1
|
Choi H, Yang L, Liu Y, Jeong JK, Cho ES. Inactivation of Sufu in cementoblasts accelerates external tooth root resorption. J Cell Physiol 2023; 238:447-458. [PMID: 36598878 DOI: 10.1002/jcp.30943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Cementum has been empirically regarded as an antiresorptive barrier against tooth roots. However, little is known about the factors of homeostasis and resistant mechanisms of tooth roots against resorption. Here, we investigated cementum factors and their interaction against resorption using transgenic mice exhibiting external cervical root resorption (ECRR). Ectopically thickened cervical cementum caused by functional inactivation of ectonucleotide pyrophosphotase/phosphodiesterase 1 (Enpp1) was susceptible to ECRR with aging. In addition, the inactivation of the suppressor of fused (Sufu), a Hedgehog signaling inhibitor, in cementoblasts led to ECRR. Interestingly, concurrent inactivation of Sufu and Enpp1 in cementoblasts remarkably exacerbated ECRR with higher Rankl expression. Cellular and molecular analyses using cementoblasts and bone marrow-derived macrophages indicated that Dickkopf-related protein 1 (Dkk1) induced by the inactivation of Sufu in cementoblasts has roles in the acceleration of ECRR triggered by Enpp1 inactivation. Using compound mutant mice for concurrent Wntless and Enpp1 inactivation, this synergistic cooperation of Dkk1 and Npp1 for resorption found in double mutant Sufu and Enpp1 mice was confirmed by the reproduction of amplified ECRR. On the basis of these findings, we conclude that proper Npp1 function and sustained Wnt activity in the cervical cementum are essential for the homeostasis of tooth roots against resorption in a physiological state.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Liu Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, South Korea
| |
Collapse
|
2
|
Choi H, Yang L, Liu Y, Jeong JK, Cho ES. Npp1 prevents external tooth root resorption by regulation of cervical cementum integrity. Sci Rep 2022; 12:21158. [PMID: 36477209 PMCID: PMC9729310 DOI: 10.1038/s41598-022-25846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Tooth roots embedded in the alveolar bone do not typically undergo resorption while the bone continues remodeling in its physiological state. In this study, we analyzed genetically modified mice with the functional inactivation of nucleotide pyrophosphatase 1 (Npp1), encoded by ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). This mutation leads to the formation of ectopic cervical cementum vulnerable to external tooth root resorption. Cementoblasts with the inactivation of Enpp1 extensively expressed non-collagenous matrix proteins enriched with bone sialoprotein (Bsp), dentin matrix protein 1 (Dmp1), and osteopontin (Opn), which have roles in mineralization through nucleation and in cell adhesion through the Arg-Gly-Asp (RGD) motif. In cementoblasts with the inactivation of Enpp1, β-catenin was significantly activated and induced the expression of these non-collagenous matrix proteins. In addition, adenosine triphosphate (ATP), which is the most preferred substrate of Npp1, accumulated extracellularly and autocrinally induced the expression of the receptor activator of nuclear factor κB ligand (Rankl) in cementoblasts with inactivated Npp1. Consequently, these results strongly suggest that functional Npp1 preserves cervical cementum integrity and supports the anti-resorptive properties of tooth roots through ATP homeostasis in the physiological state of cervical cementum.
Collapse
Affiliation(s)
- Hwajung Choi
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Liu Yang
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Yudong Liu
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Ju-Kyung Jeong
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| | - Eui-Sic Cho
- grid.411545.00000 0004 0470 4320Laboratory for Craniofacial Biology, Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896 South Korea
| |
Collapse
|
3
|
Meixner I, Hagl B, Kröner CI, Spielberger BD, Paschos E, Dückers G, Niehues T, Hesse R, Renner ED. Retained primary teeth in STAT3 hyper-IgE syndrome: early intervention in childhood is essential. Orphanet J Rare Dis 2020; 15:244. [PMID: 32912316 PMCID: PMC7488068 DOI: 10.1186/s13023-020-01516-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND STAT3 hyper-IgE syndrome (STAT3-HIES) is a rare primary immunodeficiency that clinically overlaps with atopic dermatitis. In addition to eczema, elevated serum-IgE, and recurrent infections, STAT3-HIES patients suffer from characteristic facies, midline defects, and retained primary teeth. To optimize dental management we assessed the development of dentition and the long-term outcomes of dental treatment in 13 molecularly defined STAT3-HIES patients using questionnaires, radiographs, and dental investigations. RESULTS Primary tooth eruption was unremarkable in all STAT3-HIES patients evaluated. Primary tooth exfoliation and permanent tooth eruption was delayed in 83% of patients due to unresorbed tooth roots. A complex orthodontic treatment was needed for one patient receiving delayed extraction of primary molars and canines. Permanent teeth erupted spontaneously in all patients receiving primary teeth extraction of retained primary teeth during average physiologic exfoliation time. CONCLUSIONS The association of STAT3-HIES with retained primary teeth is important knowledge for dentists and physicians as timely extraction of retained primary teeth prevents dental complications. To enable spontaneous eruption of permanent teeth in children with STAT3-HIES, we recommend extracting retained primary incisors when the patient is not older than 9 years of age and retained primary canines and molars when the patient is not older than 13 years of age, after having confirmed the presence of the permanent successor teeth by radiograph.
