impact Index Per Article: 845.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
6
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
7
|
Djaffardjy M, Marchment G, Sebe C, Blanchet R, Bellajhame K, Gaignard A, Lemoine F, Cohen-Boulakia S. Developing and reusing bioinformatics data analysis pipelines using scientific workflow systems. Comput Struct Biotechnol J 2023; 21:2075-2085. [PMID: 36968012 PMCID: PMC10030817 DOI: 10.1016/j.csbj.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Data analysis pipelines are now established as an effective means for specifying and executing bioinformatics data analysis and experiments. While scripting languages, particularly Python, R and notebooks, are popular and sufficient for developing small-scale pipelines that are often intended for a single user, it is now widely recognized that they are by no means enough to support the development of large-scale, shareable, maintainable and reusable pipelines capable of handling large volumes of data and running on high performance computing clusters. This review outlines the key requirements for building large-scale data pipelines and provides a mapping of existing solutions that fulfill them. We then highlight the benefits of using scientific workflow systems to get modular, reproducible and reusable bioinformatics data analysis pipelines. We finally discuss current workflow reuse practices based on an empirical study we performed on a large collection of workflows.
Collapse
|
8
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2306] [Impact Index Per Article: 1153.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
9
|
Shen J, Huang K, Zhu Y, Weng Y, Xiao F, Mungur R, Wu F, Pan J, Zhan R. Mean arterial pressure-aneurysm neck ratio predicts the rupture risk of intracranial aneurysm by reflecting pressure at the dome. Front Aging Neurosci 2023; 15:1082800. [PMID: 36819719 PMCID: PMC9928879 DOI: 10.3389/fnagi.2023.1082800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Background and purpose The unruptured intracranial aneurysm (UIA) has high disability and mortality rate after rupture, it is particularly important to assess the risk of UIA and to carry out individualized treatment. The objective of this research is to introduce a novel parameter to predict the rupture risk of UIA. Methods A total of 649 patients with 964 intracranial aneurysms in our center were enrolled. A novel parameter named mean arterial pressure-aneurysmal neck ratio (MAPN) was defined. Ten baseline clinical features and twelve aneurysm morphological characteristics were extracted to generate the MAPN model. The discriminatory performance of the MAPN model was compared with the PHASES score and the UCAS score. Results In hemodynamic analysis, MAPN was positively correlated with wall shear stress and aneurysm top pressure, with Pearson correlation coefficients of 0.887 and 0.791, respectively. The MAPN was larger in the ruptured group (36.62 ± 18.96 vs. 28.38 ± 14.58, P < 0.001). The area under the curve (AUC) of the MAPN was superior than the AUC of aspect ratio (AR) and the bottleneck factor (BN), they were 0.64 (P < 0.001; 95% CI, 0.588-0.692), 0.611 (P < 0.001; 95% CI, 0.559-0.663) and 0.607 (P < 0.001; 95% CI, 0.554-0.660), respectively. The MAPN model constructed by aneurysm size, aneurysm location, presence of secondary sacs and MAPN, demonstrated good discriminatory ability. The MAPN model exhibited superior performance compared with the UCAS score and the PHASES score (the AUC values were 0.799 [P < 0.001; 95% CI, 0.756-0.840], 0.763 [P < 0.001; 95% CI,0.719-0.807] and 0.741 [P < 0.001; 95% CI, 0.695-0.787], respectively; the sensitivities were 0.849, 0.758 and 0.753, respectively). Conclusions Research demonstrates the potential of MAPN to augment the clinical decision-making process for assessing the rupture risk of UIAs.
Collapse
|
10
|
Genome-wide linkage analysis combined with genome sequencing in large families with intracranial aneurysms. Eur J Hum Genet 2022; 30:833-840. [PMID: 35228681 PMCID: PMC9259640 DOI: 10.1038/s41431-022-01059-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rupture of an intracranial aneurysm (IA) leads to aneurysmal subarachnoid haemorrhage (ASAH), a severe type of stroke. Some rare variants that cause IA in families have been identified, but still, the majority of genetic causes, as well as the biological mechanisms of IA development and rupture, remain unknown. We aimed to identify rare, damaging variants for IA in three large Dutch families with multiple affected members with IA (N = 9, 11, and 6). By combining linkage analysis and genome sequencing (GS), we identified six rare and damaging variants for which all cases within one of the families were heterozygous. These variants were p.Tyr87Cys in SYCP1, p.Phe1077Leu in FMNL2, p.Thr754Lys in TBC1D2, p.Arg321His in ZNF782, p.Arg979Trp in CCDC180, and p.Val125Met in NCBP1. None of the variants showed association with IA status in a large cohort of 937 patients from the general IA patient population and 1046 controls. Gene expression in IA and cerebral artery tissue further prioritized FMNL2 and TBC1D2 as potential important players in IA pathophysiology. Further studies are needed to characterize the functional consequences of the identified variants and their role in the biological mechanisms of IA.
Collapse
|
11
|
Aitkulova A, Mukhtarova K, Zholdybayeva E, Medetov Y, Dzhamantayeva B, Kassymbek K, Utupov T, Akhmetollayev I, Akshulakov S, Kulmambetova G, Ramankulov Y. Activated leukocyte cell adhesion molecule/cluster of differentiation 166 rs10933819 (G>A) variant is associated with familial intracranial aneurysms. Biomed Rep 2022; 17:65. [PMID: 35815187 PMCID: PMC9260160 DOI: 10.3892/br.2022.1548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022] Open
Abstract
Rupture of intracranial aneurysms (IAs) is the most common cause of subarachnoid hemorrhage (SAH). Currently, there is sufficient evidence to indicate that inflammatory responses contribute to aneurysm rupture. Moreover, the familial occurrence of SAH suggests that genetic factors may be involved in disease susceptibility. In the present study, a clinically proven case of IA in a patient who is a heterozygous mutation carrier of the activated leukocyte cell adhesion molecule (ALCAM)/cluster of differentiation 166 (CD166) gene, is reported. Genomic DNA was extracted from two siblings diagnosed with SAH and other available family members. A variant prioritization strategy that focused on functional prediction, frequency, predicted pathogenicity, and segregation within the family was employed. Sanger sequencing was also performed on the unaffected relatives to assess the segregation of variants within the phenotype. The verified mutations were sequenced in 145 ethnicity-matched healthy individuals. Based on whole exome sequencing data obtained from three individuals, two of whom were diagnosed with IAs, the single-nucleotide variant rs10933819 was prioritized in the family. Only one variant, rs10933819 (G>A), in ALCAM co-segregated with the phenotype, and this mutation was absent in ethnicity-matched healthy individuals. Collectively, ALCAM c1382 G>A p.Gly229Val was identified, for the first time, as a pathogenic mutation in this IA pedigree.
