1
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
2
|
Arutjunyan AV, Kerkeshko GO, Milyutina YP, Shcherbitskaia AD, Zalozniaia IV, Mikhel AV, Inozemtseva DB, Vasilev DS, Kovalenko AA, Kogan IY. Imbalance of Angiogenic and Growth Factors in Placenta in Maternal Hyperhomocysteinemia. BIOCHEMISTRY (MOSCOW) 2023; 88:262-279. [PMID: 37072327 DOI: 10.1134/s0006297923020098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, Russian Ministry of Health, St. Petersburg, 194100, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Daria B Inozemtseva
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anna A Kovalenko
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Igor Yu Kogan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
3
|
Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Tanwar UK, Floryszak-Wieczorek J. Plant homocysteine, a methionine precursor and plant's hallmark of metabolic disorders. FRONTIERS IN PLANT SCIENCE 2022; 13:1044944. [PMID: 36570932 PMCID: PMC9773845 DOI: 10.3389/fpls.2022.1044944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid, which arises from redox-sensitive methionine metabolism. In plants, Hcy synthesis involves both cystathionine β-lyase and S-adenosylhomocysteine hydrolase activities. Thus, Hcy itself is crucial for de novo methionine synthesis and S-adenosylmethionine recycling, influencing the formation of ethylene, polyamines, and nicotianamine. Research on mammalian cells has shown biotoxicity of this amino acid, as Hcy accumulation triggers oxidative stress and the associated lipid peroxidation process. In addition, the presence of highly reactive groups induces Hcy and Hcy derivatives to modify proteins by changing their structure and function. Currently, Hcy is recognized as a critical, independent hallmark of many degenerative metabolic diseases. Research results indicate that an enhanced Hcy level is also toxic to yeast and bacteria cells. In contrast, in the case of plants the metabolic status of Hcy remains poorly examined and understood. However, the presence of the toxic Hcy metabolites and Hcy over-accumulation during the development of an infectious disease seem to suggest harmful effects of this amino acid also in plant cells. The review highlights potential implications of Hcy metabolism in plant physiological disorders caused by environmental stresses. Moreover, recent research advances emphasize that recognizing the Hcy mode of action in various plant systems facilitates verification of the potential status of Hcy metabolites as bioindicators of metabolism disorders and thus may constitute an element of broadly understood biomonitoring.
Collapse
Affiliation(s)
- Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
4
|
High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022; 14:nu14193930. [PMID: 36235580 PMCID: PMC9573299 DOI: 10.3390/nu14193930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.
Collapse
|
5
|
Pathare-Ingawale P, Chavan-Gautam P. The balance between cell survival and death in the placenta: Do neurotrophins have a role? Syst Biol Reprod Med 2021; 68:3-12. [PMID: 34615417 DOI: 10.1080/19396368.2021.1980132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Neurotrophins (NT) are a closely related family of growth factors, which regulate the nervous system's development, maintenance, and function. Although NTs have been well studied in neuronal cells, they are also expressed in the placenta. Despite their suggested role in regulating fetoplacental development, their precise functional significance in the placenta remains elusive. NT activate two different classes of receptors. These include the Trk, tropomyosin-related kinase family of high-affinity tropomyosin-related kinase receptors, which induces cell survival, and the p75NTR, p75 neurotrophin receptor, a member of the tumor necrosis factor(TNF) receptor superfamily, which induces apoptosis in neuronal cells. Mature NT molecule results from proteolysis of a biologically active precursor form called pro-neurotrophins (pro-NT) by the intracellular proprotein convertase or furin. Pro-NTs have a regulatory role in determining cell survival and apoptosis. Here, we review the literature on the expression and functions of NTs and their receptors in the placenta and discuss their possible role in placental tissue development and apoptosis. The possible implications of imbalance in pro-NT and mature-NT levels for fetoplacental development are also discussed.Abbreviations AGE/ALEs: Advanced glycation/lipoxidation end products; Bax: Bcl 2 Associated X; Bcl-2: B-cell lymphoma 2; BDNF: Brain-derived neurotrophic factor; FAS/FASL: Fas cell surface death receptor/ ligand; IUGR: Intrauterine growth restriction; JNK: c-Jun amino-terminal kinase; MAP: mitogen-activated protein k; mRNA: Messenger ribonucleic acid; NGF: Nerve growth factor; NT: Neurotrophins; NRAGE: Neurotrophin receptor-interacting MAGE homolog; NRIF: Neurotrophin receptor interacting factor; PE: Preeclampsia; PI3k: Phosphoinositide 3- kinase; PLC: Phospholipase C; p75NTR: p75 neurotrophin receptor; Pro-NT: Pro-neurotrophins; PTB: Preterm birth; p53: Tumor protein p53; TNF: Tumor necrosis factor; TRAF: TNFR-associated factors; Trk: Tropomyosin-related kinase; siRNA: small interfering ribonucleic acid.