Collapse
Affiliation(s)
- Iris Meixner
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany
- Oral and maxillofacial surgery, Ludwig Maximilian University, Munich, Germany
| | - Beate Hagl
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Munich/Augsburg, Germany
| | - Carolin I Kröner
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany
| | - Benedikt D Spielberger
- University Children's Hospital, Dr. von Haunersches Kinderspital, Ludwig Maximilian University, Munich, Germany
| | - Ekaterini Paschos
- Department of orthodontics, Ludwig Maximilian University, Munich, Germany
| | | | - Tim Niehues
- HELIOS Children's Hospital, Krefeld, Germany
| | - Ronny Hesse
- Oral and maxillofacial surgery, Ludwig Maximilian University, Munich, Germany
| | - Ellen D Renner
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Munich/Augsburg, Germany.
| |
Collapse
|
4
|
Chalakkal P, Krishnan R, Ramesh M, De Souza N, de Ataide IN, Pavaskar R. Association between immobile over-retained primary incisors, diet consistency, and the presence of crowding. INTERNATIONAL JOURNAL OF PEDODONTIC REHABILITATION 2019. [DOI: 10.4103/ijpr.ijpr_26_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Giovani PA, Salmon CR, Martins L, Leme AFP, Puppin-Rontani RM, Mofatto LS, Nociti FH, Kantovitz KR. Membrane proteome characterization of periodontal ligament cell sets from deciduous and permanent teeth. J Periodontol 2018; 90:775-787. [PMID: 30499115 DOI: 10.1002/jper.18-0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Physiological roles for the periodontal ligament (PDL) include tooth eruption and anchorage, force absorption, and provision of proprioceptive information. Despite the advances in understanding the biology of PDL cells, there is a lack of information regarding the molecular signature of deciduous (DecPDL) and permanent (PermPDL) PDL tissues. Thus, the present study was designed to characterize the membrane proteome of DecPDL and PermPDL cells. METHODS Primary PDL cells were obtained (n = 6) and a label-free quantitative proteome of cell membrane-enriched components was performed. Proteome findings were validated by quantitative polymerase chain reaction and Western blot assays in fresh human tissues (n = 8) and primary cell cultures (n = 6). In addition, confocal microscopy was used to verify the expression of target factors in the PDL cell cultures. RESULTS Comparative gene ontology enrichment analysis evidenced that most stickling differences involved "endomembrane system" (PICALM, STX4, and LRP10), "hydrolase activity" (NCSTN and XRCC6), "protein binding" (PICALM, STX4, GPNMB, VASP, extended-synaptotagmin 2 [ESYT2], and leucine-rich repeat containing 15 [LRRC15]), and "isomerase activity" (FKBP8). Data are available via ProteomeXchange with identifier PXD010226. At the transcript level, high PICALM in DecPDL and ESYT2 and LRRC15 in PermPDL were confirmed in fresh PDL tissues. Furthermore, Western blot analysis confirmed increased levels of PICALM, LRRC15, and ESYT2 in cells and/or fresh tissues, and confocal microscopy confirmed the trends for PICALM and LRRC15 expression in PDL cells. CONCLUSION We report the first comprehensive characterization of the membrane protein machinery of DecPDL and PermPDL cells, and together, we identified a distinct molecular signature for these cell populations, including unique proteins for DecPDL and PermPDL.
Collapse
Affiliation(s)
- Priscila A Giovani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil
| | - Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luciane Martins
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Adriana F P Leme
- Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Regina M Puppin-Rontani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciana S Mofatto
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Kamila R Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil.,Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Kim K, Jeon M, Lee HS, Park JC, Moon SJ, Kim SO, Cho SW, Song JS. Comparative analysis of secretory factors from permanent- and deciduous-teeth periodontal ligament cells. Arch Oral Biol 2016; 71:65-79. [PMID: 27448989 DOI: 10.1016/j.archoralbio.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Studies of regenerative therapies have focused on the paracrine effects of mesenchymal stem cells, but little has been revealed about the humoral factors of periodontal ligament (PDL) stem cells. The aim of this study was to identify and compare the secretory factors of human permanent- and deciduous-teeth PDL cells (P-PDL and D-PDL cells, respectively) in order to understand the characteristics of these cells and their potential applications in regenerative therapies. DESIGN Conditioned media were collected from P-PDL and D-PDL cells (P-PDL-CM and D-PDL-CM, respectively). These media were analyzed with high-performance liquid-chromatography-coupled electrospray ionization tandem mass spectrometry and a cytokine membrane assay. In addition, Western blot analysis was performed to verify the differences between the two media. RESULTS Cytokines related to neurogenesis (NT-3 and NT-4) and angiogenesis-related cytokines (EGF and IGF-1) were identified in P-PDL-CM. The expression levels of immune-response-related cytokines (interleukins I, II, and IV) and secreted proteins related to tissue degradation and catalytic activities (matrix metallopeptidase 1 (MMP1), Proteasome subunit, alpha type, 1 (PSMA1), and cullin 7 (CUL7)) were higher in D-PDL-CM. Vasorin (VASN) was expressed more strongly in P-PDL-CM, but tudor domain containing 7 (TDRD7) was expressed more strongly in D-PDL-CM in Western blot analysis. CONCLUSION The cytokine expressions of the two cell types showed different patterns, especially in neurogenesis and immune responses. P-PDL cells are more suitable candidates for applications in regenerative therapies.