Collapse
Affiliation(s)
- Akbota Aitkulova
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Kymbat Mukhtarova
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Elena Zholdybayeva
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Yerkin Medetov
- National Center of Neurosurgery, Nazarbayev University, Nur Sultan 010000, Republic of Kazakhstan
| | - Botagoz Dzhamantayeva
- National Center of Neurosurgery, Nazarbayev University, Nur Sultan 010000, Republic of Kazakhstan
| | - Kuat Kassymbek
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Talgat Utupov
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Ilyas Akhmetollayev
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| | - Serik Akshulakov
- National Center of Neurosurgery, Nazarbayev University, Nur Sultan 010000, Republic of Kazakhstan
| | | | - Yerlan Ramankulov
- National Center for Biotechnology, Nur Sultan 010000, Republic of Kazakhstan
| |
Collapse
|
12
|
Boucherit J, Kerleroux B, Boulouis G, Tessier G, Rodriguez C, Sporns PB, Ghannouchi H, Shotar E, Gariel F, Marnat G, Burel J, Ifergan H, Forestier G, Rouchaud A, Desal H, Nouri A, Autrusseau F, Loirand G, Bourcier R, L'Allinec V. Bifurcation geometry remodelling of vessels in de novo and growing intracranial aneurysms: a multicenter study. J Neurointerv Surg 2022; 15:566-571. [PMID: 35577561 DOI: 10.1136/neurintsurg-2021-018487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Geometrical parameters, including arterial bifurcation angle, tortuosity, and arterial diameters, have been associated with the pathophysiology of intracranial aneurysm (IA) formation. The aim of this study was to investigate whether these parameters were present before or if they resulted from IA formation and growth. METHODS Patients from nine academic centers were retrospectively identified if they presented with a de novo IA or a significant IA growth on subsequent imaging. For each patient, geometrical parameters were extracted using a semi-automated algorithm and compared between bifurcations with IA formation or growth (aneurysmal group), and their contralateral side without IA (control group). These parameters were compared at two different times using univariable models, multivariable models, and a sensitivity analysis with paired comparison. RESULTS 46 patients were included with 21 de novo IAs (46%) and 25 significant IA growths (54%). The initial angle was not different between the aneurysmal and control groups (129.7±42.1 vs 119.8±34.3; p=0.264) but was significantly wider at the final stage (140.4±40.9 vs 121.5±34.1; p=0.032), with a more important widening of the aneurysmal angle (10.8±15.8 vs 1.78±7.38; p=0.001). Variations in other parameters were not significant. These results were confirmed by paired comparisons. CONCLUSION Our study suggests that wider bifurcation angles that have long been deemed causal factors for IA formation or growth may be secondary to IA formation at pathologic bifurcation sites. This finding has implications for our understanding of IA formation pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter B Sporns
- Department of Neuroradiology, University Hospital Basel, Basel, Switzerland
| | - Haroun Ghannouchi
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Eimad Shotar
- Neuroradiology, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Florent Gariel
- Interventional Neuroradiology, CHU Bordeaux GH Pellegrin, Bordeaux, France
| | - Gaultier Marnat
- Interventional and Diagnostic Neuroradiology, Bordeaux University Hospital, Bordeaux, France
| | | | - Heloise Ifergan
- Diagnostic and Interventional Neuroradiology, CHU Tours, Tours, France
| | | | - Aymeric Rouchaud
- Interventional Neuroradiology, Centre Hospitalier Universitaire de Limoges, Limoges, France.,Univ Limoges, CNRS, XLIM, UMR 7252, Limoges, France
| | - Hubert Desal
- Neuroradiology, University Hospital of Nantes, Nantes, France
| | - Anass Nouri
- ESC Nantes, Nantes, France.,Laboratoire des Systèmes Électroniques, Traitement de l'Information, Mécanique et Énergétique, Ibn Tofail University, Kenitra, Morocco
| | | | | | | | - Vincent L'Allinec
- Service de Neuroradiologie Diagnostique et Interventionnelle, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | |
Collapse
|
13
|
Whole-exome sequencing in a Japanese multiplex family identifies new susceptibility genes for intracranial aneurysms. PLoS One 2022; 17:e0265359. [PMID: 35299232 PMCID: PMC8929693 DOI: 10.1371/journal.pone.0265359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Intracranial aneurysms (IAs) cause subarachnoid hemorrhage, which has high rates of mortality and morbidity when ruptured. Recently, the role of rare variants in the genetic background of complex diseases has been increasingly recognized. The aim of this study was to identify rare variants for susceptibility to IA. Methods Whole-exome sequencing was performed on seven members of a Japanese pedigree with highly aggregated IA. Candidate genes harboring co-segregating rare variants with IA were re-sequenced and tested for association with IA using additional 500 probands and 323 non-IA controls. Functional analysis of rare variants detected in the pedigree was also conducted. Results We identified two gene variants shared among all four affected participants in the pedigree. One was the splicing donor c.1515+1G>A variant in NPNT (Nephronectin), which was confirmed to cause aberrant splicing by a minigene assay. The other was the missense p.P83T variant in CBY2 (Chibby family member 2). Overexpression of p.P83T CBY2 fused with red fluorescent protein tended to aggregate in the cytoplasm. Although Nephronectin has been previously reported to be involved in endothelial angiogenic functions, CBY2 is a novel molecule in terms of vascular pathophysiology. We confirmed that CBY2 was expressed in cerebrovascular smooth muscle cells in an isoform2-specific manner. Targeted CBY2 re-sequencing in additional case-control samples identified three deleterious rare variants (p.R46H, p.P83T, and p.L183R) in seven probands, showing a significant enrichment in the overall probands (8/501) compared to the controls (0/323) (p = 0.026, Fisher’s extract test). Conclusions NPNT and CBY2 were identified as novel susceptibility genes for IA. The highly heterogeneous and polygenic architecture of IA susceptibility can be uncovered by accumulating extensive analyses that focus on each pedigree with a high incidence of IA.
