1
|
Wang Y, Singh K, Lu C, Suntharalingam K. Anti-Cancer Stem Cell Properties of Square Planar Copper(II) Complexes with Vanillin Schiff Base Ligands. Molecules 2025; 30:1636. [PMID: 40286223 PMCID: PMC11990672 DOI: 10.3390/molecules30071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast cancer stem cells (CSCs). Redox-modulating metal complexes have been used to perturb the redox balance in breast CSCs and effect cell death. Here, we sought to expand this promising class of anti-breast CSC agents. Specifically, we report the synthesis, and anti-breast CSC properties of a series of copper(II) complexes bearing regioisomeric vanillin Schiff base ligands (1-4). X-ray crystallography studies show that the copper(II) complexes 1-4 adopt square planar geometries with the copper(II) centre coordinated to two vanillin Schiff base ligands. The most effective copper(II) complex within the series 4 displays low micromolar potency towards breast CSCs, up to 4.6-fold higher than salinomycin and cisplatin. Mechanistic studies indicate that copper(II) complex 4 elevates reactive oxygen species levels in breast CSCs, leading to activation of the JNK/p38 pathway and caspase-dependent apoptosis. Overall, this work expands the library of anti-breast CSC copper(II) complexes and provides insight into their mode of action.
Collapse
Affiliation(s)
- Yihan Wang
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK; (Y.W.); (K.S.)
| | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK; (Y.W.); (K.S.)
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | | |
Collapse
|
2
|
Zhang C, Xu S, Yin C, Hu S, Liu P. The role of the mTOR pathway in breast cancer stem cells (BCSCs): mechanisms and therapeutic potentials. Stem Cell Res Ther 2025; 16:156. [PMID: 40158191 PMCID: PMC11954216 DOI: 10.1186/s13287-025-04218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/11/2025] [Indexed: 04/01/2025] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer globally, exerting a profound impact on women's health and healthcare systems. Central to its pathogenesis and therapeutic resistance are breast cancer stem cells (BCSCs), which possess unique properties such as self-renewal, differentiation, and resistance to conventional therapies, contributing to tumor initiation, metastasis, and recurrence. This comprehensive review elucidates the pivotal role of the mechanistic target of rapamycin (mTOR) pathway in regulating BCSCs and its implications for breast cancer progression and treatment resistance. We explore the cellular mechanisms by which mTOR influences metastasis, metabolism, autophagy, and ferroptosis in BCSCs, highlighting its contribution to epithelial-to-mesenchymal transition (EMT), metabolic reprogramming, and survival under therapeutic stress. On a molecular level, mTOR interacts with key signaling pathways including PI3K/Akt, Notch, IGF-1R, AMPK, and TGF-β, as well as regulatory proteins and non-coding RNAs, orchestrating a complex network that sustains BCSC properties and mediates chemoresistance and radioresistance. The review further examines various therapeutic strategies targeting the mTOR pathway in BCSCs, encompassing selective PI3K/Akt/mTOR inhibitors, monoclonal antibodies, natural products, and innovative approaches such as nanoparticle-mediated drug delivery. Clinical trials investigating mTOR inhibitors like sirolimus and combination therapies with agents such as everolimus and trastuzumab are discussed, underscoring their potential in eradicating BCSCs and improving patient outcomes. Additionally, natural compounds and repurposed drugs offer promising adjunctive therapies by modulating mTOR activity and targeting BCSC-specific vulnerabilities. In conclusion, targeting the mTOR pathway presents a viable and promising avenue for enhancing breast cancer treatment efficacy by effectively eliminating BCSCs, reducing tumor recurrence, and improving overall patient survival. Continued research and clinical validation of mTOR-targeted therapies are essential to translate these insights into effective clinical interventions, ultimately advancing personalized cancer management and therapeutic outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shu Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Yang L, Yi Y, Mei Z, Huang D, Tang S, Hu L, Liu L. Circular RNAs in cancer stem cells: Insights into their roles and mechanisms (Review). Int J Mol Med 2025; 55:50. [PMID: 39930823 PMCID: PMC11781527 DOI: 10.3892/ijmm.2025.