1
|
Humphrey J, Brophy E, Kosoy R, Zeng B, Coccia E, Mattei D, Ravi A, Naito T, Efthymiou AG, Navarro E, De Sanctis C, Flores-Almazan V, Muller BZ, Snijders GJLJ, Allan A, Münch A, Kitata RB, Kleopoulos SP, Argyriou S, Malakates P, Psychogyiou K, Shao Z, Francoeur N, Tsai CF, Gritsenko MA, Monroe ME, Paurus VL, Weitz KK, Shi T, Sebra R, Liu T, de Witte LD, Goate AM, Bennett DA, Haroutunian V, Hoffman GE, Fullard JF, Roussos P, Raj T. Long-read RNA sequencing atlas of human microglia isoforms elucidates disease-associated genetic regulation of splicing. Nat Genet 2025; 57:604-615. [PMID: 40033057 DOI: 10.1038/s41588-025-02099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. Mapping the genetics of gene expression in human microglia has identified several loci associated with disease-associated genetic variants in microglia-specific regulatory elements. However, identifying genetic effects on splicing is challenging because of the use of short sequencing reads. Here, we present the isoform-centric microglia genomic atlas (isoMiGA), which leverages long-read RNA sequencing to identify 35,879 novel microglia isoforms. We show that these isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ancestry meta-analysis of 555 human microglia short-read RNA sequencing samples from 391 donors, and found associations with genetic risk loci in Alzheimer's and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice-site usage.
Collapse
Affiliation(s)
- Jack Humphrey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Brophy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roman Kosoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Biao Zeng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Coccia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniele Mattei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashvin Ravi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatsuhiko Naito
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia G Efthymiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa Navarro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
| | - Claudia De Sanctis
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Flores-Almazan
- Department of Pathology, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Z Muller
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gijsje J L J Snijders
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Allan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Münch
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Steven P Kleopoulos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stathis Argyriou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Periklis Malakates
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Psychogyiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lot D de Witte
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vahram Haroutunian
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Ibeh N, Kusuma P, Crenna Darusallam C, Malik SG, Sudoyo H, McCarthy DJ, Gallego Romero I. Profiling genetically driven alternative splicing across the Indonesian archipelago. Am J Hum Genet 2024; 111:2458-2477. [PMID: 39383868 PMCID: PMC11568790 DOI: 10.1016/j.ajhg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how genetic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model, we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.
Collapse
Affiliation(s)
- Neke Ibeh
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Pradiptajati Kusuma
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Chelzie Crenna Darusallam
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Safarina G Malik
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute of Nanotechnology, Tangerang 15811, Indonesia
| | - Davis J McCarthy
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics and Cellular Genomics, St Vincents Institute of Medical Research, Fitzroy, VIC 3065, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Irene Gallego Romero
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC 3010, Australia; Human Genomics and Evolution, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia.
| |
Collapse
|
3
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Wang D, Gazzara MR, Jewell S, Wales-McGrath B, Brown CD, Choi PS, Barash Y. A Deep Dive into Statistical Modeling of RNA Splicing QTLs Reveals New Variants that Explain Neurodegenerative Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610696. [PMID: 39282456 PMCID: PMC11398334 DOI: 10.1101/2024.09.01.610696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Genome-wide association studies (GWAS) have identified thousands of putative disease causing variants with unknown regulatory effects. Efforts to connect these variants with splicing quantitative trait loci (sQTLs) have provided functional insights, yet sQTLs reported by existing methods cannot explain many GWAS signals. We show current sQTL modeling approaches can be improved by considering alternative splicing representation, model calibration, and covariate integration. We then introduce MAJIQTL, a new pipeline for sQTL discovery. MAJIQTL includes two new statistical methods: a weighted multiple testing approach for sGene discovery and a model for sQTL effect size inference to improve variant prioritization. By applying MAJIQTL to GTEx, we find significantly more sGenes harboring sQTLs with functional significance. Notably, our analysis implicates the novel variant rs582283 in Alzheimer's disease. Using antisense oligonucleotides, we validate this variant's effect by blocking the implicated YBX3 binding site, leading to exon skipping in the gene MS4A3.