Collapse
Affiliation(s)
| | - Preeti Chavan-Gautam
- Interdisciplinary School of Health Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
6
|
Arutjunyan AV, Kerkeshko GO, Milyutina YP, Shcherbitskaia AD, Zalozniaia IV. Prenatal Stress in Maternal Hyperhomocysteinemia: Impairments in the Fetal Nervous System Development and Placental Function. BIOCHEMISTRY (MOSCOW) 2021; 86:716-728. [PMID: 34225594 DOI: 10.1134/s0006297921060092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The article presents current views on maternal hyperhomocysteinemia (HHcy) as an important factor causing prenatal stress and impaired nervous system development in fetuses and newborns in early ontogenesis, as well as complications in adulthood. Experimental data demonstrate that prenatal HHcy (PHHcy) affects the morphological maturation of the brain and activity of its neurotransmitter systems. Cognitive deficit observed in the offspring subjected to PHHcy in experimental studies can presumably cause the predisposition to various neurodegenerative diseases, as the role of maternal HHcy in the pathogenesis such diseases has been proven in clinical studies. The review also discusses molecular mechanisms of the HHcy neurotoxic action on the nervous system development in the prenatal and early postnatal periods, which include oxidative stress, apoptosis activation, changes in the DNA methylation patterns and microRNA levels, altered expression and processing of neurotrophins, and neuroinflammation induced by an increased production of pro-inflammatory cytokines. Special attention is given to the maternal HHcy impact on the placenta function and its possible contribution to the brain function impairments in the offspring. Published data suggest that some effects of PHHcy on the developing fetal brain can be due to the disturbances in the transport functions of the placenta resulting in an insufficient supply of nutrients necessary for the proper formation and functioning of brain structures.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott, St. Petersburg, 199034, Russia. .,St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Gleb O Kerkeshko
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Yuliya P Milyutina
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott, St. Petersburg, 199034, Russia
| | - Anastasiia D Shcherbitskaia
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott, St. Petersburg, 199034, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 104223, Russia
| | - Irina V Zalozniaia
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott, St. Petersburg, 199034, Russia
| |
Collapse
|
7
|
Todorovic D, Stojanovic M, Medic A, Gopcevic K, Mutavdzin S, Stankovic S, Djuric D. Four Weeks of Aerobic Training Affects Cardiac Tissue Matrix Metalloproteinase, Lactate Dehydrogenase and Malate Dehydrogenase Enzymes Activities, and Hepatorenal Biomarkers in Experimental Hyperhomocysteinemia in Rats. Int J Mol Sci 2021; 22:ijms22136792. [PMID: 34202757 PMCID: PMC8268082 DOI: 10.3390/ijms22136792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the effect of the application of homocysteine as well as its effect under the condition of aerobic physical activity on the activities of matrix metalloproteinases (MMP), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) in cardiac tissue and on hepato-renal biochemical parameters in sera of rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C: 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.); H: homocysteine 0.45 µmol/g b.w./day s.c.; CPA saline (0.9% NaCl 0.2 mL/day s.c.) and a program of physical activity on a treadmill; and HPA homocysteine (0.45 µmol/g b.w./day s.c.) and a program of physical activity on a treadmill. Subcutaneous injection of substances was applied 2 times a day at intervals of 8 h during the first two weeks of experimental protocol. Hcy level in serum was significantly higher in the HPA group compared to the CPA group (p < 0.05). Levels of glucose, proteins, albumin, and hepatorenal biomarkers were higher in active groups compared with the sedentary group. It was demonstrated that the increased activities of LDH (mainly caused by higher activity of isoform LDH2) and mMDH were found under the condition of homocysteine-treated rats plus aerobic physical activity. Independent application of homocysteine did not lead to these changes. Physical activity leads to activation of MMP-2 isoform and to increased activity of MMP-9 isoform in both homocysteine-treated and control rats.
Collapse
Affiliation(s)
- Dusan Todorovic
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (M.S.); (S.M.)
| | - Marija Stojanovic
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (M.S.); (S.M.)
| | - Ana Medic
- Faculty of Medicine, Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (K.G.)
| | - Kristina Gopcevic
- Faculty of Medicine, Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (K.G.)
| | - Slavica Mutavdzin
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (M.S.); (S.M.)
| | - Sanja Stankovic
- Centre of Medical Biochemistry, Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - Dragan Djuric
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11000 Belgrade, Serbia; (D.T.); (M.S.); (S.M.)
- Correspondence:
| |
Collapse
|
8
|
Cagan M, Unal C, Urel Demir G, Fadiloglu E, Ozgul RK, Beksac MS. Obstetrical history of a family with combined oxidative phosphorylation deficiency 3 and methylenetetrahydrofolate reductase polymorphisms. CASE REPORTS IN PERINATAL MEDICINE 2021. [DOI: 10.1515/crpm-2020-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Recurrent pregnancy loss (RPL) is a devastating complication of pregnancy with various etiologic backgrounds.
Case presentation
We present a case of combined oxidative phosphorylation deficiency 3 (COXPD3) carrier pregnant woman with Methylenetetrahydrofolate reductase (MTHFR) polymorphisms. She had five pregnancy losses and a postpartum death due to COXPD3. The patient was admitted to our clinic for the first time at her seventh pregnancy with oocyte donation. The patient was registered in a special antenatal care program and delivered a healthy baby at term. Her eighth pregnancy was terminated due to COXPD3 which was prenatally diagnosed.
Conclusions
Comprehensive and individualized approaches are necessary in RPL cases to obtain optimal outcomes.
Collapse
Affiliation(s)
- Murat Cagan
- Department of Obstetrics and Gynecology , Division of Perinatology, Hacettepe University , Ankara , Turkey
| | - Canan Unal
- Department of Obstetrics and Gynecology , Division of Perinatology, Hacettepe University , Ankara , Turkey
| | - Gizem Urel Demir
- Department of Pediatric Genetics , Hacettepe University , Ankara , Turkey
| | - Erdem Fadiloglu
- Department of Obstetrics and Gynecology , Division of Perinatology, Hacettepe University , Ankara , Turkey
| | - Riza Koksal Ozgul
- Department of Pediatrics , Division Pediatric Metabolism, Hacettepe University , Ankara , Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology , Division of Perinatology, Hacettepe University , Ankara , Turkey
| |
Collapse
|
9
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV, Mikhel AV. Neurotrophins of the Fetal Brain and Placenta in Prenatal Hyperhomocysteinemia. BIOCHEMISTRY (MOSCOW) 2020; 85:213-223. [PMID: 32093597 DOI: 10.1134/s000629792002008x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prenatal hyperhomocysteinemia (PHHC) in pregnant rats was induced by chronic L-methionine loading, resulting in a significant increase in the L-homocysteine content both in the mothers' blood and blood and brain of fetuses. Significant decrease in the weight of the placenta, fetus, and fetal brain was detected by the morphometric studies on day 20 of pregnancy. PHHC also activated maternal immune system due to the increase in the content of proinflammatory interleukin-1β in the rat blood and fetal part of the placenta. PHHC elevated the levels of the brain-derived neurotrophic factor (BDNF, 29 kDa) and nerve growth factor (NGF, 31 kDa) precursors in the placenta and the content of the BDNF isoform (29 kDa) in the fetal brain. The content of neuregulin 1 (NRG1) decreased in the placenta and increased in the fetal brain on day 20 of embryonic development. An increase in the caspase-3 activity was detected in the brains of fetuses subjected to PHHC. It was suggested that changes in the processing of neurotrophins induced by PPHC, oxidative stress, and inflammatory processes initiated by it, as well as apoptosis, play an important role in the development of brain disorders in the offspring.