Collapse
MESH Headings
- Adolescent
- Blotting, Western
- Cells, Cultured
- Child
- Child, Preschool
- Chromatography, High Pressure Liquid
- Culture Media, Conditioned
- Cytokines/immunology
- Cytokines/metabolism
- Dentition, Permanent
- Electrophoresis, Polyacrylamide Gel
- Female
- Humans
- Infant
- Male
- Periodontal Ligament/cytology
- Periodontal Ligament/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Tooth, Deciduous
Collapse
Affiliation(s)
- Kirim Kim
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Mijeong Jeon
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, College of Dentistry, Kyunghee University, Seoul, Republic of Korea
| | - Jung-Chul Park
- Department of Periodontics, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Seok-Jun Moon
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Seong-Oh Kim
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Sung-Won Cho
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Secretome Profiling of Periodontal Ligament from Deciduous and Permanent Teeth Reveals a Distinct Expression Pattern of Laminin Chains. PLoS One 2016; 11:e0154957. [PMID: 27149379 PMCID: PMC4858149 DOI: 10.1371/journal.pone.0154957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022] Open
Abstract
It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p<0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p<0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them.
Collapse
|
8
|
Common periodontal diseases of children and adolescents. Int J Dent 2014; 2014:850674. [PMID: 25053946 PMCID: PMC4098882 DOI: 10.1155/2014/850674] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022] Open
Abstract
Background. Since 2000, studies, experiments, and clinical observations revealed high prevalence of periodontal diseases among children and adolescents. Therefore, this paper was designed to provide an update for dental practitioners on epidemiology, microbiology, pathology, prevention, diagnosis, and treatment of periodontal diseases in children and adolescents. Methods. This paper reviews the current literature concerning periodontal diseases in pediatric dentistry. It includes MEDLINE database search using key terms: “periodontal diseases in children,” “Periodontal diseasesin adolescents,” “periodontal diseases risk factors,”
“microbiology of periodontal diseases,” “classification of periodontal diseases,” “epidemiology of periodontal diseases,” and “treatment of periodontal diseases.” Articles were evaluated by title and/or abstract and relevance to pediatric dentistry. Sixty-five citations were selected by this method and by the references within the chosen articles. A review of the comprehensive textbooks on pediatric dentistry and periodontology was done. Some recommendations were based on the opinions of experienced researchers and clinicians, when data were inconclusive.
Collapse
|
9
|
Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth. PLoS One 2013; 8:e61231. [PMID: 23593441 PMCID: PMC3620385 DOI: 10.1371/journal.pone.0061231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 01/09/2023] Open
Abstract
There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.
Collapse
|
10
|
Farronato G, Porro A, Galbiati G, Giannini L, Moffa M, Maspero C. Riassorbimento radicolare: Revisione della letteratura. DENTAL CADMOS 2013. [DOI: 10.1016/s0011-8524(13)70040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A. Prospective potency of TGF-β1 on maintenance and regeneration of periodontal tissue. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:283-367. [PMID: 23809439 DOI: 10.1016/b978-0-12-407696-9.00006-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal ligament (PDL) tissue, central in the periodontium, plays crucial roles in sustaining tooth in the bone socket. Irreparable damages of this tissue provoke tooth loss, causing a decreased quality of life. The question arises as to how PDL tissue is maintained or how the lost PDL tissue can be regenerated. Stem cells included in PDL tissue (PDLSCs) are widely accepted to have the potential to maintain or regenerate the periodontium, but PDLSCs are very few in number. In recent studies, undifferentiated clonal human PDL cell lines were developed to elucidate the applicable potentials of PDLSCs for the periodontal regenerative medicine based on cell-based tissue engineering. In addition, it has been suggested that transforming growth factor-beta 1 is an eligible factor for the maintenance and regeneration of PDL tissue.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
12
|
Bille MLB, Thomsen B, Andersen TL, Kjær I. Immunolocalization of RANK and RANKL along the root surface and in the periodontal membrane of human primary and permanent teeth. Acta Odontol Scand 2012; 70:265-71. [PMID: 22397362 DOI: 10.3109/00016357.2011.641585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Root resorption, impaired tooth eruption and early tooth loss have been described in relation to diseases that involve defects in the RANK-RANKL-OPG-expression. The aim of the present immunhistochemical study was to localize and compare the reactions for RANK and membrane-bound RANKL along root surfaces and in the periodontal membrane in close proximity to the root surface of human primary and permanent teeth. MATERIALS AND METHODS The material comprised extracted human teeth (11 primary teeth and six permanent teeth) from 10 different patients. Paraffin sections were prepared of each tooth and sections of each tooth were immunohistochemically stained with antibodies specific for membrane-bound RANKL and RANK. RESULTS The root surface and the periodontal membrane in close proximity to the root surface did not show immunoreactivity for RANKL. RANKL was only located in odontoblasts and in cells along denticles in one primary tooth. RANK was located in mononuclear cells in the pulp and in multinucleated odontoclasts along resorbed root surfaces and along resorbed dentin surfaces in the pulp in primary teeth and one permanent tooth. CONCLUSIONS This study demonstrated RANK positivity in resorption areas in primary and permanent teeth. RANKL was positive in the pulp of one primary tooth. RANK expression in odontoclasts and RANKL expression in the pulp may indicate that RANK/RANKL play a role during resorption.