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Cancer stem cells (CSCs) represent a small, yet pivotal subpopulation of tumor cells that play significant roles in tumor initiation, progression and therapeutic resistance. Circular RNAs (circRNAs) are a distinct class of RNAs characterized by their closed‑loop structures, lacking 5' to 3'ends. There is growing evidence that circRNAs are integral to the development and regulation of CSCs. Aberrant expression of circRNAs in CSCs can contribute to oncogenic properties and drug resistance. Specifically, oncogenic circRNAs modulate CSC behavior via key signaling pathways, thereby promoting CSC self‑renewal and maintenance, as well as tumor progression. This review summarizes the latest research on the functional roles and regulatory mechanisms of circRNAs in CSC behavior and discusses potential applications and challenges of targeting circRNAs in CSCs. Understanding the intricate interactions between circRNAs and CSCs may lead to novel therapeutic strategies that effectively combat treatment resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Lunyu Yang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Yuling Yi
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Zhu Mei
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Dongmei Huang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Sitian Tang
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Liyi Hu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| | - Ling Liu
- Department of Medical Laboratory, Chongqing Liangjiang New Area People's Hospital, Chongqing 401121, P.R. China
| |
Collapse
|
4
|
Ko SY, Park S, Choi YH. Protocatechualdehyde Induced Breast Cancer Stem Cell Death via the Akt/Sox2 Signaling Pathway. Int J Mol Sci 2025; 26:1811. [PMID: 40076435 PMCID: PMC11899452 DOI: 10.3390/ijms26051811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer (BC) is most frequently recognized in women and characterized by histological and molecular heterogeneity. Among the various subtypes, triple-negative BC remains the most challenging disease owing to the lack of effective molecular targets and the high frequency of breast cancer stem cells (BCSCs), which account for both recurrence and resistance to conventional treatments. Despite the availability of hormonal therapies and targeted treatments, patients still face early and late relapses, necessitating new cytotoxic and selective treatment strategies. Our study focuses on investigating the effects of protocatechualdehyde (PCA), a potent bioactive compound derived from Artemisia princeps, on CSCs in BC cells. PCA inhibited BC growth and mammosphere formation as the concentration increased. This agent decreased the fraction of the CD44+/CD24- population, the aldehyde dehydrogenase 1A-expressing population, and the protein level of Sox2 in breast CSCs by downregulating Akt and pAkt. Moreover, PCA treatment reduced the tumor volume and weight in 4T1-challenged BALB/c mice. Collectively, our findings support the anti-tumor effect of Akt/Sox2-targeting PCA, suggesting a novel utilization of PCA in BC therapy.
Collapse
Affiliation(s)
- Seung-Yeon Ko
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (S.-Y.K.); (S.P.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Seonghee Park
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (S.-Y.K.); (S.P.)