Collapse
Affiliation(s)
- A V Arutjunyan
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia.
| | - Yu P Milyutina
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - A D Shcherbitskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - G O Kerkeshko
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - I V Zalozniaia
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| | - A V Mikhel
- Ott Institute of Obstetrics, Gynecology, and Reproductology, St. Petersburg, 199034, Russia
| |
Collapse
|
10
|
Ahmed SF, Ali MM, Kheiri S, Elzaki SEG, Adam I. Association of methylenetetrahydrofolate reductase C677T and reduced-f carrier-1 G80A gene polymorphism with preeclampsia in Sudanese women. Hypertens Pregnancy 2020; 39:77-81. [DOI: 10.1080/10641955.2020.1725037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - Sumeya Kheiri
- Faculty of Medicine, Bahri University, Khartoum, Sudan
| | | | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine, Qassim University, Unaizah, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Gurbuz RH, Atilla P, Orgul G, Tanacan A, Dolgun A, Cakar AN, Beksac MS. Impaired Placentation and Early Pregnancy Loss in Patients with MTHFR Polymorphisms and Type-1 Diabetes Mellitus. Fetal Pediatr Pathol 2019; 38:376-386. [PMID: 30955395 DOI: 10.1080/15513815.2019.1600623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objective: To evaluate the impact of type-1 diabetes mellitus (DM) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms on impaired placentation leading to early pregnancy loss. Methods: Miscarriage materials were obtained from eight pregnant women with type-1 DM without MTHFR polymorphism, eight with MTHFR polymorphisms without type-1 DM, and eight controls with neither DM nor MTHFR polymorphisms. Insulin-like growth factor-1 (IGF-1), leukemia inhibitory factor (LIF), and Beclin-1 expression were assessed to evaluate placentation. Results: Cytoplasmic LIF, IGF-1, and Beclin-1 expression were decreased in the superficial and glandular epithelial cells of the decidua in both study groups. LIF expression was increased in interstitial trophoblasts in the MTHFR group. IGF-1 expression was decreased in the decidual cells and interstitial trophoblasts in both study groups, while the decrease in stromal cells was noted only in type-1 DM group. Beclin-1 expression was increased in interstitial and villous trophoblasts in both study groups. Conclusion: The expression of IGF-1, LIF, and Beclin-1 are altered in both the decidua and the trophoblasts in pregnancies of women with type-1 DM and MTHFR polymorphisms, compared to normal pregnancies undergoing (elective) terminations.
Collapse
Affiliation(s)
- Rumeysa Hekimoglu Gurbuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Pergin Atilla
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Gokcen Orgul
- Department of Obstetrics and Gynecology, Division of Perinatology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Atakan Tanacan
- Department of Obstetrics and Gynecology, Division of Perinatology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Anil Dolgun
- College of Science, Engineering and Health, Lecturer of Statistics, RMIT University , Melbourne , Australia
| | - Ayse Nur Cakar
- Department of Histogy and Embryology, TOBB University Faculty of Medicine , Ankara , Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Division of Perinatology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| |
Collapse
|
12
|
Jakubowski H. Homocysteine Modification in Protein Structure/Function and Human Disease. Physiol Rev 2019; 99:555-604. [PMID: 30427275 DOI: 10.1152/physrev.00003.2018] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies established that elevated homocysteine, an important intermediate in folate, vitamin B12, and one carbon metabolism, is associated with poor health, including heart and brain diseases. Earlier studies show that patients with severe hyperhomocysteinemia, first identified in the 1960s, exhibit neurological and cardiovascular abnormalities and premature death due to vascular complications. Although homocysteine is considered to be a nonprotein amino acid, studies over the past 2 decades have led to discoveries of protein-related homocysteine metabolism and mechanisms by which homocysteine can become a component of proteins. Homocysteine-containing proteins lose their biological function and acquire cytotoxic, proinflammatory, proatherothrombotic, and proneuropathic properties, which can account for the various disease phenotypes associated with hyperhomocysteinemia. This review describes mechanisms by which hyperhomocysteinemia affects cellular proteostasis, provides a comprehensive account of the biological chemistry of homocysteine-containing proteins, and discusses pathophysiological consequences and clinical implications of their formation.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health , Newark, New Jersey ; and Department of Biochemistry and Biotechnology, Poznań University of Life Sciences , Poznań , Poland
| |
Collapse
|
13
|
Serrano NC, Quintero-Lesmes DC, Becerra-Bayona S, Guio E, Beltran M, Paez MC, Ortiz R, Saldarriaga W, Diaz LA, Monterrosa Á, Miranda J, Mesa CM, Sanin JE, Monsalve G, Dudbridge F, Hingorani AD, Casas JP. Association of pre-eclampsia risk with maternal levels of folate, homocysteine and vitamin B12 in Colombia: A case-control study. PLoS One 2018; 13:e0208137. [PMID: 30521542 PMCID: PMC6283543 DOI: 10.1371/journal.pone.0208137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Maternal serum concentrations of folate, homocysteine, and vitamin B12 have been associated with pre-eclampsia. Nevertheless, reported studies involve limited number of cases to reliably assess the nature of these associations. Our aim was to examine the relation of these three biomarkers with pre-eclampsia risk in a large Colombian population. MATERIALS AND METHODS Design: A case-control study. Setting: Cases of pre-eclampsia and healthy pregnant controls were recruited at the time of delivery from eight different Colombian cities between 2000 and 2012. Population or Sample: 2978 cases and 4096 controls were studied. Maternal serum concentrations of folate, homocysteine, and vitamin B12 were determined in 1148 (43.6%) cases and 1300 (31.7%) controls. Also, self-reported folic acid supplementation was recorded for 2563 (84%) cases and 3155 (84%) controls. Analysis: Adjusted odds ratios (OR) for pre-eclampsia were estimated for one standard deviation (1SD) increase in log-transformed biomarkers. Furthermore, we conducted analyses to compare women that reported taking folic acid supplementation for different periods during pregnancy. Main Outcomes Measures: Odds ratio for pre-eclampsia. RESULTS After adjusting for potential confounders in logistic regression models, the OR for pre-eclampsia was 0.80 (95% CI: 0.72, 0.90) for 1SD increase in log-folate, 1.16 (95%CI: 1.05, 1.27) for 1SD increase in log-homocysteine, and 1.10 (95%CI: 0.99, 1.22) for 1SD increase in log-vitamin B12. No interactions among the biomarkers were identified. Women who self-reported consumption of folic acid (1 mg/day) throughout their pregnancy had an adjusted OR for pre-eclampsia of 0.86 (95%CI: 0.67, 1.09) compared to women that reported no consumption of folic acid at any point during pregnancy. CONCLUSIONS Maternal serum concentrations of folate were associated as a protective factor for pre-eclampsia while concentrations of homocysteine were associated as a risk factor. No association between maternal vitamin B12 concentrations and preeclampsia was found.
Collapse
Affiliation(s)
- Norma C. Serrano
- Fundación Cardiovascular de Colombia, Floridablanca, Colombia
- Hospital Internacional de Colombia, Piedecuesta, Colombia
- Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | | | | | - Elizabeth Guio
- Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Mónica Beltran
- Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Universidad Industrial de Santander, Bucaramanga, Colombia
| | - María C. Paez
- Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Ricardo Ortiz
- Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Wilmar Saldarriaga
- Departamento de Ginecología y Obstetricia, Departamento de Morfología, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Luis A. Diaz
- Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | | | | | - José E. Sanin
- Universidad Pontificia Bolivariana, Bucaramanga, Colombia
| | | | - Frank Dudbridge
- Department of Health Sciences, Centre for Medicine, University of Leicester, Leicester, United Kingdom
| | - Aroon D. Hingorani
- Farr Institute of Health Informatics, University College London, London, United Kingdom
| | - Juan P. Casas
- Farr Institute of Health Informatics, University College London, London, United Kingdom
| |
Collapse
|
14
|
Turgal M, Gumruk F, Karaagaoglu E, Beksac MS. Methylenetetrahydrofolate Reductase Polymorphisms and Pregnancy Outcome. Geburtshilfe Frauenheilkd 2018; 78:871-878. [PMID: 30258247 PMCID: PMC6138472 DOI: 10.1055/a-0664-8237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 01/18/2023] Open
Abstract
Introduction
Aim of the study was to evaluate the effect of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on pregnancy outcome.
