1
|
Liu Z, Zhang H, Jia H, Wang H, Huang Z, Tang Y, Wang Z, Hu J, Zhao X, Li T, Sun X. The clinical safety landscape for ocular AAV gene therapies: A systematic review and meta-analysis. iScience 2025; 28:112265. [PMID: 40248125 PMCID: PMC12005934 DOI: 10.1016/j.isci.2025.112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Adeno-associated virus (AAV) gene therapy is a promising approach for treating ocular monogenic or acquired diseases, though immunogenicity and safety remain critical considerations. We conducted a systematic review of 120 trials and 32 publications to assess immune responses across different delivery routes. Intravitreal administration was associated with higher rates of anterior uveitis (43.06% vs. 10.22%) and intermediate/posterior uveitis (40.36% vs. 6.18%) compared to subretinal delivery. Engineered AAV capsids, used exclusively in intravitreal studies, showed no significant difference in either type of uveitis incidence compared to natural serotypes. Prophylactic immunosuppression (PI) did not affect ocular or systemic immune responses in subretinal delivery, but significantly reduced systemic immune responses in intravitreal administration. These findings underscore the potential of PI to mitigate systemic immune responses in intravitreal AAV therapy. This review should help guide the choice of routes of administration and immunosuppression strategies, and highlights current trends in ocular AAV gene therapy.
Collapse
Affiliation(s)
- Zishi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Haoliang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Huixun Jia
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zhonghe Huang
- Qingdao University School of Mathematics and Statistics, Qingdao, China
| | - Yuhao Tang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Zilin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Jing Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Xiaohuan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
| | - Tong Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
- Shanghai Gene Therapy Center, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| |
Collapse
|
2
|
Zhang H, Yin S, Guan N, Wang J, Cheng Q, Zhang L, Zheng Q, Lv H, Wei W. Natural history of progressive vision loss in Bietti crystalline dystrophy: a model-based meta-analysis. BMJ Open Ophthalmol 2025; 10:e001908. [PMID: 40221146 PMCID: PMC11997835 DOI: 10.1136/bmjophth-2024-001908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
PURPOSE Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive progressive retinal degenerative disease due to mutations in the CYP4V2 gene. Best-corrected visual acuity (BCVA) is a common primary endpoint in clinical trials for retinal diseases, but the natural history of BCVA loss remains unclear because of the heterogeneity of manifestations in BCD patients. METHODS Based on the individual data of untreated BCD patients, a disease progression model was established using the change in BCVA from baseline as an index, and covariates including age of onset, age, duration of disease, baseline BCVA, gender, race (East Asian/non-East Asian), genotype, and family history. Then, based on the final model, the natural disease progression characteristics of BCD were simulated. RESULT A total of 14 studies met the inclusion criteria, with a total sample size of 117 cases, including 6 studies (N=80) with East Asian populations and 9 studies (N=37) with non-East Asian populations. The change of BCVA from baseline increased linearly with time, and the disease progression model of BCD was successfully established. BCVA increased by 0.06 logarithm of the minimum angle of resolution (LogMAR) per year in BCD patients. BCVA increased by 0.09 LogMAR per year in patients with BCVA≥0.5LogMAR and disease duration more than 10 years. CONCLUSIONS For the first time, we successfully established a BCD disease progression model based on the change in BCVA from baseline. The mean visual acuity loss increased linearly with the progression of the disease. A sharper loss of BCVA may be expected in patients with BCVA≥0.5LogMAR and disease duration ≥10 years.
Collapse
Affiliation(s)
| | - Shiyi Yin
- Capital Medical University, Beijing, China
| | - Ning Guan
- Shanghai Vitalgen BioPharma Corporation Limited, Shanghai, China
| | - Jinyuan Wang
- Capital Medical University, Beijing, China
- Tsinghua University, Beijing, China
| | | | | | - Qingshan Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Lv
- Shanghai Vitalgen BioPharma Corporation Limited, Shanghai, China
| | - Wenbin Wei
- Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Keeler AM, Zhan W, Ram S, Fitzgerald KA, Gao G. The curious case of AAV immunology. Mol Ther 2025:S1525-0016(25)00211-4. [PMID: 40156190 DOI: 10.1016/j.ymthe.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Immune responses to adeno-associated virus (AAV) have long been perplexing, from its first discovery to the latest clinical trials of recombinant AAV (rAAV) therapy. Wild-type AAV (wtAAV) does not cause any known disease, making it an ideal vector for gene therapy, as viral vectors retain virus-like properties. Although AAV stimulates only a mild immune response compared with other viruses, it is still recognized by the innate immune system and induces adaptive immune responses. B cell responses against both wtAAV and rAAV are robust and can hinder gene therapy applications and prevent redosing. T cell responses can clear transduced cells or establish tolerance against gene therapy. Immune responses to AAV gene therapy are influenced by many factors. Most clinical immunotoxicities that develop in response to gene therapies have emerged as higher doses of AAV vectors have been utilized and were not properly modeled in preclinical animal studies. Thus, several strategies have been undertaken to reduce or mitigate immune responses to AAV. While we have learned a considerable amount about how the immune system responds to AAV gene therapy since the discovery of AAV virus, it still remains a curious case that requires more investigation to fully understand.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; NeroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Purdy R, John M, Bray A, Clare AJ, Copland DA, Chan YK, Henderson RH, Nerinckx F, Leroy BP, Yang P, Pennesi ME, MacLaren RE, Fischer MD, Dick AD, Xue K. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog Retin Eye Res 2025; 106:101354. [PMID: 40090458 DOI: 10.1016/j.preteyeres.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Retinal gene therapy using adeno-associated viral (AAV) vectors has been a groundbreaking step-change in the treatment of inherited retinal diseases (IRDs) and could also be used to treat more common retinal diseases such as age-related macular degeneration and diabetic retinopathy. The delivery and expression of therapeutic transgenes in the eye is limited by innate and adaptive immune responses against components of the vector product, which has been termed gene therapy-associated uveitis (GTAU). This is clinically important as intraocular inflammation could lead to irreversible loss of retinal cells, deterioration of visual function and reduced durability of treatment effect associated with a costly one-off treatment. For retinal gene therapy to achieve an improved efficacy and safety profile for treating additional IRDs and more common diseases, the risk of GTAU must be minimised. We have collated insights from pre-clinical research, clinical trials, and the real-world implementation of AAV-mediated retinal gene therapy to help understand the risk factors for GTAU. We draw attention to an emerging framework, which includes patient demographics, vector construct, vector dose, route of administration, and choice of immunosuppression regime. Importantly, we consider efforts to date and potential future strategies to mitigate the adverse immune response across each of these domains. We advocate for more targeted immunomodulatory approaches to the prevention and treatment of GTAU based on better understanding of the underlying immune response.
Collapse
Affiliation(s)
- Ryan Purdy
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Molly John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Cirrus Therapeutics, Cambridge, MA, USA
| | - Robert H Henderson
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fanny Nerinckx
- Chirec Delta Hospital, Brussels, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
5
|
Abdalla Elsayed MEA, Cehajic-Kepetanovic J, MacLaren RE. Gene therapy for choroideremia: progress, potential and pitfalls. Expert Opin Biol Ther 2025; 25:257-263. [PMID: 39893699 PMCID: PMC11912956 DOI: 10.1080/14712598.2025.2459850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Choroideremia is a rare disease with a significant disease burden. Gene-supplementation methods for choroideremia gene therapy have been the most successful form of gene therapy thus far. AREAS COVERED The aim of the current review is to provide an overview of current progress of gene therapy trials to date, with a focus on potential and pitfalls of such trials. We propose a novel end point that may be clinically meaningful for obtaining regulatory approval in subsequent clinical trials. Additionally, we offer recommendations for further optimization of surgical techniques. EXPERT OPINION Lessons learnt from this phase 3 clinical trial, encompassing optimal vector design, delivery techniques, patient selection criteria, and long-term safety profiles can be used in the development of treatments for polygenic retinal disorders, which may necessitate a more nuanced approach due to genetic complexity.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Jasmina Cehajic-Kepetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Hinsch VG, Boye SL, Boye SE. A Comprehensive Review of Clinically Applied Adeno-Associated Virus-Based Gene Therapies for Ocular Disease. Hum Gene Ther 2025. [PMID: 39989340 DOI: 10.1089/hum.2024.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
The eye is an ideal target for gene therapy due its accessibility, immune privilege, small size, and compartmentalization. Adeno-associated virus (AAV) is the gold standard vector for gene delivery and can be injected via multiple routes of administration to target different parts of this organ. The approval of Luxturna™, a subretinally delivered gene therapy for RPE65-associated Leber's congenital amaurosis, and the large number of successful proof of concept studies performed in animal models injected great momentum into the pursuit of additional AAV-based gene therapies for the treatment of retinal disease. This review provides a comprehensive summary of all subretinally, intravitreally, and suprachoroidally delivered AAV-based ocular gene therapies that have progressed to clinical stage. Attention is given to primary (safety) and secondary (efficacy) outcomes, or lack thereof. Lessons learned and future directions are addressed, both of which point to optimism that the ocular gene therapy field is poised for continued momentum and additional regulatory approvals.
Collapse
Affiliation(s)
- Valerie G Hinsch
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Kwok E, Alam K, Lim J, Niyazmand H, Tang V, Trinh H, Chen FK, Charng J. Evaluating ocular health in retinal gene therapies. Clin Exp Optom 2025:1-12. [PMID: 39956654 DOI: 10.1080/08164622.2025.2457429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Inherited retinal disease (IRD) refers to a heterogeneous group of genetic eye disease that causes progressive vision loss and was once regarded untreatable. However, regulatory approval for Luxturna (voretigene neparvovec-rzyl) for patients with biallelic mutation in the RPE65 gene has heralded new optimism for patients with the disease. One critical question in designing clinical trial in patients with IRD is choosing appropriate outcome measures to assess the retina, taking into consideration the slow disease progression and the inherent low vision associated with the disease. In this review, the functional and structural endpoints that have been utilised in human retinal gene therapy clinical trials in patient selection as well as measures of safety and efficacy are described. For clinicians, an appreciation of these specialised measures of eye health in a patient with IRD will enhance understanding of retinal health assessments, disease prognosis as well as facilitating discussions with patients potentially eligible for retinal gene therapy clinical trial.