Collapse
|
14
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 3174] [Impact Index Per Article: 1058.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
15
|
Lefèvre S, Audrézet MP, Halimi JM, Longuet H, Bridoux F, Ecotière L, Augusto JF, Duveau A, Renaudineau E, Vigneau C, Frouget T, Charasse C, Gueguen L, Perrichot R, Couvrat G, Seret G. Diagnosis and Risk Factors for Intracranial Aneurysms in Autosomal Polycystic Kidney Disease: A cross-sectional study from the Genkyst Cohort. Nephrol Dial Transplant 2022; 37:2223-2233. [PMID: 35108395 DOI: 10.1093/ndt/gfac027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is associated with an increased risk for developing intracranial aneurysms (IAs). We aimed to evaluate the frequency of diagnosis of IAs in the cross-sectional, population-based, Genkyst cohort, to describe ADPKD-associated IAs and to analyze the risk factors associated with the occurrence of IAs in ADPKD patients. METHODS Cross-sectional study performed in 26 nephrology centers from the Western part of France. All patients underwent genetic testing for PKD1/PKD2 and other cystogenes. RESULTS Among the 2449 Genkyst participants, 114 (4.65%) had a previous diagnosis of ruptured or unruptured IAs at inclusion, and ∼47% of them had a positive familial history for IAs. Most aneurysms were small and saccular and located in the anterior circulation; 26.3% of the patients had multiple IAs. The cumulative probabilities of a previous diagnosis of IAs were 3.9, 6.2 and 8.1% at 50, 60 and 70 y, respectively. While this risk appeared to be similar in male and female individuals <50 y, after that age, the risk continued to increase more markedly in female patients, reaching 10.8% vs 5.4% at 70 y. The diagnosis rate of IAs was more than twofold higher in PKD1 compared to PKD2 with no influence of PKD1 mutation type or location. In multivariate analysis, female sex, hypertension <35 y, smoking and PKD1 genotype were associated with an increased risk for diagnosis of IAs. CONCLUSIONS This study presents epidemiological data reflecting real-life clinical practice. The increased risk for IAs in postmenopausal women suggests a possible protective role of estrogen.
Collapse
Affiliation(s)
- Siriane Lefèvre
- Service de Néphrologie, Hémodialyse et Transplantation rénale, CHRU Brest, Brest 29609, France.,Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Marie-Pierre Audrézet
- Univ Brest, Inserm, UMR 1078, GGB, Brest, France.,Service de génétique moléculaire, CHRU Brest, Brest, France
| | - Jean-Michel Halimi
- Service de Néphrologie-HTA, dialyses, transplantation rénale, Centre Hospitalier Universitaire de Tours, Tours, France.,Université de Tours, Tours, France
| | - Hélène Longuet
- Service de Néphrologie-HTA, dialyses, transplantation rénale, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Frank Bridoux
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Laure Ecotière
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-François Augusto
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Angers, Angers, France
| | - Agnès Duveau
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Angers, Angers, France
| | - Eric Renaudineau
- Service de Néphrologie, Centre hospitalier Broussais, Saint-Malo, France
| | - Cécile Vigneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | | - Christophe Charasse
- Service de Néphrologie, Centre Hospitalier Yves Le Foll, Saint Brieuc, France
| | - Lorraine Gueguen
- Service de Néphrologie, Centre Hospitalier de Cornouaille, Quimper, France
| | - Régine Perrichot
- Service de Néphrologie, Centre Hospitalier de Bretagne Atlantique, Vannes, France
| | - Grégoire Couvrat
- Service de Néphrologie, Centre Hospitalier Départemental Vendée, La Roche sur Yon, France
| | | | | |
Collapse
|
16
|
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nat Med 2021; 27:2165-2175. [PMID: 34887573 PMCID: PMC8768030 DOI: 10.1038/s41591-021-01572-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases. Ppil4 depletion in vertebrate models causes intracerebral hemorrhage, defects in cerebrovascular morphology and impaired Wnt signaling. Wild-type, but not IA-mutant, PPIL4 potentiates Wnt signaling by binding JMJD6, a known angiogenesis regulator and Wnt activator. These findings identify a novel PPIL4-dependent Wnt signaling mechanism involved in brain-specific angiogenesis and maintenance of cerebrovascular integrity and implicate PPIL4 gene mutations in the pathogenesis of IA.
Collapse
Affiliation(s)
- Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Emma Ristori
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Danielle F Miyagishima
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - William Armero
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Akdes Serin Harmancı
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Mikhael Guy
- Yale Center for Research Computing, Yale University, New Haven, CT, USA
| | - Batur Gültekin
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Deniz Kilic
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Devendra K Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Nükte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Burcu Gülez
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Süleyman Coskun
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Emily Sempou
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Cox
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Elena Fomchenko
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Ali Kemal Ozturk
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Kaya Bilgüvar
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - E Sander Connolly
- Department of Neurosurgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Song Y, Lee JK, Lee JO, Kwon B, Seo EJ, Suh DC. Whole Exome Sequencing in Patients with Phenotypically Associated Familial Intracranial Aneurysm. Korean J Radiol 2021; 23:101-111. [PMID: 34668355 PMCID: PMC8743149 DOI: 10.3348/kjr.2021.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Familial intracranial aneurysms (FIAs) are found in approximately 6%–20% of patients with intracranial aneurysms (IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA. Materials and Methods Among the 26 families in our institutional database with two or more IA-affected first-degree relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families) for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization, were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect relatively large chromosomal abnormalities. Results Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families. Conclusion Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely responsible for the subsets of FIAs in a cohort of Korean families.