Collapse
Affiliation(s)
- Marie-Louise Bastholm Bille
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
13
|
Song JS, Kim SO, Kim SH, Choi HJ, Son HK, Jung HS, Kim CS, Lee JH. In vitro and in vivo characteristics of stem cells derived from the periodontal ligament of human deciduous and permanent teeth. Tissue Eng Part A 2012; 18:2040-51. [PMID: 22571499 DOI: 10.1089/ten.tea.2011.0318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many studies, adult stem cells have been found in human periodontal ligament (PDL), but in most cases they were found in the permanent teeth. The aim of the present study was to characterize stem cells from the PDL of deciduous teeth (dPDLSCs) and compare them with those from the PDL of permanent teeth (pPDLSCs). Stem cell markers were examined by a flow cytometric analysis. The results of in vitro differentiation into adipogenic and osteogenic lineages were analyzed by histochemical staining and quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results of in vivo transplantation were analyzed by histological staining, immunohistochemical staining, and quantitative RT-PCR. There were no significant differences in the proliferation rate, cell cycle distribution, expressions of stem cell markers such as Stro-1 and CD146, or in vitro differentiation. The pPDLSC transplants made more typical cementum/PDL-like tissues and expressed more cementum/PDL-related genes (CP23 and collagen XII) than did the dPDLSC transplants. Together, these results suggest that pPDLSCs are better candidates for use in reconstructing periodontium.
Collapse
Affiliation(s)
- Je Seon Song
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cordeiro MMR, Santos BZ, Reyes-Carmona JF, Figueiredo CP. Primary teeth show less protecting factors against root resorption. Int J Paediatr Dent 2011; 21:361-8. [PMID: 21481035 DOI: 10.1111/j.1365-263x.2011.01132.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Physiological root resorption differentiates primary from permanent teeth. The understanding of what protects and regulates root resorption might help to develop therapies to its control. AIM To verify the presence and distribution of ECRM and the expression of CK14, OPG, TRAP and COX-2 in the periodontal ligament (PDL) of human primary and permanent teeth. Design. Eight primary teeth undergoing physiological or pathological root resorption and 4 permanent teeth were immunohistochemically processed for CK14, TRAP, COX-2 and OPG expression. RESULTS PDL from primary and permanent teeth showed similar morphological features; however, fewer ECRM clusters and higher immunoreactivity to CK14 were found in primary PDL. In permanent teeth, ECRM were distributed along the entire PDL tissue. Howship's lacunae were found only in primary teeth, associated with the presence of TRAP-positive cells and increase in COX-2 expression. OPG expression in primary PDL was detected in nonresorptive cervical areas and in lacunae showing reparative tissue. It was observed higher expression of OPG in all permanent teeth when compared to primary specimens. CONCLUSIONS It may be concluded that PDL from primary teeth shows less ECRM clusters and lower expression of OPG. These features may be associated with lower protection against root resorption in primary teeth.
Collapse
Affiliation(s)
- Mabel M R Cordeiro
- Department of Morphological Sciences, Biological Sciences Center, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | | | | | |
Collapse
|
15
|
Abstract
Osteoclasts are cells essential for physiologic remodeling of bone and also play important physiologic and pathologic roles in the dentofacial complex. Osteoclasts and odontoclasts are necessary for tooth eruption yet result in dental compromise when associated with permanent tooth internal or external resorption. The determinants that separate their physiologic and pathologic roles are not well delineated. Clinical cases of primary eruption failure and root resorption are challenging to treat. Mineralized tissue resorbing cells undergo a fairly well characterized series of differentiation stages driven by transcriptional mediators. Signal transduction via cytokines and integrin-mediated events comprise the detailed pathways operative in osteo/odontoclastic cells and may provide insights to their targeted regulation. A better understanding of the unique aspects of osteoclastogenesis and osteo/odontoclast function will facilitate effective development of new therapeutic approaches. This review presents the clinical challenges and delves into the cellular and biochemical aspects of the unique cells responsible for resorption of mineralized tissues of the craniofacial complex.