Collapse
Affiliation(s)
- David Wang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania
| | - Matthew R. Gazzara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania
| | - San Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | | | | | - Peter S. Choi
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
- Department of Computer and Information Sciences, School of Engineering, University of Pennsylvania
| |
Collapse
|
5
|
Jones EF, Howton TC, Flanary VL, Clark AD, Lasseigne BN. Long-read RNA sequencing identifies region- and sex-specific C57BL/6J mouse brain mRNA isoform expression and usage. Mol Brain 2024; 17:40. [PMID: 38902764 PMCID: PMC11188239 DOI: 10.1186/s13041-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024] Open
Abstract
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From > 85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.
Collapse
Affiliation(s)
- Emma F Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Timothy C Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Victoria L Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda D Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
6
|
Subramani PG, Fraszczak J, Helness A, Estall JL, Möröy T, Di Noia JM. Conserved role of hnRNPL in alternative splicing of epigenetic modifiers enables B cell activation. EMBO Rep 2024; 25:2662-2697. [PMID: 38744970 PMCID: PMC11169469 DOI: 10.1038/s44319-024-00152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.
Collapse
Affiliation(s)
- Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
| | - Jennifer Fraszczak
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Anne Helness
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada.
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
7
|
Wang Y, Xie Z, Kutschera E, Adams JI, Kadash-Edmondson KE, Xing Y. rMATS-turbo: an efficient and flexible computational tool for alternative splicing analysis of large-scale RNA-seq data. Nat Protoc 2024; 19:1083-1104. [PMID: 38396040 DOI: 10.1038/s41596-023-00944-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/02/2023] [Indexed: 02/25/2024]
Abstract
Pre-mRNA alternative splicing is a prevalent mechanism for diversifying eukaryotic transcriptomes and proteomes. Regulated alternative splicing plays a role in many biological processes, and dysregulated alternative splicing is a feature of many human diseases. Short-read RNA sequencing (RNA-seq) is now the standard approach for transcriptome-wide analysis of alternative splicing. Since 2011, our laboratory has developed and maintained Replicate Multivariate Analysis of Transcript Splicing (rMATS), a computational tool for discovering and quantifying alternative splicing events from RNA-seq data. Here we provide a protocol for the contemporary version of rMATS, rMATS-turbo, a fast and scalable re-implementation that maintains the statistical framework and user interface of the original rMATS software, while incorporating a revamped computational workflow with a substantial improvement in speed and data storage efficiency. The rMATS-turbo software scales up to massive RNA-seq datasets with tens of thousands of samples. To illustrate the utility of rMATS-turbo, we describe two representative application scenarios. First, we describe a broadly applicable two-group comparison to identify differential alternative splicing events between two sample groups, including both annotated and novel alternative splicing events. Second, we describe a quantitative analysis of alternative splicing in a large-scale RNA-seq dataset (~1,000 samples), including the discovery of alternative splicing events associated with distinct cell states. We detail the workflow and features of rMATS-turbo that enable efficient parallel processing and analysis of large-scale RNA-seq datasets on a compute cluster. We anticipate that this protocol will help the broad user base of rMATS-turbo make the best use of this software for studying alternative splicing in diverse biological systems.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhijie Xie
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jenea I Adams
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn E Kadash-Edmondson
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Jones EF, Howton TC, Flanary VL, Clark AD, Lasseigne BN. Long-read RNA sequencing identifies region- and sex-specific C57BL/6J mouse brain mRNA isoform expression and usage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575219. [PMID: 38260631 PMCID: PMC10802568 DOI: 10.1101/2024.01.11.575219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From >85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.