Collapse
Affiliation(s)
- Yunsun Song
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Keuk Lee
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ok Lee
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boseong Kwon
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Dae Chul Suh
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Pyeritz RE. Digital vascular lesions detected by transillumination. Am J Med Genet A 2021; 188:99-103. [PMID: 34529342 DOI: 10.1002/ajmg.a.62495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/10/2021] [Accepted: 08/23/2021] [Indexed: 11/07/2022]
Abstract
Abnormalities of the capillaries of the digits in hereditary hemorrhagic telangiectasia can be detected by shining through a narrow beam of light through the dorsal side and visualizing the vasculature on the palmar side, a procedure termed transillumination. This study was performed to determine if this method can detect digital vascular abnormalities in aortopathies and arteriopathies. Transillumination was performed in patients with Marfan syndrome (MFS), thoracic aortic aneurysm and dissection (TAAD), vascular Ehlers-Danlos syndrome (vEDS), bicuspid aortic valve with aortopathy, and arteriopathies without aortopathy. Subjects with no known vascular disorders were controls. Digital vascular abnormalities were present in some patients with all of the disorders and were especially frequent in MFS, TAAD, and vEDS. All patients had significantly more digital vascular abnormalities than control subjects. Transillumination can detect vascular abnormalities in digits of patients with a variety of conditions with aortopathy or arteriopathy.
Collapse
Affiliation(s)
- Reed E Pyeritz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Abstract
Rupture of an intracranial aneurysm leads to aneurysmal subarachnoid hemorrhage, a severe type of stroke which is, in part, driven by genetic variation. In the past 10 years, genetic studies of IA have boosted the number of known genetic risk factors and improved our understanding of the disease. In this review, we provide an overview of the current status of the field and highlight the latest findings of family based, sequencing, and genome-wide association studies. We further describe opportunities of genetic analyses for understanding, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Mark K Bakker
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| | - Ynte M Ruigrok
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
20
|
Song Y, Kwon B, Al-Abdulwahhab AH, Nam YK, Ahn Y, Jeong SY, Seo EJ, Lee JK, Suh DC. Rare Neurovascular Diseases in Korea: Classification and Related Genetic Variants. Korean J Radiol 2021; 22:1379-1396. [PMID: 34047503 PMCID: PMC8316781 DOI: 10.3348/kjr.2020.1171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 01/19/2023] Open
Abstract
Rare neurovascular diseases (RNVDs) have not been well-recognized in Korea. They involve the central nervous system and greatly affect the patients' lives. However, these diseases are difficult to diagnose and treat due to their rarity and incurability. We established a list of RNVDs by referring to the previous literature and databases worldwide to better understand the diseases and their current management status. We categorized 68 RNVDs based on their pathophysiology and clinical manifestations and estimated the prevalence of each disease in Korea. Recent advances in genetic, molecular, and developmental research have enabled further understanding of these RNVDs. Herein, we review each disease, while considering its classification based on updated pathologic mechanisms, and discuss the management status of RNVD in Korea.
Collapse
Affiliation(s)
- Yunsun Song
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boseong Kwon
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Abdulrahman Hamed Al-Abdulwahhab
- Department of Diagnostic and Interventional Radiology, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of the University, Al-Khobar City, Eastern Province, Saudi Arabia
| | - Yeo Kyoung Nam
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yura Ahn
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeong Jeong
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Keuk Lee
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Chul Suh
- Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Shan D, Guo X, Yang G, He Z, Zhao R, Xue H, Li G. Integrated Transcriptional Profiling Analysis and Immune-Related Risk Model Construction for Intracranial Aneurysm Rupture. Front Neurosci 2021; 15:613329. [PMID: 33867914 PMCID: PMC8046927 DOI: 10.3389/fnins.2021.613329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Intracranial aneurysms (IAs) may cause lethal subarachnoid hemorrhage upon rupture, but the molecular mechanisms are poorly understood. The aims of this study were to analyze the transcriptional profiles to explore the functions and regulatory networks of differentially expressed genes (DEGs) in IA rupture by bioinformatics methods and to identify the underlying mechanisms. In this study, 1,471 DEGs were obtained, of which 619 were upregulated and 852 were downregulated. Gene enrichment analysis showed that the DEGs were mainly enriched in the inflammatory response, immune response, neutrophil chemotaxis, and macrophage differentiation. Related pathways include the regulation of actin cytoskeleton, leukocyte transendothelial migration, nuclear factor κB signaling pathway, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and chemokine signaling pathway. The enrichment analysis of 20 hub genes, subnetworks, and significant enrichment modules of weighted gene coexpression network analysis showed that the inflammatory response and immune response had a causal relationship with the rupture of unruptured IAs (UIAs). Next, the CIBERSORT method was used to analyze immune cell infiltration into ruptured IAs (RIAs) and UIAs. Macrophage infiltration into RIAs increased significantly compared with that into UIAs. The result of principal component analysis revealed that there was a difference between RIAs and UIAs in immune cell infiltration. A 4-gene immune-related risk model for IA rupture (IRMIR), containing CXCR4, CXCL3, CX3CL1, and CXCL16, was established using the glmnet package in R software. The receiver operating characteristic value revealed that the model represented an excellent clinical situation for potential application. Enzyme-linked immunosorbent assay was performed and showed that the concentrations of CXCR4 and CXCL3 in serum from RIA patients were significantly higher than those in serum from UIA patients. Finally, a competing endogenous RNA network was constructed to provide a potential explanation for the mechanism of immune cell infiltration into IAs. Our findings highlighted the importance of immune cell infiltration into RIAs, providing a direction for further research.
