1
|
Pérez Baca MDR, Palomares-Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Zhao X, Saeidian AH, Owen NM, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Vleminckx K, Naert T, Syx D, Callewaert B, Vergult S. Loss of function of the zinc finger homeobox 4 gene, ZFHX4, underlies a neurodevelopmental disorder. Am J Hum Genet 2025:S0002-9297(25)00149-1. [PMID: 40367947 DOI: 10.1016/j.ajhg.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
8q21.11 microdeletions involving ZFHX4 have previously been associated with a syndromic form of intellectual disability, hypotonia, unstable gait, and hearing loss. We report on 63 individuals-57 probands and 6 affected family members-with protein-truncating variants (n = 41), (micro)deletions (n = 21), or an inversion (n = 1) affecting ZFHX4. Probands display variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function (LoF) variants largely overlap, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions. ZFHX4 shows increased expression during human brain development and neuronal differentiation. Furthermore, ZFHX4-interacting factors identified via immunoprecipitation followed by mass spectrometry (IP-MS) suggest an important role for ZFHX4 in cellular pathways, especially during histone modifications, protein trafficking, signal transduction, cytosolic transport, and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds the promoter of genes with crucial roles in embryonic, neuronal, and axonal development. Moreover, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, a (mosaic) mutant for zfhx4 LoF variants, have significantly shorter Meckel's cartilage and smaller ethmoid plates compared to control zebrafish. Behavioral assays showed a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with controls. Furthermore, structural abnormalities were found in the zebrafish hindbrain. In conclusion, our findings delineate a ZFHX4-associated neurodevelopmental disorder and suggest a role for zfhx4 in facial skeleton patterning, palatal development, and behavior.
Collapse
Affiliation(s)
- María Del Rocío Pérez Baca
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares-Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain; ITHACA-European Reference Network, Madrid, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Amir Hossein Saeidian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Nichole Marie Owen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Baylor Genetics Laboratories, One Baylor Plaza, R806, Houston, TX 77030, USA
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain; ITHACA-European Reference Network, Madrid, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG, UK
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Taliercio V, Zhao J, Boyden SE, Mao R, Bayrak-Toydemir P, Pflaum A, Palumbos J, Andrews A, Baldwin EE, Welt C, Fait M, Botto LD, Viskochil D. Worth the Effort: Lessons for Discovery and Care From an Unusual Case of Gorlin Syndrome. Am J Med Genet A 2025:e64108. [PMID: 40317671 DOI: 10.1002/ajmg.a.64108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Gorlin-Goltz Syndrome (GGS) is a rare autosomal dominant genetic disorder encompassing a diverse range of clinical manifestations, including congenital anomalies and predisposition to cancer. Pathogenic variants in PTCH1 and SUFU account for up to 79% and 6% of cases, respectively. Currently, an estimated 15%-27% of individuals with a clinical diagnosis of GGS do not have a pathogenic variant identified in either gene. We report on a 17-year-old female referred to the Undiagnosed Disease Network with a clinical diagnosis of GGS that manifested as both classic and unusual findings, including isolated hypogonadotropic hypogonadism and anosmia (Kallmann syndrome), orofacial cleft, and abnormal semicircular canals (SCC). Prior genetic testing, including a targeted gene panel, genomic microarray, exome sequencing, and genome sequencing, was non-diagnostic, although these studies identified a variant of uncertain significance in CHD7, which may have contributed to elements of the phenotype (e.g., abnormal SCC). Reanalysis of genome sequencing data using research analytic methods, together with karyotyping, FISH, and Sanger sequencing, identified a novel de novo paracentric inversion that truncated PTCH1. These findings underscore the value of in-depth phenotype-guided genomic analysis, including chromosomal structural variants, as well as the occurrence of possible dual genetic diagnoses in the same individuals. Moreover, the definitive diagnosis provided the patient and family with a firmer basis for management and counseling.
Collapse
Affiliation(s)
- V Taliercio
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - J Zhao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- ARUP Laboratories, Salt Lake City, Utah, USA
| | - S E Boyden
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - R Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- ARUP Laboratories, Salt Lake City, Utah, USA
| | - P Bayrak-Toydemir
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- ARUP Laboratories, Salt Lake City, Utah, USA
| | - A Pflaum
- ARUP Laboratories, Salt Lake City, Utah, USA
| | - J Palumbos
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - A Andrews
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - E E Baldwin
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - C Welt
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mackenzie Fait
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - L D Botto
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - D Viskochil
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Lauzon-Young C, Silva A, Sadikovic B. Epigenomic insights and computational advances in hematologic malignancies. Mol Cytogenet 2025; 18:9. [PMID: 40221777 PMCID: PMC11993968 DOI: 10.1186/s13039-025-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Hematologic malignancies (HMs) encompass a diverse spectrum of cancers originating from the blood, bone marrow, and lymphatic systems, with myeloid malignancies representing a significant and complex subset. This review provides a focused analysis of their classification, prevalence, and incidence, highlighting the persistent challenges posed by their intricate genetic and epigenetic landscapes in clinical diagnostics and therapeutics. The genetic basis of myeloid malignancies, including chromosomal translocations, somatic mutations, and copy number variations, is examined in detail, alongside epigenetic modifications with a specific emphasis on DNA methylation. We explore the dynamic interplay between genetic and epigenetic factors, demonstrating how these mechanisms collectively shape disease progression, therapeutic resistance, and clinical outcomes. Advances in diagnostic modalities, particularly those integrating epigenomic insights, are revolutionizing the precision diagnosis of HMs. Key approaches such as nano-based contrast agents, optical imaging, flow cytometry, circulating tumor DNA analysis, and somatic mutation testing are discussed, with particular attention to the transformative role of machine learning in epigenetic data analysis. DNA methylation episignatures have emerged as a pivotal tool, enabling the development of highly sensitive and specific diagnostic and prognostic assays that are now being adopted in clinical practice. We also review the impact of computational advancements and data integration in refining diagnostic and therapeutic strategies. By combining genomic and epigenomic profiling techniques, these innovations are accelerating biomarker discovery and clinical translation, with applications in precision oncology becoming increasingly evident. Comprehensive genomic datasets, coupled with artificial intelligence, are driving actionable insights into the biology of myeloid malignancies and facilitating the optimization of patient management strategies. Finally, this review emphasizes the translational potential of these advancements, focusing on their tangible benefits for patient care and outcomes. By synthesizing current knowledge and recent innovations, we underscore the critical role of precision medicine and epigenomic research in transforming the diagnosis and treatment of myeloid malignancies, setting the stage for ongoing advancements and broader clinical implementation.
Collapse
Affiliation(s)
- Carolyn Lauzon-Young
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ananilia Silva
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada.
- Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
4
|
LaFlamme CW, Karimi K, Rastin C, Almanza Fuerte EP, Allan T, Russ‐Hall SJ, Schneider AL, Stobo D, Lesca G, Symonds JD, Brunklaus A, Sadleir LG, Scheffer IE, Sadikovic B, Mefford HC. SCN1A pathogenic variants do not have a distinctive blood-derived DNA methylation signature. Epilepsia 2025; 66:e66-e72. [PMID: 39932319 PMCID: PMC11997946 DOI: 10.1111/epi.18315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 04/16/2025]
Abstract
DNA methylation signatures ("episignatures") can be used as biomarkers of genetic aberrations, clinical phenotypes, and environmental exposures in rare diseases. Episignatures are utilized in molecular diagnostics and can clarify variants of uncertain significance. A growing number of disease genes, including epilepsy genes, exhibit robust and reproducible episignatures. However, whether SCN1A, the most prominent epilepsy gene, has one or more episignatures has not yet been determined. We generated genome-wide DNA methylation data and performed episignature analysis on 64 individuals with Dravet syndrome due to pathogenic loss-of-function (LOF) variants in SCN1A and seven individuals with early infantile SCN1A developmental and epileptic encephalopathy due to pathogenic gain-of-function (GOF) variants in SCN1A, relative to a large reference database of controls and rare disease episignature-positive cohorts. We analyzed all samples with LOF variants together and performed separate analyses for missense, nonsense, and GOF variant cohorts. A reproducible blood-derived episignature was not evident in any of the cohorts using current analytical approaches and reference data.
Collapse
Affiliation(s)
- Christy W. LaFlamme
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
- Graduate School of Biomedical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Karim Karimi
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Verspeeten Clinical Genome CentreLondon Health Science CentreLondonOntarioCanada
| | - Cassandra Rastin
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Verspeeten Clinical Genome CentreLondon Health Science CentreLondonOntarioCanada
| | - Edith P. Almanza Fuerte
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Talia Allan
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Sophie J. Russ‐Hall
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Amy L. Schneider
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Daniel Stobo
- West of Scotland Centre for Genomic MedicineQueen Elizabeth University HospitalGlasgowUK
| | - Gaetan Lesca
- Department of Medical Genetics, member of the European Reference Network EpiCAREUniversity Hospital of Lyon and Claude Bernard Lyon I UniversityLyonFrance
- Pathophysiology and Genetics of Neuron and Muscle, UCBL, CNRS UMR5261—INSERM U1315LyonFrance
| | - Joseph D. Symonds
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
- Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgowUK
| | - Andreas Brunklaus
- School of Health and WellbeingUniversity of GlasgowGlasgowUK
- Paediatric Neurosciences Research GroupRoyal Hospital for ChildrenGlasgowUK
| | - Lynette G. Sadleir
- Department of Paediatrics and Child HealthUniversity of OtagoWellingtonNew Zealand
| | - Ingrid E. Scheffer
- Department of Medicine, Epilepsy Research CentreUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
- Florey Institute and Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Bekim Sadikovic
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Verspeeten Clinical Genome CentreLondon Health Science CentreLondonOntarioCanada
| | - Heather C. Mefford
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
|
5
|
LaSalle JM. DNA methylation biomarkers of intellectual/developmental disability across the lifespan. J Neurodev Disord 2025; 17:10. [PMID: 39972408 PMCID: PMC11841270 DOI: 10.1186/s11689-025-09598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Epigenetic mechanisms, including DNA methylation, act at the interface of genes and environment by allowing a static genome to respond and adapt to a dynamic environment during the lifespan of an individual. Genome-wide DNA methylation analyses on a wide range of human biospecimens are beginning to identify epigenetic biomarkers that can predict risk of intellectual/developmental disabilities (IDD). DNA methylation-based epigenetic signatures are becoming clinically useful in categorizing benign from pathogenic genetic variants following exome sequencing. While DNA methylation marks differ by tissue source, recent studies have shown that accessible perinatal tissues, such as placenta, cord blood, newborn blood spots, and cell free DNA may serve as accessible surrogate tissues for testing epigenetic biomarkers relevant to understanding genetic, environmental, and gene by environment interactions on the developing brain. These DNA methylation signatures may also provide important information about the biological pathways that become dysregulated prior to disease progression that could be used to develop early pharmacological interventions. Future applications could involve preventative screenings using DNA methylation biomarkers during pregnancy or the newborn period for IDDs and other neurodevelopmental disorders. DNA methylation biomarkers in adolescence and adulthood are also likely to be clinically useful for tracking biological aging or co-occurring health conditions that develop across the lifespan. In conclusion, DNA methylation biomarkers are expected to become more common in clinical diagnoses of IDD, to improve understanding of complex IDD etiologies, to improve endpoints for clinical trials, and to monitor potential health concerns for individuals with IDD as they age.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Mizuguchi T, Okamoto N, Hara T, Nishimura N, Sakamoto M, Fu L, Uchiyama Y, Tsuchida N, Hamanaka K, Koshimizu E, Fujita A, Misawa K, Nakabayashi K, Miyatake S, Matsumoto N. Diagnostic utility of single-locus DNA methylation mark in Sotos syndrome developed by nanopore sequencing-based episignature. Clin Epigenetics 2025; 17:27. [PMID: 39966947 PMCID: PMC11837588 DOI: 10.1186/s13148-025-01832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND In various neurodevelopmental disorders (NDDs), sets of differential methylation marks (referred to as DNA methylation signatures or episignatures) are syndrome-specific and useful in evaluating the pathogenicity of detected genetic variants. These signatures have generally been tested using methylation arrays, requiring additional experimental and evaluation costs. As an alternative, long-read sequencing can simultaneously and accurately evaluate genetic and epigenetic changes. In addition, genome-wide DNA methylation profiling with more complete sets of CpG using long-read sequencing (than methylation arrays) may provide alternative but more comprehensive DNA methylation signatures, which have yet to be adequately investigated. METHODS Nine and seven cases of molecularly diagnosed Sotos syndrome and ATR-X syndrome, respectively, were sequenced using nanopore long-read sequencing, together with 22 controls. Genome-wide differential DNA methylation analysis was performed. Among these differential DNA methylation sites, a single-locus DNA methylation mark at part of the NSD1 CpG island (CpGi) was subsequently studied in an additional 22 cases with a NSD1 point mutation or a 5q35 submicroscopic deletion involving NSD1. To investigate the potential utility of a single-locus DNA methylation test at NSD1 CpGi for differential diagnosis, nine cases with NSD1-negative clinically overlapping overgrowth intellectual disability syndromes (OGIDs) were also tested. RESULTS Long-read sequencing enabled the successful extraction of two sets of differential methylation marks unique to each of Sotos syndrome and ATR-X syndrome, referred to as long-read-based DNA methylation signatures (LR-DNAm signatures), as alternatives to reported DNA methylation signatures (obtained by methylation array). Additionally, we found that a part, but not all, of the NSD1 CpGi were hypomethylated compared with the level in controls in both cases harboring NSD1 point mutations and those with a 5q35 submicroscopic deletion. This difference in methylation is specific to Sotos syndrome and lacking in other OGIDs. CONCLUSIONS Simultaneous evaluation of genetic and epigenetic alterations using long-read sequencing may improve the discovery of DNA methylation signatures, which may in turn increase the diagnostic yields. As an example of the outcomes of these analyses, we propose that a single-locus DNA methylation test at NSD1 CpGi may streamline the molecular diagnosis of Sotos syndrome, regardless of the type of NSD1 aberration.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Taiki Hara
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naoto Nishimura
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Li Fu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan.