Collapse
Affiliation(s)
- Z Wang
- Department of Orthodontics and Pediatric Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
16
|
Liou EJW, Chang PMH. Apical root resorption in orthodontic patients with en-masse maxillary anterior retraction and intrusion with miniscrews. Am J Orthod Dentofacial Orthop 2010; 137:207-12. [PMID: 20152676 DOI: 10.1016/j.ajodo.2008.02.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The purposes of this retrospective study were to investigate the apical root resorption of maxillary incisors in orthodontic patients with en-masse maxillary anterior retraction and intrusion with miniscrews and the factors disposing a patient to apical root resorption. METHODS Fifty adult patients with maxillary protrusion were included; 30 were treated with miniscrews and extraction of the maxillary first premolars (group I), and 20 were treated with extraction of the maxillary first premolars (group II). For each patient, periapical films of the maxillary incisors and lateral cephalometric radiographs were taken before and after treatment to evaluate apical root resorption and cephalometric measurements. The intergroup differences were analyzed with the Student t test and the correlations between apical root resorption and cephalometric measurements were analyzed by the Pearson correlation. RESULTS The apical root resorption values were 16.0% to 20.0% (2.5-2.8 mm) in group I and 13.4% to 14.4% (2.1-2.3 mm) of the original root length in group II. Group I had significantly more severe Class II jaw discrepancy (ANB, 7.1 degrees +/- 1.9 degrees ) than did group II (ANB, 3.2 degrees +/- 2.9 degrees ). The amount of maxillary en-masse anterior retraction (8.2 +/- 2.4 mm), the duration of treatment (28.3 +/- 7.3 months), and apical root resorption of maxillary lateral incisors were significantly greater in group I than in group II. Apical root resorption of the maxillary central incisors was significantly correlated to the duration of treatment but not to the amount of en-masse retraction, intrusion, or palatal tipping of maxillary incisors. CONCLUSIONS Miniscrew anchorage allows for more maxillary en-masse anterior retraction in patients with severe Class II cases. But the time needed for the greater amount of maxillary en-masse anterior retraction with miniscrew anchorage is longer and might dispose the patient to more apical root resorption.
Collapse
Affiliation(s)
- Eric J W Liou
- Department of Orthodontics and Craniofacial Dentistry Chang Gung Memorial Hospital, Taipei, Taiwan.
| | | |
Collapse
|
17
|
Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Mol Cell Biochem 2009; 335:263-72. [PMID: 19798549 DOI: 10.1007/s11010-009-0276-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/16/2009] [Indexed: 12/28/2022]
Abstract
The precise mechanism by which Rho kinase translates the mechanical signals into OPN up-regulation in force-exposed fibroblasts has not been elucidated. Human periodontal ligament fibroblasts (hPLFs) were exposed to mechanical force by centrifuging the culture plates at a magnitude of 50 g/cm(2) for 60 min. At various times of the force application, they were processed for analyzing cell viability, trypan blue exclusion, and OPN expression at protein and RNA levels. Cellular mechanism(s) of the force-induced OPN up-regulation was also examined using various kinase inhibitors or antisense oligonucleotides specific to mechanosensitive factors. Centrifugal force up-regulated OPN expression and induced a rapid and transient increase in the phosphorylation of focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and Elk1. Pharmacological blockade of RhoA/Rho-associated coiled coil-containing kinase (ROCK) signaling markedly reduced force-induced FAK and ERK1/2 phosphorylation. Transfecting hPLFs with FAK antisense oligonucleotide diminished ERK1/2 activation and force-induced OPN expression. Further, ERK inhibitor inhibited significantly OPN expression, Elk1 phosphorylation, and activator protein-1 (AP-1)-DNA binding activation, but not FAK phosphorylation, in the force-applied cells. These results demonstrate that FAK signaling plays critical roles in force-induced OPN expression in hPLFs through interaction with Rho/ROCK as upstream effectors and ERK-Elk1/ERK-c-Fos as downstream effectors.
Collapse
|
18
|
Huang L, Meng Y, Ren A, Han X, Bai D, Bao L. Response of cementoblast-like cells to mechanical tensile or compressive stress at physiological levels in vitro. Mol Biol Rep 2009; 36:1741-8. [PMID: 18850302 DOI: 10.1007/s11033-008-9376-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/25/2008] [Indexed: 02/05/2023]
Abstract
To clarify the role of cementoblast in orthodontic-related root resorption, this study was attempted to examine whether murine cementoblast-like cells are responsive to mechanical stress, and how mechanical forces regulate bone sialoprotein (BSP) and osteopontin (OPN) gene expression in these cells in vitro. In this force-loading model, defined and reproducible mechanical loadings of different magnitudes and types were applied up to 24 h. Besides a transitory and reversible change in cell proliferation, remarkable alterations in gene transcription of BSP and OPN were found. BSP mRNA was suppressed by the stresses. Three and six hours-loadings at 2,000 microstrain up-regulated the expression of OPN mRNA, while the other loadings inhibited it. The study also concluded that 4,000 microstrain was likely to exert more influence on cementoblast-like cells than 2,000 microstrain. Furthermore, no obvious evidence indicated the difference between tension and compression. These results suggested that cementoblast-like cells are sensitive to mechanical stress, and may play a role in regulating orthodontic-related root resorption/repair.