Collapse
Affiliation(s)
- Eden Kwok
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Khyber Alam
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jeremiah Lim
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hamed Niyazmand
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vanessa Tang
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Han Trinh
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Gocuk SA, Ayton LN, Edwards TL, McGuinness MB, Maclaren RE, Taylor LJ, Jolly JK. Longitudinal assessment of female carriers of choroideremia using multimodal retinal imaging. Br J Ophthalmol 2025; 109:293-299. [PMID: 39122355 PMCID: PMC11866302 DOI: 10.1136/bjo-2024-325578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND/AIMS Female choroideremia carriers present with a spectrum of disease severity. Unlike in men, the rate of disease progression has not been well characterised in carriers. This longitudinal study aimed to determine the rate of retinal degeneration in choroideremia carriers, using multimodal imaging and microperimetry. METHODS Choroideremia carriers previously seen at Oxford Eye Hospital (United Kingdom) between 2012 and 2017 returned for testing between 2015 and 2023, providing up to 11 years' follow-up data. Participants had optical coherence tomography, fundus-tracked microperimetry and fundus autofluorescence (FAF) imaging performed. RESULTS Thirty-four eyes of 17 choroideremia carriers were examined using multimodal imaging. Median age was 44 (range: 15-73) years at baseline and median follow-up duration was 7 (range: 1-11) years. At baseline, phenotype was classified as fine (n=5 eyes), coarse (n=13 eyes), geographic (n=12 eyes) or male pattern (n=4 eyes). Thirteen patients showed no change in phenotype classification, four showed slight changes associated with choroideremia-related retinal degeneration. Despite this, carriers with severe retinal phenotypes had a statistically significant decline in average retinal sensitivity (-0.7 dB and -0.8 dB per year, respectively, p<0.001), area of geographic loss defined by FAF (+2.5 mm2 and +3.7 mm2 per year, respectively, p<0.001) and thinning of the photoreceptor complex (up to -2.8 microns and -10.3 microns per year, p<0.001). CONCLUSION Choroideremia carriers, particularly those with severe retinal phenotypes, exhibit progressive retinal degeneration, as evident by multimodal imaging biomarkers and functional testing. Clinicians should not rely on retinal severity classification alone to assess disease progression.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Myra B McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert E Maclaren
- Oxford Eye Hospital, Oxford University Hospital NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospital NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
| | - Jasleen K Jolly
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Oxford Eye Hospital, Oxford University Hospital NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, The University of Oxford, Oxford, UK
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
9
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
10
|
Poli FE, MacLaren RE, Cehajic-Kapetanovic J. Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes (Basel) 2024; 15:1471. [PMID: 39596671 PMCID: PMC11593989 DOI: 10.3390/genes15111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Choroideremia is a monogenic inherited retinal dystrophy that manifests in males with night blindness, progressive loss of peripheral vision, and ultimately profound sight loss, commonly by middle age. It is caused by genetic defects of the CHM gene, which result in a deficiency in Rab-escort protein-1, a key element for intracellular trafficking of vesicles, including those carrying melanin. As choroideremia primarily affects the retinal pigment epithelium, fundus autofluorescence, which focuses on the fluorescent properties of pigments within the retina, is an established imaging modality used for the assessment and monitoring of affected patients. METHODS AND RESULTS In this manuscript, we demonstrate the use of both short-wavelength blue and near-infrared autofluorescence and how these imaging modalities reveal distinct disease patterns in choroideremia. In addition, we show how these structural measurements relate to retinal functional measures, namely microperimetry, and discuss the potential role of these retinal imaging modalities in clinical practice and research studies. Moreover, we discuss the mechanisms underlying retinal autofluorescence patterns by imaging with a particular focus on melanin pigment. CONCLUSIONS This could be of particular significance given the current progress in therapeutic options, including gene replacement therapy.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
11
|
Schwakopf J, Romero CO, Lopez NN, Millar JC, Vetter ML, Bosco A. Schlemm's canal-selective Tie2/TEK knockdown induces sustained ocular hypertension in adult mice. Exp Eye Res 2024; 248:110114. [PMID: 39368692 PMCID: PMC11533709 DOI: 10.1016/j.exer.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Deficient Angiopoietin-Tie2 signaling is linked to ocular hypertension in glaucoma. Receptor Tie2/TEK expression and signaling at Schlemm's canal (SC) is indispensable for canal integrity and homeostatic regulation of aqueous humor outflow (AHO) and intraocular pressure (IOP), as validated by conditional deletion of Tie2, its ligands (Angpt1, Angpt2 and Angpt3/4) or regulators (Tie1 and PTPRB/VE-PTP). However, these Tie2/TEK knockouts and conditional knockouts are global or endothelial, preventing separation of systemic and ocular vascular defects that impact retinal or renal integrity. To develop a more targeted model of ocular hypertension induced by selective knockdown of Tie2/TEK expressed in SC, we combined the use of viral vectors to target the canal, and two distinct gene-editing strategies to disrupt the Tie2 gene. Adeno-associated virus (AAV2) is known to transduce rodent SC when delivered into the anterior chamber by intracameral injection. First, delivery of Cre recombinase via AAV2.Cre into R26tdTomato/+ reporter mice confirmed preferential and stable transduction in SC endothelium. Next, to disrupt Tie2 expression in SC, we injected AAV2.Cre into homozygous floxed Tie2 (Tie2FL/FL) mice. This led to attenuated Tie2 protein expression along the SC inner wall, decreased SC area and reduced trabecular meshwork (TM) cellularity. Functionally, IOP was significantly and steadily elevated, whereas AHO facility was reduced. In contrast, hemizygous Tie2FL/+ mice responded to AAV2.Cre with inconsistent and low IOP elevation, corroborating the dose-dependency of ocular hypertension on Tie2 expression/activation. In a second model using CRISPR/SaCas9 genome editing, wild-type C57BL/6 J mice injected with AAV2.saCas9-sgTie2 showed similar selective SC transduction and comparable IOP elevation in course and magnitude to that induced by AAV2.Cre in Tie2FL/FL mice. Together, our findings, demonstrate that selective Tie2 knockdown in SC is a targeted strategy that reliably induces chronic ocular hypertension and reproduces glaucomatous damage to the conventional outflow pathway, providing novel models of SC-Tie2 signaling loss valuable for preclinical studies.
Collapse
Affiliation(s)
- Joon Schwakopf
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Cesar O Romero
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Navita N Lopez
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Monica L Vetter
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Alejandra Bosco
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
12
|
Bonneau S, Kulbay M, Kahn-Ali S, Qian CX. Exploring the impact of Choroideremia on women with phenotypic and/or genotypic evidence of disease: insights from a global survey. Ophthalmic Genet 2024; 45:452-461. [PMID: 38847528 DOI: 10.1080/13816810.2024.2357705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Choroideremia (CHM) is an X-linked inherited retinal disease mostly affecting males. However, women with phenotypic and/or genotypic evidence of CHM may develop degenerative visual disability with advancing age. Our objective was to determine the visual impacts of phenotypic and/or genotypic evidence of CHM in women and its associated psychosocial burden and influence on activities of daily living (ADLs). METHODS We conducted an international cross-sectional survey from April to December 2022 using an e-questionnaire distributed through not-for-profit stakeholder organizations and social media plat-forms. RESULTS With a total of 55 respondents (n = 55), most women with phenotypic and/or genotypic evidence of CHM (76%) reported a change in their visual acuity. When assessing its impact on ADLs, Pearson's correlation coefficient showed a negative correlation between driving (p = 0.046) and mobility capabil-ities (0.046) with the respondent's age. More than half of women reported being afraid, anxious, and stressed, with women below the age of 50 years old reporting a significantly higher level of distress and hopelessness (p = 0.003), anxiety (p = 0.00007), issues with relaxing (p = 0.025), and negative personal thoughts (p = 0.042). CONCLUSION Overall, this survey outlines both physical and psychological burden of being a woman with phenotypic and/or genotypic evidence of CHM. Given the limited clinical research in females affected by CHM, this patient-centered survey is a crucial advocacy tool for these individuals.
Collapse
Affiliation(s)
- Steven Bonneau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Centre Universitaire affilié à l'Université de Montréal, Montréal, Québec, Canada
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Merve Kulbay
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Centre Universitaire affilié à l'Université de Montréal, Montréal, Québec, Canada
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| | - Shigufa Kahn-Ali
- Department of Ophthalmology, Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, University of Montreal, Montréal, Québec, Canada
| | - Cynthia X Qian
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Centre Universitaire affilié à l'Université de Montréal, Montréal, Québec, Canada
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Sin TN, Tng N, Dragoli J, Ramesh Kumar S, Villafuerte-Trisolini C, Chung SH, Tu L, Le SM, Shim JH, Pepple KL, Ravindran R, Khan IH, Moshiri A, Thomasy SM, Yiu G. Safety and efficacy of CRISPR-mediated genome ablation of VEGFA as a treatment for choroidal neovascularization in nonhuman primate eyes. Mol Ther 2024:S1525-0016(24)00651-8. [PMID: 39342431 DOI: 10.1016/j.ymthe.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
CRISPR-based genome editing enables permanent suppression of angiogenic factors such as vascular endothelial growth factor (VEGF) as a potential treatment for choroidal neovascularization (CNV)-a major cause of blindness in age-related macular degeneration. We previously designed adeno-associated viral (AAV) vectors with S. pyogenes Cas 9 (SpCas9) and guide RNAs (gRNAs) to target conserved sequences in VEGFA across mouse, rhesus macaque, and human, with successful suppression of VEGF and laser-induced CNV in mice. Here, we advanced the platform to nonhuman primates and found that subretinal AAV8-SpCas9 with gRNAs targeting VEGFA may reduce VEGF and CNV severity as compared with SpCas9 without gRNAs. However, all eyes that received AAV8-SpCas9 regardless of gRNA presence developed subfoveal deposits, concentric macular rings, and outer retinal disruption that worsened at higher dose. Immunohistochemistry showed subfoveal accumulation of retinal pigment epithelial cells, collagen, and vimentin, disrupted photoreceptor structure, and retinal glial and microglial activation. Subretinal AAV8-SpCas9 triggered aqueous elevations in CCL2, but minimal systemic humoral or cellular responses against AAV8, SpCas9, or GFP reporter. Our findings suggest that CRISPR-mediated VEGFA ablation in nonhuman primate eyes may suppress VEGF and CNV, but can also lead to unexpected subretinal fibrosis, photoreceptor damage, and retinal inflammation despite minimal systemic immune responses.