Materials and Methods
A total of 617 pregnancies of women who were investigated for MTHFR C677T and A1298C polymorphisms prior to pregnancy were included in the study. Cases were classified into “homozygous polymorphisms” (Group I), “heterozygous polymorphisms” (Group II), and patients without polymorphisms who functioned as controls (Group III). Patients with polymorphisms were assigned to a specific protocol at least 3 months before becoming pregnant. Administration of low molecular weight heparin (LMWH) was started very early during pregnancy. The Beksac Obstetrics Index (BOI) was used to estimate the obstetric risk levels for the different groups.
Results
We found that the early pregnancy loss (EPL) rate increased as MTHFR polymorphism complexity increased and that the early EPL rate was significantly higher in patients with MTHFR C677T polymorphism compared to patients with MTHFR A1298C polymorphism (p = 0.039). There were significant differences between the previous pregnancies of the patients in the 3 study groups in terms of perinatal complications and EPLs (p = 0.003 and p = 0.019). The BOI decreased as the severity of polymorphisms increased. An association between MTHFR polymorphisms and congenital malformations and chromosomal abnormalities was observed. We could not demonstrate any statistically significant difference between study groups when the 3 groups were compared with regard to the pregnancy outcomes under specific management protocols.
Conclusion
MTHFR polymorphisms are potential risk factors for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Mert Turgal
- Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Fatma Gumruk
- Department of Pediatric Hematology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ergun Karaagaoglu
- Department of Biostatistic, Hacettepe University School of Medicine, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
15
|
Canever L, Alves CSV, Mastella G, Damázio L, Polla JV, Citadin S, De Luca LA, Barcellos AS, Garcez ML, Quevedo J, Budni J, Zugno AI. The Evaluation of Folic Acid-Deficient or Folic Acid-Supplemented Diet in the Gestational Phase of Female Rats and in Their Adult Offspring Subjected to an Animal Model of Schizophrenia. Mol Neurobiol 2017; 55:2301-2319. [PMID: 28342013 DOI: 10.1007/s12035-017-0493-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Abstract
Although folic acid (FA) supplementation is known to influence numerous physiological functions, especially during pregnancy, little is known about its direct effects on the mothers' health. However, this vitamin is essential for the health of the mother and for the normal growth and development of the fetus. Thus, the aim of this study was (1) to evaluate the cognitive effects and biochemical markers produced by the AIN-93 diet (control), the AIN-93 diet supplemented with different doses of FA (5, 10, and 50 mg/kg), and a FA-deficient diet during pregnancy and lactation in female mother rats (dams) and (2) to evaluate the effect of maternal diets on inflammatory parameters in the adult offspring which were subjected to an animal model of schizophrenia (SZ) induced by ketamine (Ket). Our study demonstrated through the Y-maze test that rats subjected to the FA-deficient diet showed significant deficits in spatial memory, while animals supplemented with FA (5 and 10 mg/kg) showed no deficit in spatial memory. Our results also suggest that the rats subjected to the FA-deficient diet had increased levels of carbonylated proteins in the frontal cortex and hippocampus and also increased plasma levels of homocysteine (Hcy). Folate was able to prevent cognitive impairments in the rats supplemented with FA (5 and 10 mg/kg), data which may be attributed to the antioxidant effect of the vitamin. Moreover, FA prevented protein damage and elevations in Hcy levels in the rats subjected to different doses of this vitamin (5, 10, and 50 mg/kg). We verified a significant increase of the anti-inflammatory cytokine (interleukin-4 (IL-4)) and a reduction in the plasma levels of proinflammatory cytokines (interleukin-6 (IL-6)) and TNF-α) in the dams that were subjected to the diets supplemented with FA (5, 10, and 50 mg/kg), showing the possible anti-inflammatory effects of FA during pregnancy and lactation. In general, we also found that in the adult offspring that were subjected to an animal model of SZ, FA had a protective effect in relation to the levels of IL-4, IL-6, and TNF-α, which indicates that the action of FA persisted in the adult offspring, since FA showed a lasting effect on the inflammatory response, which was similar in both the dams and their offspring. In conclusion, the importance of supplementation with FA during pregnancy and lactation should be emphasized, not only for the benefit of the offspring but also for the health of the mother. All this is due to the considerable protective effect of this vitamin against oxidative damage, cognitive impairment, hyperhomocysteinemia, immune function, and also its ability in preventing common processes in post-pregnancy stages, as well as in reducing the risks of neurodevelopmental disorders and enhancing fetal immune development.
Collapse
Affiliation(s)
- L Canever
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - C S V Alves
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - G Mastella
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - L Damázio
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - J V Polla
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - S Citadin
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - L A De Luca
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - A S Barcellos
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - M L Garcez
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - J Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - J Budni
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - A I Zugno
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
16
|
Linask KK, Han M, Bravo-Valenzuela NJM. Changes in vitelline and utero-placental hemodynamics: implications for cardiovascular development. Front Physiol 2014; 5:390. [PMID: 25426076 PMCID: PMC4227466 DOI: 10.3389/fphys.2014.00390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022] Open
Abstract
Analyses of cardiovascular development have shown an important interplay between heart function, blood flow, and morphogenesis of heart structure during the formation of a four-chambered heart. It is known that changes in vitelline and placental blood flow seemingly contribute substantially to early cardiac hemodynamics. This suggests that in order to understand mammalian cardiac structure-hemodynamic functional relationships, blood flow from the extra-embryonic circulation needs to be taken into account and its possible impact on cardiogenesis defined. Previously published Doppler ultrasound analyses and data of utero-placental blood flow from human studies and those using the mouse model are compared to changes observed with environmental exposures that lead to cardiovascular anomalies. Use of current concepts and models related to mechanotransduction of blood flow and fluid forces may help in the future to better define the characteristics of normal and abnormal utero-placental blood flow and the changes in the biophysical parameters that may contribute to congenital heart defects. Evidence from multiple studies is discussed to provide a framework for future modeling of the impact of experimental changes in blood flow on the mouse heart during normal and abnormal cardiogenesis.