Collapse
Affiliation(s)
- Dezhi Shan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Guozheng Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Zheng He
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
22
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3538] [Impact Index Per Article: 884.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
23
|
Bakker MK, van der Spek RAA, van Rheenen W, Morel S, Bourcier R, Hostettler IC, Alg VS, van Eijk KR, Koido M, Akiyama M, Terao C, Matsuda K, Walters RG, Lin K, Li L, Millwood IY, Chen Z, Rouleau GA, Zhou S, Rannikmäe K, Sudlow CLM, Houlden H, van den Berg LH, Dina C, Naggara O, Gentric JC, Shotar E, Eugène F, Desal H, Winsvold BS, Børte S, Johnsen MB, Brumpton BM, Sandvei MS, Willer CJ, Hveem K, Zwart JA, Verschuren WMM, Friedrich CM, Hirsch S, Schilling S, Dauvillier J, Martin O, Jones GT, Bown MJ, Ko NU, Kim H, Coleman JRI, Breen G, Zaroff JG, Klijn CJM, Malik R, Dichgans M, Sargurupremraj M, Tatlisumak T, Amouyel P, Debette S, Rinkel GJE, Worrall BB, Pera J, Slowik A, Gaál-Paavola EI, Niemelä M, Jääskeläinen JE, von Und Zu Fraunberg M, Lindgren A, Broderick JP, Werring DJ, Woo D, Redon R, Bijlenga P, Kamatani Y, Veldink JH, Ruigrok YM. Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nat Genet 2020; 52:1303-1313. [PMID: 33199917 PMCID: PMC7116530 DOI: 10.1038/s41588-020-00725-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/24/2020] [Indexed: 01/16/2023]
Abstract
Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits.
Collapse
Affiliation(s)
- Mark K Bakker
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Rick A A van der Spek
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Romain Bourcier
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
- CHU Nantes, Department of Neuroradiology, Nantes, France
| | - Isabel C Hostettler
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Varinder S Alg
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Kristel R van Eijk
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Guy A Rouleau
- Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sirui Zhou
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Cathie L M Sudlow
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
- UK Biobank, Cheadle, Stockport, UK
| | - Henry Houlden
- Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Christian Dina
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
| | - Olivier Naggara
- Pediatric Radiology, Necker Hospital for Sick Children, Université Paris Descartes, Paris, France
- Department of Neuroradiology, Sainte-Anne Hospital and Université Paris Descartes, INSERM UMR, S894, Paris, France
| | | | - Eimad Shotar
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - François Eugène
- Department of Neuroradiology, University Hospital of Rennes, Rennes, France
| | - Hubert Desal
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
- CHU Nantes, Department of Neuroradiology, Nantes, France
| | - Bendik S Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Børte
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marianne Bakke Johnsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marie Søfteland Sandvei
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Christoph M Friedrich
- Dortmund University of Applied Science and Arts, Dortmund, Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
| | - Sven Hirsch
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Zurich, Switzerland
| | - Sabine Schilling
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Zurich, Switzerland
| | | | - Olivier Martin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | | | | | | | | | - Gregory T Jones
- Department of Surgery, University of Otago, Dunedin, New Zealand
| | - Matthew J Bown
- Department of Cardiovascular Sciences and National Institute for Health Research, University of Leicester, Leicester, UK
- Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Nerissa U Ko
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Jonathan G Zaroff
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Dichgans
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Muralidharan Sargurupremraj
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Disease, Bordeaux University Hospital, Bordeaux, France
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Philippe Amouyel
- Institut Pasteur de Lille, UMR1167 LabEx DISTALZ - RID-AGE Université de Lille, INSERM, Centre Hospitalier Université de Lille Lille, Lille Lille, France
| | - Stéphanie Debette
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Disease, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel J E Rinkel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Slowik
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Emília I Gaál-Paavola
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Juha E Jääskeläinen
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikael von Und Zu Fraunberg
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Antti Lindgren
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - David J Werring
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Daniel Woo
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard Redon
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Hostettler IC, O'Callaghan B, Bugiardini E, O'Connor E, Vandrovcova J, Davagnanam I, Alg V, Bonner S, Walsh D, Bulters D, Kitchen N, Brown MM, Grieve J, Werring DJ, Houlden H. ANGPTL6 Genetic Variants Are an Underlying Cause of Familial Intracranial Aneurysms. Neurology 2020; 96:e947-e955. [PMID: 33106390 PMCID: PMC8105901 DOI: 10.1212/wnl.0000000000011125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose To understand the role of the angiopoietin-like 6 gene (ANGPTL6) in intracranial aneurysms (IAs), we investigated its role in a large cohort of familial IAs. Methods Individuals with family history of IA were recruited to the Genetic and Observational Subarachnoid Haemorrhage (GOSH) study. The ANGPTL6 gene was sequenced using Sanger sequencing. Identified genetic variants were compared to a control population. Results We found 6 rare ANGPTL6 genetic variants in 9/275 individuals with a family history of IA (3.3%) (5 missense mutations and 1 nonsense mutation leading to a premature stop codon), none present in controls. One of these had been previously reported: c.392A>T (p.Glu131Val) on exon 2; another was very close: c.332G>A (p.Arg111His). Two further genetic variants lie within the fibrinogen-like domain of the ANGPTL6 gene, which may influence function or level of the ANGPTL6 protein. The last 2 missense mutations lie within the coiled-coil domain of the ANGPTL6 protein. All genetic variants were well conserved across species. Conclusion ANGPTL6 genetic variants are an important cause of IA. Defective or lack of ANGPTL6 protein is therefore an important factor in blood vessel proliferation leading to IA; dysfunction of this protein is likely to cause abnormal proliferation or weakness of vessel walls. With these data, not only do we emphasize the importance of screening familial IA cases for ANGPTL6 and other genes involved in IA, but also highlight the ANGPTL6 pathway as a potential therapeutic target. Classification of Evidence This is a Class III study showing some specificity of presence of the ANGPTL6 gene variant as a marker of familial intracranial aneurysms in a small subset of individuals with familial aneurysms.