Collapse
Affiliation(s)
- Lan Huang
- State Key Laboratory of Oral Disease, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Yongchaitrakul T, Manokawinchoke J, Pavasant P. Osteoprotegerin induces osteopontin via syndecan-1 and phosphoinositol 3-kinase/Akt in human periodontal ligament cells. J Periodontal Res 2009; 44:776-83. [PMID: 19602124 DOI: 10.1111/j.1600-0765.2008.01190.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Our previous study found that thrombin induced osteoprotegerin synthesis in human periodontal ligament cells. As elevated levels of osteoprotegerin can exert biological effects on various cell types, in the present study we investigated the effect of osteoprotegerin on the expression of osteopontin in human periodontal ligament cells. MATERIAL AND METHODS Cultured human periodontal ligament cells were treated with recombinant human osteoprotegerin (0-100 ng/mL) for 24-48 h. The expression of osteopontin mRNA and protein was analyzed using reverse transcription-polymerase chain reaction and western blot analyses, respectively. Phosphoinositol 3-kinase inhibitor, Akt inhibitor, heparinase, neutralizing antibody against receptor activator of nuclear factor-kappaB ligand (RANKL) and syndecan-1, and small interfering RNA against syndecan-1, were used to determine the mechanism involved. RESULTS Osteoprotegerin up-regulated the mRNA and protein expression of osteopontin in human periodontal ligament cells in a dose-dependent manner. Addition of neutralizing antibody against RANKL attenuated the inductive effect of osteoprotegerin on osteopontin expression. In addition, the inductive effect of osteoprotegerin was abolished by phosphoinositol 3-kinase and Akt inhibitors, as well as by syndecan-1 antibody or syndecan-1 small interfering RNA. None of the inhibitors had any effect on the background level of osteopontin expression. CONCLUSION An increased level of osteoprotegerin can generate signals via a RANKL/syndecan-1/phosphoinositol 3-kinase/Akt pathway. The results also suggest that osteopontin is one of the downstream targets of the pathway mediated by osteoprotegerin in human periodontal ligament cells. Thus, in addition to counteracting RANKL in the RANKL-osteoprotegerin system, osteoprotegerin may play a role in periodontal tissue remodeling through modulation of the extracellular matrix.
Collapse
Affiliation(s)
- T Yongchaitrakul
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | | | | |
Collapse
|
20
|
Role of basic biological sciences in clinical orthodontics: a case series. Am J Orthod Dentofacial Orthop 2009; 135:222-31. [PMID: 19201330 DOI: 10.1016/j.ajodo.2007.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Orthodontic therapy is based on interaction between mechanics and biology. Basic biologic research aims at developing a better understanding of the mechanism of transformation of mechanical energy into biologic reactions, and exposing the reasons for iatrogenic tissue damage in orthodontics. Previous research has shown that inflammation is a major part of the biologic response to orthodontic forces. In inflammation, signal molecules that originate in remote diseased organs can reach strained paradental tissues and exacerbate the inflammatory process, leading to tissue damage. METHODS Our case series includes 3 patients, each having had systemic diseases and malocclusion. One had diabetes mellitus, Hashimoto's thyroiditis, and depression. Concern about the possible effect of these conditions on the well-being of the teeth and their surrounding tissues compelled the orthodontist to choose not to treat this patient. The other 2 patients had allergies, and 1 also had bronchial asthma and bruises. RESULTS Although these conditions are thought to be risk factors for root resorption, these patients received orthodontic treatment for 2 and 3.5 years, respectively. At the end of treatment, both had excessive root resorption of many teeth. In 1 patient, this damage led to the loss of most maxillary teeth. CONCLUSIONS Basic research should continue to address questions related to the biologic mechanisms of tooth movement on tissue, cellular, and molecular levels. Moreover, this research should continue to identify risk factors that might jeopardize the longevity of treated teeth. Such basic research should promote the development of new tissue-friendly and patient-friendly therapeutic methods.