Collapse
Affiliation(s)
- Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
9
|
Humphrey J, Brophy E, Kosoy R, Zeng B, Coccia E, Mattei D, Ravi A, Efthymiou AG, Navarro E, Muller BZ, Snijders GJLJ, Allan A, Münch A, Kitata RB, Kleopoulos SP, Argyriou S, Shao Z, Francoeur N, Tsai CF, Gritsenko MA, Monroe ME, Paurus VL, Weitz KK, Shi T, Sebra R, Liu T, de Witte LD, Goate AM, Bennett DA, Haroutunian V, Hoffman GE, Fullard JF, Roussos P, Raj T. Long-read RNA-seq atlas of novel microglia isoforms elucidates disease-associated genetic regulation of splicing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299073. [PMID: 38076956 PMCID: PMC10705658 DOI: 10.1101/2023.12.01.23299073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. We previously mapped the genetic regulation of gene expression and mRNA splicing in human microglia, identifying several loci where common genetic variants in microglia-specific regulatory elements explain disease risk loci identified by GWAS. However, identifying genetic effects on splicing has been challenging due to the use of short sequencing reads to identify causal isoforms. Here we present the isoform-centric microglia genomic atlas (isoMiGA) which leverages the power of long-read RNA-seq to identify 35,879 novel microglia isoforms. We show that the novel microglia isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ethnic meta-analysis of 555 human microglia short-read RNA-seq samples from 391 donors, the largest to date, and found associations with genetic risk loci in Alzheimer's disease and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice site usage.
Collapse
Affiliation(s)
- Jack Humphrey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Brophy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roman Kosoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Biao Zeng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Elena Coccia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniele Mattei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashvin Ravi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia G. Efthymiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa Navarro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine (Universidad Complutense de Madrid), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
| | - Benjamin Z. Muller
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gijsje JLJ Snijders
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Amanda Allan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Münch
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Steven P Kleopoulos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Stathis Argyriou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhiping Shao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lot D. de Witte
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison M. Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Vahram Haroutunian
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Gabriel E. Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John F. Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Zhang M, Chen C, Lu Z, Cai Y, Li Y, Zhang F, Liu Y, Chen S, Zhang H, Yang S, Gen H, Jiang Y, Ning C, Huang J, Wang W, Fan L, Zhang Y, Jin M, Han J, Xiong Z, Cai M, Liu J, Huang C, Yang X, Xu B, Li H, Li B, Zhu X, Wei Y, Zhu Y, Tian J, Miao X. Genetic Control of Alternative Splicing and its Distinct Role in Colorectal Cancer Mechanisms. Gastroenterology 2023; 165:1151-1167. [PMID: 37541527 DOI: 10.1053/j.gastro.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND & AIMS Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuhui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Gen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jinyu Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxin Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Xiong
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.
| |
Collapse
|
11
|
Li X, Zhao Y, Kong H, Song C, Liu J, Xia J. Identification of region-specific splicing QTLs in human hippocampal tissue and its distinctive role in brain disorders. iScience 2023; 26:107958. [PMID: 37810239 PMCID: PMC10558811 DOI: 10.1016/j.isci.2023.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Alternative splicing (AS) regulation has an essential role in complex diseases. However, the AS profiles in the hippocampal (HIPPO) region of human brain are underexplored. Here, we investigated cis-acting sQTLs of HIPPO region in 264 samples and identified thousands of significant sQTLs. By enrichment analysis and functional characterization of these sQTLs, we found that the HIPPO sQTLs were enriched among histone-marked regions, transcription factors binding sites, RNA binding proteins sites, and brain disorders-associated loci. Comparative analyses with the dorsolateral prefrontal cortex revealed the importance of AS regulation in HIPPO (rg = 0.87). Furthermore, we performed a transcriptome-wide association study of Alzheimer's disease and identified 16 significant genes whose genetically regulated splicing levels may have a causal role in Alzheimer. Overall, our study improves our knowledge of the transcriptome gene regulation in the HIPPO region and provides novel insights into elucidating the pathogenesis of potential genes associated with brain disorders.
Collapse
Affiliation(s)
- Xiaoyan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yiran Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Hui Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Chengcheng Song
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Jie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province and Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
12
|
Aygün N, Krupa O, Mory J, Le B, Valone J, Liang D, Love MI, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555019. [PMID: 37693528 PMCID: PMC10491258 DOI: 10.1101/2023.08.30.555019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk post-mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting genetically mediated post-transcriptional regulation during brain development lead to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
13
|
Kang JB, Raveane A, Nathan A, Soranzo N, Raychaudhuri S. Methods and Insights from Single-Cell Expression Quantitative Trait Loci. Annu Rev Genomics Hum Genet 2023; 24:277-303. [PMID: 37196361 PMCID: PMC10784788 DOI: 10.1146/annurev-genom-101422-100437] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advancements in single-cell technologies have enabled expression quantitative trait locus (eQTL) analysis across many individuals at single-cell resolution. Compared with bulk RNA sequencing, which averages gene expression across cell types and cell states, single-cell assays capture the transcriptional states of individual cells, including fine-grained, transient, and difficult-to-isolate populations at unprecedented scale and resolution. Single-cell eQTL (sc-eQTL) mapping can identify context-dependent eQTLs that vary with cell states, including some that colocalize with disease variants identified in genome-wide association studies. By uncovering the precise contexts in which these eQTLs act, single-cell approaches can unveil previously hidden regulatory effects and pinpoint important cell states underlying molecular mechanisms of disease. Here, we present an overview of recently deployed experimental designs in sc-eQTL studies. In the process, we consider the influence of study design choices such as cohort, cell states, and ex vivo perturbations. We then discuss current methodologies, modeling approaches, and technical challenges as well as future opportunities and applications.