Collapse
Affiliation(s)
- Tzu-Ni Sin
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Nicole Tng
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jack Dragoli
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sruthi Ramesh Kumar
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Sook Hyun Chung
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Lien Tu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sophie M Le
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jae Ho Shim
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Resmi Ravindran
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Imran H Khan
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sara M Thomasy
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA; Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
15
|
Stranak Z, Ardan T, Nemesh Y, Toms M, Toualbi L, Harbottle R, Ellederova Z, Lytvynchuk L, Petrovski G, Motlik J, Moosajee M, Kozak I. Feasibility of Direct Vitrectomy-Sparing Subretinal Injection for Gene Delivery in Large Animals. Curr Eye Res 2024; 49:879-887. [PMID: 38666493 DOI: 10.1080/02713683.2024.2343335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/09/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE To assess the safety and feasibility of direct vitrectomy-sparing subretinal injection for gene delivery in a large animal model. METHODS The experimental Liběchov minipigs were used for subretinal delivery of a plasmid DNA vector (pS/MAR-CMV-copGFP) with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP) reporter (copGFP) and a scaffold/matrix attachment region (S/MAR) sequence. The eyes were randomized to subretinal injection of the vector following pars plana vitrectomy (control group) or a direct injection without prior vitrectomy surgery (experimental group). Intra- and post-operative observations up to 30 days after surgery were compared. RESULTS Six eyes of three mini-pigs underwent surgery for delivery into the subretinal space. Two eyes in the control group were operated with a classical approach (lens-sparing vitrectomy and posterior hyaloid detachment). The other four eyes in the experimental group were injected directly with a subretinal cannula without vitrectomy surgery. No adverse events, such as endophthalmitis, retinal detachment and intraocular pressure elevation were observed post-operatively. The eyes in the experimental group had both shorter surgical time and recovery while achieving the same surgical goal. CONCLUSIONS This pilot study demonstrates that successful subretinal delivery of gene therapy vectors is achievable using a direct injection without prior vitrectomy surgery.
Collapse
Affiliation(s)
- Zbynek Stranak
- Department of Ophthalmology, Charles University, Prague and the Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Taras Ardan
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Yaroslav Nemesh
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Lyes Toualbi
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Zdenka Ellederova
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Eye Clinic, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Jan Motlik
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Igor Kozak
- Department of Vitreoretinal Surgery and Research and Innovation, Moorfields Eye Hospitals UAE, Abu Dhabi
| |
Collapse
|
16
|
Maclaren RE, Lam BL, Fischer MD, Holz FG, Pennesi ME, Birch DG, Sankila EM, Meunier IA, Stepien KE, Sallum JMF, Li J, Yoon D, Panda S, Gow JA. A Prospective, Observational, Non-interventional Clinical Study of Participants With Choroideremia: The NIGHT Study. Am J Ophthalmol 2024; 263:35-49. [PMID: 38311152 DOI: 10.1016/j.ajo.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE The NIGHT study aimed to assess the natural history of choroideremia (CHM), an X-linked inherited chorioretinal degenerative disease leading to blindness, and determine which outcomes would be the most sensitive for monitoring disease progression. DESIGN A prospective, observational, multicenter cohort study. METHODS Males aged ≥18 years with genetically confirmed CHM, visible active disease within the macular region, and best-corrected visual acuity (BCVA) ≥34 Early Treatment Diabetic Retinopathy Study (ETDRS) letters at baseline were assessed for 20 months. The primary outcome was the change in BCVA over time at Months 4, 8, 12, 16, and 20. A range of functional and anatomical secondary outcome measures were assessed up to Month 12, including retinal sensitivity, central ellipsoid zone (EZ) area, and total area of fundus autofluorescence (FAF). Additional ocular assessments for safety were performed. RESULTS A total of 220 participants completed the study. The mean BCVA was stable over 20 months. Most participants (81.4% in the worse eye and 77.8% in the better eye) had change from baseline > -5 ETDRS letters at Month 20. Interocular symmetry was low overall. Reductions from baseline to Month 12 were observed (worse eye, better eye) for retinal sensitivity (functional outcome; -0.68 dB, -0.48 dB), central EZ area (anatomical outcome; -0.276 mm2, -0.290 mm2), and total area of FAF (anatomical outcome; -0.605 mm2, -0.533 mm2). No assessment-related serious adverse events occurred. CONCLUSIONS Retinal sensitivity, central EZ area, and total area of FAF are more sensitive than BCVA in measuring the natural progression of CHM.
Collapse
Affiliation(s)
- Robert E Maclaren
- From the Oxford Eye Hospital (R.E.M.), Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Byron L Lam
- Bascom Palmer Eye Institute (B.L.L.), University of Miami, Miami, Florida, USA
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology (M.D.F.), University Hospital Tübingen, Tübingen, Germany
| | - Frank G Holz
- Department of Ophthalmology (F.-G.H.), University of Bonn, Bonn, Germany
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute (M.E.P.), Oregon Health & Science University, Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest (D.G.B.), Dallas, Texas, USA
| | - Eeva-Marja Sankila
- Department of Ophthalmology (E.-M.S.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Isabelle Anne Meunier
- National Reference Centre for Inherited Sensory Diseases (I.A.M.), University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Kimberly E Stepien
- Department of Ophthalmology and Visual Sciences (K.E.S.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences (J.M.F.S.), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jiang Li
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - Dan Yoon
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - Sushil Panda
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - James A Gow
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Karuntu JS, Nguyen XTA, Talib M, van Schooneveld MJ, Wijnholds J, van Genderen MM, Schalij-Delfos NE, Klaver CCW, Meester-Smoor MA, van den Born LI, Hoyng CB, Thiadens AAHJ, Bergen AA, van Nispen RMA, Boon CJF. Quality of life in patients with CRB1-associated retinal dystrophies: A longitudinal study. Acta Ophthalmol 2024; 102:469-477. [PMID: 37749859 DOI: 10.1111/aos.15769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE To assess the longitudinal vision-related quality of life among patients with CRB1-associated inherited retinal dystrophies. METHODS In this longitudinal questionnaire study, the National Eye Institute Visual Function Questionnaire (39 items, NEI VFQ-39) was applied at baseline, two-year follow-up, and 4-year follow-up in patients with pathogenic CRB1 variants. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] Classical test theory was performed to obtain subdomain scores and in particular 'near activities' and 'total composite' scores. The Rasch analysis based on previous calibrations of the NEI VFQ-25 was applied to create visual functioning and socio-emotional subscales. RESULTS In total, 22 patients with a CRB1-associated retinal dystrophy were included, […] with a median age of 25.0 years (interquartile range: 13-31 years) at baseline and mean follow-up of 4.0 ± 0.3 years. [Correction added on 20 November 2023, after first online publication: The preceding sentence has been updated in this version.] A significant decline at 4 years was observed for 'near activities' (51.0 ± 23.8 vs 35.4 ± 14.7, p = 0.004) and 'total composite' (63.0 ± 13.1 vs 52.0 ± 12.1, p = 0.001) subdomain scores. For the Rasch-scaled scores, the 'visual functioning' scale significantly decreased after 2 years (-0.89 logits; p = 0.012), but not at 4-year follow-up (+0.01 logits; p = 0.975). [Correction added on 20 November 2023, after first online publication: In the preceding sentence, "…after 4 years…" has been corrected to "…after 2 years…" in this version.] The 'socio-emotional' scale also showed a significant decline after 2 years (-0.78 logits, p = 0.033) and 4 years (-0.83 logits, p = 0.021). CONCLUSION In the absence of an intervention, a decline in vision-related quality of life is present in patients with pathogenic CRB1 variants at 4-year follow-up. Patient-reported outcome measures should be included in future clinical trials, as they can be a potential indicator of disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mays Talib
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Maria M van Genderen
- Bartiméus, Diagnostic Centre for complex visual disorders, Zeist, The Netherlands
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Ruth M A van Nispen
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Ford JL, Karatza E, Mody H, Nagaraja Shastri P, Khajeh Pour S, Yang TY, Swanson M, Chao D, Devineni D. Clinical Pharmacology Perspective on Development of Adeno-Associated Virus Vector-Based Retina Gene Therapy. Clin Pharmacol Ther 2024; 115:1212-1232. [PMID: 38450707 DOI: 10.1002/cpt.3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Adeno-associated virus (AAV) vector-based gene therapy is an innovative modality being increasingly investigated to treat diseases by modifying or replacing defective genes or expressing therapeutic entities. With its unique anatomic and physiological characteristics, the eye constitutes a very attractive target for gene therapy. Specifically, the ocular space is easily accessible and is generally considered "immune-privileged" with a low risk of systemic side effects following local drug administration. As retina cells have limited cellular turnover, a one-time gene delivery has the potential to provide long-term transgene expression. Despite the initial success with voretigene neparvovec (Luxturna), the first approved retina gene therapy, there are still challenges to be overcome for successful clinical development of these products and scientific questions to be answered. The current review paper aims to integrate published experience learned thus far for AAV-based retina gene therapy related to preclinical to clinical translation; first-in-human dose selection; relevant bioanalytical assays and strategies; clinical development considerations including trial design, biodistribution and vector shedding, immunogenicity, transgene expression, and pediatric populations; opportunities for model-informed drug development; and regulatory perspectives. The information presented herein is intended to serve as a guide to inform the clinical development strategy for retina gene therapy with a focus on clinical pharmacology.