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (S.-Y.K.); (S.P.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
5
|
Singh T, Rastogi M, Thakur K. Network pharmacology and in silico approach to study the mechanism of quercetin against breast cancer. In Silico Pharmacol 2025; 13:22. [PMID: 39925462 PMCID: PMC11802979 DOI: 10.1007/s40203-025-00306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is a significant health concern among females with an estimated 2.3 million cases reported worldwide in 2022. Traditional treatment methods have now developed resistance and various adverse effects, highlighting an urgent need for attention. Therefore, it is advisable to substitute these conventional therapies with innovative medications. Quercetin is a flavonoid, commonly found in various vegetables and fruits and have been shown to possess anti-cancer properties. Network pharmacology is a comprehensive approach that has significantly assisted in investigating the potential of quercetin as a therapeutic option for breast cancer. The first step includes target fishing for quercetin-targeted genes in breast cancer through various online available databases. All intersecting genes were analysed for the phenotypic- genotypic correlation via online VarElect analysis tool. Using the result from the result the GO enrichment and pathway enrichment analysis was done on 52 common genes; followed by PPI network construction and based on topological parameters top 8 genes were filtered. Based on theVenny2.1 and then GEPIA and HPA analysis the key target were identifies as ABCC1, ABCC4, AKT1, ABCB1, CYP1B1, CYP19A1, ABCB4 and ABCG2. Further, Molecular docking was done to investigate the possible interaction of the identified gene with quercetin. Our finding shows quercetin is the potential natural drug that can treat breast cancer effectively. Quercetin interacts with ABCC1, ABCC4, AKT1, ABCB1, CYP1B1, CYP19A1, ABCB4, and ABCG2 at cellular as well as molecular level. The ADMET analysis suggests the bioavaibility of quercetin is around 0.55. Suggesting that quercetin satisfies drug-likeness rules but may face challenges like low bioavailability, which can be enhanced through structural modifications or formulations (e.g., nanoparticles). The molecular docking result assures the interaction of quercetin with the ABCC1, ABCC4, AKT1, ABCB1, CYP1B1, CYP19A1, ABCB4, and ABCG2 with the binding affinity of - 7.2, - 10.1, - 10.4, - 8.0, - 8.2, - 8.2, - 9.0 and - 8.9 respectively. These results suggest quercetin has a stable interaction with the ABCC4 gene. Considering this interaction the quercetin molecules can rescue the cellular condition by inducing apoptosis, inhibiting proliferation, and suppressing metastasis. Quercetin, a natural compound found in fruits and vegetables, has been found to have significant therapeutic roles in treating breast cancer. It inhibits cell cycle arrest, promotes apoptosis, and reduces blood vessel formation. It also reverses drug resistance and has antioxidant and anti-inflammatory properties. This study concludes that the therapeutic influence of quercetin plays a significant role in treating breast cancer and aids in the advancement of the clinical application of quercetin in future studies. Graphical Abstract
Collapse
Affiliation(s)
- Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007 India
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi, India
| | - Mahi Rastogi
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474011 India
| | - Kulbhushan Thakur
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007 India
| |
Collapse
|
6
|
T C D, N K N, Pushparaj C, Narayanasamy A, Manickam P, Thiruvenkataswamy S, Sennimalai R. Novel therapeutic approaches targeting cancer stem cells: Unveiling new frontiers in breast cancer treatment. Pathol Res Pract 2025; 266:155800. [PMID: 39808859 DOI: 10.1016/j.prp.2024.155800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025]
Abstract
Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined. Furthermore, the review analyzes CSC-specific molecular signaling pathways, focusing on actionable targets like CD44/CD24, Nanog, and Oct4. The potential of targeted therapies and small molecules that disrupt these pathways is explored. Additionally, the review highlights immunotherapy strategies against CSCs, focusing on resistance mechanisms and the critical role of precision medicine. The study investigates how precision medicine enhances therapeutic outcomes by targeting specific CSC biomarkers. This comprehensive analysis offers insights into recent advancements and emerging strategies in breast cancer treatment, pointing toward future therapeutic innovations.
Collapse
Affiliation(s)
- Deeptha T C
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, India
| | - Nabeela N K
- Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, India
| | | | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, India
| | - Paulpandi Manickam
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, India
| | | | - Ramya Sennimalai
- Department of Zoology (PG), Vellalar College for Women, Erode, India.