Collapse
Affiliation(s)
- Joyce B Kang
- Center for Data Sciences and Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA;
| | | | - Aparna Nathan
- Center for Data Sciences and Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA;
| | - Nicole Soranzo
- Human Technopole, Milan, Italy; ,
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- British Heart Foundation Centre of Research Excellence and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Soumya Raychaudhuri
- Center for Data Sciences and Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA;
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Pan L, Zheng C, Yang Z, Pawitan Y, Vu TN, Shen X. Hidden Genetic Regulation of Human Complex Traits via Brain Isoforms. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:217-227. [PMID: 37325708 PMCID: PMC10260721 DOI: 10.1007/s43657-023-00100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/17/2023]
Abstract
Alternative splicing exists in most multi-exonic genes, and exploring these complex alternative splicing events and their resultant isoform expressions is essential. However, it has become conventional that RNA sequencing results have often been summarized into gene-level expression counts mainly due to the multiple ambiguous mapping of reads at highly similar regions. Transcript-level quantification and interpretation are often overlooked, and biological interpretations are often deduced based on combined transcript information at the gene level. Here, for the most variable tissue of alternative splicing, the brain, we estimate isoform expressions in 1,191 samples collected by the Genotype-Tissue Expression (GTEx) Consortium using a powerful method that we previously developed. We perform genome-wide association scans on the isoform ratios per gene and identify isoform-ratio quantitative trait loci (irQTL), which could not be detected by studying gene-level expressions alone. By analyzing the genetic architecture of the irQTL, we show that isoform ratios regulate educational attainment via multiple tissues including the frontal cortex (BA9), cortex, cervical spinal cord, and hippocampus. These tissues are also associated with different neuro-related traits, including Alzheimer's or dementia, mood swings, sleep duration, alcohol intake, intelligence, anxiety or depression, etc. Mendelian randomization (MR) analysis revealed 1,139 pairs of isoforms and neuro-related traits with plausible causal relationships, showing much stronger causal effects than on general diseases measured in the UK Biobank (UKB). Our results highlight essential transcript-level biomarkers in the human brain for neuro-related complex traits and diseases, which could be missed by merely investigating overall gene expressions. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00100-6.
Collapse
Affiliation(s)
- Lu Pan
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Chenqing Zheng
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458 China
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG UK
| |
Collapse
|
15
|
Fabo T, Khavari P. Functional characterization of human genomic variation linked to polygenic diseases. Trends Genet 2023; 39:462-490. [PMID: 36997428 PMCID: PMC11025698 DOI: 10.1016/j.tig.2023.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
The burden of human disease lies predominantly in polygenic diseases. Since the early 2000s, genome-wide association studies (GWAS) have identified genetic variants and loci associated with complex traits. These have ranged from variants in coding sequences to mutations in regulatory regions, such as promoters and enhancers, as well as mutations affecting mediators of mRNA stability and other downstream regulators, such as 5' and 3'-untranslated regions (UTRs), long noncoding RNA (lncRNA), and miRNA. Recent research advances in genetics have utilized a combination of computational techniques, high-throughput in vitro and in vivo screening modalities, and precise genome editing to impute the function of diverse classes of genetic variants identified through GWAS. In this review, we highlight the vastness of genomic variants associated with polygenic disease risk and address recent advances in how genetic tools can be used to functionally characterize them.