Collapse
|
21
|
Sriarj W, Aoki K, Ohya K, Takagi Y, Shimokawa H. Bovine dentine organic matrix down-regulates osteoclast activity. J Bone Miner Metab 2009; 27:315-23. [PMID: 19296049 DOI: 10.1007/s00774-009-0063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 11/13/2008] [Indexed: 01/24/2023]
Abstract
Physiological root resorption is a phenomenon that normally takes place in deciduous teeth; root resorption of permanent teeth occurs only under pathological conditions. The molecular mechanisms underlying these processes are still unclear. Our previous study showed that osteoclasts cultured on deciduous dentine exhibited a higher degree of resorption and higher levels of cathepsin K and MMP-9 mRNA than osteoclasts cultured on permanent dentine. These results could be because of different susceptibilities to acid and the different organic matrices between deciduous and permanent dentine. Thus, the purpose of this study was to investigate the effect of dentine extracts from bovine deciduous and permanent dentine on osteoclast activity. Osteoclasts, obtained from mouse bone marrow cells co-cultured with an osteoblast-rich fraction in the presence of 1,25-(OH)(2)-vitamin D3 and PGE2, were incubated with or without 0.6 M HCl extracts from bovine deciduous or permanent dentine for 48 h. TRAP positive cell number, TRAP activity, the areas of resorption pits, and mRNA levels of TRAP, v-ATPase, calcitonin receptor, cathepsin K, and MMP-9 were examined. The results illustrated that TRAP activity, the resorbed area, and the mRNA levels of osteoclast marker genes seemed to be suppressed by both deciduous and permanent dentine extracts. These findings indicate that some factors that suppress osteoclast activity are contained in both deciduous and permanent dentine extracts. Although there was no significant difference in osteoclast activity between deciduous and permanent dentine extracts, osteoclasts incubated with permanent dentine extracts tend to exhibit less resorption activity than those incubated with deciduous dentine extracts. However, we could not clearly explain the causes of this.
Collapse
Affiliation(s)
- Wantida Sriarj
- Section of Developmental Oral Health Science, Department of Orofacial Development and Function, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
22
|
Wongkhantee S, Yongchaitrakul T, Pavasant P. Mechanical stress induces osteopontin expression in human periodontal ligament cells through rho kinase. J Periodontol 2007; 78:1113-9. [PMID: 17539726 DOI: 10.1902/jop.2007.060433] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Mechanical stress such as orthodontic forces can produce mechanical damage and inflammatory reaction in the periodontium. Osteopontin (OPN) is a multifunctional cytokine that has been correlated with periodontal disease progression. Because the periodontal ligament (PDL) can be affected by stress and PDL cells are involved in periodontal destruction and remodeling, we aimed to study the influence of mechanical stress on the expression and regulation of OPN in human PDL (HPDL) cells. METHODS The mechanical stress was generated by continuous compressive force, and the expression of OPN was examined by reverse transcription-polymerase chain reaction and Western analysis. The application of inhibitors was used to examine the mechanism involved. RESULTS Both mRNA and protein expression of OPN significantly increased in a force-dependent manner. Increase of receptor activator of nuclear factor-kappa B ligand (RANKL) was also observed. Interestingly, application of indomethacin could abolish the induction of RANKL but not that of OPN, suggesting the cyclooxygenase-independent mechanism for stress-induced OPN expression. In addition, the upregulation of OPN was diminished by Rho kinase inhibitor but not by cytochalasin B. CONCLUSIONS Mechanical stress affects OPN expression in HPDL cells through the Rho kinase pathway. Because OPN participates in bone resorption and remodeling induced by mechanical and biologic signals, these results suggest the significance of stress-induced OPN in HPDL cells in alveolar bone resorption and remodeling.
Collapse
Affiliation(s)
- Suchart Wongkhantee
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | | | | |
Collapse
|
23
|
Harokopakis-Hajishengallis E. Physiologic root resorption in primary teeth: molecular and histological events. J Oral Sci 2007; 49:1-12. [PMID: 17429176 DOI: 10.2334/josnusd.49.1] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Root resorption is a physiologic event for the primary teeth. It is still unclear whether odontoclasts, the cells which resorb the dental hard tissue, are different from the osteoclasts, the cells that resorb bone. Root resorption seems to be initiated and regulated by the stellate reticulum and the dental follicle of the underlying permanent tooth via the secretion of stimulatory molecules, i.e. cytokines and transcription factors. The primary root resorption process is regulated in a manner similar to bone remodeling, involving the same receptor ligand system known as RANK/RANKL (receptor activator of nuclear factor-kappa B/ RANK Ligand). Primary teeth without a permanent successor eventually exfoliate as well, but our current understanding on the underlying mechanism is slim. The literature is also vague on how resorption of the pulp and periodontal ligament of the primary teeth occurs. Knowledge on the mechanisms involved in the physiologic root resorption process may enable us to delay or even inhibit exfoliation of primary teeth in those cases that the permanent successor teeth are not present and thus preservation of the primary teeth is desirable.