Collapse
Affiliation(s)
| | - Eleni Karatza
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Hardik Mody
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Sana Khajeh Pour
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Tong-Yuan Yang
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Michael Swanson
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Daniel Chao
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | |
Collapse
|
19
|
Berkowitz ST, Finn AP. Gene therapy for age-related macular degeneration: potential, feasibility, and pitfalls. Curr Opin Ophthalmol 2024; 35:170-177. [PMID: 38441066 DOI: 10.1097/icu.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW The landscape for age-related macular degeneration (AMD) is rapidly changing with addition of biosimilars and now United States Food and Drug Administration (FDA) approved nonneovascular AMD (nnAMD) treatment options. These developments have inspired a burgeoning pipeline of gene therapy approaches focused on similar antivascular endothelial growth factors (VEGF) and complement related pathways. Historic and more recent setbacks in the gene therapy pipeline, including intraocular inflammatory reactions, have raised important concerns for adverse events related to AMD therapeutics both for gene and nongene approaches. The specific clinical profile of these therapeutics approaching later stage clinical trials are complex and under active investigation; however, these options hold promise to disrupt the current landscape and change management paradigms for one of the leading causes of vision loss worldwide. RECENT FINDINGS This review covers current gene therapy approaches for neovascular AMD (nAMD) and nnAMD. Intravitreal, suprachoroidal, and subretinal delivery routes are discussed with attention to technical procedure, capabilities for transgene delivery to target tissue, immunogenicity, and collateral effects. Suprachoroidal delivery is an emerging approach which may bridge some of the practical drawbacks for intravitreal and subretinal methods, though with less elaborated immunologic profile. In parallel to delivery modification, viral vectors have been cultivated to target specific cells, with promising enhancements in adeno-associated viral (AAV) vectors and persistent interest in alternate viral and nonviral delivery vectors. Ongoing questions such as steroid or immunosuppressive regimen and economic considerations from a payer and societal perspective are discussed. SUMMARY The present review discusses emerging gene therapy options which could foster new, more durable nAMD and nnAMD therapeutics. These options will need refinement with regards to route, vector, and dosage, and specialists must decipher the specific clinical risk benefit profile for individual patients. Ongoing concerns for immunogenicity or dosage related adverse events could stifle progress, while further vector development and refined delivery techniques have the potential to change the safety and efficacy of currently options in the pipeline.
Collapse
Affiliation(s)
- Sean T Berkowitz
- Vanderbilt University Medical Center, Department of Ophthalmology, Nashville, Tennessee, USA
| | | |
Collapse
|
20
|
Corradetti G, Verma A, Tojjar J, Almidani L, Oncel D, Emamverdi M, Bradley A, Lindenberg S, Nittala MG, Sadda SR. Retinal Imaging Findings in Inherited Retinal Diseases. J Clin Med 2024; 13:2079. [PMID: 38610844 PMCID: PMC11012835 DOI: 10.3390/jcm13072079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent one of the major causes of progressive and irreversible vision loss in the working-age population. Over the last few decades, advances in retinal imaging have allowed for an improvement in the phenotypic characterization of this group of diseases and have facilitated phenotype-to-genotype correlation studies. As a result, the number of clinical trials targeting IRDs has steadily increased, and commensurate to this, the need for novel reproducible outcome measures and endpoints has grown. This review aims to summarize and describe the clinical presentation, characteristic imaging findings, and imaging endpoint measures that are being used in clinical research on IRDs. For the purpose of this review, IRDs have been divided into four categories: (1) panretinal pigmentary retinopathies affecting rods or cones; (2) macular dystrophies; (3) stationary conditions; (4) hereditary vitreoretinopathies.
Collapse
Affiliation(s)
- Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aditya Verma
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jasaman Tojjar
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Louay Almidani
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deniz Oncel
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60153, USA
| | - Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
| | - Alec Bradley
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | | | | | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Antas P, Carvalho C, Cabral-Teixeira J, de Lemos L, Seabra MC. Toward low-cost gene therapy: mRNA-based therapeutics for treatment of inherited retinal diseases. Trends Mol Med 2024; 30:136-146. [PMID: 38044158 DOI: 10.1016/j.molmed.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Inherited retinal diseases (IRDs) stem from genetic mutations that result in vision impairment. Gene therapy shows promising therapeutic potential, exemplified by the encouraging initial results with voretigene neparvovec. Nevertheless, the associated costs impede widespread access, particularly in low-to-middle income countries. The primary challenge remains: how can we make these therapies globally affordable? Leveraging advancements in mRNA therapies might offer a more economically viable alternative. Furthermore, transitioning to nonviral delivery systems could provide a dual benefit of reduced costs and increased scalability. Relevant stakeholders must collaboratively devise and implement a research agenda to realize the potential of mRNA strategies in equitable access to treatments to prevent vision loss.
Collapse
Affiliation(s)
- Pedro Antas
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal; iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Cláudia Carvalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | | | - Luísa de Lemos
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Miguel C Seabra
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal; iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
23
|
DeLuca AP, Whitmore SS, Tatro NJ, Andorf JL, Faga BP, Faga LA, Colins MM, Luse MA, Fenner BJ, Stone EM, Scheetz TE. Using Goldmann Visual Field Volume to Track Disease Progression in Choroideremia. OPHTHALMOLOGY SCIENCE 2023; 3:100397. [PMID: 38025158 PMCID: PMC10630671 DOI: 10.1016/j.xops.2023.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 12/01/2023]
Abstract
Purpose Choroideremia is an X-linked choroidopathy caused by pathogenic variants in the CHM gene. It is characterized by the early appearance of multiple scotomas in the peripheral visual field that spread and coalesce, usually sparing central vision until late in the disease. These features make quantitative monitoring of visual decline particularly challenging. Here, we describe a novel computational approach to convert Goldmann visual field (GVF) data into quantitative volumetric measurements. With this approach, we analyzed visual field loss in a longitudinal, retrospective cohort of patients with choroideremia. Design Single-center, retrospective, cohort study. Participants We analyzed data from 238 clinic visits of 56 molecularly-confirmed male patients with choroideremia from 41 families (range, 1-27 visits per patient). Patients had a median follow up of 4 years (range, 0-56 years) with an age range of 5 to 76 years at the time of their visits. Methods Clinical data from molecularly-confirmed patients with choroideremia, including GVF data, were included for analysis. Goldmann visual field records were traced using a tablet-based application, and the 3-dimensional hill of vision was interpolated for each trace. This procedure allowed quantification of visual field loss from data collected over decades with differing protocols, including different or incomplete isopters. Visual acuity (VA) data were collected and converted to logarithm of the minimum angle of resolution values. A delayed exponential mixed-effects model was used to evaluate the loss of visual field volume over time. Main Outcome Measures Visual acuity and GVF volume. Results The estimated mean age at disease onset was 12.6 years (standard deviation, 9.1 years; 95% quantile interval, 6.5-36.4 years). The mean field volume loss was 6.8% per year (standard deviation, 4.5%; 95% quantile interval, 1.9%-18.8%) based on exponential modeling. Field volume was more strongly correlated between eyes (r2 = 0.935) than best-corrected VA (r2 = 0.285). Conclusions Volumetric analysis of GVF data enabled quantification of peripheral visual function in patients with choroideremia and evaluation of disease progression. The methods presented here may facilitate the analysis of historical GVF data from patients with inherited retinal disease and other diseases associated with visual field loss. This work informs the creation of appropriate outcome measures in choroideremia therapeutic trials, particularly in trial designs. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Adam P. DeLuca
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - S. Scott Whitmore
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Nicole J. Tatro
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Jeaneen L. Andorf
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Ben P. Faga
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Laurel A. Faga
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Malia M. Colins
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Meagan A. Luse
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Beau J. Fenner
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Duke-NUS Graduate Medical School, Singapore
| | - Edwin M. Stone
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Todd E. Scheetz
- The University of Iowa Institute for Vision Research & Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
24
|
Schmetterer L, Scholl H, Garhöfer G, Janeschitz-Kriegl L, Corvi F, Sadda SR, Medeiros FA. Endpoints for clinical trials in ophthalmology. Prog Retin Eye Res 2023; 97:101160. [PMID: 36599784 DOI: 10.1016/j.preteyeres.2022.101160] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
With the identification of novel targets, the number of interventional clinical trials in ophthalmology has increased. Visual acuity has for a long time been considered the gold standard endpoint for clinical trials, but in the recent years it became evident that other endpoints are required for many indications including geographic atrophy and inherited retinal disease. In glaucoma the currently available drugs were approved based on their IOP lowering capacity. Some recent findings do, however, indicate that at the same level of IOP reduction, not all drugs have the same effect on visual field progression. For neuroprotection trials in glaucoma, novel surrogate endpoints are required, which may either include functional or structural parameters or a combination of both. A number of potential surrogate endpoints for ophthalmology clinical trials have been identified, but their validation is complicated and requires solid scientific evidence. In this article we summarize candidates for clinical endpoints in ophthalmology with a focus on retinal disease and glaucoma. Functional and structural biomarkers, as well as quality of life measures are discussed, and their potential to serve as endpoints in pivotal trials is critically evaluated.