Collapse
Affiliation(s)
- Isabel C Hostettler
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Benjamin O'Callaghan
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Enrico Bugiardini
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Emer O'Connor
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Jana Vandrovcova
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Indran Davagnanam
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Varinder Alg
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Stephen Bonner
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Daniel Walsh
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Diederik Bulters
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Neil Kitchen
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Martin M Brown
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Joan Grieve
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - David J Werring
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust
| | - Henry Houlden
- From the Stroke Research Centre (I.C.H., V.A., M.M.B., D.J.W.), MRC Centre for Neuromuscular Diseases (B.O., E.B.), and Department of Neuromuscular Disorders (E.B., J.V.), UCL Queen Square Institute of Neurology; Neurogenetics Laboratory (I.C.H., B.O., E.O., H.H.) and Departments of Neuroradiology (I.D.) and Neurosurgery (N.K., J.G.), the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London; Department of Anaesthesia (S.B.), the James Cook University Hospital, Middlesbrough; Department of Neurosurgery (D.W.), King's College Hospital NHS Foundation Trust, London; and Department of Neurosurgery (D.B.), University Hospital Southampton NHS Foundation Trust.
| | | |
Collapse
|
25
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
26
|
Nouri A, Autrusseau F, Bourcier R, Gaignard A, L'allinec V, Menguy C, Véziers J, Desal H, Loirand G, Redon R. Characterization of 3D bifurcations in micro-scan and MRA-TOF images of cerebral vasculature for prediction of intra-cranial aneurysms. Comput Med Imaging Graph 2020; 84:101751. [PMID: 32679470 DOI: 10.1016/j.compmedimag.2020.101751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
An aneurysm is a vascular disorder where ballooning may form in a weakened section of the wall in the blood vessel. The swelling of the aneurysm may lead to its rupture. Intra-cranial aneurysms are the ones presenting the higher risks. If ruptured, the aneurysm may induce a subarachnoid haemorrhage which could lead to premature death or permanent disability. In this study, we are interested in locating and characterizing the bifurcations of the cerebral vascular tree. We use a 3D skeletonization combined with a graph-based approach to detect the bifurcations. In this work, we thus propose a full geometric characterisation of the bifurcations and related arteries. Aside from any genetic predisposition and environmental risk factors, the geometry of the brain vasculature may influence the chance of aneurysm formation. Among the main achievements, in this paper, we propose accurate, predictive 3D measurements of the bifurcations and we furthermore estimate the risk of occurrence of an aneurysm on a given bifurcation.
Collapse
Affiliation(s)
- A Nouri
- ENSC, Ecole Nationale Supérieure de Chimie, LASTID Laboratory, Department of Physics, Faculty of Science, Ibn Tofail University, BP 133, 14000 Kénitra, Morocco
| | - F Autrusseau
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, & Laboratoire de Thermique et Energie de Nantes, LTeN, U6607, University of Nantes, F-44042, France.
| | - R Bourcier
- Department of Diagnostic and Interventional Neuroradiology, Hospital Guillaume et René Laennec; INSERM, UMR1087, l'institut du thorax, CHU de Nantes, France
| | - A Gaignard
- Department of Diagnostic and Interventional Neuroradiology, Hospital Guillaume et René Laennec; INSERM, UMR1087, l'institut du thorax, CHU de Nantes, France
| | - V L'allinec
- Department of Diagnostic and Interventional Neuroradiology, Hospital Guillaume et René Laennec; INSERM, UMR1087, l'institut du thorax, CHU de Nantes & Angers University Hospital, Radiology Department, Angers, France
| | - C Menguy
- Department of Diagnostic and Interventional Neuroradiology, Hospital Guillaume et René Laennec; INSERM, UMR1087, l'institut du thorax, CHU de Nantes, France
| | - J Véziers
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, F-44042, France
| | - H Desal
- Department of Diagnostic and Interventional Neuroradiology, Hospital Guillaume et René Laennec; INSERM, UMR1087, l'institut du thorax, CHU de Nantes, France
| | - G Loirand
- Department of Diagnostic and Interventional Neuroradiology, Hospital Guillaume et René Laennec; INSERM, UMR1087, l'institut du thorax, CHU de Nantes, France
| | - R Redon
- Department of Diagnostic and Interventional Neuroradiology, Hospital Guillaume et René Laennec; INSERM, UMR1087, l'institut du thorax, CHU de Nantes, France
| |
Collapse
|
27
|
Sauvigny T, Alawi M, Krause L, Renner S, Spohn M, Busch A, Kolbe V, Altmüller J, Löscher BS, Franke A, Brockmann C, Lieb W, Westphal M, Schmidt NO, Regelsberger J, Rosenberger G. Exome sequencing in 38 patients with intracranial aneurysms and subarachnoid hemorrhage. J Neurol 2020; 267:2533-2545. [PMID: 32367296 PMCID: PMC7419486 DOI: 10.1007/s00415-020-09865-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
Objective Genetic risk factors for unruptured intracranial aneurysms (UIA) and aneurysmal subarachnoid hemorrhage (aSAH) are poorly understood. We aimed to verify recently reported risk genes and to identify novel sequence variants involved in the etiology of UIA/aSAH. Methods We performed exome sequencing (ES) in 35 unrelated individuals and 3 family members, each with a history of UIA and/or aSAH. We searched for sequence variants with minor allele frequency (MAF) ≤ 5% in the reported risk genes ADAMTS15, ANGPTL6, ARHGEF17, LOXL2, PCNT, RNF213, THSD1 and TMEM132B. To identify novel putative risk genes we looked for unknown (MAF = 0) variants shared by the three relatives. Results We identified 20 variants with MAF ≤ 5% in 18 individuals: 9 variants in PCNT (9 patients), 4 in RNF213 (3 patients), 3 in THSD1 (6 patients), 2 in ANGPTL6 (3 patients), 1 in ADAMTS15 (1 patient) and 1 in TMEM132B (1 patient). In the affected family, prioritization of shared sequence variants yielded five novel putative risk genes. Based on predicted pathogenicity of identified variants, population genetics data and a high functional relevance for vascular biology, EDIL3 was selected as top candidate and screened in additional 37 individuals with UIA and/or aSAH: a further very rare EDIL3 sequence variant in two unrelated sporadic patients was identified. Conclusions Our data support a role of sequence variants in PCNT, RNF213 and THSD1 as susceptibility factors for cerebrovascular disease. The documented function in vascular wall integrity, the crucial localization of affected amino acids and gene/variant association tests suggest EDIL3 as a further valid candidate disease gene for UIA/aSAH. Electronic supplementary material The online version of this article (10.1007/s00415-020-09865-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sina Renner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Michael Spohn