Collapse
|
24
|
Andriamanalijaona R, Benateau H, Barre PE, Boumediene K, Labbe D, Compere JF, Pujol JP. Effect of Interleukin-1β on Transforming Growth Factor-Beta and Bone Morphogenetic Protein-2 Expression in Human Periodontal Ligament and Alveolar Bone Cells in Culture: Modulation by Avocado and Soybean Unsaponifiables. J Periodontol 2006; 77:1156-66. [PMID: 16805677 DOI: 10.1902/jop.2006.050356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In periodontal disease, interleukin-1beta (IL-1beta) is responsible for the matrix breakdown through excessive production of degrading enzymes by periodontal ligament fibroblasts and osteoblasts. Transforming growth factor-beta (TGF-beta) plays an important role in tissue regeneration as one of the factors capable of counteracting IL-1beta effects. In this study, we investigated the in vitro effect of avocado and soya unsaponifiables (ASU) on the expression of TGF-beta1, TGF-beta2, and bone morphogenetic protein-2 (BMP-2) by human periodontal ligament (HPL) and human alveolar bone (HAB) cells in the presence of IL-1beta. METHODS HPL and HAB cells were incubated for 48 hours with ASU (10 microg/ml) in the presence or absence of IL-1beta (10 ng/ml). The steady-state levels of TGF-beta1, TGF-beta2, and BMP-2 mRNAs were determined by Northern blot or reverse transcription-polymerase chain reaction (RT-PCR). The amounts of TGF-beta1 and TGF-beta2 proteins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The data indicated that IL-1beta strongly decreases the expression of TGF-beta1 and TGF-beta2 by HPL cells. ASU were capable of opposing the cytokine effect. In HAB cells, TGF-beta1 and BMP-2 mRNA levels were downregulated by the cytokine. ASU were found to reverse the IL-1beta-inhibiting effect. In contrast, the cytokine stimulated the production of TGF-beta2 in alveolar bone cells, with no significant effect of ASU. CONCLUSIONS The results indicate that the IL-1beta-driven erosive effect in periodontitis could be enhanced by a decreased expression of members of the TGF-beta family. The ASU stimulation of TGF-beta1, TGF-beta2, and BMP-2 expression may explain their promoting effects in the treatment of periodontal disorders, at least partly. These findings support the hypothesis that ASU could exert a preventive action on the deleterious effects exerted by IL-1beta in periodontal diseases.
Collapse
Affiliation(s)
- R Andriamanalijaona
- Laboratory of Connective Tissue Biochemistry, Faculty of Medicine, and Maxillary-Facial Surgery Department, Universitary Hospital Center, Caen, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Varghese BJ, Aoki K, Shimokawa H, Ohya K, Takagi Y. Bovine deciduous dentine is more susceptible to osteoclastic resorption than permanent dentine: results of quantitative analyses. J Bone Miner Metab 2006; 24:248-54. [PMID: 16622739 DOI: 10.1007/s00774-005-0679-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
Many clinical reports suggest that deciduous teeth exhibit a greater susceptibility to resorption than permanent ones. To examine the difference between deciduous and permanent dentine in their susceptibility to osteoclastic resorption, osteoclast-like cells (OCLs) were cultured on deciduous and permanent dentine slices. The number, area, depth, and volume of resorption pits were then measured, using image-analyzing systems. We measured the level of degraded collagen (cross-linked N-telopeptide of type I collagen; NTx) in culture medium using an enzyme-linked immunosorbent assay (ELISA). The levels of cathepsin K, matrix metallo proteinase (MMP)-9, and MMP-13 mRNAs in the cells attached to dentine were also analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR). Deciduous dentine slices exhibited a significant (twofold) increase in resorbed area compared with the permanent slices. Three-dimensional analysis revealed that the volume of pits in deciduous dentine differed significantly (fourfold) compared to that in the permanent dentine. The depth of pits also followed the same trend. However, there was no significant difference in the number of pits or osteoclasts on the dentine slices. The NTx level in deciduous media was significantly more than that in permanent media. The mRNA levels also followed the same trend. These results suggest that deciduous dentine is more susceptible to resorption than permanent dentine and signals from the substrate play an important role in physiological resorption.
Collapse
Affiliation(s)
- Bobby John Varghese
- Developmental Oral Health Science, Department of Orofacial Development and Function, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Tokyo, 113-8549, Japan
| | | | | | | | | |
Collapse
|
26
|
Ramanathan C, Hofman Z. Root Resorption in Relation to Orthodontic Tooth Movement. ACTA MEDICA (HRADEC KRALOVE, CZECH REPUBLIC) 2006. [DOI: 10.14712/18059694.2017.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Root resorption is an undesirable sequela of orthodontic tooth movement. The odontoclasts are responsible for root resorption and the process of hyalinization is known to preceed the orthodontic root resorption. It is found that there are several predisposing factors, therefore an evaluation of these factors should be done by careful examination of personal medical history, severity of malocclusion and dental treatment (if any due to previous history of trauma), anterior crossbite etc. The evaluation becomes an essential factor as it helps the orthodontists in detecting the occurance and severity of the root resorption and thereby plan out the treatment more effectively. Orthodontic tooth movements especially intrusion and other movements like tipping, torque are all known to influence the root resorption, therefore the detection using radiographs and repair of root resorption is of utmost significance as root resorption is a more serious problem from a medicolegal stand point of view. However some studies have shown that the repair process is known to occur after the cessation of orthodontic treatment by the deposition of cementum of cellular type. In the light of orthodontist’s liability of what is basically an unpredictable phenomenon, it is necessary that the speciality define this uncertainity and protect its members against unnecessary and unjustified litigation.
Collapse
|