Collapse
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Hendrik Scholl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Federico Corvi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Italy
| | - SriniVas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Felipe A Medeiros
- Vision, Imaging and Performance Laboratory, Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Sobh M, Lagali PS, Ghiasi M, Montroy J, Dollin M, Hurley B, Leonard BC, Dimopoulos I, Lafreniere M, Fergusson DA, Lalu MM, Tsilfidis C. Safety and Efficacy of Adeno-Associated Viral Gene Therapy in Patients With Retinal Degeneration: A Systematic Review and Meta-Analysis. Transl Vis Sci Technol 2023; 12:24. [PMID: 37982768 PMCID: PMC10668613 DOI: 10.1167/tvst.12.11.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Purpose This systematic review evaluates the safety and efficacy of ocular gene therapy using adeno-associated virus (AAV). Methods MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov were searched systematically for controlled or non-controlled interventional gene therapy studies using key words related to retinal diseases, gene therapy, and AAV vectors. The primary outcome measure was safety, based on ocular severe adverse events (SAEs). Secondary outcome measures evaluated efficacy of the therapy based on best corrected visual acuity (BCVA) and improvements in visual sensitivity and systemic involvement following ocular delivery. Pooling was done using a DerSimonian Laird random effects model. Risk of bias was assessed using the Cochrane Risk of Bias Tool, version 1. Results Our search identified 3548 records. Of these, 80 publications met eligibility criteria, representing 28 registered clinical trials and 5 postmarket surveillance studies involving AAV gene therapy for Leber congenital amaurosis (LCA), choroideremia, Leber hereditary optic neuropathy (LHON), age-related macular degeneration (AMD), retinitis pigmentosa (RP), X-linked retinoschisis, and achromatopsia. Overall, AAV therapy vectors were associated with a cumulative incidence of at least one SAE of 8% (95% confidence intervals [CIs] of 5% to 12%). SAEs were often associated with the surgical procedure rather than the therapeutic vector itself. Poor or inconsistent reporting of adverse events (AEs) were a limitation for the meta-analysis. The proportion of patients with any improvement in BCVA and visual sensitivity was 41% (95% CIs of 31% to 51%) and 51% (95% CIs of 31% to 70%), respectively. Systemic immune involvement was associated with a cumulative incidence of 31% (95% CI = 21% to 42%). Conclusions AAV gene therapy vectors appear to be safe but the surgical procedure required to deliver them is associated with some risk. The large variability in efficacy can be attributed to the small number of patients treated, the heterogeneity of the population and the variability in dosage, volume, and follow-up. Translational Relevance This systematic review will help to inform and guide future clinical trials.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pamela S. Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maryam Ghiasi
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Dollin
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Bernard Hurley
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Brian C. Leonard
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ioannis Dimopoulos
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | - Mackenzie Lafreniere
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Departments of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Ophthalmology, University of Ottawa, University of Ottawa Eye Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
26
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|
27
|
MacLaren RE, Fischer MD, Gow JA, Lam BL, Sankila EMK, Girach A, Panda S, Yoon D, Zhao G, Pennesi ME. Subretinal timrepigene emparvovec in adult men with choroideremia: a randomized phase 3 trial. Nat Med 2023; 29:2464-2472. [PMID: 37814062 PMCID: PMC10579095 DOI: 10.1038/s41591-023-02520-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Choroideremia is a rare, X-linked retinal degeneration resulting in progressive vision loss. A randomized, masked, phase 3 clinical trial evaluated the safety and efficacy over 12 months of follow-up in adult males with choroideremia randomized to receive a high-dose (1.0 × 1011 vector genomes (vg); n = 69) or low-dose (1.0 × 1010 vg; n = 34) subretinal injection of the AAV2-vector-based gene therapy timrepigene emparvovec versus non-treated control (n = 66). Most treatment-emergent adverse events were mild or moderate. The trial did not meet its primary endpoint of best-corrected visual acuity (BCVA) improvement. In the primary endpoint analysis, three of 65 participants (5%) in the high-dose group, one of 34 (3%) participants in the low-dose group and zero of 62 (0%) participants in the control group had ≥15-letter Early Treatment Diabetic Retinopathy Study (ETDRS) improvement from baseline BCVA at 12 months (high dose, P = 0.245 versus control; low dose, P = 0.354 versus control). As the primary endpoint was not met, key secondary endpoints were not tested for significance. In a key secondary endpoint, nine of 65 (14%), six of 35 (18%) and one of 62 (2%) participants in the high-dose, low-dose and control groups, respectively, experienced ≥10-letter ETDRS improvement from baseline BCVA at 12 months. Potential opportunities to enhance future gene therapy studies for choroideremia include optimization of entry criteria (more preserved retinal area), surgical techniques and clinical endpoints. EudraCT registration: 2015-003958-41 .
Collapse
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford University Hospitals NIHR Biomedical Research Centre, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - M Dominik Fischer
- University Eye Hospital Tübingen, Center for Ophthalmology, Tübingen, Germany
| | | | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Aniz Girach
- Formerly of Nightstar Therapeutics, London, UK
| | | | | | | | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
28
|
Abdalla Elsayed MEA, Taylor LJ, Josan AS, Fischer MD, MacLaren RE. Choroideremia: The Endpoint Endgame. Int J Mol Sci 2023; 24:14354. [PMID: 37762657 PMCID: PMC10532430 DOI: 10.3390/ijms241814354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia is an X-linked retinal degeneration resulting from the progressive, centripetal loss of photoreceptors and choriocapillaris, secondary to the degeneration of the retinal pigment epithelium. Affected individuals present in late childhood or early teenage years with nyctalopia and progressive peripheral visual loss. Typically, by the fourth decade, the macula and fovea also degenerate, resulting in advanced sight loss. Currently, there are no approved treatments for this condition. Gene therapy offers the most promising therapeutic modality for halting or regressing functional loss. The aims of the current review are to highlight the lessons learnt from clinical trials in choroideremia, review endpoints, and propose a future strategy for clinical trials.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amandeep S. Josan
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
29
|
Camacho DK, Go CC, Chaqour B, Shindler KS, Ross AG. Emerging Gene Therapy Technologies for Retinal Ganglion Cell Neuroprotection. J Neuroophthalmol 2023; 43:330-340. [PMID: 37440418 PMCID: PMC10527513 DOI: 10.1097/wno.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
ABSTRACT Optic neuropathies encompass a breadth of diseases that ultimately result in dysfunction and/or loss of retinal ganglion cells (RGCs). Although visual impairment from optic neuropathies is common, there is a lack of effective clinical treatments. Addressing a critical need for novel interventions, preclinical studies have been generating a growing body of evidence that identify promising new drug-based and cell-based therapies. Gene therapy is another emerging therapeutic field that offers the potential of specifically and robustly increasing long-term RGC survival in optic neuropathies. Gene therapy offers additional benefits of driving improvements following a single treatment administration, and it can be designed to target a variety of pathways that may be involved in individual optic neuropathies or across multiple etiologies. This review explores the history of gene therapy, the fundamentals of its application, and the emerging development of gene therapy technology as it relates to treatment of optic neuropathies.
Collapse
Affiliation(s)
- David K. Camacho
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Cammille C. Go
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Brahim Chaqour
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kenneth S. Shindler
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ahmara G. Ross
- F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
30
|
Costa-Verdera H, Unzu C, Valeri E, Adriouch S, González Aseguinolaza G, Mingozzi F, Kajaste-Rudnitski A. Understanding and Tackling Immune Responses to Adeno-Associated Viral Vectors. Hum Gene Ther 2023; 34:836-852. [PMID: 37672519 DOI: 10.1089/hum.2023.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
As the clinical experience in adeno-associated viral (AAV) vector-based gene therapies is expanding, the necessity to better understand and control the host immune responses is also increasing. Immunogenicity of AAV vectors in humans has been linked to several limitations of the platform, including lack of efficacy due to antibody-mediated neutralization, tissue inflammation, loss of transgene expression, and in some cases, complement activation and acute toxicities. Nevertheless, significant knowledge gaps remain in our understanding of the mechanisms of immune responses to AAV gene therapies, further hampered by the failure of preclinical animal models to recapitulate clinical findings. In this review, we focus on the current knowledge regarding immune responses, spanning from innate immunity to humoral and adaptive responses, triggered by AAV vectors and how they can be mitigated for safer, durable, and more effective gene therapies.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| | - Carmen Unzu
- DNA and RNA Medicine Division, CIMA, Universidad de Navarra, IdisNA, Pamplona, Spain
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie University, Rouen, France
| | - Gloria González Aseguinolaza
- DNA and RNA Medicine Division, CIMA, Universidad de Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics S.L., Pamplona, Spain; and
| | | | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
31
|
Moran AL, Fehilly JD, Blacque O, Kennedy BN. Gene therapy for RAB28: What can we learn from zebrafish? Vision Res 2023; 210:108270. [PMID: 37321111 DOI: 10.1016/j.visres.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
The eye is particularly suited to gene therapy due to its accessibility, immunoprivileged state and compartmentalised structure. Indeed, many clinical trials are underway for therapeutic gene strategies for inherited retinal degenerations (IRDs). However, as there are currently 281 genes associated with IRD, there is still a large unmet need for effective therapies for the majority of IRD-causing genes. In humans, RAB28 null and hypomorphic alleles cause autosomal recessive cone-rod dystrophy (arCORD). Previous work demonstrated that restoring wild type zebrafish Rab28 via germline transgenesis, specifically in cone photoreceptors, is sufficient to rescue the defects in outer segment phagocytosis (OSP) observed in zebrafish rab28-/- knockouts (KO). This rescue suggests that gene therapy for RAB28-associated CORD may be successful by RAB28 gene restoration to cones. It also inspired us to critically consider the scenarios in which zebrafish can provide informative preclinical data for development of gene therapies. Thus, this review focuses on RAB28 biology and disease, and delves into both the opportunities and limitations of using zebrafish as a model for both gene therapy development and as a diagnostic tool for patient variants of unknown significance (VUS).