| |
Collapse
|
7
|
Karimi K, Lichtenstein Y, Reilly J, McConkey H, Relator R, Levy MA, Kerkhof J, Bouman A, Symonds JD, Ghoumid J, Smol T, Clarkson K, Drazba K, Louie RJ, Miranda V, McCann C, Motta J, Lancaster E, Sallevelt S, Sidlow R, Morrison J, Hannibal M, O'Shea J, Marin V, Prasad C, Patel C, Raskin S, Maria-Noelia SM, Diaz de Bustamante A, Marom D, Barkan T, Keren B, Poirsier C, Cohen L, Colin E, Gorman K, Gallant E, Menke LA, Valenzuela Palafoll I, Hauser N, Wentzensen IM, Rankin J, Turnpenny PD, Campeau PM, Balci TB, Tedder ML, Sadikovic B, Weiss K. Discovery of a DNA methylation profile in individuals with Sifrim-Hitz-Weiss syndrome. Am J Hum Genet 2025; 112:414-427. [PMID: 39824190 PMCID: PMC11866970 DOI: 10.1016/j.ajhg.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
Pathogenic heterozygous variants in CHD4 cause Sifrim-Hitz-Weiss syndrome, a neurodevelopmental disorder associated with brain anomalies, heart defects, macrocephaly, hypogonadism, and additional features with variable expressivity. Most individuals have non-recurrent missense variants, complicating variant interpretation. A few were reported with truncating variants, and their role in disease is unclear. DNA methylation episignatures have emerged as highly accurate diagnostic biomarkers in a growing number of rare diseases. We aimed to study evidence for the existence of a CHD4-related DNA methylation episignature. We collected blood DNA samples and/or clinical information from 39 individuals with CHD4 variants, including missense and truncating variants. Genomic DNA methylation analysis was performed on 28 samples. We identified a sensitive and specific DNA methylation episignature in samples with pathogenic missense variants within the ATPase/helicase domain. The same episignature was observed in a family with variable expressivity, a de novo variant near the PHD domain, variants of uncertain significance within the ATPase/helicase domain, and a sample with compound heterozygous variants. DNA methylation data revealed higher percentages of shared probes with BAFopathies, CHD8, and the terminal ADNP variants encoding a protein known to form the ChAHP complex with CHD4. Truncating variants, as well as a sample with a recurrent pathogenic missense variant, exhibited DNA methylation profiles distinct from the ATPase/helicase domain episignature. These DNA methylation differences, together with the distinct clinical features observed in those individuals, provide preliminary evidence for clinical and molecular sub-types in the CHD4-related disorder.
Collapse
Affiliation(s)
- Karim Karimi
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Jack Reilly
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, and School of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Jamal Ghoumid
- Université de Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement embryonnaire et du Métabolisme, 59000 Lille, France
| | - Thomas Smol
- Université de Lille, CHU Lille, ULR 7364 - RADEME - Maladies Rares du Développement embryonnaire et du Métabolisme, 59000 Lille, France
| | | | - Katy Drazba
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | - Valancy Miranda
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Cathleen McCann
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie Motta
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Lancaster
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Suzanne Sallevelt
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Jennifer Morrison
- Arnold Palmer Hospital for Children, Orlando Health, Orlando, FL, USA
| | - Mark Hannibal
- Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jessica O'Shea
- Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Victor Marin
- Medical Genetic Laboratory, CHU Bordeaux, 33000 Bordeaux, France
| | - Chitra Prasad
- Department of Pediatrics, Section of Genetics and Metabolism London Health Sciences Center, Western University, London, ON, Canada
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women's Hospital, Brisbane, QLD 4029, Australia
| | - Salmo Raskin
- Postgraduate Program in Child and Adolescent, Department of Pediatrics, Federal University of Paraná, Curitiba, Parana, Brazil
| | | | | | - Daphna Marom
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Barkan
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Boris Keren
- La Pitié-Salpêtrière Hospital, Genetic Department, AP-HP Sorbonne University, Paris, France
| | - Celine Poirsier
- Department of Genetics, Reims University Hospital, Reims, France
| | - Lior Cohen
- Genetics Unit, Barzilai University Medical Center, Ashkelon, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Estelle Colin
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015 INSERM 1083, University of Angers, Angers, France
| | - Kathleen Gorman
- Department of Paediatric Neurology and Neurophysiology, Children's Health Ireland at Temple St., Dublin 1, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Emily Gallant
- Advocate Children's Pediatric Genetics, Oak Lawn, IL, USA
| | - Leonie A Menke
- Amsterdam UMC - location University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam Neuroscience - Cellular & Molecular Mechanisms, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Natalie Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | | | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Peter D Turnpenny
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | | | - Tugce B Balci
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Bekim Sadikovic
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Tse AY, Spakowitz AJ. Modeling DNA methyltransferase function to predict epigenetic correlation patterns in healthy and cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2415530121. [PMID: 39792289 PMCID: PMC11745332 DOI: 10.1073/pnas.2415530121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/16/2024] [Indexed: 01/12/2025] Open
Abstract
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established. Our model predicts DNA methylation-state correlation distributions arising from the transport and kinetic properties that are crucial for the establishment of unique methylation profiles. We model the methylation correlation distributions of nine cancerous human cell types to determine how these properties affect the epigenetic profile. Our theory is capable of recapitulating experimental methylation patterns, suggesting the importance of DNA methyltransferase transport in epigenetic regulation. Through this work, we propose a mechanistic description for the establishment of methylation profiles, capturing the key behavioral characteristics of methyltransferase that lead to aberrant methylation.
Collapse
Affiliation(s)
- Ariana Y. Tse
- Department of Materials Science, Stanford University, Stanford, CA94305
| | | |
Collapse
|
9
|
van der Laan L, Silva A, Kleinendorst L, Rooney K, Haghshenas S, Lauffer P, Alanay Y, Bhai P, Brusco A, de Munnik S, de Vries BBA, Vega AD, Engelen M, Herkert JC, Hochstenbach R, Hopman S, Kant SG, Kira R, Kato M, Keren B, Kroes HY, Levy MA, Lock-Hock N, Maas SM, Mancini GMS, Marcelis C, Matsumoto N, Mizuguchi T, Mussa A, Mignot C, Närhi A, Nordgren A, Pfundt R, Polstra AM, Trajkova S, van Bever Y, José van den Boogaard M, van der Smagt JJ, Barakat TS, Alders M, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. CUL3-related neurodevelopmental disorder: Clinical phenotype of 20 new individuals and identification of a potential phenotype-associated episignature. HGG ADVANCES 2025; 6:100380. [PMID: 39501558 PMCID: PMC11617854 DOI: 10.1016/j.xhgg.2024.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Neurodevelopmental disorder with or without autism or seizures (NEDAUS) is a neurodevelopmental disorder characterized by global developmental delay, speech delay, seizures, autistic features, and/or behavior abnormalities. It is caused by CUL3 (Cullin-3 ubiquitin ligase) haploinsufficiency. We collected clinical and molecular data from 26 individuals carrying pathogenic variants and variants of uncertain significance (VUS) in the CUL3 gene, including 20 previously unreported cases. By comparing their DNA methylation (DNAm) classifiers with those of healthy controls and other neurodevelopmental disorders characterized by established episignatures, we aimed to create a diagnostic biomarker (episignature) and gain more knowledge of the molecular pathophysiology. We discovered a sensitive and specific DNAm episignature for patients with pathogenic variants in CUL3 and utilized it to reclassify patients carrying a VUS in the CUL3 gene. Comparative epigenomic analysis revealed similarities between NEDAUS and several other rare genetic neurodevelopmental disorders with previously identified episignatures, highlighting the broader implication of our findings. In addition, we performed genotype-phenotype correlation studies to explain the variety in clinical presentation between the cases. We discovered a highly accurate DNAm episignature serving as a robust diagnostic biomarker for NEDAUS. Furthermore, we broadened the phenotypic spectrum by identifying 20 new individuals and confirming five previously reported cases of NEDAUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Lotte Kleinendorst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Peter Lauffer
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, Acibadem University, School of Medicine, Istanbul, Turkey; Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Angelica Delgado Vega
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Department of Molecular Medicine, Karolinska Undiagnosed Disease Program, Karolinska Institutet, Stockholm, Sweden
| | - Marc Engelen
- Department of Pediatric Neurology/Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron Hochstenbach
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Boris Keren
- Assistance Publique-Hopitaux de Paris, Sorbonne Université, Departement de Génétique, Groupe Hospitalier Pitie-Salpetriere et Hopital Trousseau, Paris, France
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Ngu Lock-Hock
- Genetics Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carlo Marcelis
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, Pediatric Clinical Genetics, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Cyril Mignot
- Assistance Publique-Hopitaux de Paris, Sorbonne Université, Departement de Génétique, Groupe Hospitalier Pitie-Salpetriere et Hopital Trousseau, Paris, France
| | - Anu Närhi
- Department of Clinical Genetics, Helsinki University Hospital, Helenski, Finland
| | - Ann Nordgren
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Department of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Rolph Pfundt
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Abeltje M Polstra
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Tejedor JR, Soriano‐Sexto A, Beccari L, Castejón‐Fernández N, Correcher P, Sainz‐Ledo L, Alba‐Linares JJ, Urdinguio RG, Ugarte M, Fernández AF, Rodríguez‐Pombo P, Fraga MF, Pérez B. Integration of multi-omics layers empowers precision diagnosis through unveiling pathogenic mechanisms on maple syrup urine disease. J Inherit Metab Dis 2025; 48:e12829. [PMID: 39659154 PMCID: PMC11670297 DOI: 10.1002/jimd.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Maple syrup urine disease (MSUD) is a rare inherited metabolic disorder characterized by deficient activity of the branched-chain alpha-ketoacid dehydrogenase (BCKDH) complex, required to metabolize the amino acids leucine, isoleucine, and valine. Despite its profound metabolic implications, the molecular alterations underlying this metabolic impairment had not yet been completely elucidated. We performed a comprehensive multi-omics integration analysis, including genomic, epigenomic, and transcriptomic data from fibroblasts derived from a cohort of MSUD patients and unaffected controls to genetically characterize an MSUD case and to unravel the MSUD pathophysiology. MSUD patients exhibit a defined episignature that reshapes the global DNA methylation landscape, resulting in the stimulation of HOX cluster genes and the restriction of cell cycle gene-related signatures. Subsequent data integration revealed the impact of AP1-related and CEBPB transcription factors on the observed molecular reorganization, with MEIS1 emerging as a potential downstream candidate affected by robust epigenetic repression in MSUD patients. Furthermore, the integration of multi-omics layers facilitated the identification of a strong epigenetic repression in the DBT promoter in a patient wherein no BCKDH pathogenic variants had been detected. A Circular Chromatin Conformation Capture assay indicated a disturbance of the interactions of DBT promoter, thereby unveiling alternative modes of disease inheritance. Integration of multi-omics data unveiled underlying molecular networks rewired in MSUD patients and represents a powerful approach with diagnostic potential for rare genetic disorders with unknown genetic bases.