Collapse
Affiliation(s)
- Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
16
|
Vaquero-Garcia J, Aicher JK, Jewell S, Gazzara MR, Radens CM, Jha A, Norton SS, Lahens NF, Grant GR, Barash Y. RNA splicing analysis using heterogeneous and large RNA-seq datasets. Nat Commun 2023; 14:1230. [PMID: 36869033 PMCID: PMC9984406 DOI: 10.1038/s41467-023-36585-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
The ubiquity of RNA-seq has led to many methods that use RNA-seq data to analyze variations in RNA splicing. However, available methods are not well suited for handling heterogeneous and large datasets. Such datasets scale to thousands of samples across dozens of experimental conditions, exhibit increased variability compared to biological replicates, and involve thousands of unannotated splice variants resulting in increased transcriptome complexity. We describe here a suite of algorithms and tools implemented in the MAJIQ v2 package to address challenges in detection, quantification, and visualization of splicing variations from such datasets. Using both large scale synthetic data and GTEx v8 as benchmark datasets, we assess the advantages of MAJIQ v2 compared to existing methods. We then apply MAJIQ v2 package to analyze differential splicing across 2,335 samples from 13 brain subregions, demonstrating its ability to offer insights into brain subregion-specific splicing regulation.
Collapse
Affiliation(s)
| | - Joseph K Aicher
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - San Jewell
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Gazzara
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Caleb M Radens
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Anupama Jha
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott S Norton
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory R Grant
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoseph Barash
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
de Menezes RX, Rauschenberger A, 't Hoen PAC, Jonker MA. A powerful global test for spliceQTL effects. Biom J 2023; 65:e2100123. [PMID: 35818126 DOI: 10.1002/bimj.202100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/17/2023]
Abstract
Statistical methods to test for effects of single nucleotide polymorphisms (SNPs) on exon inclusion exist but often rely on testing of associations between multiple exon-SNP pairs, with sometimes subsequent summarization of results at the gene level. Such approaches require heavy multiple testing corrections and detect mostly events with large effect sizes. We propose here a test to find spliceQTL (splicing quantitative trait loci) effects that takes all exons and all SNPs into account simultaneously. For any chosen gene, this score-based test looks for an association between the set of exon expressions and the set of SNPs, via a random-effects model framework. It is efficient to compute and can be used if the number of SNPs is larger than the number of samples. In addition, the test is powerful in detecting effects that are relatively small for individual exon-SNP pairs but are observed for many pairs. Furthermore, test results are more often replicated across datasets than pairwise testing results. This makes our test more robust to exon-SNP pair-specific effects, which do not extend to multiple pairs within the same gene. We conclude that the test we propose here offers more power and better replicability in the search for spliceQTL effects.
Collapse
Affiliation(s)
- Renee X de Menezes
- Department of Psychosocial Research and Epidemiology, Room H.8.040, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Armin Rauschenberger
- Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | -
- Biobank-based Integrative Omics Study Consortium, The Netherlands
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marianne A Jonker
- Department for Health Evidence, section Biostatistics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Brain Region-Dependent Alternative Splicing of Alzheimer Disease (AD)-Risk Genes Is Associated With Neuropathological Features in AD. Int Neurourol J 2022; 26:S126-136. [PMID: 36503215 PMCID: PMC9767683 DOI: 10.5213/inj.2244258.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Alzheimer disease (AD) is one of the most complex diseases and is characterized by AD-related neuropathological features, including accumulation of amyloid-β plaques and tau neurofibrillary tangles. Dysregulation of alternative splicing (AS) contributes to these features, and there is heterogeneity in features across brain regions between AD patients, leading to different severity and progression rates; however, brain region-specific AS mechanisms still remain unclear. Therefore, we aimed to systemically investigate AS in multiple brain regions of AD patients and how they affect clinical features. METHODS We analyzed RNA sequencing (RNA-Seq) data obtained from brain regions (frontal and temporal) of AD patients. Reads were mapped to the hg19 reference genome using the STAR aligner, and exon skipping (ES) rates were estimated as percent spliced in (PSI) by rMATs. We focused on AD-risk genes discovered by genome-wide association studies, and accordingly evaluated associations between PSI of skipped exons in AD-risk genes and Braak stage and plaque density mean (PM) for each brain region. We also integrated whole-genome sequencing data of the ascertained samples with RNA-Seq data to identify genetic regulators of feature-associated ES. RESULTS We identified 26 and 41 ES associated with Braak stage in frontal and temporal regions, respectively, and 10 and 50 ES associated with PM. Among those, 10 were frontal-specific (CLU and NTRK2), 65 temporal-specific (HIF1A and TRPC4AP), and 26 shared ES (APP) that accompanied functional Gene Ontology terms, including axonogenesis in shared-ES genes. We further identified genetic regulators that account for 44 ES (44% of the total). Finally, we present as a case study the systematic regulation of an ES in APP, which is important in AD pathogenesis. CONCLUSION This study provides new insights into brain region-dependent AS regulation of the architecture of AD-risk genes that contributes to AD pathologies, ultimately allowing identification of a treatment target and region-specific biomarkers for AD.