| |
Collapse
|
7
|
Muralidharan H, Hansen T, Steinle A, Schumacher D, Stickeler E, Maurer J. Breast Cancer Stem Cells Upregulate IRF6 in Stromal Fibroblasts to Induce Stromagenesis. Cells 2024; 13:1466. [PMID: 39273037 PMCID: PMC11393902 DOI: 10.3390/cells13171466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
The microenvironment of a cancer stem cell (CSC) niche is often found in coexistence with cancer-associated fibroblasts (CAFs). Here, we show the first in-depth analysis of the interaction between primary triple-negative breast cancer stem cells (BCSCs) with fibroblasts. Using 2D co-culture models with specific seeding ratios, we identified stromal fibroblast aggregation at the BCSC cluster periphery, and, on closer observation, the aggregated fibroblasts was found to encircle BCSC clusters in nematic organization. In addition, collagen type I and fibronectin accumulation were also found at the BCSC-stromal periphery. MACE-Seq analysis of BCSC-encapsulating fibroblasts displayed the transformation of stromal fibroblasts to CAFs and the upregulation of fibrosis regulating genes of which the Interferon Regulatory Factor 6 (IRF6) gene was identified. Loss of function experiments with the IRF6 gene decreased fibroblast encapsulation around BCSC clusters in 2D co-cultures. In BCSC xenografts, fibroblast IRF6 expression led to an increase in the stromal area and fibroblast density in tumors, in addition to a reduction in necrotic growth. Based on our findings, we propose that fibroblast IRF6 function is an important factor in the development of the stromal microenvironment and in sustaining the BCSC tumor niche.
Collapse
Affiliation(s)
- Harshini Muralidharan
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - Thomas Hansen
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - Anja Steinle
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
| | - David Schumacher
- Department of Anesthesiology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
8
|
Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH, Davydova J. Oncolytic Adenovirus for the Targeting of Paclitaxel-Resistant Breast Cancer Stem Cells. Viruses 2024; 16:567. [PMID: 38675909 PMCID: PMC11054319 DOI: 10.3390/v16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Sacha Robert
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Christopher J. LaRocca
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Kim CY, Lee KH, Son KH, Shin TJ, Cho JY. Extracellular vesicle-mediated transfer of miRNA-1 from primary tumors represses the growth of distant metastases. Exp Mol Med 2024; 56:734-746. [PMID: 38531964 PMCID: PMC10985072 DOI: 10.1038/s12276-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 03/28/2024] Open
Abstract
Metastases originate from primary tumors and reach distant organs. Growing evidence suggests that metastases are under the control of primary tumors even outside the primary site; however, the mechanisms by which primary tumors remotely control metastases remain unclear. Here, we discovered a molecular mechanism by which primary tumors suppress metastatic growth. Interestingly, we found that extracellular vesicles (EVs) derived from the primary tumor can inhibit the growth of metastases both in vitro and in vivo. miR-1 was particularly enriched in primary tumor-derived EVs (pTDEs) and was found to be responsible for the suppression of metastatic growth. Mechanistically, intracellular reactive oxygen species (ROS) production and DNA damage were induced, which led to cell cycle arrest. Collectively, our data demonstrate that primary tumors restrict the growth of distant metastases via miR-1 in pTDEs and that miR-1 could potentially be used as an antimetastatic agent.
Collapse
Affiliation(s)
- Chae-Yi Kim
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Keun Hong Son
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Jin Shin
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center (CDRC), Science Research Center (SRC), Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
De Lorenzi F, Hansen N, Theek B, Daware R, Motta A, Breuel S, Nasehi R, Baumeister J, Schöneberg J, Stojanović N, von Stillfried S, Vogt M, Müller-Newen G, Maurer J, Sofias AM, Lammers T, Fischer H, Kiessling F. Engineering Mesoscopic 3D Tumor Models with a Self-Organizing Vascularized Matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303196. [PMID: 37865947 DOI: 10.1002/adma.202303196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/05/2023] [Indexed: 10/24/2023]
Abstract
Advanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells. It is shown that angiogenic multicellular tumor spheroids promote the growth of a vascular network, which in turn further enhances the growth of cocultivated tumor spheroids. The self-developed vascular structure infiltrates the tumor spheroids, forms functional connections with the bioprinted endothelium, and can be perfused by erythrocytes and polystyrene microspheres. Moreover, cancer cells migrate spontaneously from the tumor spheroid through the self-assembled vascular network into the fluid flow. Additionally, tumor type specific characteristics of desmoplasia, angiogenesis, and metastatic propensity are preserved between patient-derived samples and tumors derived from this same material growing in the bioreactors. Overall, this modular approach opens up new avenues for studying tumor pathophysiology and cellular interactions in vitro, providing a platform for advanced drug testing while reducing the need for in vivo experimentation.