Collapse
|
11
|
Tan JW, Blake EJ, Farris JD, Klee EW. Expanding Upon Genomics in Rare Diseases: Epigenomic Insights. Int J Mol Sci 2024; 26:135. [PMID: 39795993 PMCID: PMC11719497 DOI: 10.3390/ijms26010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
DNA methylation is an essential epigenetic modification that plays a crucial role in regulating gene expression and maintaining genomic stability. With the advancement in sequencing technology, methylation studies have provided valuable insights into the diagnosis of rare diseases through the various identification of episignatures, epivariation, epioutliers, and allele-specific methylation. However, current methylation studies are not without limitations. This mini-review explores the current understanding of DNA methylation in rare diseases, highlighting the key mechanisms and diagnostic potential, and emphasizing the need for advanced methodologies and integrative approaches to enhance the understanding of disease progression and design more personable treatment for patients, given the nature of rare diseases.
Collapse
Affiliation(s)
| | | | | | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.T.); (E.J.B.); (J.D.F.)
| |
Collapse
|
12
|
Karimi K, Weis D, Aukrust I, Hsieh TC, Horackova M, Paulsen J, Mendoza Londono R, Dupuis L, Dickson M, Lesman H, Lau T, Murphy D, Hama Salih K, Al-Musawi BMS, Al-Obaidi RGY, Rydzanicz M, Biela M, Santos MS, Aldeeri A, Gazda HT, Pais L, Shril S, Døllner H, Bartakke S, Laccone F, Soltysova A, Kitzler T, Soliman NA, Relator R, Levy MA, Kerkhof J, Rzasa J, Houlden H, Pilshofer GV, Jobst-Schwan T, Hildebrandt F, Sousa SB, Maroofian R, Yu TW, Krawitz P, Sadikovic B, Douzgou Houge S. Epigenomic and phenotypic characterization of DEGCAGS syndrome. Eur J Hum Genet 2024; 32:1574-1582. [PMID: 39424669 DOI: 10.1038/s41431-024-01702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/16/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Developmental Delay with Gastrointestinal, Cardiovascular, Genitourinary, and Skeletal Abnormalities syndrome (DEGCAGS, MIM #619488) is caused by biallelic, loss-of-function (LoF) ZNF699 variants, and is characterized by variable neurodevelopmental disability, discordant organ anomalies among full siblings and infant mortality. ZNF699 encodes a KRAB zinc finger protein of unknown function. We aimed to investigate the genotype-phenotype spectrum of DEGCAGS and the possibility of a diagnostic DNA methylation episignature, to facilitate the diagnosis of a highly variable condition lacking pathognomonic clinical findings. We collected data on 30 affected individuals (12 new). GestaltMatcher analyzed fifty-three facial photographs from five individuals. In nine individuals, methylation profiling of blood-DNA was performed, and a classification model was constructed to differentiate DEGCAGS from controls. We expand the ZNF699-related molecular spectrum and show that biallelic, LoF, ZNF699 variants cause unique clinical findings with age-related presentation and a similar facial gestalt. We also identified a robust episignature for DEGCAGS syndrome. DEGCAGS syndrome is a clinically variable recessive syndrome even among siblings with a distinct methylation episignature which can be used as a screening, diagnostic and classification tool for ZNF699 variants. Analysis of differentially methylated regions suggested an effect on genes potentially implicated in the syndrome's pathogenesis.
Collapse
Affiliation(s)
- Karim Karimi
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Denisa Weis
- Department of Medical Genetics, Med Campus IV, Kepler University Hospital, Johannes Kepler, University, Linz, Austria
| | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marie Horackova
- Department of Medical Genetics, Med Campus IV, Kepler University Hospital, Johannes Kepler, University, Linz, Austria
| | - Julie Paulsen
- Department of Medical Genetics, St. Olav's hospital, Trondheim University Hospital, Trondheim, Norway
| | - Roberto Mendoza Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Megan Dickson
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hellen Lesman
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tracy Lau
- Institute of Neurology, University College London, London, UK
| | - David Murphy
- Institute of Neurology, University College London, London, UK
| | - Khalid Hama Salih
- Department of Pediatrics, College of Medicine, Sulaimani University, Sulaymaniyah, 46001, Iraq
| | | | - Ruqayah G Y Al-Obaidi
- College of Medicine, University of Baghdad, Baghdad, Iraq
- The Teaching Laboratories, Medical city complex, Baghdad, Iraq
| | | | - Mateus Biela
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Mafalda Saraiva Santos
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Abdulrahman Aldeeri
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hanna T Gazda
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Lynn Pais
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henrik Døllner
- Department of Medical Genetics, St. Olav's hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sandip Bartakke
- Department of Clinical Hematology, Aditya Birla Memorial Hospital, Pune, India
| | - Franco Laccone
- Department of Pediatrics, Hospital of the Sister of Merci, Linz, Austria
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Cairo University, Egyptian Group for Orphan Renal Diseases, Cairo, Egypt
| | - Raissa Relator
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Michael A Levy
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jessica Rzasa
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Henry Houlden
- Institute of Neurology, University College London, London, UK
| | | | - Tilman Jobst-Schwan
- Harvard Medical School, Boston, MA, USA
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Reza Maroofian
- Institute of Neurology, University College London, London, UK
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bekim Sadikovic
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, Canada.
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
13
|
Ma W, Tang W, Kwok JS, Tong AH, Lo CW, Chu AT, Chung BH, Hong Kong Genome Project. A review on trends in development and translation of omics signatures in cancer. Comput Struct Biotechnol J 2024; 23:954-971. [PMID: 38385061 PMCID: PMC10879706 DOI: 10.1016/j.csbj.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, proteomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical applications to improve diagnosis, prognosis, and treatment decision in cancer patients.
Collapse
Affiliation(s)
- Wei Ma
- Hong Kong Genome Institute, Hong Kong, China
| | - Wenshu Tang
- Hong Kong Genome Institute, Hong Kong, China
| | | | | | | | | | - Brian H.Y. Chung
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Kong Genome Project
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Haghshenas S, Putoux A, Reilly J, Levy MA, Relator R, Ghosh S, Kerkhof J, McConkey H, Edery P, Lesca G, Besson A, Coubes C, Willems M, Ruiz-Pallares N, Barat-Houari M, Tizzano EF, Valenzuela I, Sabbagh Q, Clayton-Smith J, Jackson A, O'Sullivan J, Bromley R, Banka S, Genevieve D, Sadikovic B. Discovery of DNA methylation signature in the peripheral blood of individuals with history of antenatal exposure to valproic acid. Genet Med 2024; 26:101226. [PMID: 39097820 DOI: 10.1016/j.gim.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
PURPOSE Valproic acid or valproate is an effective antiepileptic drug; however, embryonic exposure to valproate can result in a teratogenic disorder referred to as fetal valproate syndrome (OMIM #609442). Currently there are no diagnostic biomarkers for the condition. This study aims to define an episignature biomarker for teratogenic antenatal exposure to valproate. METHODS DNA extracted from peripheral blood of individuals with teratogenic antenatal exposure to valproate was processed using DNA methylation microarrays. Subsequently, methylation profiling and construction of support vector machine classifiers were performed in R. RESULTS Genomic DNA methylation analysis was applied, and a distinct DNA methylation profile was identified in the majority of affected individuals. This profile was used to develop a diagnostic episignature classifier. The valproate exposure episignature exhibited high sensitivity and specificity relative to a large reference data set of unaffected controls and individuals with a wide spectrum of syndromic disorders with episignatures. Gene set enrichment analysis demonstrated an enrichment for terms associated with cell adhesion, including significant overrepresentation of the cadherin superfamily. CONCLUSION This study provides evidence of a robust peripheral blood-based diagnostic epigenetic biomarker for a prenatal teratogenic disorder.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Audrey Putoux
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Sourav Ghosh
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Patrick Edery
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Gaetan Lesca
- Hospices Civils de Lyon, Service de Génétique, Bron, France; Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alicia Besson
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Christine Coubes
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France
| | - Marjolaine Willems
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France
| | - Nathalie Ruiz-Pallares
- Laboratoire de Génétique des Maladies Rares et Autoinflammatoires, CHU Montpellier, Montpellier, France
| | - Mouna Barat-Houari
- Laboratoire de Génétique des Maladies Rares et Autoinflammatoires, CHU Montpellier, Montpellier, France
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA
| | - Quentin Sabbagh
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France
| | - Jill Clayton-Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - James O'Sullivan
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Rebecca Bromley
- Division of Neuroscience, School of Biological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Reference Centre for Rare Disease Developmental Anomaly and Malformative Syndromes, Genetic Clinic Unit, CHU Montpellier, Montpellier, France; Montpellier University, Inserm U1183, Montpellier, France; European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA.