Collapse
|
19
|
Bykova M, Hou Y, Eng C, Cheng F. Quantitative trait locus (xQTL) approaches identify risk genes and drug targets from human non-coding genomes. Hum Mol Genet 2022; 31:R105-R113. [PMID: 36018824 PMCID: PMC9989738 DOI: 10.1093/hmg/ddac208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Advances and reduction of costs in various sequencing technologies allow for a closer look at variations present in the non-coding regions of the human genome. Correlating non-coding variants with large-scale multi-omic data holds the promise not only of a better understanding of likely causal connections between non-coding DNA and expression of traits but also identifying potential disease-modifying medicines. Genome-phenome association studies have created large datasets of DNA variants that are associated with multiple traits or diseases, such as Alzheimer's disease; yet, the functional consequences of variants, in particular of non-coding variants, remain largely unknown. Recent advances in functional genomics and computational approaches have led to the identification of potential roles of DNA variants, such as various quantitative trait locus (xQTL) techniques. Multi-omic assays and analytic approaches toward xQTL have identified links between genetic loci and human transcriptomic, epigenomic, proteomic and metabolomic data. In this review, we first discuss the recent development of xQTL from multi-omic findings. We then highlight multimodal analysis of xQTL and genetic data for identification of risk genes and drug targets using Alzheimer's disease as an example. We finally discuss challenges and future research directions (e.g. artificial intelligence) for annotation of non-coding variants in complex diseases.
Collapse
Affiliation(s)
- Marina Bykova
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Hardwick SA, Hu W, Joglekar A, Fan L, Collier PG, Foord C, Balacco J, Lanjewar S, Sampson MM, Koopmans F, Prjibelski AD, Mikheenko A, Belchikov N, Jarroux J, Lucas AB, Palkovits M, Luo W, Milner TA, Ndhlovu LC, Smit AB, Trojanowski JQ, Lee VMY, Fedrigo O, Sloan SA, Tombácz D, Ross ME, Jarvis E, Boldogkői Z, Gan L, Tilgner HU. Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nat Biotechnol 2022; 40:1082-1092. [PMID: 35256815 PMCID: PMC9287170 DOI: 10.1038/s41587-022-01231-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Single-nuclei RNA sequencing characterizes cell types at the gene level. However, compared to single-cell approaches, many single-nuclei cDNAs are purely intronic, lack barcodes and hinder the study of isoforms. Here we present single-nuclei isoform RNA sequencing (SnISOr-Seq). Using microfluidics, PCR-based artifact removal, target enrichment and long-read sequencing, SnISOr-Seq increased barcoded, exon-spanning long reads 7.5-fold compared to naive long-read single-nuclei sequencing. We applied SnISOr-Seq to adult human frontal cortex and found that exons associated with autism exhibit coordinated and highly cell-type-specific inclusion. We found two distinct combination patterns: those distinguishing neural cell types, enriched in TSS-exon, exon-polyadenylation-site and non-adjacent exon pairs, and those with multiple configurations within one cell type, enriched in adjacent exon pairs. Finally, we observed that human-specific exons are almost as tightly coordinated as conserved exons, implying that coordination can be rapidly established during evolution. SnISOr-Seq enables cell-type-specific long-read isoform analysis in human brain and in any frozen or hard-to-dissociate sample.