Collapse
Affiliation(s)
- Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Nadja Hansen
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alessandro Motta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Saskia Breuel
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Julian Baumeister
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jan Schöneberg
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Natalija Stojanović
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | | | - Michael Vogt
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Jochen Maurer
- Department of Gynecology and Obstetrics, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Norwegian University of Science and Technology (NTNU), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Trondheim, 7491, Norway
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIOABCD), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research (ZWBF), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, 52074, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, 28359, Bremen, Germany
| |
Collapse
|
11
|
Peyvandi S, Bulliard M, Yilmaz A, Kauzlaric A, Marcone R, Haerri L, Coquoz O, Huang YT, Duffey N, Gafner L, Lorusso G, Fournier N, Lan Q, Rüegg C. Tumor-educated Gr1+CD11b+ cells drive breast cancer metastasis via OSM/IL-6/JAK-induced cancer cell plasticity. J Clin Invest 2024; 134:e166847. [PMID: 38236642 PMCID: PMC10940099 DOI: 10.1172/jci166847] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Cancer cell plasticity contributes to therapy resistance and metastasis, which represent the main causes of cancer-related death, including in breast cancer. The tumor microenvironment drives cancer cell plasticity and metastasis, and unraveling the underlying cues may provide novel strategies for managing metastatic disease. Using breast cancer experimental models and transcriptomic analyses, we show that stem cell antigen-1 positive (SCA1+) murine breast cancer cells enriched during tumor progression and metastasis had higher in vitro cancer stem cell-like properties, enhanced in vivo metastatic ability, and generated tumors rich in Gr1hiLy6G+CD11b+ cells. In turn, tumor-educated Gr1+CD11b+ (Tu-Gr1+CD11b+) cells rapidly and transiently converted low metastatic SCA1- cells into highly metastatic SCA1+ cells via secreted oncostatin M (OSM) and IL-6. JAK inhibition prevented OSM/IL-6-induced SCA1+ population enrichment, while OSM/IL-6 depletion suppressed Tu-Gr1+CD11b+-induced SCA1+ population enrichment in vitro and metastasis in vivo. Moreover, chemotherapy-selected highly metastatic 4T1 cells maintained high SCA1+ positivity through autocrine IL-6 production, and in vitro JAK inhibition blunted SCA1 positivity and metastatic capacity. Importantly, Tu-Gr1+CD11b+ cells invoked a gene signature in tumor cells predicting shorter overall survival (OS), relapse-free survival (RFS), and lung metastasis in breast cancer patients. Collectively, our data identified OSM/IL-6/JAK as a clinically relevant paracrine/autocrine axis instigating breast cancer cell plasticity and triggering metastasis.
Collapse
Affiliation(s)
- Sanam Peyvandi
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Manon Bulliard
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Alev Yilmaz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Annamaria Kauzlaric
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lisa Haerri
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Oriana Coquoz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yu-Ting Huang
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Duffey
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Gafner
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Girieca Lorusso
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nadine Fournier
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Qiang Lan
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Curzio Rüegg
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