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
15
|
Haghshenas S, Karimi K, Stevenson RE, Levy MA, Relator R, Kerkhof J, Rzasa J, McConkey H, Lauzon-Young C, Balci TB, White-Brown AM, Carter MT, Richer J, Armour CM, Sawyer SL, Bhola PT, Tedder ML, Skinner CD, van Rooij IALM, van de Putte R, de Blaauw I, Koeck RM, Hoischen A, Brunner H, Esteki MZ, Pelet A, Lyonnet S, Amiel J, Boycott KM, Sadikovic B. Identification of a DNA methylation episignature for recurrent constellations of embryonic malformations. Am J Hum Genet 2024; 111:1643-1655. [PMID: 39089258 PMCID: PMC11339616 DOI: 10.1016/j.ajhg.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024] Open
Abstract
The term "recurrent constellations of embryonic malformations" (RCEM) is used to describe a number of multiple malformation associations that affect three or more body structures. The causes of these disorders are currently unknown, and no diagnostic marker has been identified. Consequently, providing a definitive diagnosis in suspected individuals is challenging. In this study, genome-wide DNA methylation analysis was conducted on DNA samples obtained from the peripheral blood of 53 individuals with RCEM characterized by clinical features recognized as VACTERL and/or oculoauriculovertebral spectrum association. We identified a common DNA methylation episignature in 40 out of the 53 individuals. Subsequently, a sensitive and specific binary classifier was developed based on the DNA methylation episignature. This classifier can facilitate the use of RCEM episignature as a diagnostic biomarker in a clinical setting. The study also investigated the functional correlation of RCEM DNA methylation relative to other genetic disorders with known episignatures, highlighting the common genomic regulatory pathways involved in the pathophysiology of RCEM.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Carolyn Lauzon-Young
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Tugce B Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON, Canada; Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON, Canada
| | - Alexandre M White-Brown
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Julie Richer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Christine M Armour
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Sarah L Sawyer
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Priya T Bhola
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | | | - Iris A L M van Rooij
- Department IQ Health, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Romy van de Putte
- Department IQ Health, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ivo de Blaauw
- Department of Surgery-Pediatric Surgery, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebekka M Koeck
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Genetics and Cell Biology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Anna Pelet
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de La Santé et de La Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France; Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
16
|
María Del Rocío PB, Palomares Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Syx D, Callewaert B, Vergult S. Loss-of-function of the Zinc Finger Homeobox 4 ( ZFHX4) gene underlies a neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311381. [PMID: 39148819 PMCID: PMC11326360 DOI: 10.1101/2024.08.07.24311381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting ZFHX4 with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function variants largely overlap, identifying ZFHX4 as the main driver for the microdeletion syndrome, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions only. We identify ZFHX4 as a transcription factor that is increasingly expressed during human brain development and neuronal differentiation. Furthermore, ZFHX4 interacting factors identified via IP-MS in neural progenitor cells, suggest an important role for ZFHX4 in cellular and developmental pathways, especially during histone modifications, cytosolic transport and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds with the promoter regions of genes with crucial roles in embryonic, neuron and axon development. Since loss-of-function variants in ZFHX4 are found with consistent dysmorphic facial features, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, (mosaic) mutant for zfhx4 loss-of-function variants, have significantly shorter Meckel's cartilages and smaller ethmoid plates compared to control zebrafish. Furthermore, behavioral assays show a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with control zebrafish larvae. Although further research is needed, our in vivo work suggests a role for zfhx4 in facial skeleton patterning, palatal development and behavior.
Collapse
Affiliation(s)
- Pérez Baca María Del Rocío
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital; Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- University College London, London, England, Great Britain
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Allan TJ, Zalusky MPG, Goffena J, Gibson SB, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel MN, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Gupta S, Jones EA, Weisz-Hubshman M, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat Commun 2024; 15:6524. [PMID: 39107278 PMCID: PMC11303402 DOI: 10.1038/s41467-024-50159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.
Collapse
Affiliation(s)
- Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cassandra Rastin
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helen E Pennington
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Mathematics & Statistics, Rhodes College, Memphis, TN, 38112, USA
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Talia J Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Miranda Perez-Galey Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Emily V Walker
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, 58100, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, 58100, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicolas Chatron
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Montpellier University, Inserm Unit 1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndrome, Clinical Genetic Department, CHU Montpellier, Montpellier, France
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Damien Sanlaville
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | | | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Genetic Department, Houston, TX, 77030, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada.
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
18
|
Schmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, et alSchmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, Kaufmann L, Hinderhofer K, Okun PM, Kotzaeridou U, Hoffmann GF, Choukair D, Bettendorf M, Spielmann M, Ripke A, Pauly M, Münchau A, Lohmann K, Hüning I, Hanker B, Bäumer T, Herzog R, Hellenbroich Y, Westphal DS, Strom T, Kovacs R, Riedhammer KM, Mayerhanser K, Graf E, Brugger M, Hoefele J, Oexle K, Mirza-Schreiber N, Berutti R, Schatz U, Krenn M, Makowski C, Weigand H, Schröder S, Rohlfs M, Vill K, Hauck F, Borggraefe I, Müller-Felber W, Kurth I, Elbracht M, Knopp C, Begemann M, Kraft F, Lemke JR, Hentschel J, Platzer K, Strehlow V, Abou Jamra R, Kehrer M, Demidov G, Beck-Wödl S, Graessner H, Sturm M, Zeltner L, Schöls LJ, Magg J, Bevot A, Kehrer C, Kaiser N, Turro E, Horn D, Grüters-Kieslich A, Klein C, Mundlos S, Nöthen M, Riess O, Meitinger T, Krude H, Krawitz PM, Haack T, Ehmke N, Wagner M. Next-generation phenotyping integrated in a national framework for patients with ultrarare disorders improves genetic diagnostics and yields new molecular findings. Nat Genet 2024; 56:1644-1653. [PMID: 39039281 PMCID: PMC11319204 DOI: 10.1038/s41588-024-01836-1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Magdalena Danyel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Grundmann
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
- Institut für Medizinische Biometrie, Informatik und Epidemiologie, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Shahida Moosa
- Institute for Medical Genetics, Stellenbosch University, Cape Town, South Africa
| | - Luisa Averdunk
- Department of Pediatrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henrike Lisa Sczakiel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarina Schwartzmann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Atta Mensah
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jean Tori Pantel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Manuel Holtgrewe
- Core Uni Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annemarie Bösch
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Weiß
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie Weinhold
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aude-Annick Suter
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Neugebauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tillmann Kallinich
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Holzhauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Schülke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sabine Hoffjan
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Corinna Grasemann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Tobias Rothoeft
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Nora Matar
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martina Kreiss
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Lorenz Grigull
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tim Bender
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Fabian Brand
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Christiane Stieber
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexandra Marzena Morawiec
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pantelis Karakostas
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Valentin S Schäfer
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sarah Bernsen
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Patrick Weydt
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Ahmad Aziz
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Marcus Grobe-Einsler
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Okka Kimmich
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Xenia Kobeleva
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Demet Önder
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pawel Tacik
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Meghna Ahuja Basin
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pietro Incardona
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Min Ae Lee-Kirsch
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Reinhard Berner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Catharina Schuetz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia Körholz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tanita Kretschmer
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nataliya Di Donato
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Evelin Schröck
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - André Heinen
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ulrike Reuner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Amalia-Mihaela Hanßke
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Eva Manka
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Martin Munteanu
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Kiewert Cordula
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Raphael Hirtz
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Elena Schlapakow
- Department of Neurology, University Hospital Halle, Halle, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christina Weiler-Normann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Rudolph
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Rillig
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Groffmann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ania Muntau
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Michal Zawada
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Pamela M Okun
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annekatrin Ripke
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martje Pauly
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Neurogenetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Münchau
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Rebecca Herzog
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Yorck Hellenbroich
- Department of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Tim Strom
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Reka Kovacs
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | | | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | - Ulrich Schatz
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Martin Krenn
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Neurology, Medical University of Vienna, Wien, Austria
| | - Christine Makowski
- Department of Paediatrics, Adolescent Medicine and Neonatology, München, Germany
| | - Heike Weigand
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Sebastian Schröder
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Katharina Vill
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Ingo Borggraefe
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | | | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Kehrer
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Wödl
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holm Graessner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lena Zeltner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ludger J Schöls
- Department of Neurology, University of Tübingen, Tübingen, Germany
| | - Janine Magg
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Kehrer
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Nadja Kaiser
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Ernest Turro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christoph Klein
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Heiko Krude
- Berlin Centre for Rare Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany.
| | - Tobias Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nadja Ehmke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| |
Collapse
|
19
|
Bosch E, Güse E, Kirchner P, Winterpacht A, Walther M, Alders M, Kerkhof J, Ekici AB, Sticht H, Sadikovic B, Reis A, Vasileiou G. The missing link: ARID1B non-truncating variants causing Coffin-Siris syndrome due to protein aggregation. Hum Genet 2024; 143:965-978. [PMID: 39028335 PMCID: PMC11303441 DOI: 10.1007/s00439-024-02688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
ARID1B is the most frequently mutated gene in Coffin-Siris syndrome (CSS). To date, the vast majority of causative variants reported in ARID1B are truncating, leading to nonsense-mediated mRNA decay. In the absence of experimental data, only few ARID1B amino acid substitutions have been classified as pathogenic, mainly based on clinical data and their de novo occurrence, while most others are currently interpreted as variants of unknown significance. The present study substantiates the pathogenesis of ARID1B non-truncating/NMD-escaping variants located in the SMARCA4-interacting EHD2 and DNA-binding ARID domains. Overexpression assays in cell lines revealed that the majority of EHD2 variants lead to protein misfolding and formation of cytoplasmic aggresomes surrounded by vimentin cage-like structures and co-localizing with the microtubule organisation center. ARID domain variants exhibited not only aggresomes, but also nuclear aggregates, demonstrating robust pathological effects. Protein levels were not compromised, as shown by quantitative western blot analysis. In silico structural analysis predicted the exposure of amylogenic segments in both domains due to the nearby variants, likely causing this aggregation. Genome-wide transcriptome and methylation analysis in affected individuals revealed expression and methylome patterns consistent with those of the pathogenic haploinsufficiency ARID1B alterations in CSS cases. These results further support pathogenicity and indicate two approaches for disambiguation of such variants in everyday practice. The few affected individuals harbouring EHD2 non-truncating variants described to date exhibit mild CSS clinical traits. In summary, this study paves the way for the re-evaluation of previously unclear ARID1B non-truncating variants and opens a new era in CSS genetic diagnosis.