Collapse
Affiliation(s)
- Kersti K Linask
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida Health St. Petersburg, FL, USA
| | - Mingda Han
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida Health St. Petersburg, FL, USA
| | | |
Collapse
|
17
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gzyl J, Chmielowska-Bąk J. Homocysteine over-accumulation as the effect of potato leaves exposure to biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:177-84. [PMID: 23266362 DOI: 10.1016/j.plaphy.2012.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/28/2012] [Indexed: 05/03/2023]
Abstract
Homocysteine (Hcy) is a naturally occurring intermediate metabolite formed during methionine metabolism. It has been well documented that its excess can be extremely toxic to mammalian, yeast and bacterial cells. In spite of the metabolic value of Hcy known for decades, the role of this amino acid in the plant response to stress has not been recognized yet. In the presented study, using potato plant (Solanum tuberosum L.) and Phytophthora infestans as a model system, the presence and tissue localization of Hcy in leaves was examined by an immunohistochemical method. The over-production of Hcy was more evidenced in the susceptible than in the resistant genotype of potato starting from 48 hpi. Furthermore, the elevated level of Hcy was correlated in time with the up-regulation of genes engaged in its biosynthesis, e.g. cystathionine β-lyase and S-adenosyl-l-homocysteine hydrolase. The pharmacological approach with exogenous Hcy resulted in significant rise in lipid peroxidation and more potent late blight disease development in leaves of susceptible potato as well. Finally, it has been found that key defense enzymes, i.e. phenylalanine ammonia lyase and β-1,3-glucanase were up-regulated early in the resistant potato genotype, starting from 1st hpi. In turn, in the susceptible potato the time-lag in expression of these enzymes tuned with excess production of Hcy might facilitate leaf tissue colonization by pathogen. Based on obtained results it should be stated that Hcy over-accumulation is engaged in pathophysiological mechanism leading to the abolishment of the resistance and might be an informative disease hallmark both in plant and in animal system.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
18
|
Jakubowski H. The role of paraoxonase 1 in the detoxification of homocysteine thiolactone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 660:113-27. [PMID: 20221875 DOI: 10.1007/978-1-60761-350-3_11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The thioester homocysteine (Hcy)-thiolactone, product of an error-editing reaction in protein biosynthesis, forms when Hcy is mistakenly selected by methionyl-tRNA synthetase. Accumulating evidence suggests that Hcy-thiolactone plays an important role in atherothrombosis. The thioester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues, which impairs or alters protein function and has pathophysiological consequences including activation of an autoimmune response and enhanced thrombosis. Mammalian organisms, including human, have evolved the ability to eliminate Hcy-thiolactone. One such mechanism involves paraoxonase 1 (PON1), which has the ability to hydrolyze Hcy-thiolactone. This article outlines Hcy-thiolactone pathobiology and reviews evidence documenting the role of PON1 in minimizing Hcy-thiolactone and N-Hcy-protein accumulation.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland.
| |
Collapse
|
19
|
Abstract
Adequate prenatal nutrition is essential for optimal brain development. There is a growing body of evidence from epidemiology linking exposure to nutritional deprivation and increased risk of schizophrenia. Based on studies from the Netherlands and China, those exposed to macronutrient deficiencies during famine have an increased risk of schizophrenia. With respect to micronutrients, we focus on 3 candidates where there is biological plausibility for a role in this disorder and at least 1 study of an association with schizophrenia. These nutrients include vitamin D, folic acid, and iron. While the current evidence is incomplete, we discuss the potential implications of these findings for the prevention of schizophrenia. We argue that schizophrenia can draw inspiration from public health interventions related to prenatal nutrition and other outcomes and speculate on relevant factors that bear on the nature, risks, impact, and logistics of various nutritional strategies that may be employed to prevent this disorder.
Collapse
Affiliation(s)
- John McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health,Wacol, Australia.
| | | | | |
Collapse
|
20
|
Abstract
The aim of this review is to evaluate the evidence for and against fasting plasma total homocysteine (tHcy) as a biomarker/risk factor of impaired reproductive function before and during pregnancy. Apart from nutritional and lifestyle factors, tHcy is also influenced by physiological factors specific to pregnancy such as hemodilution, increased glomerular filtration rate, and endocrinological changes. These lead to a considerable reduction under normal circumstances in tHcy by midpregnancy. Stimulating excess endogenous homocysteine production before and during pregnancy in animal experiments and adding exogenous homocysteine to cell cultures result in the impairment of reproductive and developmental processes from preconception throughout pregnancy and during subsequent development of the offspring. Different studies have confirmed that elevated tHcy is a risk factor for subfertility, congenital developmental defects, preeclampsia, and intrauterine growth retardation. There is conflicting evidence that elevated tHcy is a risk factor for miscarriage, gestational diabetes, premature rupture of the membranes, placental abruption, and offspring with Down syndrome. Prospective, sufficiently powered, studies from preconception/early pregnancy are required to determine whether tHcy is a risk factor for these pregnancy complications.
Collapse
|
21
|
Chen B, Longtine MS, Sadovsky Y, Nelson DM. Hypoxia downregulates p53 but induces apoptosis and enhances expression of BAD in cultures of human syncytiotrophoblasts. Am J Physiol Cell Physiol 2010; 299:C968-76. [PMID: 20810912 DOI: 10.1152/ajpcell.00154.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hypoxia is commonly assigned a role in the placental dysfunction characteristic of preeclampsia and intrauterine growth restriction. We previously showed that hypoxia upregulates p53 and enhances apoptosis in primary cultures of human cytotrophoblasts. Here we tested the hypothesis that hypoxia also induces apoptosis in syncytiotrophoblasts by upregulation of p53. Primary cultures of human cytotrophoblasts that had differentiated into syncytiotrophoblasts by 52 h were exposed for ≤24 h to 20% or <1% oxygen in the presence or absence of staurosporine or the p53 modulators nutlin-3, pifithrin-α, and pifithrin-μ. Proteins were detected by Western blot analysis or immunofluorescence. Compared with 20% oxygen, exposure of syncytiotrophoblasts to <1% oxygen upregulated hypoxia-inducible factor (HIF)-1α and rapidly downregulated p53. Activity of p53 in hypoxic syncytiotrophoblasts was reduced by the higher expression of the negative p53 regulator MDMX and by the reduction of phosphorylation of p53 at Ser(392), which reduces p53 activity. Conversely, staurosporine, a kinase inhibitor, and nutlin-3, a drug that enhances p53 expression, both raised p53 levels and increased the rate of apoptosis in syncytiotrophoblasts compared with vehicle controls. Immunofluorescence staining showed p53 immunolocalized to both cytoplasm and nuclei of nutlin-3-exposed syncytiotrophoblasts. The hypoxia-induced apoptosis in syncytiotrophoblasts correlated with enhanced expression of the proapoptotic BAD and a reduced level of antiapoptotic BAD phosphorylated on Ser(112). We surmise that cell death induced by extreme hypoxia in syncytiotrophoblasts follows a non-p53-dependent pathway, unlike that of a nonhypoxic stimulus and unlike hypoxic cytotrophoblasts. We speculate that downregulation of p53 activity in response to hypoxia reduces or eliminates the apoptosis transduced by the p53 pathway in syncytiotrophoblasts, thereby limiting cell death and maintaining the integrity of this critical villous component.