Collapse
Affiliation(s)
- Simon A Hardwick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Paul G Collier
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | | | - Samantha Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Andrey D Prjibelski
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alla Mikheenko
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | | | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Wenjie Luo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | | | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Li Gan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Brotman SM, Raulerson CK, Vadlamudi S, Currin KW, Shen Q, Parsons VA, Iyengar AK, Roman TS, Furey TS, Kuusisto J, Collins FS, Boehnke M, Laakso M, Pajukanta P, Mohlke KL. Subcutaneous adipose tissue splice quantitative trait loci reveal differences in isoform usage associated with cardiometabolic traits. Am J Hum Genet 2022; 109:66-80. [PMID: 34995504 PMCID: PMC8764203 DOI: 10.1016/j.ajhg.2021.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.
Collapse
Affiliation(s)
- Sarah M Brotman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea K Raulerson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Kevin W Currin
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qiujin Shen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria A Parsons
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Apoorva K Iyengar
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tamara S Roman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terrence S Furey
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio 70210, Finland
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, Kuopio 70210, Finland
| | - Päivi Pajukanta
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
22
|
Wang S, Wang S, Zhang X, Meng D, Xia Q, Xie S, Shen S, Yu B, Hu J, Liu H, Yan W. Comprehensive analysis of prognosis-related alternative splicing events in ovarian cancer. RNA Biol 2022; 19:1007-1018. [PMID: 35980273 PMCID: PMC9397453 DOI: 10.1080/15476286.2022.2113148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ovarian cancer (OV) is characterized by high incidence and poor prognosis. Increasing evidence indicates that aberrant alternative splicing (AS) events are associated with the pathogenesis of cancer. We examined prognosis-related alternative splicing events and constructed a clinically applicable model to predict patients’ outcomes. Public database including The Cancer Genome Atlas (TCGA), TCGA SpliceSeq, and the Genomics of Drug Sensitivity in Cancer databases were used to detect the AS expression, immune cell infiltration and IC50. The prognosis-related AS model was constructed and validated by using Cox regression, LASSO regression, C-index, calibration plots, and ROC curves. A total of eight AS events (including FLT3LG|50942|AP) were selected to establish the prognosis-related AS model. Compared with high-risk group, low-risk group had a better outcome (P = 1.794e-06), was more sensitive to paclitaxel (P = 0.022), and higher proportions of plasma cells. We explored the upstream regulatory mechanisms of prognosis-related AS and found that two splicing factor and 156 tag single nucleotide polymorphisms may be involved in the regulation of prognosis-related AS. In order to assess patient prognosis more comprehensively, we constructed a clinically applicable model combining risk score and clinicopathological features, and the 1 -, and 3-year AUCs of the clinically applicable model were 0.812, and 0.726, which were 7.5% and 3.3% higher than that of the risk score. We constructed a prognostic signature for OV patients and comprehensively analysed the regulatory characteristics of the prognostic AS events in OV.
Collapse
Affiliation(s)
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Dan Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Qianqian Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Siyuan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Bingjia Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Integration of functional genomics data to uncover cell type-specific pathways affected in Parkinson's disease. Biochem Soc Trans 2021; 49:2091-2100. [PMID: 34581766 PMCID: PMC8589426 DOI: 10.1042/bst20210128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder worldwide after Alzheimer's disease for which available drugs only deliver temporary symptomatic relief. Loss of dopaminergic neurons (DaNs) in the substantia nigra and intracellular alpha-synuclein inclusions are the main hallmarks of the disease but the events that cause this degeneration remain uncertain. Despite cell types other than DaNs such as astrocytes, microglia and oligodendrocytes have been recently associated with the pathogenesis of PD, we still lack an in-depth characterisation of PD-affected brain regions at cell-type resolution that could help our understanding of the disease mechanisms. Nevertheless, publicly available large-scale brain-specific genomic, transcriptomic and epigenomic datasets can be further exploited to extract different layers of cell type-specific biological information for the reconstruction of cell type-specific transcriptional regulatory networks. By intersecting disease risk variants within the networks, it may be possible to study the functional role of these risk variants and their combined effects at cell type- and pathway levels, that, in turn, can facilitate the identification of key regulators involved in disease progression, which are often potential therapeutic targets.