Collapse
Affiliation(s)
- Ailis L Moran
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John D Fehilly
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Oliver Blacque
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Pan H, Liu YF, Luo Y, Chen L, Shen B, Song S, Liu M, Wang Z, Wu W, Li M, Zhang Y. Goats with low levels of AAV antibody may serve as candidates for large animal gene therapy. Exp Eye Res 2023; 233:109514. [PMID: 37207869 DOI: 10.1016/j.exer.2023.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
AAV vector-mediated gene therapy has been proposed as a feasible strategy for several eye diseases. However, AAV antibodies in the serum prior to treatment hinder the transduction efficiency and thus the therapeutic effect. Therefore, it is necessary to evaluate AAV antibodies in the serum before gene therapy. As large animals, goats are more closely related to humans than rodents and more economically available than nonhuman primates. Here, we first evaluated the AAV2 antibody serum level in rhesus monkeys before AAV injection. Then, we optimized a cell-based neutralizing antibody assay for detecting AAV antibodies in the serum of Saanen goats and evaluated the consistency of the cell-based neutralizing antibody assay and ELISA for goat serum antibody evaluation. The cell-based neutralizing antibody assay showed that the percentage of macaques with low antibody levels was 42.86%; however, there were no macaques with low antibody levels when the serum was evaluated by ELISA. The proportion of goats with low antibody levels was 56.67% according to the neutralizing antibody assay and 33. 33% according to the ELISA, and McNemar's test showed that the results of the two assays were not significantly different (P = 0.754), but that their consistency is poor (Kappa = 0.286, P = 0.114). Moreover, longitudinal evaluation of serum antibodies before and after intravitreal injection of AAV2 in goats revealed that the level of AAV antibodies increased and transduction inhibition subsequently increased, as reported in humans, indicating that transduction inhibition should be taken into account at different stages of gene therapy. In summary, starting with an evaluation of monkey serum antibodies, we optimized a detection method of goat serum antibodies, providing an alternative large animal model for gene therapy, and our serum antibody measurement method may be applied to other large animals.
Collapse
Affiliation(s)
- Huirong Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yu-Fen Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuting Luo
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingyan Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shihan Song
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingyue Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhuowei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Mengyun Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Shaoxing People's Hospital, Shaoxing, 312000, China.
| | - Yikui Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
33
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
34
|
Yusuf IH, MacLaren RE. Choroideremia: Toward Regulatory Approval of Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041279. [PMID: 37277205 PMCID: PMC10691480 DOI: 10.1101/cshperspect.a041279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Choroideremia is an X-linked inherited retinal degeneration characterized by primary centripetal degeneration of the retinal pigment epithelium (RPE), with secondary degeneration of the choroid and retina. Affected individuals experience reduced night vision in early adulthood with blindness in late middle age. The underlying CHM gene encodes REP1, a protein involved in the prenylation of Rab GTPases essential for intracellular vesicle trafficking. Adeno-associated viral gene therapy has demonstrated some benefit in clinical trials for choroideremia. However, challenges remain in gaining regulatory approval. Choroideremia is slowly progressive, which presents difficulties in demonstrating benefit over short pivotal clinical trials that usually run for 1-2 years. Improvements in visual acuity are particularly challenging due to the initial negative effects of surgical detachment of the fovea. Despite these challenges, great progress toward a treatment has been made since choroideremia was first described in 1872.
Collapse
Affiliation(s)
- Imran H Yusuf
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
35
|
Wiley LA, Boyce TM, Meyering EE, Ochoa D, Sheehan KM, Stone EM, Mullins RF, Tucker BA, Han IC. The Degree of Adeno-Associated Virus-Induced Retinal Inflammation Varies Based on Serotype and Route of Delivery: Intravitreal, Subretinal, or Suprachoroidal. Hum Gene Ther 2023; 34:530-539. [PMID: 36793189 PMCID: PMC10282814 DOI: 10.1089/hum.2022.222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Adeno-associated virus (AAV)-mediated gene therapy has great potential for treating a wide range of retinal degenerative diseases. However, some initial enthusiasm for gene therapy has been tempered by emerging evidence of AAV-associated inflammation, which in several instances has contributed to clinical trial discontinuation. Currently, there is a paucity of data describing the variable immune responses to different AAV serotypes, and similarly, little is known regarding how these responses differ depending on route of ocular delivery, including in animal models of disease. In this study, we characterize the severity and retinal distribution of AAV-associated inflammation in rats triggered by delivery of five different AAV vectors (AAV1, AAV2, AAV6, AAV8, and AAV9), each of which contained enhanced green fluorescent protein (eGFP) driven under control of the constitutively active cytomegalovirus promoter. We further compare the inflammation across three different potential routes (intravitreal, subretinal, and suprachoroidal) of ocular delivery. Compared to buffer-injected controls for each route of delivery, AAV2 and AAV6 induced the most inflammation across all routes of delivery of vectors tested, with AAV6 inducing the highest levels of inflammation when delivered suprachoroidally. AAV1-induced inflammation was highest when delivered suprachoroidally, whereas minimal inflammation was seen with intravitreal delivery. In addition, AAV1, AAV2, and AAV6 each induce infiltration of adaptive immune cells like T cells and B cells into the neural retina, suggesting an innate adaptive response to a single dose of virus. AAV8 and AAV9 induced minimal inflammation across all routes of delivery. Importantly, the degree of inflammation was not correlated with vector-mediated transduction and expression of eGFP. These data emphasize the importance of considering ocular inflammation when selecting AAV serotypes and ocular delivery routes for the development of gene therapy strategies.
Collapse
Affiliation(s)
- Luke A. Wiley
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Timothy M. Boyce
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Emily E. Meyering
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dalyz Ochoa
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Katie M. Sheehan
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M. Stone
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert F. Mullins
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Budd A. Tucker
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian C. Han
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
36
|
Zhai Y, Xu M, Radziwon A, Dimopoulos IS, Crichton P, Mah R, MacLaren RE, Somani R, Tennant MT, MacDonald IM. AAV2-Mediated Gene Therapy for Choroideremia: 5-Year Results and Alternate Anti-sense Oligonucleotide Therapy. Am J Ophthalmol 2023; 248:145-156. [PMID: 36581191 DOI: 10.1016/j.ajo.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE To assess the long-term safety and efficacy of AAV2-REP1 in choroideremia (CHM) patients, and to test a potential antisense oligonucleotide therapy for CHM. DESIGN Extended, prospective phase 1/2 clinical trial and laboratory investigation. METHODS Five patients who received a single subfoveal injection of AAV2-REP1 were studied. The long-term safety was evaluated by ophthalmic examination, spectral domain optical coherence tomography, and fundus autofluorescence (FAF) for up to 5 years. Functional and structural changes were determined by different test modalities. Four antisense oligonucleotides (ASOs) were designed to treat the CHM c.1245-521A>G mutation, which was present in 2 patients within this trial. RESULTS Subject P3 experienced a localized intraretinal immune response that resulted in a significant loss of preserved retinal pigment epithelium (RPE). P4 experienced an exacerbation of peripheral retinoschisis. P2 had a constant ≥15-letter best-corrected visual acuity (BCVA) gain in the treated eye, whereas P5 had ≥15-letter BCVA improvement once in the untreated eye. The preserved FAF areas declined more rapidly in the treated eyes compared to the untreated eyes (P = .043). A customized 25-mer ASO recovered 83.2% to 95.0% of the normal RNA and 57.5% of the normal protein in fibroblasts from 2 trial patients. CONCLUSIONS Intraretinal inflammation triggered by AAV2-REP1 subretinal injection stabilized after 2 years but resulted in permanent damage to the retinal structure. Long-term progression of the disease was seen in both treated and untreated eyes, casting doubt as to the effectiveness of this approach in late-stage CHM. Alternative approaches such as ASO may have a therapeutic effect in a subgroup of CHM patients.
Collapse
Affiliation(s)
- Yi Zhai
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Manlong Xu
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Alina Radziwon
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada; Department of Medical Genetics (A.R., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Ioannis S Dimopoulos
- Department of Ophthalmology (I.S.D., P.C., R.M.), University of Ottawa, Ottawa, Ontario, Canada
| | - Paul Crichton
- Department of Ophthalmology (I.S.D., P.C., R.M.), University of Ottawa, Ottawa, Ontario, Canada
| | - Rachel Mah
- Department of Ophthalmology (I.S.D., P.C., R.M.), University of Ottawa, Ottawa, Ontario, Canada
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology (R.E.M.), Department of Clinical Neurosciences, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxfordshire, UK
| | - Rizwan Somani
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Matthew T Tennant
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada
| | - Ian M MacDonald
- From the Department of Ophthalmology and Visual Sciences (Y.Z., M.X., A.R., R.S., M.T.T., I.M.M.), University of Alberta, Edmonton, Alberta, Canada; Department of Medical Genetics (A.R., I.M.M.), University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
37
|
Ferla R, Dell’Aquila F, Doria M, Ferraiuolo M, Noto A, Grazioli F, Ammendola V, Testa F, Melillo P, Iodice C, Risca G, Tedesco N, le Brun PR, Surace EM, Simonelli F, Galimberti S, Valsecchi MG, Marteau JB, Veron P, Colloca S, Auricchio A. Efficacy, pharmacokinetics, and safety in the mouse and primate retina of dual AAV vectors for Usher syndrome type 1B. Mol Ther Methods Clin Dev 2023; 28:396-411. [PMID: 36910588 PMCID: PMC9996380 DOI: 10.1016/j.omtm.2023.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Gene therapy of Usher syndrome type 1B (USH1B) due to mutations in the large Myosin VIIA (MYO7A) gene is limited by the packaging capacity of adeno-associated viral (AAV) vectors. To overcome this, we have previously developed dual AAV8 vectors which encode human MYO7A (dual AAV8.MYO7A). Here we show that subretinal administration of 1.37E+9 to 1.37E+10 genome copies of a good-manufacturing-practice-like lot of dual AAV8.MYO7A improves the retinal defects of a mouse model of USH1B. The same lot was used in non-human primates at doses 1.6× and 4.3× the highest dose proposed for the clinical trial which was based on mouse efficacy data. Long-lasting alterations in retinal function and morphology were observed following subretinal administration of dual AAV8.MYO7A at the high dose. These findings were modest and improved over time in the low-dose group, as also observed in other studies involving the use of AAV8 in non-human primates and humans. Biodistribution and shedding studies confirmed the presence of vector DNA mainly in the visual pathway. Accordingly, we detected human MYO7A mRNA expression predominantly in the retina. Overall, these studies pave the way for the clinical translation of subretinal administration of dual AAV vectors in USH1B subjects.