Collapse
Affiliation(s)
- Elisabeth Bosch
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Esther Güse
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Andreas Winterpacht
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Mona Walther
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marielle Alders
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Arif B Ekici
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
20
|
van der Laan L, Lauffer P, Rooney K, Silva A, Haghshenas S, Relator R, Levy MA, Trajkova S, Huisman SA, Bijlsma EK, Kleefstra T, van Bon BW, Baysal Ö, Zweier C, Palomares-Bralo M, Fischer J, Szakszon K, Faivre L, Piton A, Mesman S, Hochstenbach R, Elting MW, van Hagen JM, Plomp AS, Mannens MMAM, Alders M, van Haelst MM, Ferrero GB, Brusco A, Henneman P, Sweetser DA, Sadikovic B, Vitobello A, Menke LA. DNA methylation episignature and comparative epigenomic profiling for Pitt-Hopkins syndrome caused by TCF4 variants. HGG ADVANCES 2024; 5:100289. [PMID: 38571311 PMCID: PMC11087720 DOI: 10.1016/j.xhgg.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sylvia A Huisman
- Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Amsterdam, the Netherlands; Zodiak, Prinsenstichting, Purmerend, the Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Özlem Baysal
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christiane Zweier
- Department of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Human Genetics, University of Bern, Inselspital Universitätsspital Bern, Bern, Switzerland
| | - María Palomares-Bralo
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Katalin Szakszon
- Institute of Paediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laurence Faivre
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD «Génétique des Anomalies du Développement», FHUTRANSLAD, Dijon, France; CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLDAD, Dijon, France
| | - Amélie Piton
- Genetic Diagnosis Laboratories, Strasbourg University Hospital, Strasbourg 67000, France
| | - Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron Hochstenbach
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Mariet W Elting
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Johanna M van Hagen
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Giovanni B Ferrero
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Peter Henneman
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - David A Sweetser
- Division of Medical Genetics and Metabolism and Center for Genomic Medicine, Massachusetts General for Children, Boston, MA, USA
| | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Leonie A Menke
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Department of Pediatrics, Amsterdam, the Netherlands; Amsterdam Neuroscience - Cellular & Molecular Mechanisms, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Karayol R, Borroto MC, Haghshenas S, Namasivayam A, Reilly J, Levy MA, Relator R, Kerkhof J, McConkey H, Shvedunova M, Petersen AK, Magnussen K, Zweier C, Vasileiou G, Reis A, Savatt JM, Mulligan MR, Bicknell LS, Poke G, Abu-El-Haija A, Duis J, Hannig V, Srivastava S, Barkoudah E, Hauser NS, van den Born M, Hamiel U, Henig N, Baris Feldman H, McKee S, Krapels IPC, Lei Y, Todorova A, Yordanova R, Atemin S, Rogac M, McConnell V, Chassevent A, Barañano KW, Shashi V, Sullivan JA, Peron A, Iascone M, Canevini MP, Friedman J, Reyes IA, Kierstein J, Shen JJ, Ahmed FN, Mao X, Almoguera B, Blanco-Kelly F, Platzer K, Treu AB, Quilichini J, Bourgois A, Chatron N, Januel L, Rougeot C, Carere DA, Monaghan KG, Rousseau J, Myers KA, Sadikovic B, Akhtar A, Campeau PM. MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature. Am J Hum Genet 2024; 111:1330-1351. [PMID: 38815585 PMCID: PMC11267526 DOI: 10.1016/j.ajhg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.
Collapse
Affiliation(s)
- Remzi Karayol
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Carla Borroto
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Anoja Namasivayam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jack Reilly
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Maria Shvedunova
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Andrea K Petersen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Kari Magnussen
- Department of Genetics and Metabolism, Randall Children's and Legacy Emanuel Hospitals, Portland, OR 97227, USA
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Georgia Vasileiou
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington, New Zealand
| | - Aya Abu-El-Haija
- Division of Genetics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Duis
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Vickie Hannig
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Natalie S Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Myrthe van den Born
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Uri Hamiel
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Noa Henig
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Baris Feldman
- Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center & Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ralitsa Yordanova
- Department of pediatrics "Prof. Ivan Andreev", Medical university - Plovdiv, Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Mihael Rogac
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast BT9 7AB, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vandana Shashi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Sullivan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Angela Peron
- SOC Genetica Medica, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Maria Iascone
- Department of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center - Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, CA, USA; Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Iris A Reyes
- Rady Children's Institute for Genomic Medicine and Rady Children's Hospital, San Diego, CA, USA
| | - Janell Kierstein
- Section of Genetics & Metabolism, Department of Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, CO, USA
| | - Joseph J Shen
- Division of Genomic Medicine, Department of Pediatrics, MIND Institute, UC Davis, Sacramento, CA 95817, USA
| | - Faria N Ahmed
- Division of Genomic Medicine, Department of Pediatrics, UC Davis, Sacramento, CA 95817, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Hunan, China; Nanhua University, Chiayi County, Taiwan
| | - Berta Almoguera
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, Fundacion Jimenez Diaz University Hospital, Health Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, German
| | | | - Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP, Centre Université Paris Cité, Paris, France
| | - Alexia Bourgois
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Nicolas Chatron
- Department of Genetics, Lyon University Hospital, Lyon, France; Pathophysiology and Genetics of Neuron and Muscle (PGNM, UCBL - CNRS UMR5261 - INSERM U1315), Université Claude Bernard Lyon 1, Lyon, France
| | - Louis Januel
- Department of Genetics, Lyon University Hospital, Lyon, France
| | | | | | | | - Justine Rousseau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Kenneth A Myers
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada.
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Philippe M Campeau
- Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
22
|
Li L, Sun M, Wang J, Wan S. Multi-omics based artificial intelligence for cancer research. Adv Cancer Res 2024; 163:303-356. [PMID: 39271266 DOI: 10.1016/bs.acr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
With significant advancements of next generation sequencing technologies, large amounts of multi-omics data, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, have been accumulated, offering an unprecedented opportunity to explore the heterogeneity and complexity of cancer across various molecular levels and scales. One of the promising aspects of multi-omics lies in its capacity to offer a holistic view of the biological networks and pathways underpinning cancer, facilitating a deeper understanding of its development, progression, and response to treatment. However, the exponential growth of data generated by multi-omics studies present significant analytical challenges. Processing, analyzing, integrating, and interpreting these multi-omics datasets to extract meaningful insights is an ambitious task that stands at the forefront of current cancer research. The application of artificial intelligence (AI) has emerged as a powerful solution to these challenges, demonstrating exceptional capabilities in deciphering complex patterns and extracting valuable information from large-scale, intricate omics datasets. This review delves into the synergy of AI and multi-omics, highlighting its revolutionary impact on oncology. We dissect how this confluence is reshaping the landscape of cancer research and clinical practice, particularly in the realms of early detection, diagnosis, prognosis, treatment and pathology. Additionally, we elaborate the latest AI methods for multi-omics integration to provide a comprehensive insight of the complex biological mechanisms and inherent heterogeneity of cancer. Finally, we discuss the current challenges of data harmonization, algorithm interpretability, and ethical considerations. Addressing these challenges necessitates a multidisciplinary collaboration, paving the promising way for more precise, personalized, and effective treatments for cancer patients.
Collapse
Affiliation(s)
- Lusheng Li
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mengtao Sun
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
23
|
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MJH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, van Haelst MM. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes. Hum Genet 2024; 143:761-773. [PMID: 38787418 PMCID: PMC11186873 DOI: 10.1007/s00439-024-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
Collapse
Affiliation(s)
- Niels Vos
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Perle K M Russel
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mariet W Elting
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lynne Rumping
- Center for Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Danielle G M Bosch
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonio Vitobello
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Laurence Faivre
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Sophie Nambot
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Aurore Garde
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Marjolaine Willems
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - David Genevieve
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - Gaël Nicolas
- Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Univ Rouen Normandie, 76000, Rouen, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, Marseille, France
| | - Annick Toutain
- Genetics Department, University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Marion Gérard
- APHP, Department of Genetics, Robert Debré Hospital, 75019, Paris, France
| | - Varoona Bizaoui
- Clinical Genetics and Neurodevelopmental Disorders, Centre Hospitalier de L'Estran, 50170, Pontorson, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Maria Accadia
- Servizio di Genetica Medica, Ospedale Cardinale G. Panico, Tricase, LE, Italy
| | - Charles E Schwartz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Katrin Ounap
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, Toronto, ON, M2K 1E1, Canada
| | | | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Unit of Medical Genetics, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giovanni B Ferrero
- Department of Clinical and Biological Science, University of Torino, Turin, Italy
| | | | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Henry J Mroczkowski
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA
- Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandra Jansen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Laura Donker-Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Floor A M Duijkers
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands.
- Amsterdam UMC, Department of Paediatrics, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Kerkhof J, Rastin C, Levy MA, Relator R, McConkey H, Demain L, Dominguez-Garrido E, Kaat LD, Houge SD, DuPont BR, Fee T, Fletcher RS, Gokhale D, Haukanes BI, Henneman P, Hilton S, Hilton BA, Jenkinson S, Lee JA, Louie RJ, Motazacker MM, Rzasa J, Stevenson RE, Plomp A, van der Laan L, van der Smagt J, Walden KK, Banka S, Mannens M, Skinner SA, Friez MJ, Campbell C, Tedder ML, Alders M, Sadikovic B. Diagnostic utility and reporting recommendations for clinical DNA methylation episignature testing in genetically undiagnosed rare diseases. Genet Med 2024; 26:101075. [PMID: 38251460 DOI: 10.1016/j.gim.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
PURPOSE This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.
Collapse
Affiliation(s)
- Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Cassandra Rastin
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sofia Douzgou Houge
- Haukeland University Hospital, Centre for Medical Genetics and Molecular Medicine, Bergen, Norway
| | | | | | | | - David Gokhale
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Bjørn Ivar Haukanes
- Haukeland University Hospital, Centre for Medical Genetics and Molecular Medicine, Bergen, Norway
| | - Peter Henneman
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Sarah Jenkinson
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | | | - M Mahdi Motazacker
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Astrid Plomp
- Department of Clinical Genetics, AMC, Amsterdam, The Netherlands
| | - Liselot van der Laan
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jasper van der Smagt
- Department of Genetics, Utrecht University Medical Center, Utrecht, The Netherlands
| | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Marcel Mannens
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | | | | | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Marielle Alders
- Amsterdam University Medical Center, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
25
|
Awamleh Z, Goodman S, Choufani S, Weksberg R. DNA methylation signatures for chromatinopathies: current challenges and future applications. Hum Genet 2024; 143:551-557. [PMID: 37022461 PMCID: PMC11078831 DOI: 10.1007/s00439-023-02544-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023]
Abstract
Pathogenic variants in genes that encode epigenetic regulators are the cause for more than 100 rare neurodevelopmental syndromes also termed "chromatinopathies". DNA methylation signatures, syndrome-specific patterns of DNA methylation alterations, serve as both a research avenue for elucidating disease pathophysiology and a clinical diagnostic tool. The latter is well established, especially for the classification of variants of uncertain significance (VUS). In this perspective, we describe the seminal DNA methylation signature research in chromatinopathies; the complex relationships between genotype, phenotype and DNA methylation, and the future applications of DNA methylation signatures.
Collapse
Affiliation(s)
- Zain Awamleh
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah Goodman
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Ferro dos Santos MR, Giuili E, De Koker A, Everaert C, De Preter K. Computational deconvolution of DNA methylation data from mixed DNA samples. Brief Bioinform 2024; 25:bbae234. [PMID: 38762790 PMCID: PMC11102637 DOI: 10.1093/bib/bbae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024] Open
Abstract
In this review, we provide a comprehensive overview of the different computational tools that have been published for the deconvolution of bulk DNA methylation (DNAm) data. Here, deconvolution refers to the estimation of cell-type proportions that constitute a mixed sample. The paper reviews and compares 25 deconvolution methods (supervised, unsupervised or hybrid) developed between 2012 and 2023 and compares the strengths and limitations of each approach. Moreover, in this study, we describe the impact of the platform used for the generation of methylation data (including microarrays and sequencing), the applied data pre-processing steps and the used reference dataset on the deconvolution performance. Next to reference-based methods, we also examine methods that require only partial reference datasets or require no reference set at all. In this review, we provide guidelines for the use of specific methods dependent on the DNA methylation data type and data availability.