Collapse
|
24
|
Xu K, Zhang Y, Li J. Expression and function of circular RNAs in the mammalian brain. Cell Mol Life Sci 2021; 78:4189-4200. [PMID: 33558994 PMCID: PMC11071837 DOI: 10.1007/s00018-021-03780-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 01/19/2023]
Abstract
Mammalian brain presents extraordinary complexity reflected in the structure, function, and dynamic changes in the biological and physiological processes of development, maturity, and aging. Recent transcriptomic profiles from the brain tissues of distinct species have described a novel class of transcripts with a covalently closed-loop structure, called circular RNAs (circRNAs), which are produced by alternative back-splicing and derived from genes associated with synaptogenesis and neural activities. Brain is a tightly regulated and largely unexplored organ where circRNAs are highly enriched and expressed in the cell type-, spatiotemporal-specific, sex-biased, and age-related manner. Although the biological functions of most of the circRNAs in the brain remain elusive, increased evidence suggests that dynamic changes in circRNA expression are critical for brain function and the maintenance of physiological homeostasis in the brain. Here, we review the latest immense progresses in the understanding of circRNA expression and function in the mammalian brain. We also discuss possibly biological functions of circRNAs in the brain, which may provide new sights of understanding brain development and aging, as well as the pathogenesis of mental diseases.
Collapse
Affiliation(s)
- Kaiyu Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ying Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- National Institute on Drug Dependence, Peking University, Beijing, China.
- PKU/McGovern Institute for Brain Research, Peking University, Beijing, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
25
|
Naro C, Cesari E, Sette C. Splicing regulation in brain and testis: common themes for highly specialized organs. Cell Cycle 2021; 20:480-489. [PMID: 33632061 PMCID: PMC8018374 DOI: 10.1080/15384101.2021.1889187] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022] Open
Abstract
Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire of splice variants. Herein, we will review organ-specific as well as common mechanisms underlying the high transcriptome complexity of these organs and discuss the impact exerted by this widespread alternative splicing regulation on the functionality and differentiation of brain and testicular cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
26
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
27
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
28
|
Joglekar A, Prjibelski A, Mahfouz A, Collier P, Lin S, Schlusche AK, Marrocco J, Williams SR, Haase B, Hayes A, Chew JG, Weisenfeld NI, Wong MY, Stein AN, Hardwick SA, Hunt T, Wang Q, Dieterich C, Bent Z, Fedrigo O, Sloan SA, Risso D, Jarvis ED, Flicek P, Luo W, Pitt GS, Frankish A, Smit AB, Ross ME, Tilgner HU. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat Commun 2021; 12:463. [PMID: 33469025 PMCID: PMC7815907 DOI: 10.1038/s41467-020-20343-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023] Open
Abstract
Splicing varies across brain regions, but the single-cell resolution of regional variation is unclear. We present a single-cell investigation of differential isoform expression (DIE) between brain regions using single-cell long-read sequencing in mouse hippocampus and prefrontal cortex in 45 cell types at postnatal day 7 ( www.isoformAtlas.com ). Isoform tests for DIE show better performance than exon tests. We detect hundreds of DIE events traceable to cell types, often corresponding to functionally distinct protein isoforms. Mostly, one cell type is responsible for brain-region specific DIE. However, for fewer genes, multiple cell types influence DIE. Thus, regional identity can, although rarely, override cell-type specificity. Cell types indigenous to one anatomic structure display distinctive DIE, e.g. the choroid plexus epithelium manifests distinct transcription-start-site usage. Spatial transcriptomics and long-read sequencing yield a spatially resolved splicing map. Our methods quantify isoform expression with cell-type and spatial resolution and it contributes to further our understanding of how the brain integrates molecular and cellular complexity.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Andrey Prjibelski
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, 2628 XE, The Netherlands
| | - Paul Collier
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Susan Lin
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anna Katharina Schlusche
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | | | - Bettina Haase
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY, USA
| | | | | | | | - Man Ying Wong
- Brain and Mind Research Institute and Appel Alzheimer's Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Simon A Hardwick
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Qi Wang
- Section of Bioinformatics and Systems Cardiology, University Hospital, 96120, Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital, 96120, Heidelberg, Germany
| | | | - Olivier Fedrigo
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Erich D Jarvis
- The Vertebrate Genomes Lab, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Wenjie Luo
- Brain and Mind Research Institute and Appel Alzheimer's Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey S Pitt
- Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - M Elizabeth Ross
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|