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Martinistraße 52, 20251, Hamburg, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Alice Busch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Verena Kolbe
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Christian Brockmann
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,Department of Neurosurgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Jan Regelsberger
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
28
|
Abstract
Translational genomics represents a broad field of study that combines genome and transcriptome-wide studies in humans and model systems to refine our understanding of human biology and ultimately identify new ways to treat and prevent disease. The approaches to translational genomics can be broadly grouped into two methodologies, forward and reverse genomic translation. Traditional (forward) genomic translation begins with model systems and aims at using unbiased genetic associations in these models to derive insight into biological mechanisms that may also be relevant in human disease. Reverse genomic translation begins with observations made through human genomic studies and refines these observations through follow-up studies using model systems. The ultimate goal of these approaches is to clarify intervenable processes as targets for therapeutic development. In this review, we describe some of the approaches being taken to apply translational genomics to the study of diseases commonly encountered in the neurocritical care setting, including hemorrhagic and ischemic stroke, traumatic brain injury, subarachnoid hemorrhage, and status epilepticus, utilizing both forward and reverse genomic translational techniques. Further, we highlight approaches in the field that could be applied in neurocritical care to improve our ability to identify new treatment modalities as well as to provide important information to patients about risk and prognosis.
Collapse
Affiliation(s)
- Pavlos Myserlis
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Farid Radmanesh
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6818, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Iosif C. Neurovascular devices for the treatment of intracranial aneurysms: emerging and future technologies. Expert Rev Med Devices 2020; 17:173-188. [PMID: 32141395 DOI: 10.1080/17434440.2020.1733409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Despite numerous advances in the endovascular treatment of intracranial aneurysms (IAs), treatment in cases of wide-neck, complex configurations or branching locations remains challenging. Apart from the paradigm shift introduced by flow diverters, several other devices have seen the light or are under development in order to address these challenges.Areas covered: We performed a review of the novel implantable endovascular devices which have been introduced for the treatment of IAs, from 1 January 2014 to 1 September 2019, excluding classic flow diverter and intracranial stent designs.Expert opinion: Alternative designs have been proposed for the treatment of IAs at branching positions, which do not jail the side branches, with or without flow diversion effect, most of which with good initial outcomes. Endosaccular devices have also been proposed, some of which with lower initial total occlusion rates. Alternative materials such as biopolymers have also been proposed and are under bench research. Despite the challenges in the exploitation of some of the new devices, most of them seem to provide solutions to some current technical shortcomings. The exploitation of the biological phenomena and the physical properties of the devices will allow us to expand the therapeutic armamentarium for more complex IA cases.
Collapse
Affiliation(s)
- Christina Iosif
- School of Medicine, European University of Cyprus, Nicosia, Cyprus.,Department of Interventional Neuroradiology, Henry Dunant Hospital, Athens, Greece.,Department of Interventional Neuroradiology, Iaso Hospital, Athens, Greece
| |
Collapse
|
30
|
Ding X, Zhao S, Zhang Q, Yan Z, Wang Y, Wu Y, Li X, Liu J, Niu Y, Zhang Y, Zhang M, Wang H, Zhang Y, Chen W, Yang XZ, Liu P, Posey JE, Lupski JR, Wu Z, Yang X, Wu N, Wang K. Exome sequencing reveals a novel variant in NFX1 causing intracranial aneurysm in a Chinese family. J Neurointerv Surg 2020; 12:221-226. [PMID: 31401562 PMCID: PMC7014815 DOI: 10.1136/neurintsurg-2019-014900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Genetic risk factors play an important role in the pathogenesis of familial intracranial aneurysms (FIAs); however, the molecular mechanisms remain largely unknown. OBJECTIVE To investigate potential FIA-causing genetic variants by rare variant interrogation and a family-based genomics approach in a large family with an extensive multigenerational pedigree with FIAs. METHOD Exome sequencing (ES) was performed in a dominant likely family with intracranial aneurysms (IAs). Variants were analyzed by an in-house developed pipeline and prioritized using various filtering strategies, including population frequency, variant type, and predicted variant pathogenicity. Sanger sequencing was also performed to evaluate the segregation of the variants with the phenotype. RESULTS Based on the ES data obtained from five individuals from a family with 7/21 living members affected with IAs, a total of 14 variants were prioritized as candidate variants. Familial segregation analysis revealed that NFX1 c.2519T>C (p.Leu840Pro) segregated in accordance with Mendelian expectations with the phenotype within the family-that is, present in all IA-affected cases and absent from all unaffected members of the second generation. This missense variant is absent from public databases (1000genome, ExAC, gnomAD, ESP5400), and has damaging predictions by bioinformatics tools (Gerp ++ score = 5.88, CADD score = 16.43, MutationTaster score = 1, LRT score = 0). In addition, 840Leu in NFX1 is robustly conserved in mammals and maps in a region before the RING-type zinc finger domain. CONCLUSION NFX1 c.2519T>C (p.Leu840Pro) may contribute to the pathogenetics of a subset of FIAs.