Collapse
Affiliation(s)
- Maísa R Ferro dos Santos
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Edoardo Giuili
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Andries De Koker
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Celine Everaert
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Katleen De Preter
- VIB-UGent Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Zwijnaarde, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
27
|
Karimi K, Mol MO, Haghshenas S, Relator R, Levy MA, Kerkhof J, McConkey H, Brooks A, Zonneveld-Huijssoon E, Gerkes EH, Tedder ML, Vissers L, Salzano E, Piccione M, Asaftei SD, Carli D, Mussa A, Shukarova-Angelovska E, Trajkova S, Brusco A, Merla G, Alders MM, Bouman A, Sadikovic B. Identification of DNA methylation episignature for the intellectual developmental disorder, autosomal dominant 21 syndrome, caused by variants in the CTCF gene. Genet Med 2024; 26:101041. [PMID: 38054406 DOI: 10.1016/j.gim.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE The main objective of this study was to assess clinical features and genome-wide DNA methylation profiles in individuals affected by intellectual developmental disorder, autosomal dominant 21 (IDD21) syndrome, caused by variants in the CCCTC-binding factor (CTCF) gene. METHODS DNA samples were extracted from peripheral blood of 16 individuals with clinical features and genetic findings consistent with IDD21. DNA methylation analysis was performed using the Illumina Infinium Methylation EPIC Bead Chip microarrays. The methylation levels were fitted in a multivariate linear regression model to identify the differentially methylated probes. A binary support vector machine classification model was constructed to differentiate IDD21 samples from controls. RESULTS We identified a highly specific, reproducible, and sensitive episignature associated with CTCF variants. Six variants of uncertain significance were tested, of which 2 mapped to the IDD21 episignature and clustered alongside IDD21 cases in both heatmap and multidimensional scaling plots. Comparison of the genomic DNA methylation profile of IDD21 with that of 56 other neurodevelopmental disorders provided insights into the underlying molecular pathophysiology of this disorder. CONCLUSION The robust and specific CTCF/IDD21 episignature expands the growing list of neurodevelopmental disorders with distinct DNA methylation profiles, which can be applied as supporting evidence in variant classification.
Collapse
Affiliation(s)
- Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Merel O Mol
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Lisenka Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emanuela Salzano
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy
| | - Maria Piccione
- Medical Genetics Unit, AOOR Villa Sofia-Cervello Hospitals, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Sebastian Dorin Asaftei
- Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin, Italy; Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Elena Shukarova-Angelovska
- Department of Endocrinology and Genetics, University Clinic for Children's Diseases, Medical Faculty, University Sv. Kiril i Metodij, Skopje, North Macedonia
| | - Slavica Trajkova
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Marielle M Alders
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Canada.
| |
Collapse
|
28
|
van der Laan L, Karimi K, Rooney K, Lauffer P, McConkey H, Caro P, Relator R, Levy MA, Bhai P, Mignot C, Keren B, Briuglia S, Sobering AK, Li D, Vissers LELM, Dingemans AJM, Valenzuela I, Verberne EA, Misra-Isrie M, Zwijnenburg PJG, Waisfisz Q, Alders M, Sailer S, Schaaf CP, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. DNA methylation episignature, extension of the clinical features, and comparative epigenomic profiling of Hao-Fountain syndrome caused by variants in USP7. Genet Med 2024; 26:101050. [PMID: 38126281 DOI: 10.1016/j.gim.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Hôpital Armand Trousseau, Paris, France AND Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Andrew K Sobering
- AU/UGA Medical Partnership Campus of the Medical College of Georgia, Athens, Georgia; Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada; St. George's University School of Medicine, Department of Biochemistry, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman school of Medicine, Philadelphia, PA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Irene Valenzuela
- Àrea de Genètica Clínica i Malalties Minoritàries, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eline A Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra J G Zwijnenburg
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastian Sailer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Hassan J, Saeed SM, Deka L, Uddin MJ, Das DB. Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges. Pharmaceutics 2024; 16:260. [PMID: 38399314 PMCID: PMC10892549 DOI: 10.3390/pharmaceutics16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The use of data-driven high-throughput analytical techniques, which has given rise to computational oncology, is undisputed. The widespread use of machine learning (ML) and mathematical modeling (MM)-based techniques is widely acknowledged. These two approaches have fueled the advancement in cancer research and eventually led to the uptake of telemedicine in cancer care. For diagnostic, prognostic, and treatment purposes concerning different types of cancer research, vast databases of varied information with manifold dimensions are required, and indeed, all this information can only be managed by an automated system developed utilizing ML and MM. In addition, MM is being used to probe the relationship between the pharmacokinetics and pharmacodynamics (PK/PD interactions) of anti-cancer substances to improve cancer treatment, and also to refine the quality of existing treatment models by being incorporated at all steps of research and development related to cancer and in routine patient care. This review will serve as a consolidation of the advancement and benefits of ML and MM techniques with a special focus on the area of cancer prognosis and anticancer therapy, leading to the identification of challenges (data quantity, ethical consideration, and data privacy) which are yet to be fully addressed in current studies.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (S.M.S.)
| | | | - Lipika Deka
- Faculty of Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK;
| | - Md Jasim Uddin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
30
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. JCI Insight 2024; 9:e173392. [PMID: 38015625 PMCID: PMC10906465 DOI: 10.1172/jci.insight.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine
- Department of Molecular Biology and Genetics, and
| | | | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandros Boukas
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Hans T. Björnsson
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D. Hansen
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A. Fahrner
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Sabbagh Q, Haghshenas S, Piard J, Trouvé C, Amiel J, Attié-Bitach T, Balci T, Barat-Houari M, Belonis A, Boute O, Brightman DS, Bruel AL, Caraffi SG, Chatron N, Collet C, Dufour W, Edery P, Fong CT, Fusco C, Gatinois V, Gouy E, Guerrot AM, Heide S, Joshi A, Karp N, Keren B, Lesieur-Sebellin M, Levy J, Levy MA, Lozano C, Lyonnet S, Margot H, Marzin P, McConkey H, Michaud V, Nicolas G, Nizard M, Paulet A, Peluso F, Pernin V, Perrin L, Philippe C, Prasad C, Prasad M, Relator R, Rio M, Rondeau S, Ruault V, Ruiz-Pallares N, Sanchez E, Shears D, Siu VM, Sorlin A, Tedder M, Tharreau M, Mau-Them FT, van der Laan L, Van Gils J, Verloes A, Whalen S, Willems M, Yauy K, Zuntini R, Kerkhof J, Sadikovic B, Geneviève D. Clinico-biological refinement of BCL11B-related disorder and identification of an episignature: A series of 20 unreported individuals. Genet Med 2024; 26:101007. [PMID: 37860968 DOI: 10.1016/j.gim.2023.101007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.
Collapse
Affiliation(s)
- Quentin Sabbagh
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Juliette Piard
- University Hospital of Besançon, Department of Clinical Genetics, Besançon, France
| | - Chloé Trouvé
- University Hospital of Besançon, Department of Clinical Genetics, Besançon, France
| | - Jeanne Amiel
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Tugce Balci
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Mouna Barat-Houari
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Alyce Belonis
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH
| | - Odile Boute
- University Hospital of Lille, Department of Clinical Genetics, Lille, France
| | - Diana S Brightman
- Cincinnati Children's Hospital Medical Center, Division of Human Genetics, Cincinnati, OH
| | - Ange-Line Bruel
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | | | - Nicolas Chatron
- University Hospital of Lyon, Laboratory of Medical Genetics, AURAGEN Platform, Lyon, France
| | - Corinne Collet
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - William Dufour
- University Hospital of Lille, Department of Clinical Genetics, Lille, France
| | - Patrick Edery
- University Hospital of Lyon, Department of Clinical Genetics, Lyon, France
| | - Chin-To Fong
- University of Rochester, Department of Genetics, Rochester, NY
| | - Carlo Fusco
- Azienda USL-IRCCS di Reggio Emilia, Child Neurology and Psychiatry Unit, 42123 Reggio Emilia, Italy
| | - Vincent Gatinois
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Evan Gouy
- University Hospital of Lyon, Department of Clinical Genetics, Lyon, France
| | - Anne-Marie Guerrot
- Rouen-Normandie University, University Hospital of Rouen, Department of Genetics, Reference Center for Developmental Disorders, Inserm UMR1245, F-76000 Rouen, France
| | - Solveig Heide
- Pitié-Salpêtrière University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Aakash Joshi
- Churchill Hospital, Department of Clinical Genetics, ERN-ITHACA, Oxford, United Kingdom
| | - Natalya Karp
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Boris Keren
- Pitié-Salpêtrière University Hospital, Laboratory of Molecular Genetics and Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marion Lesieur-Sebellin
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jonathan Levy
- Robert Debré University Hospital, Laboratory of Cytogenetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Claire Lozano
- University Hospital of Montpellier, Department of Immunology, Montpellier, France
| | - Stanislas Lyonnet
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Henri Margot
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Pauline Marzin
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Vincent Michaud
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Gaël Nicolas
- Rouen-Normandie University, University Hospital of Rouen, Department of Genetics, Reference Center for Developmental Disorders, Inserm UMR1245, F-76000 Rouen, France
| | - Mevyn Nizard
- Necker-Enfants Malades University Hospital, Department of Pediatric Endocrinology, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alix Paulet
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Francesca Peluso
- Azienda USL-IRCCS di Reggio Emilia, Medical Genetics Unit, 42123 Reggio Emilia, Italy
| | - Vincent Pernin
- University of Montpellier, Department of Nephrology, Montpellier, France
| | - Laurence Perrin
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Philippe
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France; Hospital of Metz-Thionville, Mercy Hospital, Laboratory of Genetics, Metz, France
| | - Chitra Prasad
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Madhavi Prasad
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Marlène Rio
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Rondeau
- Paris Cité University, Necker-Enfants Malades University Hospital, Department of Genomic Medicine of Rare Diseases, Imagine Institute, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Valentin Ruault
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Nathalie Ruiz-Pallares
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Elodie Sanchez
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Debbie Shears
- Churchill Hospital, Department of Clinical Genetics, ERN-ITHACA, Oxford, United Kingdom
| | - Victoria Mok Siu
- University of Western Ontario, London Health Sciences Centre, Department of Pediatrics, London, Ontario, Canada
| | - Arthur Sorlin
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | | | - Mylène Tharreau
- University Hospital of Montpellier, Department of Molecular Genetics and Cytogenomics, Montpellier, France
| | - Frédéric Tran Mau-Them
- University Hospital of Dijon, Laboratory of Molecular Genetics and Cytogenetics, Inserm UMR 1231 GAD, Dijon, France
| | - Liselot van der Laan
- University of Amsterdam, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, AUMC Department of Human Genetics, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Julien Van Gils
- University of Bordeaux, University Hospital of Bordeaux, Department of Medical Genetics, MRGM Inserm UMR1211, F-33000 Bordeaux, France
| | - Alain Verloes
- Robert Debré University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sandra Whalen
- Pitié-Salpêtrière University Hospital, Department of Clinical Genetics, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marjolaine Willems
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Kévin Yauy
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Roberta Zuntini
- Azienda USL-IRCCS di Reggio Emilia, Medical Genetics Unit, 42123 Reggio Emilia, Italy
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, Londo, ON N6A 5W9, Canada
| | - David Geneviève
- Montpellier University, Inserm UMR1183, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France.