Collapse
Affiliation(s)
- Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- AAVantgarde BIO Srl, 20123 Milan, Italy
- Corresponding author: Rita Ferla, Telethon institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; AAVantgarde BIO Srl, 20123 Milan, Italy
| | - Fabio Dell’Aquila
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Monica Doria
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | | | | | | | | | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Paolo Melillo
- Eye Clinic, Multidisciplinary Department of Medical Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Giulia Risca
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Novella Tedesco
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry 91000, INSERM, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Pierre Romain le Brun
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry 91000, INSERM, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Enrico Maria Surace
- Medical Genetics, Department of Translational Medicine, University of Naples “Federico II”, 80131 Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | | | - Philippe Veron
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry 91000, INSERM, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- AAVantgarde BIO Srl, 20123 Milan, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- Corresponding author: Alberto Auricchio, Telethon institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; AAVantgarde BIO Srl, 20123 Milan, Italy.
| |
Collapse
|
38
|
Kick GR, Whiting REH, Ota-Kuroki J, Castaner LJ, Morgan-Jack B, Sabol JC, Meiman EJ, Ortiz F, Katz ML. Intravitreal gene therapy preserves retinal function in a canine model of CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2023; 226:109344. [PMID: 36509165 PMCID: PMC9839638 DOI: 10.1016/j.exer.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a rare hereditary neurodegenerative disorder characterized by deleterious sequence variants in TPP1 that result in reduced or abolished function of the lysosomal enzyme tripeptidyl peptidase 1 (TPP1). Children with this disorder experience progressive neurological decline and vision loss starting around 2-4 years of age. Ocular disease is characterized by progressive retinal degeneration and impaired retinal function culminating in total loss of vision. Similar retinal pathology occurs in a canine model of CLN2 disease with a null variant in TPP1. A study using the dog model was performed to evaluate the efficacy of ocular gene therapy to provide a continuous, long-term source of human TPP1 (hTPP1) to the retina, inhibit retinal degeneration and preserve retinal function. TPP1-/- dogs received an intravitreal injection of 1 x 1012 viral genomes of AAV2.CAG.hTPP1 in one eye and AAV2.CAG.GFP in the contralateral eye at 4 months of age. Ophthalmic exams, in vivo ocular imaging and electroretinography were repeated monthly to assess retinal structure and function. Retinal morphology, hTPP1 and GFP expression in the retina, optic nerve and lateral geniculate nucleus, and hTPP1 concentrations in the vitreous were evaluated after the dogs were euthanized at end stage neurological disease at approximately 10 months of age. Intravitreal administration of AAV2.CAG.hTPP1 resulted in stable, widespread expression of hTPP1 throughout the inner retina, prevented disease-related declines in retinal function and inhibited disease-related cell loss and storage body accumulation in the retina for at least 6 months. Uveitis occurred in eyes treated with the hTPP1 vector, but this did not prevent therapeutic efficacy. The severity of the uveitis was ameliorated with anti-inflammatory treatments. These results indicate that a single intravitreal injection of AAV2.CAG.hTPP1 is an effective treatment to inhibit ocular disease progression in canine CLN2 disease.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Rebecca E H Whiting
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Brandie Morgan-Jack
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Francheska Ortiz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
39
|
Dreismann AK, Hallam TM, Tam LC, Nguyen CV, Hughes JP, Ellis S, Harris CL. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol Rev 2023; 313:402-419. [PMID: 36369963 PMCID: PMC10099504 DOI: 10.1111/imr.13149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.
Collapse
|
40
|
Nanegrungsunk O, Au A, Sarraf D, Sadda SR. New frontiers of retinal therapeutic intervention: a critical analysis of novel approaches. Ann Med 2022; 54:1067-1080. [PMID: 35467460 PMCID: PMC9045775 DOI: 10.1080/07853890.2022.2066169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A recent wave of pharmacologic and technologic innovations has revolutionized our management of retinal diseases. Many of these advancements have demonstrated efficacy and can increase the quality of life while potentially reducing complications and decreasing the burden of care for patients. Some advances, such as longer-acting anti-vascular endothelial growth factor agents, port delivery systems, gene therapy, and retinal prosthetics have been approved by the US Food and Drug Administration, and are available for clinical use. Countless other therapeutics are in various stages of development, promising a bright future for further improvements in the management of the retinal disease. Herein, we have highlighted several important novel therapies and therapeutic approaches and examine the opportunities and limitations offered by these innovations at the new frontier. KEY MESSAGESNumerous pharmacologic and technologic advancements have been emerging, providing a higher treatment efficacy while decreasing the burden and associated side effects.Anti-vascular endothelial growth factor (anti-VEGF) and its longer-acting agents have dramatically improved visual outcomes and have become a mainstay treatment in various retinal diseases.Gene therapy and retinal prosthesis implantation in the treatment of congenital retinal dystrophy can accomplish the partial restoration of vision and improved daily function in patients with blindness, an unprecedented success in the field of retina.
Collapse
Affiliation(s)
- Onnisa Nanegrungsunk
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Retina Division, Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adrian Au
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
41
|
Chrystal PW, Lambacher NJ, Doucette LP, Bellingham J, Schiff ER, Noel NCL, Li C, Tsiropoulou S, Casey GA, Zhai Y, Nadolski NJ, Majumder MH, Tagoe J, D'Esposito F, Cordeiro MF, Downes S, Clayton-Smith J, Ellingford J, Mahroo OA, Hocking JC, Cheetham ME, Webster AR, Jansen G, Blacque OE, Allison WT, Au PYB, MacDonald IM, Arno G, Leroux MR. The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision. Nat Commun 2022; 13:6595. [PMID: 36329026 PMCID: PMC9633640 DOI: 10.1038/s41467-022-33820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.
Collapse
Affiliation(s)
- Paul W Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Lance P Doucette
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | | | - Elena R Schiff
- Moorfields Eye Hospital, London, UK
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole C L Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geoffrey A Casey
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Yi Zhai
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan J Nadolski
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Mohammed H Majumder
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Julia Tagoe
- Lethbridge Outreach Genetics Service, Alberta Health Services, Lethbridge, AB, Canada
| | - Fabiana D'Esposito
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- ICORG, Imperial College London, London, UK
| | | | - Susan Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Genomics England, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jennifer C Hocking
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gert Jansen
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada.
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
42
|
Abstract
In 2001, the first large animal was successfully treated with a gene therapy that restored its vision. Lancelot, the Briard dog that was treated, suffered from a human childhood blindness called Leber's congenital amaurosis type 2. Sixteen years later, the gene therapy was approved by the U.S. Food and Drug Administration. The success of this gene therapy in dogs led to a fast expansion of the ocular gene therapy field. By now every class of inherited retinal dystrophy has been treated in at least one animal model and many clinical trials have been initiated in humans. In this study, we review the status of viral gene therapies for the retina, with a focus on ongoing human clinical trials. It is likely that in the next decade we will see several new viral gene therapies approved.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- University of Massachusetts Medical School, Ophthalmology, Worcester, Massachusetts, United States;
| | - Claudio Punzo
- University of Massachusetts Medical School, Ophthalmology, 368 Plantation Street, Albert Sherman Center, AS6-2041, Worcester, Massachusetts, United States, 01605;
| |
Collapse
|
43
|
Chien JY, Huang SP. Gene therapy in hereditary retinal dystrophy. Tzu Chi Med J 2022; 34:367-372. [PMID: 36578644 PMCID: PMC9791861 DOI: 10.4103/tcmj.tcmj_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs), such as retinitis pigmentosa, Leber's congenital amaurosis (LCA), Usher syndrome, and retinoschisis, are a group of genetic retinal disorders exhibiting both genetic and phenotypic heterogeneity. Symptoms include progressive retinal degeneration and constricted visual field. Some patients will be legal or completely blind. Advanced sequencing technologies improve the genetic diagnosis of HRD and lead to a new era of research into gene-targeted therapies. Following the first Food and Drug Administration approval of gene augmentation therapy for LCA caused by RPE65 mutations, multiple clinical trials are currently underway applying different techniques. In this review, we provide an overview of gene therapy for HRD and emphasize four distinct approaches to gene-targeted therapy that have the potential to slow or even reverse retinal degeneration: (1) viral vector-based and nonviral gene delivery, (2) RNA-based antisense oligonucleotide, (3) genome editing by the Clustered Regularly Interspaced Short Palindromic Repeat/cas9 system, and (4) optogenetics gene therapy.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan
| | - Shun-Ping Huang
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan,Department of Ophthalmology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,Address for correspondence: Dr. Shun-Ping Huang, Department of Molecular Biology and Human Genetics, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
44
|
Han RC, MacLaren RE. RNA gene editing in the eye and beyond: The neglected tool of the gene editing armatorium? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:175-205. [PMID: 36064264 DOI: 10.1016/bs.ircmb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA editing allows correction of pathological point mutations without permanently altering genomic DNA. Theoretically targetable to any RNA type and site, its flexibility and reversibility makes it a potentially powerful gene editing tool. RNA editing offers a host of potential advantages in specific niches when compared to currently available alternative gene manipulation techniques. Unlike DNA editors, which are currently too large to be delivered in vivo using a viral vector, smaller RNA editors fit easily within the capabilities of an adeno-associated virus (AAV). Unlike gene augmentation, which is limited by gene size and viral packaging constraints, RNA editing may correct transcripts too long to fit within a viral vector. In this article we examine the development of RNA editing and discuss potential applications and pitfalls. We argue that, although in its infancy, an RNA editing approach can offer unique advantages for selected retinal diseases.