Collapse
Affiliation(s)
- Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital
of Nanchang University, Nanchang University, Nanchang 330000, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Huizi Wang
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Xin-Zhuang Yang
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine,
Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston Texas 77030 USA
- Texas Children’s Hospital, Houston, Texas 77030,
USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Central Laboratory, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal
Deformity, Beijing 100730, China
- Medical Research Center of Orthopedics, Chinese Academy of
Medical Sciences, Beijing 100730, China
- Department of Orthopedic Surgery, Peking Union Medical
College Hospital, Peking Union Medical College and Chinese Academy of Medical
Sciences, Beijing 100730, China
| | - Kun Wang
- Department of Interventional Neuroradiology, Beijing
Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University,
Beijing 100070, China
| |
Collapse
|
31
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020; 141:e139-e596. [PMID: 31992061 DOI: 10.1161/cir.0000000000000757] [Citation(s) in RCA: 5398] [Impact Index Per Article: 1079.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2020 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association's 2020 Impact Goals. RESULTS Each of the 26 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, healthcare administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
32
|
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139:e56-e528. [PMID: 30700139 DOI: 10.1161/cir.0000000000000659] [Citation(s) in RCA: 5823] [Impact Index Per Article: 970.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms. Neuromolecular Med 2019; 21:325-343. [PMID: 31055715 DOI: 10.1007/s12017-019-08537-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
Intracranial aneurysms (IA) are local dilatations in cerebral arteries that predominantly affect the circle of Willis. Occurring in approximately 2-5% of adults, these weakened areas are susceptible to rupture, leading to subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke. Due to its early age of onset and poor prognosis, SAH accounts for > 25% of years lost for all stroke victims under the age of 65. In this review, we describe the cerebrovascular pathology associated with intracranial aneurysms. To understand IA genetics, we summarize syndromes with elevated incidence, genome-wide association studies (GWAS), whole exome studies on IA-affected families, and recent research that established definitive roles for Thsd1 (Thrombospondin Type 1 Domain Containing Protein 1) and Sox17 (SRY-box 17) in IA using genetically engineered mouse models. Lastly, we discuss the underlying molecular mechanisms of IA, including defects in vascular endothelial and smooth muscle cells caused by dysfunction in mechanotransduction, Thsd1/FAK (Focal Adhesion Kinase) signaling, and the Transforming Growth Factor β (TGF-β) pathway. As illustrated by THSD1 research, cell adhesion may play a significant role in IA.
Collapse
|
34
|
Iosif C, Biondi A. Braided stents and their impact in intracranial aneurysm treatment for distal locations: from flow diverters to low profile stents. Expert Rev Med Devices 2019; 16:237-251. [DOI: 10.1080/17434440.2019.1575725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Christina Iosif
- Department of Neuroradiology and Endovascular Treatment, Jean-Minjoz University Hospital, Besancon, France
- Department of Interventional Neuroradiology, Erasmus University Hospital, Brussels, Belgium
- Associate Professor in Radiology, European University of Cyprus, Nicosia, Cyprus
| | - Alessandra Biondi
- Department of Neuroradiology and Endovascular Treatment, Jean-Minjoz University Hospital, Besancon, France
| |
Collapse
|
35
|
Lorenzo-Betancor O, Blackburn PR, Edwards E, Vázquez-do-Campo R, Klee EW, Labbé C, Hodges K, Glover P, Sigafoos AN, Soto AI, Walton RL, Doxsey S, Bober MB, Jennings S, Clark KJ, Asmann Y, Miller D, Freeman WD, Meschia J, Ross OA. PCNT point mutations and familial intracranial aneurysms. Neurology 2018; 91:e2170-e2181. [PMID: 30413633 DOI: 10.1212/wnl.0000000000006614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To identify novel genes involved in the etiology of intracranial aneurysms (IAs) or subarachnoid hemorrhages (SAHs) using whole-exome sequencing. METHODS We performed whole-exome sequencing in 13 individuals from 3 families with an autosomal dominant IA/SAH inheritance pattern to look for candidate genes for disease. In addition, we sequenced PCNT exon 38 in a further 161 idiopathic patients with IA/SAH to find additional carriers of potential pathogenic variants. RESULTS We identified 2 different variants in exon 38 from the PCNT gene shared between affected members from 2 different families with either IA or SAH (p.R2728C and p.V2811L). One hundred sixty-four samples with either SAH or IA were Sanger sequenced for the PCNT exon 38. Five additional missense mutations were identified. We also found a second p.V2811L carrier in a family with a history of neurovascular diseases. CONCLUSION The PCNT gene encodes a protein that is involved in the process of microtubule nucleation and organization in interphase and mitosis. Biallelic loss-of-function mutations in PCNT cause a form of primordial dwarfism (microcephalic osteodysplastic primordial dwarfism type II), and ≈50% of these patients will develop neurovascular abnormalities, including IAs and SAHs. In addition, a complete Pcnt knockout mouse model (Pcnt -/-) published previously showed general vascular abnormalities, including intracranial hemorrhage. The variants in our families lie in the highly conserved PCNT protein-protein interaction domain, making PCNT a highly plausible candidate gene in cerebrovascular disease.
Collapse
Affiliation(s)
- Oswaldo Lorenzo-Betancor
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Patrick R Blackburn
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Emily Edwards
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Rocío Vázquez-do-Campo
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Eric W Klee
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Catherine Labbé
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Kyndall Hodges
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Patrick Glover
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Ashley N Sigafoos
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Alexandra I Soto
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Ronald L Walton
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Stephen Doxsey
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Michael B Bober
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Sarah Jennings
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Karl J Clark
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Yan Asmann
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - David Miller
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - William D Freeman
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - James Meschia
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA.
| | - Owen A Ross
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA.
| |
Collapse
|