| |
Collapse
|
32
|
Johannesen KM, Tümer Z, Weckhuysen S, Barakat TS, Bayat A. Solving the unsolved genetic epilepsies: Current and future perspectives. Epilepsia 2023; 64:3143-3154. [PMID: 37750451 DOI: 10.1111/epi.17780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Zeynep Tümer
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Lee S, Menzies L, Hay E, Ochoa E, Docquier F, Rodger F, Deshpande C, Foulds NC, Jacquemont S, Jizi K, Kiep H, Kraus A, Löhner K, Morrison PJ, Popp B, Richardson R, van Haeringen A, Martin E, Toribio A, Li F, Jones WD, Sansbury FH, Maher ER. Epigenotype-genotype-phenotype correlations in SETD1A and SETD2 chromatin disorders. Hum Mol Genet 2023; 32:3123-3134. [PMID: 37166351 PMCID: PMC10630252 DOI: 10.1093/hmg/ddad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lara Menzies
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Charu Deshpande
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Saint Mary’s Hospital, Manchester, UK
| | - Nicola C Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sébastien Jacquemont
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Khadije Jizi
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Henriette Kiep
- Department of Neuropediatrics, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Katharina Löhner
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick J Morrison
- Patrick G Johnston Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center of Functional Genomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Richardson
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Hospital, Leiden, The Netherlands
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, The School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wendy D Jones
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board and Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
34
|
Goodman SJ, Luperchio TR, Ellegood J, Chater-Diehl E, Lerch JP, Bjornsson HT, Weksberg R. Peripheral blood DNA methylation and neuroanatomical responses to HDACi treatment that rescues neurological deficits in a Kabuki syndrome mouse model. Clin Epigenetics 2023; 15:172. [PMID: 37884963 PMCID: PMC10605417 DOI: 10.1186/s13148-023-01582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d+/βGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d+/βGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a "primary tissue" with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. METHODS Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. RESULTS We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. CONCLUSIONS As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Teresa Romeo Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspitali University Hospital, Reykjavík, Iceland
| | - Rosanna Weksberg
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Galey M, Goffena J, Gibson SB, Allan TJ, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel N, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Hubshman MW, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296741. [PMID: 37873138 PMCID: PMC10592992 DOI: 10.1101/2023.10.11.23296741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
Collapse
|
36
|
van der Laan L, Rooney K, Haghshenas S, Silva A, McConkey H, Relator R, Levy MA, Valenzuela I, Trujillano L, Lasa-Aranzasti A, Campos B, Castells N, Verberne EA, Maas S, Alders M, Mannens MMAM, van Haelst MM, Sadikovic B, Henneman P. Functional Insight into and Refinement of the Genomic Boundaries of the JARID2-Neurodevelopmental Disorder Episignature. Int J Mol Sci 2023; 24:14240. [PMID: 37762546 PMCID: PMC10531903 DOI: 10.3390/ijms241814240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
JARID2 (Jumonji, AT-rich interactive domain 2) haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. It is characterized by intellectual disability, developmental delay, autistic features, behavior abnormalities, cognitive impairment, hypotonia, and dysmorphic features. JARID2 acts as a transcriptional repressor protein that is involved in the regulation of histone methyltransferase complexes. JARID2 plays a role in the epigenetic machinery, and the associated syndrome has an identified DNA methylation episignature derived from sequence variants and intragenic deletions involving JARID2. For this study, our aim was to determine whether patients with larger deletions spanning beyond JARID2 present a similar DNA methylation episignature and to define the critical region involved in aberrant DNA methylation in 6p22-p24 microdeletions. We examined the DNA methylation profiles of peripheral blood from 56 control subjects, 13 patients with (likely) pathogenic JARID2 variants or patients carrying copy number variants, and three patients with JARID2 VUS variants. The analysis showed a distinct and strong differentiation between patients with (likely) pathogenic variants, both sequence and copy number, and controls. Using the identified episignature, we developed a binary model to classify patients with the JARID2-neurodevelopmental syndrome. DNA methylation analysis indicated that JARID2 is the driver gene for aberrant DNA methylation observed in 6p22-p24 microdeletions. In addition, we performed analysis of functional correlation of the JARID2 genome-wide methylation profile with the DNA methylation profiles of 56 additional neurodevelopmental disorders. To conclude, we refined the critical region for the presence of the JARID2 episignature in 6p22-p24 microdeletions and provide insight into the functional changes in the epigenome observed when regulation by JARID2 is lost.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Michael A. Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Irene Valenzuela
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Laura Trujillano
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Berta Campos
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Neus Castells
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Eline A. Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Saskia Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mieke M. van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
37
|
Lee S, Ochoa E, Badura-Stronka M, Donnelly D, Lederer D, Lynch SA, Gardham A, Morton J, Stewart H, Docquier F, Rodger F, Martin E, Toribio A, Maher ER, Balasubramanian M. Germline pathogenic variants in HNRNPU are associated with alterations in blood methylome. Eur J Hum Genet 2023; 31:1040-1047. [PMID: 37407733 PMCID: PMC10474128 DOI: 10.1038/s41431-023-01422-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
HNRNPU encodes a multifunctional RNA-binding protein that plays critical roles in regulating pre-mRNA splicing, mRNA stability, and translation. Aberrant expression and dysregulation of HNRNPU have been implicated in various human diseases, including cancers and neurological disorders. We applied a next generation sequencing based assay (EPIC-NGS) to investigate genome-wide methylation profiling for >2 M CpGs for 7 individuals with a neurodevelopmental disorder associated with HNRNPU germline pathogenic loss-of-function variants. Compared to healthy individuals, 227 HNRNPU-associated differentially methylated positions were detected. Both hyper- and hypomethylation alterations were identified but the former predominated. The identification of a methylation episignature for HNRNPU-associated neurodevelopmental disorder (NDD) implicates HNPRNPU-related chromatin alterations in the aetiopathogenesis of this disorder and suggests that episignature profiling should have clinical utility as a predictor for the pathogenicity of HNRNPU variants of uncertain significance. The detection of a methylation episignaure for HNRNPU-associated NDD is consistent with a recent report of a methylation episignature for HNRNPK-associated NDD.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust/City Hospital, Belfast, Northern Ireland, UK
| | | | - Sally A Lynch
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Republic of Ireland
| | - Alice Gardham
- London North West University Healthcare NHS Trust Genetics Service, Middlesex, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Meena Balasubramanian
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
38
|
van Eyk CL, Fahey MC, Gecz J. Redefining cerebral palsies as a diverse group of neurodevelopmental disorders with genetic aetiology. Nat Rev Neurol 2023; 19:542-555. [PMID: 37537278 DOI: 10.1038/s41582-023-00847-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.
Collapse
Affiliation(s)
- Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
39
|
Oexle K, Zech M, Stühn LG, Siegert S, Brunet T, Schmidt WM, Wagner M, Schmidt A, Engels H, Tilch E, Monestier O, Destrėe A, Hanker B, Boesch S, Jech R, Berutti R, Kaiser F, Haslinger B, Haack TB, Garavaglia B, Krawitz P, Winkelmann J, Mirza-Schreiber N. Episignature analysis of moderate effects and mosaics. Eur J Hum Genet 2023; 31:1032-1039. [PMID: 37365401 PMCID: PMC10474287 DOI: 10.1038/s41431-023-01406-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
DNA methylation classifiers ("episignatures") help to determine the pathogenicity of variants of uncertain significance (VUS). However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i) minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.
Collapse
Affiliation(s)
- Konrad Oexle
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany.
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany.
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany.
| | - Michael Zech
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076, Tübingen, Germany
- Centre for Rare Diseases, University of Tuebingen, 72076, Tuebingen, Germany
| | - Sandy Siegert
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, 1090, Wien, Austria
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Axel Schmidt
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, School of Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Erik Tilch
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
| | - Olivier Monestier
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, 6041, Gosselies, Belgium
| | - Anne Destrėe
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique ASBL, 6041, Gosselies, Belgium
| | - Britta Hanker
- Institute of Human Genetics, Universitätsklinikum Schleswig-Holstein, 23538, Lübeck, Germany
| | - Sylvia Boesch
- Department of Neurology, Medizinische Universität, 6020, Insbruck, Austria
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, 12108, Prague, Czech Republic
| | - Riccardo Berutti
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Frank Kaiser
- Institute of Human Genetics, Universitätsklinikum Essen, 45122, Essen, Germany
| | - Bernhard Haslinger
- Department of Neurology, Technical University of Munich, School of Medicine, 81675, Munich, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076, Tübingen, Germany
- Centre for Rare Diseases, University of Tuebingen, 72076, Tuebingen, Germany
| | - Barbara Garavaglia
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, 20133, Milano, Italy
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, Universität Bonn, 53127, Bonn, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
- Chair of Neurogenetics, Technical University of Munich, School of Medicine, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Nazanin Mirza-Schreiber
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
| |
Collapse
|
40
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O'Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: What's next in diagnostic testing for Mendelian conditions. Am J Hum Genet 2023; 110:1229-1248. [PMID: 37541186 PMCID: PMC10432150 DOI: 10.1016/j.ajhg.2023.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/06/2023] Open
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michael H Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip M Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily E Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emmanuèle C Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Center for Genetics Medicine Research, Children's National Research and Innovation Campus, Washington, DC, USA; Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica X Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew T Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seth I Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
41
|
Haghshenas S, Foroutan A, Bhai P, Levy MA, Relator R, Kerkhof J, McConkey H, Skinner CD, Caylor RC, Tedder ML, Stevenson RE, Sadikovic B, Schwartz CE. Identification of a DNA methylation signature for Renpenning syndrome (RENS1), a spliceopathy. Eur J Hum Genet 2023; 31:879-886. [PMID: 36797465 PMCID: PMC10400603 DOI: 10.1038/s41431-023-01313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The challenges and ambiguities in providing an accurate diagnosis for patients with neurodevelopmental disorders have led researchers to apply epigenetics as a technique to validate the diagnosis provided based on the clinical examination and genetic testing results. Genome-wide DNA methylation analysis has recently been adapted for clinical testing of patients with genetic neurodevelopmental disorders. In this paper, preliminary data demonstrating a DNA methylation signature for Renpenning syndrome (RENS1 - OMIM 309500), which is an X-linked recessive neurodevelopmental disorder caused by variants in polyglutamine-binding protein 1 (PQBP1) is reported. The identified episignature was then utilized to construct a highly sensitive and specific binary classification model. Besides providing evidence for the existence of a DNA methylation episignature for Renpenning syndrome, this study increases the knowledge of the molecular mechanisms related to the disease. Moreover, the availability of more subjects in future may facilitate the establishment of an episignature that can be utilized for diagnosis in a clinical setting and for reclassification of variants of unknown clinical significance.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | | | | | | | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
| | - Charles E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
42
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. Novel mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546270. [PMID: 37425751 PMCID: PMC10327066 DOI: 10.1101/2023.06.23.546270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-seq comparing osteoblasts differentiated from Ezh2R684C/+ and Ezh2+/+ bone marrow mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases Kdm6a/6b substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state, and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Hans T Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Barili V, Ambrosini E, Uliana V, Bellini M, Vitetta G, Martorana D, Cannizzaro IR, Taiani A, De Sensi E, Caggiati P, Hilton S, Banka S, Percesepe A. Success and Pitfalls of Genetic Testing in Undiagnosed Diseases: Whole Exome Sequencing and Beyond. Genes (Basel) 2023; 14:1241. [PMID: 37372421 DOI: 10.3390/genes14061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Novel approaches to uncover the molecular etiology of neurodevelopmental disorders (NDD) are highly needed. Even using a powerful tool such as whole exome sequencing (WES), the diagnostic process may still prove long and arduous due to the high clinical and genetic heterogeneity of these conditions. The main strategies to improve the diagnostic rate are based on family segregation, re-evaluation of the clinical features by reverse-phenotyping, re-analysis of unsolved NGS-based cases and epigenetic functional studies. In this article, we described three selected cases from a cohort of patients with NDD in which trio WES was applied, in order to underline the typical challenges encountered during the diagnostic process: (1) an ultra-rare condition caused by a missense variant in MEIS2, identified through the updated Solve-RD re-analysis; (2) a patient with Noonan-like features in which the NGS analysis revealed a novel variant in NIPBL causing Cornelia de Lange syndrome; and (3) a case with de novo variants in genes involved in the chromatin-remodeling complex, for which the study of the epigenetic signature excluded a pathogenic role. In this perspective, we aimed to (i) provide an example of the relevance of the genetic re-analysis of all unsolved cases through network projects on rare diseases; (ii) point out the role and the uncertainties of the reverse phenotyping in the interpretation of the genetic results; and (iii) describe the use of methylation signatures in neurodevelopmental syndromes for the validation of the variants of uncertain significance.