Collapse
Affiliation(s)
- Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Total fasting plasma homocysteine (tHcy) is significantly reduced during early-mid normal pregnancy. Elevated tHcy during or outside of pregnancy has been associated with adverse pregnancy outcomes, affecting either the fetus or the evolution of the pregnancy. Examples of direct adverse effects on the fetus are neural tube defects, Down's syndrome, congenital heart defects and intrauterine growth retardation. Both fetal and maternal wellbeing can be affected by other adverse outcomes reported to be associated with elevated tHcy, such as recurrent spontaneous abortion, pre-eclampsia or placental vasculopathy. To date, endothelial activation of the placental vascularization system, apoptosis, toxicity and stimulation of uterine contractions have been proposed as possible modes of adverse action of homocysteine. The strength of the clinical evidence for a pathological role of elevated homocysteine in the evolution of pregnancy is examined in this review.
Collapse
Affiliation(s)
- Michelle M Murphy
- Universitat Rovira i Virgili, Unitat de Medicina Preventiva i Salut Pública, Facultat de Medicina i Ciències de la Salut, 43201 Reus, Spain.
| |
Collapse
|
23
|
Laanpere M, Altmäe S, Stavreus-Evers A, Nilsson TK, Yngve A, Salumets A. Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr Rev 2010; 68:99-113. [PMID: 20137055 DOI: 10.1111/j.1753-4887.2009.00266.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This review summarizes current knowledge of the effect of folate-mediated one-carbon metabolism and related genetic variants on female fertility and pregnancy viability. Insufficient folate status disrupts DNA methylation and integrity and increases blood homocysteine levels. Elevated levels of follicular fluid homocysteine correlate with oocyte immaturity and poor early embryo quality, while methylenetetrahydrofolate reductase (MTHFR) gene variants are associated with lower ovarian reserves, diminished response to follicular stimulation, and reduced chance of live birth after in vitro fertilization. Embryos carrying multiple MTHFR variants appear to have a selective disadvantage; however, the heterozygous MTHFR 677CT genotype in the mother and fetus provides the greatest chance for a viable pregnancy and live birth, possibly due to a favorable balance in folate cofactor distribution between methyl donor and nucleotide synthesis. The results of previous studies clearly emphasize that imbalances in folate metabolism and related gene variants may impair female fecundity as well as compromise implantation and the chance of a live birth.
Collapse
Affiliation(s)
- Margit Laanpere
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
24
|
Han M, Serrano MC, Lastra-Vicente R, Brinez P, Acharya G, Huhta JC, Chen R, Linask KK. Folate rescues lithium-, homocysteine- and Wnt3A-induced vertebrate cardiac anomalies. Dis Model Mech 2009; 2:467-78. [PMID: 19638421 PMCID: PMC2737056 DOI: 10.1242/dmm.001438] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 04/03/2009] [Indexed: 12/20/2022] Open
Abstract
Elevated plasma homocysteine (HCy), which results from folate (folic acid, FA) deficiency, and the mood-stabilizing drug lithium (Li) are both linked to the induction of human congenital heart and neural tube defects. We demonstrated previously that acute administration of Li to pregnant mice on embryonic day (E)6.75 induced cardiac valve defects by potentiating Wnt-beta-catenin signaling. We hypothesized that HCy may similarly induce cardiac defects during gastrulation by targeting the Wnt-beta-catenin pathway. Because dietary FA supplementation protects from neural tube defects, we sought to determine whether FA also protects the embryonic heart from Li- or HCy-induced birth defects and whether the protection occurs by impacting Wnt signaling. Maternal elevation of HCy or Li on E6.75 induced defective heart and placental function on E15.5, as identified non-invasively using echocardiography. This functional analysis of HCy-exposed mouse hearts revealed defects in tricuspid and semilunar valves, together with altered myocardial thickness. A smaller embryo and placental size was observed in the treated groups. FA supplementation ameliorates the observed developmental errors in the Li- or HCy-exposed mouse embryos and normalized heart function. Molecular analysis of gene expression within the avian cardiogenic crescent determined that Li, HCy or Wnt3A suppress Wnt-modulated Hex (also known as Hhex) and Islet-1 (also known as Isl1) expression, and that FA protects from the gene misexpression that is induced by all three factors. Furthermore, myoinositol with FA synergistically enhances the protective effect. Although the specific molecular epigenetic control mechanisms remain to be defined, it appears that Li or HCy induction and FA protection of cardiac defects involve intimate control of the canonical Wnt pathway at a crucial time preceding, and during, early heart organogenesis.