Collapse
Affiliation(s)
- Ruofan Connie Han
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford Eye Hospital, John Radcliffe, Oxford, United Kingdom
| |
Collapse
|
45
|
Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines 2022; 7:75. [PMID: 35787629 PMCID: PMC9253346 DOI: 10.1038/s41541-022-00503-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccines represent the single most cost-efficient and equitable way to combat and eradicate infectious diseases. While traditional licensed vaccines consist of either inactivated/attenuated versions of the entire pathogen or subunits of it, most novel experimental vaccines against emerging infectious diseases employ nucleic acids to produce the antigen of interest directly in vivo. These include DNA plasmid vaccines, mRNA vaccines, and recombinant viral vectors. The advantages of using nucleic acid vaccines include their ability to induce durable immune responses, high vaccine stability, and ease of large-scale manufacturing. In this review, we present an overview of pre-clinical and clinical data on recombinant viral vector vaccines and discuss the advantages and limitations of the different viral vector platforms.
Collapse
Affiliation(s)
- Tatianna Travieso
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jenny Li
- Duke University, Durham, NC, USA
| | - Sneha Mahesh
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Juliana Da Fonzeca Redenze E Mello
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maria Blasi
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
46
|
Burgess FR, Hall HN, Megaw R. Emerging Gene Manipulation Strategies for the Treatment of Monogenic Eye Disease. Asia Pac J Ophthalmol (Phila) 2022; 11:380-391. [PMID: 36041151 DOI: 10.1097/apo.0000000000000545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic eye diseases, representing a wide spectrum of simple and complex conditions, are one of the leading causes of visual loss in children and working adults, and progress in the field has led to changes in disease investigation, diagnosis, and management. The past 15 years have seen the emergence of novel therapies for these previously untreatable conditions to the extent that we now have a licensed therapy for one form of genetic eye disease and many more in clinical trial. This is a systematic review of published and ongoing clinical trials of gene therapies for monogenic eye diseases. Databases of clinical trials and the published literature were searched for interventional studies of gene therapies for eye diseases. Standard methodological procedures were used to assess the relevance of search results. A total of 59 registered clinical trials are referenced, showing the significant level of interest in the potential for translation of these therapies from bench to bedside. The breadth of therapy design is encouraging, providing multiple possible therapeutic mechanisms. Some fundamental questions regarding gene therapy for genetic eye diseases remain, such as optimal dosing, the relative benefits of adeno-associated virus (AAV)-packaging and the potential for a significant inflammatory response to the therapy itself. As a result, despite the promise of the eye as a target, it has proven difficult to deliver clinically effective gene therapies to the eye. Despite setbacks, the licensing of Luxturna (voretigene neparvovec, Novartis) for the treatment of RPE65-mediated Leber congenital amaurosis (LCA) is a major advance in efforts to treat these rare, but devastating, causes of visual loss.
Collapse
Affiliation(s)
- Frederick R Burgess
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- Ophthalmology Department, School of Medicine, University of St Andrews, UK
| | - Hildegard Nikki Hall
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
47
|
Kessel L, Christensen UC, Klemp K. Inflammation after voretigene neparvovec administration in patients with RPE65-related retinal dystrophy. Ophthalmology 2022; 129:1287-1293. [PMID: 35760216 DOI: 10.1016/j.ophtha.2022.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To report on the prevalence of intraocular inflammation after subretinal voretigene neparvovec (VN) administration. DESIGN Retrospective review of medical files. PARTICIPANTS All patients receiving VN in Denmark. METHODS Twelve patients had received VN gene therapy as standard-of-care for bi-allelic RPE65-related retinal disease. Bilateral treatment had been performed in 11 patients and unilateral treatmen in one patient. Patients had been followed clinically before and after VN administration using functional measurements (visual acuity, full-field scotopic threshold (FST) test, visual fields) and structural evaluations (fundus imaging (color and autofluorescence), optical coherence tomography (OCT), slitlamp). MAIN OUTCOMES Signs of intraocular inflammation including vitritis and outer retinal infiltrates. RESULTS Vitritis was observed in 9 out of 23 eyes receiving VN. The median time to resolution of vitritis from the time of treatment was 89 days. Four eyes also presented with outer retinal infiltrates at the time of vitritis. Inflammation subsided on immunosuppressant therapy. The presence of inflammation did not adversely affect visual outcome after VN therapy. In one eye outer retinal infiltrates were demonstrated to precede later development of atrophy. CONCLUSION Patients undergoing subretinal gene therapy needs to be closely monitored for signs of inflammation and although we did not observe a detrimental effect on visual function in eyes with inflammation, it seems wise to treat it appropriately as it may lead to atrophy of the RPE and outer retina. Also, it seems advisable to reduce the inflammatory load such as using a surgical technique that minimizes residual viral vectors in the vitreous body.
Collapse
Affiliation(s)
- Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Ulrik Correll Christensen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Kristian Klemp
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
48
|
AAV2-hCHM Subretinal Delivery to the Macula in Choroideremia: Two Year Interim Results of an Ongoing Phase I/II Gene Therapy Trial. Ophthalmology 2022; 129:1177-1191. [PMID: 35714735 DOI: 10.1016/j.ophtha.2022.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To assess the safety of the subretinal delivery of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human CHM-encoding cDNA in choroideremia (CHM). DESIGN Prospective, open-label, non-randomized, dose-escalation, phase 1/2 clinical trial. SUBJECTS, PARTICIPANTS, AND/OR CONTROLS Fifteen CHM patients (ages 20-57 years at dosing). METHODS, INTERVENTION, OR TESTING Patients received uniocular subfoveal injections of low dose (up to 5x1010 vector genome (vg) per eye, n=5) or high dose (up to 1x1011 vg per eye, n=10) AAV2-hCHM. Patients were evaluated pre- and post-operatively for two years with ophthalmic examinations, multimodal retinal imaging and psychophysical testing. MAIN OUTCOME Measures: visual acuity (VA), perimetry (10-2 protocol), spectral-domain optical coherence tomography (SD-OCT) and short-wavelength fundus autofluorescence (SW-FAF). RESULTS We detected no vector-related or systemic toxicities. VA returned to within 15 letters of baseline in all but two patients (one developed acute foveal thinning, another patient, a macular hole); the rest showed no gross changes in foveal structure at two years. There were no significant differences between intervention and control eyes in mean light-adapted sensitivity by perimetry, or in the lateral extent of retinal pigment epithelium (RPE) relative preservation by SD-OCT and SW-FAF. Microperimetry showed non-significant (<3SD of the intervisit variability) gains in sensitivity in some locations and participants in the intervention eye. There were no obvious dose-dependent relationships. CONCLUSIONS VA was within 15 letters of baseline after the subfoveal AAV2-hCHM injections in 13/15 (87%) of the patients. Acute foveal thinning with unchanged perifoveal function in one patient and macular hole in a second suggests foveal vulnerability to the subretinal injections. Longer observation intervals will help establish the significance of the minor differences in sensitivities and rate of disease progression observed between intervention and control eyes.
Collapse
|
49
|
Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, Regenold J, Matsumiya W, Pham B, Zaidi M, Mobasserian A, DongChau AT, Or C, Yasar C, Mishra K, Do D, Nguyen QD. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol 2022; 16:1753-1771. [PMID: 35685379 PMCID: PMC9173725 DOI: 10.2147/opth.s364200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hashem H Ghoraba
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Amir Akhavanrezayat
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Irmak Karaca
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Negin Yavari
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Sherin Lajevardi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jaclyn Hwang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jonathan Regenold
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Wataru Matsumiya
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Brandon Pham
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Moosa Zaidi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Azadeh Mobasserian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Anthony Toan DongChau
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Christopher Or
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Cigdem Yasar
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Kapil Mishra
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Diana Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Correspondence: Quan Dong Nguyen, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, USA, Tel +1 6507257245, Fax +1 6507368232, Email
| |
Collapse
|
50
|
Sarkar H, Moosajee M. Choroideremia: molecular mechanisms and therapies. Trends Mol Med 2022; 28:378-387. [PMID: 35341685 DOI: 10.1016/j.molmed.2022.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Choroideremia (CHM) is a monogenic X-linked chorioretinal dystrophy affecting the photoreceptors, retinal pigment epithelium (RPE), and choroid; it is caused by mutations involving the CHM gene. CHM is characterized by night blindness in early childhood, progressing to peripheral visual field loss and eventually to complete blindness from middle age. CHM encodes the ubiquitously expressed Rab escort protein 1 (REP1), which is responsible for prenylation of Rab proteins and is essential for intracellular trafficking of vesicles. In this review we explore the role of REP1 in the retina and its newly discovered systemic manifestations, and discuss the therapeutic strategies for tackling this disease, including the outcomes from recent clinical trials.
Collapse
Affiliation(s)
- Hajrah Sarkar
- Development, Ageing, and Disease, University College London (UCL) Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mariya Moosajee
- Development, Ageing, and Disease, University College London (UCL) Institute of Ophthalmology, London, EC1V 9EL, UK; Ocular Genomics and Therapeutics Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital National Health Service (NHS) Foundation Trust, London, EC1V 2PD, UK; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.
| |
Collapse
|