Collapse
Affiliation(s)
- Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Melissa Bellini
- Department of Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Giulia Vitetta
- Medical Genetics, University of Bologna, 40138 Bologna, Italy
| | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Ilenia Rita Cannizzaro
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonietta Taiani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Sarah Hilton
- Division of Evolution, Infection & Genomics, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Siddharth Banka
- Division of Evolution, Infection & Genomics, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Antonio Percesepe
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
44
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
45
|
Trangle SS, Rosenberg T, Parnas H, Levy G, Bar E, Marco A, Barak B. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development. Mol Psychiatry 2023; 28:1112-1127. [PMID: 36577841 DOI: 10.1038/s41380-022-01921-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a heterozygous micro-deletion in the WS critical region (WSCR) and is characterized by hyper-sociability and neurocognitive abnormalities. Nonetheless, whether and to what extent WSCR deletion leads to epigenetic modifications in the brain and induces pathological outcomes remains largely unknown. By examining DNA methylation in frontal cortex, we revealed genome-wide disruption in the methylome of individuals with WS, as compared to typically developed (TD) controls. Surprisingly, differentially methylated sites were predominantly annotated as introns and intergenic loci and were found to be highly enriched around binding sites for transcription factors that regulate neuronal development, plasticity and cognition. Moreover, by utilizing enhancer-promoter interactome data, we confirmed that most of these loci function as active enhancers in the human brain or as target genes of transcriptional networks associated with myelination, oligodendrocyte (OL) differentiation, cognition and social behavior. Cell type-specific methylation analysis revealed aberrant patterns in the methylation of active enhancers in neurons and OLs, and important neuron-glia interactions that might be impaired in individuals with WS. Finally, comparison of methylation profiles from blood samples of individuals with WS and healthy controls, along with other data collected in this study, identified putative targets of endophenotypes associated with WS, which can be used to define brain-risk loci for WS outside the WSCR locus, as well as for other associated pathologies. In conclusion, our study illuminates the brain methylome landscape of individuals with WS and sheds light on how these aberrations might be involved in social behavior and physiological abnormalities. By extension, these results may lead to better diagnostics and more refined therapeutic targets for WS.
Collapse
Affiliation(s)
- Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.,The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
46
|
Hildonen M, Ferilli M, Hjortshøj TD, Dunø M, Risom L, Bak M, Ek J, Møller RS, Ciolfi A, Tartaglia M, Tümer Z. DNA methylation signature classification of rare disorders using publicly available methylation data. Clin Genet 2023; 103:688-692. [PMID: 36705342 DOI: 10.1111/cge.14304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Disease-specific DNA methylation patterns (DNAm signatures) have been established for an increasing number of genetic disorders and represent a valuable tool for classification of genetic variants of uncertain significance (VUS). Sample size and batch effects are critical issues for establishing DNAm signatures, but their impact on the sensitivity and specificity of an already established DNAm signature has not previously been tested. Here, we assessed whether publicly available DNAm data can be employed to generate a binary machine learning classifier for VUS classification, and used variants in KMT2D, the gene associated with Kabuki syndrome, together with an existing DNAm signature as proof-of-concept. Using publicly available methylation data for training, a classifier for KMT2D variants was generated, and individuals with molecularly confirmed Kabuki syndrome and unaffected individuals could be correctly classified. The present study documents the clinical utility of a robust DNAm signature even for few affected individuals, and most importantly, underlines the importance of data sharing for improved diagnosis of rare genetic disorders.
Collapse
Affiliation(s)
- Mathis Hildonen
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Marco Ferilli
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Tina Duelund Hjortshøj
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lotte Risom
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jakob Ek
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Wojcik MH, Reuter CM, Marwaha S, Mahmoud M, Duyzend MH, Barseghyan H, Yuan B, Boone PM, Groopman EE, Délot EC, Jain D, Sanchis-Juan A, Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium, Starita LM, Talkowski M, Montgomery SB, Bamshad MJ, Chong JX, Wheeler MT, Berger SI, O’Donnell-Luria A, Sedlazeck FJ, Miller DE. Beyond the exome: what's next in diagnostic testing for Mendelian conditions. ARXIV 2023:arXiv:2301.07363v1. [PMID: 36713248 PMCID: PMC9882576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order and emerging technologies, such as optical genome mapping and long-read DNA or RNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to a consortium such as GREGoR, which is focused on elucidating the underlying cause of rare unsolved genetic disorders.
Collapse
Affiliation(s)
- Monica H. Wojcik
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chloe M. Reuter
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Michael H. Duyzend
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Hayk Barseghyan
- Center for Genetics Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010 USA
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Bo Yuan
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
| | - Philip M. Boone
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emily E. Groopman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Emmanuèle C. Délot
- Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
- Center for Genetics Medicine Research, Children’s National Research and Innovation Campus, Washington, DC, USA
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037 USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle WA 98195 USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | | | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Michael Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephen B. Montgomery
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
| | - Matthew T. Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Seth I. Berger
- Center for Genetics Medicine Research and Rare Disease Institute, Children’s National Hospital, Washington, DC 20010 USA
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Center for Genomic Medicine, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030 USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005 USA
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
48
|
van Jaarsveld RH, Reilly J, Cornips MC, Hadders MA, Agolini E, Ahimaz P, Anyane-Yeboa K, Bellanger SA, van Binsbergen E, van den Boogaard MJ, Brischoux-Boucher E, Caylor RC, Ciolfi A, van Essen TAJ, Fontana P, Hopman S, Iascone M, Javier MM, Kamsteeg EJ, Kerkhof J, Kido J, Kim HG, Kleefstra T, Lonardo F, Lai A, Lev D, Levy MA, Lewis MES, Lichty A, Mannens MMAM, Matsumoto N, Maya I, McConkey H, Megarbane A, Michaud V, Miele E, Niceta M, Novelli A, Onesimo R, Pfundt R, Popp B, Prijoles E, Relator R, Redon S, Rots D, Rouault K, Saida K, Schieving J, Tartaglia M, Tenconi R, Uguen K, Verbeek N, Walsh CA, Yosovich K, Yuskaitis CJ, Zampino G, Sadikovic B, Alders M, Oegema R. Delineation of a KDM2B-related neurodevelopmental disorder and its associated DNA methylation signature. Genet Med 2023; 25:49-62. [PMID: 36322151 PMCID: PMC9825659 DOI: 10.1016/j.gim.2022.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.
Collapse
Affiliation(s)
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Marie-Claire Cornips
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael A Hadders
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Priyanka Ahimaz
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Kwame Anyane-Yeboa
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Severine Audebert Bellanger
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ton A J van Essen
- Department of Medical Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Paolo Fontana
- Medical Genetics Unit, A.O.R.N. San Pio, Benevento, Italy
| | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Iascone
- Laboratorio di Genetica Medica - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Margaret M Javier
- Department of Medical Genetics, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Abbe Lai
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program and Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dorit Lev
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Idit Maya
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Institut Jérôme Lejeune, Paris, France
| | - Vincent Michaud
- Department of Medical Genetics, CHU Bordeaux, Bordeaux, France
| | - Evelina Miele
- Department of Pediatric Hematology and Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Sylvia Redon
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France; Université de Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Dmitrijs Rots
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karen Rouault
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France; Université de Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Jolanda Schieving
- Department of Pediatric Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romano Tenconi
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy
| | - Kevin Uguen
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France
| | - Nienke Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Keren Yosovich
- Molecular Genetic Laboratory, Edith Wolfson Medical Center, Holon, Israel
| | - Christopher J Yuskaitis
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Giuseppe Zampino
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Faculty of Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada.
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands.
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
50
|
Schreyer L, Reilly J, McConkey H, Kerkhof J, Levy MA, Hu J, Hnaini M, Sadikovic B, Campbell C. The discovery of the DNA methylation episignature for Duchenne muscular dystrophy. Neuromuscul Disord 2023; 33:5-14. [PMID: 36572586 DOI: 10.1016/j.nmd.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterized by progressive muscle weakness due to loss of function mutations in the dystrophin gene. Variation in clinical presentation, the rate of disease progression, and treatment responsiveness have been observed amongst DMD patients, suggesting that factors beyond the loss of dystrophin may contribute to DMD pathophysiology. Epigenetic mechanisms are becoming recognized as important factors implicated in the etiology and progression of various diseases. A growing number of genetic syndromes have been associated with unique genomic DNA methylation patterns (called "episignatures") that can be used for diagnostic testing and as disease biomarkers. To further investigate DMD pathophysiology, we assessed the genome-wide DNA methylation profiles of peripheral blood from 36 patients with DMD using the combination of Illumina Infinium Methylation EPIC bead chip array and EpiSign technology. We identified a unique episignature for DMD that whose specificity was confirmed in relation other neurodevelopmental disorders with known episignatures. By modeling the DMD episignature, we developed a new DMD episignature biomarker and provided novel insights into the molecular pathogenesis of this disorder, which have the potential to advance more effective, personalized approaches to DMD care.
Collapse
Affiliation(s)
- Leighton Schreyer
- Department of Neuroscience, Western University, London, ON N6A 3K7, Canada
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jonathan Hu
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mona Hnaini
- Department of Pediatrics, Clinical Neurological Sciences, Western University, London, ON N6A 3K7, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Craig Campbell
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|