Collapse
MESH Headings
- Animals
- Avian Proteins/genetics
- Avian Proteins/metabolism
- Chickens
- Dietary Supplements
- Disease Models, Animal
- Embryo, Mammalian/abnormalities
- Embryo, Mammalian/diagnostic imaging
- Embryo, Mammalian/drug effects
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/drug effects
- Folic Acid/pharmacology
- Gastrulation/drug effects
- Gene Expression Regulation, Developmental/drug effects
- Heart Defects, Congenital/chemically induced
- Heart Defects, Congenital/diagnostic imaging
- Heart Defects, Congenital/physiopathology
- Heart Defects, Congenital/prevention & control
- Heart Function Tests/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Homocysteine
- Inositol/pharmacology
- LIM-Homeodomain Proteins
- Lithium
- Mice
- Myocardium/metabolism
- Myocardium/pathology
- Transcription Factors
- Ultrasonography
- Wnt Proteins/metabolism
- Wnt3 Protein
- Wnt3A Protein
Collapse
Affiliation(s)
- Mingda Han
- Division of Pediatric Cardiology, Department of Pediatrics, USF/ACH Children’s Research Institute, St Petersburg, FL 33701, USA
| | - Maria C. Serrano
- Division of Pediatric Cardiology, Department of Pediatrics, USF/ACH Children’s Research Institute, St Petersburg, FL 33701, USA
| | - Rosana Lastra-Vicente
- Division of Pediatric Cardiology, Department of Pediatrics, USF/ACH Children’s Research Institute, St Petersburg, FL 33701, USA
| | - Pilar Brinez
- Division of Pediatric Cardiology, Department of Pediatrics, USF/ACH Children’s Research Institute, St Petersburg, FL 33701, USA
| | - Ganesh Acharya
- University Hospital of Northern Norway and University of Tromso, Department of Obstetrics and Gynecology, N9308 Tromso, Norway
| | - James C. Huhta
- Division of Pediatric Cardiology, Department of Pediatrics, USF/ACH Children’s Research Institute, St Petersburg, FL 33701, USA
| | - Ren Chen
- USF College of Medicine, Biostatistics Core, Tampa, FL 33612, USA
| | - Kersti K. Linask
- Division of Pediatric Cardiology, Department of Pediatrics, USF/ACH Children’s Research Institute, St Petersburg, FL 33701, USA
| |
Collapse
|
25
|
Humphrey RG, Sonnenberg-Hirche C, Smith SD, Hu C, Barton A, Sadovsky Y, Nelson DM. Epidermal growth factor abrogates hypoxia-induced apoptosis in cultured human trophoblasts through phosphorylation of BAD Serine 112. Endocrinology 2008; 149:2131-7. [PMID: 18276761 PMCID: PMC2329276 DOI: 10.1210/en.2007-1253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We tested the hypothesis that epidermal growth factor (EGF) limits hypoxia-induced apoptosis in cultured human trophoblasts by phosphorylation of the proapoptotic protein Bcl-2-associated death promoter (BAD). Cytotrophoblasts were isolated from placentas of uncomplicated pregnancies at 38-40 wk gestation. Primary trophoblasts or transfected JEG3 trophoblast cells were cultured in less than 1 or 20% oxygen in the presence or absence of EGF and signaling pathway inhibitors. BAD, green fluorescent protein (GFP)-BAD, 14-3-3, Bcl-X(L), and neoepitopes formed during apoptotic cleavage of cytokeratin 18 intermediate filaments were quantified using immunoblotting. Cultures immunostained by fluorescent antibodies were analyzed by confocal microscopy for BAD and GFP. Fluorescence resonance energy transfer was used to detect molecular interaction between endogenous BAD and GFP-BAD. We found EGF increased the phosphorylation of BADser112 under standard culture conditions. Whereas hypoxia enhanced apoptosis and increased phosphorylation of both BADser136 and BADser155, hypoxia diminished phosphorylation of BADser112, and this effect was reversible by EGF. Transfected GFP-BAD, which directly interacted with endogenous BAD by colocalization and fluorescence resonance energy transfer, enhanced hypoxia-induced apoptosis in JEG3 cells. EGF reduced apoptosis in hypoxic JEG3 cells that overexpressed GFP-BAD but not in cells overexpressing GFP-BAD that harbored a serine-to-alanine mutation at the 112 site. Coimmunoprecipitation studies showed that EGF reduced the proapoptotic interaction of BAD with Bcl-X(L). The effect of EGF on phosphorylation of BADser112 was dependent on the action of p38 MAPK. We conclude that EGF signals via p38 MAPK to increase phosphorylation of BADser112 and thereby limit trophoblast apoptosis.
Collapse
Affiliation(s)
- Rachel G Humphrey
- Department of Obstetrics-Gynecology, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Jakubowski H. The molecular basis of homocysteine thiolactone-mediated vascular disease. Clin Chem Lab Med 2008; 45:1704-16. [PMID: 17937605 DOI: 10.1515/cclm.2007.338] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that a metabolite of homocysteine (Hcy), the thioester Hcy-thiolactone, plays an important role in atherogenesis and thrombosis. Hcy-thiolactone levels are elevated in hyperhomocysteinemic humans and mice. The thioester chemistry of Hcy-thiolactone underlies its ability to form isopeptide bonds with protein lysine residues, which impairs or alters the protein's function. Protein targets for the modification by Hcy-thiolactone in human blood include fibrinogen, low-density lipoprotein, and high-density lipoprotein. Protein N-homocysteinylation leads to pathophysiological responses, including increased susceptibility to thrombogenesis caused by N-Hcy-fibrinogen, and an autoimmune response elicited by N-Hcy-proteins. Chronic activation of these responses in hyperhomocysteinemia over many years could lead to vascular disease. This article reviews recent evidence supporting the hypothesis that Hcy-thiolactone contributes to pathophysiological effects of Hcy on the vascular system.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101-1709, USA.
| |
Collapse
|
27
|
Perła-Kaján J, Twardowski T, Jakubowski H. Mechanisms of homocysteine toxicity in humans. Amino Acids 2007; 32:561-72. [PMID: 17285228 DOI: 10.1007/s00726-006-0432-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/30/2006] [Indexed: 12/01/2022]
Abstract
Homocysteine, a non-protein amino acid, is an important risk factor for ischemic heart disease and stroke in humans. This review provides an overview of homocysteine influence on endothelium function as well as on protein metabolism with a special respect to posttranslational modification of protein with homocysteine thiolactone. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer. Incorporation of Hcy into protein via disulfide or amide linkages (S-homocysteinylation or N-homocysteinylation) affects protein structure and function. Protein N-homocysteinylation causes cellular toxicity and elicits autoimmune response, which may contribute to atherogenesis.
Collapse
Affiliation(s)
- J Perła-Kaján
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
| | | | | |
Collapse
|
28
|
Biondi C, Pavan B, Dalpiaz A, Medici S, Lunghi L, Vesce F. Expression and characterization of vitamin C transporter in the human trophoblast cell line HTR-8/SVneo: effect of steroids, flavonoids and NSAIDs. ACTA ACUST UNITED AC 2006; 13:77-83. [PMID: 17092984 DOI: 10.1093/molehr/gal092] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vitamin C plays an important role in embryogenesis and fetal growth as well as in the progression of pregnancy and delivery. Therefore, it is important to understand the mechanism that mediates its transport to the fetus as well as the possible influences by endogenous and exogenous substances on its placental uptake. The aim of this study was to investigate placental sodium-dependent vitamin C transporters (SVCT) 1 and 2. By means of RT-PCR, we found that SVCT2, but not SVCT1, mRNA is expressed in human trophoblast cell line HTR-8/SVneo. Our method was able to confirm SVCT2 mRNA expression in human first-trimester chorionic villi but not in term placental tissue. Cell line kinetic studies of [(14)C] ascorbic acid (AA) uptake indicated a one-site model and a saturable process. Fetal bovine serum (FBS) and epidermal growth factor (EGF) do not influence the transport properties, although they significantly increase the expression of SVCT2. Steroid hormones (17beta-estradiol, progesterone and cortisol), flavonoids (genistein and quercetin) and non-steroidal anti-inflammatory drugs (NSAIDs) (indomethacin and diclofenac) inhibit [(14)C]AA uptake in a dose-dependent and non-competitive manner. On the contrary, the process is not influenced by aspirin. Our study suggests the use of HTR-8/SVneo cells as a suitable model for trophoblast vitamin C transport investigation.