McWhorter R, Bonavida B. The Role of TAMs in the Regulation of Tumor Cell Resistance to Chemotherapy. Crit Rev Oncog 2024; 29:97-125. [PMID: 38989740 DOI: 10.1615/critrevoncog.2024053667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Tumor-associated macrophages (TAMs) are the predominant cell infiltrate in the immunosuppressive tumor microenvironment (TME). TAMs are central to fostering pro-inflammatory conditions, tumor growth, metastasis, and inhibiting therapy responses. Many cancer patients are innately refractory to chemotherapy and or develop resistance following initial treatments. There is a clinical correlation between the level of TAMs in the TME and chemoresistance. Hence, the pivotal role of TAMs in contributing to chemoresistance has garnered significant attention toward targeting TAMs to reverse this resistance. A prerequisite for such an approach requires a thorough understanding of the various underlying mechanisms by which TAMs inhibit response to chemotherapeutic drugs. Such mechanisms include enhancing drug efflux, regulating drug metabolism and detoxification, supporting cancer stem cell (CSCs) resistance, promoting epithelial-mesenchymal transition (EMT), inhibiting drug penetration and its metabolism, stimulating angiogenesis, impacting inhibitory STAT3/NF-κB survival pathways, and releasing specific inhibitory cytokines including TGF-β and IL-10. Accordingly, several strategies have been developed to overcome TAM-modulated chemoresistance. These include novel therapies that aim to deplete TAMs, repolarize them toward the anti-tumor M1-like phenotype, or block recruitment of monocytes into the TME. Current results from TAM-targeted treatments have been unimpressive; however, the use of TAM-targeted therapies in combination appears promising These include targeting TAMs with radiotherapy, chemotherapy, chemokine receptor inhibitors, immunotherapy, and loaded nanoparticles. The clinical limitations of these strategies are discussed.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
13
|
Guha A, Goswami KK, Sultana J, Ganguly N, Choudhury PR, Chakravarti M, Bhuniya A, Sarkar A, Bera S, Dhar S, Das J, Das T, Baral R, Bose A, Banerjee S. Cancer stem cell-immune cell crosstalk in breast tumor microenvironment: a determinant of therapeutic facet. Front Immunol 2023; 14:1245421. [PMID: 38090567 PMCID: PMC10711058 DOI: 10.3389/fimmu.2023.1245421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is globally one of the leading killers among women. Within a breast tumor, a minor population of transformed cells accountable for drug resistance, survival, and metastasis is known as breast cancer stem cells (BCSCs). Several experimental lines of evidence have indicated that BCSCs influence the functionality of immune cells. They evade immune surveillance by altering the characteristics of immune cells and modulate the tumor landscape to an immune-suppressive type. They are proficient in switching from a quiescent phase (slowly cycling) to an actively proliferating phenotype with a high degree of plasticity. This review confers the relevance and impact of crosstalk between immune cells and BCSCs as a fate determinant for BC prognosis. It also focuses on current strategies for targeting these aberrant BCSCs that could open avenues for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Aishwarya Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Jasmine Sultana
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Pritha Roy Choudhury
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Pharmaceutical Technology Biotechnology National Institute of Pharmaceutical Education and Research (NIPER) Sahibzada Ajit Singh (S.A.S.) Nagar, Mohali, Punjab, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
14
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Hamid R, Alaziz M, Mahal AS, Ashton AW, Halama N, Jaeger D, Jiao X, Pestell RG. The Role and Therapeutic Targeting of CCR5 in Breast Cancer. Cells 2023; 12:2237. [PMID: 37759462 PMCID: PMC10526962 DOI: 10.3390/cells12182237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands initiating cell signaling that includes guided migration. Although well known to be expressed on immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of CCR5 (CCR5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies (leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on both the tumor and the anti-tumor immune response. Current clinical studies have therefore included combination therapy approaches with checkpoint inhibitors.