Collapse
Affiliation(s)
- C Biondi
- Department of Biology, Section of General Physiology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Hu C, Smith SD, Pang L, Sadovsky Y, Nelson DM. Enhanced Basal Apoptosis in Cultured Term Human Cytotrophoblasts is Associated with a Higher Expression and Physical Interaction of p53 and Bak. Placenta 2006; 27:978-83. [PMID: 16376985 DOI: 10.1016/j.placenta.2005.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 10/19/2005] [Accepted: 11/08/2005] [Indexed: 11/16/2022]
Abstract
We tested the hypothesis that the expression levels of p53 and the pro-apoptotic mediators from the Bcl-2 family are higher in cytotrophoblasts, when compared to cultures with abundant syncytiotrophoblasts. Cytotrophoblasts isolated from normal term human placentas were cultured in Dulbecco's Modified Eagle medium (DMEM) for 24 h, when the cytotrophoblast phenotype predominates, in DMEM for 72 h, when the syncytiotrophoblast phenotype predominates, or in Ham's-Waymouth medium or DMEM with 1.5% dimethylsulfoxide, each of which maintains the cytotrophoblast phenotype through 72 h of culture. Apoptosis was assessed by detection of cleavage products of poly-ADP-ribose polymerase, by expression of cleaved cytokeratin 18 intermediate filaments, and by assessment of caspase-3 activity. Independent of time in culture, cytotrophoblasts showed higher levels of apoptosis compared to syncytiotrophoblasts. Cytotrophoblasts also expressed a 2-fold higher level of p53, a 2-fold lower level of 60 kDa Mdm-2 protein, a 2-fold higher level of Bak, but no differences in the expression of 90 kDa Mdm-2, Bcl-2, Bcl-X(L), Mcl-1, Bax, Bad, and Bad phosphorylated at the serine(112), serine(136), or serine(155) sites, compared to the syncytiotrophoblasts. Using co-immunoprecipitation, we demonstrated a greater degree of Bak-p53 interaction in cytotrophoblasts than in syncytiotrophoblasts. We also detected Bak-Mcl-1 interaction that was no different between the two phenotypes. Among the proteins studied, enhanced p53 activity, differential Bak expression, and Bak-p53 interactions may contribute to the higher level of constitutive apoptosis in cultures of cytotrophoblasts compared to syncytiotrophoblasts.
Collapse
Affiliation(s)
- C Hu
- Department of Obstetrics and Gynecology, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Elevated level of the nonprotein amino acid homocysteine (Hcy) is a risk factor for cardiovascular diseases, neurodegenerative diseases, and neural tube defects. However, it is not clear why excess Hcy is harmful. To explain Hcy toxicity, the "Hcy-thiolactone hypothesis" has been proposed. According to this hypothesis, metabolic conversion of Hcy to a chemically reactive metabolite, Hcy-thiolactone, catalyzed by methionyl-tRNA synthetase is the first step in a pathway that contributes to Hcy toxicity in humans. Plasma Hcy-thiolactone levels are elevated in human subjects with hyperhomocysteinemia caused by mutations in CBS or MTHFR genes. Plasma and urinary Hcy-thiolactone levels are also elevated in mice fed a high-methionine diet. Hcy-thiolactone can be detrimental because of its intrinsic ability to form N-Hcy-protein adducts, in which a carboxyl group of Hcy is N-linked to epsilon-amino group of a protein lysine residue. This article reviews recent studies of Hcy-thiolactone and N-Hcy-protein in the human body, including their roles in autoimmune response, cellular toxicity, and atherosclerosis. Potential utility of Hcy-thiolactone, N-Hcy-protein, or anti-N-Hcy-protein autoantibodies as markers of Hcy excess is discussed.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology & Molecular Genetics, UMDNJ-New Jersey Medical School, International Center for Public Health, Newark, NJ 07101, USA.
| |
Collapse
|
31
|
Brown AS, Susser ES. Homocysteine and schizophrenia: from prenatal to adult life. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1175-80. [PMID: 16143442 DOI: 10.1016/j.pnpbp.2005.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2005] [Indexed: 11/18/2022]
Abstract
Homocysteine is becoming increasingly recognized as an important substance in the pathogenesis and pathophysiology of schizophrenia. In this review, we first present background information supporting a role for homocysteine in schizophrenia. We then discuss our work on the role of hyperhomocystinemia during adulthood and risk of schizophrenia, and present preliminary evidence on a potential relationship between prenatal homocysteine and schizophrenia. Finally, we discuss the implications of these findings for future work on nutritional etiologies of schizophrenia.
Collapse
Affiliation(s)
- Alan S Brown
- College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA.
| | | |
Collapse
|
32
|
Humphrey RG, Smith SD, Pang L, Sadovsky Y, Nelson DM. Fibrin Enhances Differentiation, but not Apoptosis, and Limits Hypoxic Injury of Cultured Term Human Trophoblasts. Placenta 2005; 26:491-7. [PMID: 15950063 DOI: 10.1016/j.placenta.2004.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/27/2004] [Accepted: 08/30/2004] [Indexed: 11/21/2022]
Abstract
We hypothesized that fibrin enhances apoptosis and modulates differentiation of trophoblast in vitro. Cytotrophoblasts isolated from normal term human placentas were cultured < or =72 h in DMEM-10%-FBS on a fibrin matrix in standard or hypoxic conditions. Trophoblasts were cultured on plastic (control), type I collagen (matrix control), or dishes with fibrinogen, fibrin degradation products (FDP), thrombin, plasma fibronectin or cellular fibronectin. Apoptosis was determined by western analysis of the cleavage products of poly-ADP-ribose polymerase and cytokeratin 18 and caspase 3 activity. Cell cycle regulation was quantified by expression of proliferating cell nuclear antigen (PCNA) and p27 protein. Differentiation was determined by media level of hCG and hPL. Compared to the two controls, fibrin matrix had no effect on trophoblast apoptosis or total cell death in standard conditions. Neither fibrin nor collagen altered expression of PCNA or p27. In contrast, fibrin significantly increased the secretion of both hCG and hPL. Fibrin, but not FDP, thrombin or fibronectins, promoted hormonal differentiation. Fibrin limited the impact of a < or =8h of hypoxia on trophoblast hormone release but did not avert the effects of 24h of low oxygen and did not alter apoptosis in hypoxic trophoblast. We conclude that fibrin provides an environment conducive for trophoblast re-epithelialization of the surface of villi, where injury is marked by fibrin deposition.
Collapse
Affiliation(s)
- R G Humphrey
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|