Collapse
Affiliation(s)
- Rasha Hamid
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | - Mustafa Alaziz
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | | | - Anthony W. Ashton
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Lankenau Institute for Medical Research Philadelphia, Wynnewood, PA 19096, USA
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Clinical Cooperation Unit Applied Tumor-Immunity, 69120 Heidelberg, Germany
| | - Xuanmao Jiao
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
| | - Richard G. Pestell
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Prajapati KS, Kumar S. Loss of miR-6844 alters stemness/self-renewal and cancer hallmark(s) markers through CD44-JAK2-STAT3 signaling axis in breast cancer stem-like cells. J Cell Biochem 2023; 124:1186-1202. [PMID: 37436061 DOI: 10.1002/jcb.30441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
MicroRNAs regulate breast stemness and self-renewal properties in breast cancer cells at the molecular level. Recently we reported the clinical relevance and in vitro expression profile of novel miR-6844 in breast cancer and -derived stem-like cells (mammosphere). In the present study, we first time explore the functional role of loss of miR-6844 in breast cancer cells derived mammosphere. Down expression of miR-6844 significantly decreased cell proliferation in MCF-7 and T47D cells derived mammosphere in a time-dependent manner. MiR-6844 down expression reduced the sphere formation in terms of size and number in test cells. Loss of miR-6844 significantly altered stemness and self-renewal markers (Bmi-1, Nanog, c-Myc, Sox2, and CD44) in mammosphere compared to negative control spheres. Moreover, loss of miR-6844 inhibits the JAK2-STAT3 signaling pathway by decreasing p-JAK2 and p-STAT3 levels in breast cancer cells derived mammosphere. Loss of miR-6844 expression significantly decreased CCND1 and CDK4 mRNA/protein levels and arrested breast cancer stem-like cells in G2/M phase. Reduced expression of miR-6844 increased Bax/Bcl-2 ratio, late apoptotic cell population, and Caspase 9 and 3/7 activity in the mammosphere. Low expression of miR-6844 decreased migratory and invasive cells by altering the expression of Snail, E-cad, and Vimentin at mRNA/protein levels. In conclusion, loss of miR-6844 decreases stemness/self-renewal and other cancer hallmark in breast cancer stem-like cells through CD44-JAK2-STAT3 axis. Thus, downregulation of miR-6844 by therapeutic agents might be a novel strategy to target breast cancer stemness and self-renewal.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
17
|
Tsintarakis A, Papalouka C, Kontarini C, Zoumpourlis P, Karakostis K, Adamaki M, Zoumpourlis V. The Intricate Interplay between Cancer Stem Cells and Oncogenic miRNAs in Breast Cancer Progression and Metastasis. Life (Basel) 2023; 13:1361. [PMID: 37374142 DOI: 10.3390/life13061361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Complex signaling interactions between cancer cells and their microenvironments drive the clonal selection of cancer cells. Opposing forces of antitumor and tumorigenic potential regulate the survival of the fittest clones, while key genetic and epigenetic alterations in healthy cells force them to transform, overcome cell senescence, and proliferate in an uncontrolled manner. Both clinical samples and cancer cell lines provide researchers with an insight into the complex structure and hierarchy of cancer. Intratumor heterogeneity allows for multiple cancer cell subpopulations to simultaneously coexist within tumors. One category of these cancer cell subpopulations is cancer stem cells (CSCs), which possess stem-like characteristics and are not easily detectable. In the case of breast cancer, which is the most prevalent cancer type among females, such subpopulations of cells have been isolated and characterized via specific stem cell markers. These stem-like cells, known as breast cancer stem cells (BCSCs), have been linked to major events during tumorigenesis including invasion, metastasis and patient relapse following conventional therapies. Complex signaling circuitries seem to regulate the stemness and phenotypic plasticity of BCSCs along with their differentiation, evasion of immunosurveillance, invasiveness and metastatic potential. Within these complex circuitries, new key players begin to arise, with one of them being a category of small non-coding RNAs, known as miRNAs. Here, we review the importance of oncogenic miRNAs in the regulation of CSCs during breast cancer formation, promotion and metastasis, in order to highlight their anticipated usage as diagnostic and prognostic tools in the context of patient stratification and precision medicine.
Collapse
Affiliation(s)
- Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Chara Papalouka
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Christina Kontarini
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Konstantinos Karakostis
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
18
|
Twomey JD, Zhang B. Exploring the Role of Hypoxia-Inducible Carbonic Anhydrase IX (CAIX) in Circulating Tumor Cells (CTCs) of Breast Cancer. Biomedicines 2023; 11:biomedicines11030934. [PMID: 36979915 PMCID: PMC10046014 DOI: 10.3390/biomedicines11030934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Circulating tumor cells (CTCs) in the peripheral blood are believed to be the source of metastasis and can be used as a liquid biopsy to monitor cancer progression and therapeutic response. However, it has been challenging to accurately detect CTCs because of their low frequency and the heterogeneity of the population. In this study, we have developed an in vitro model of CTCs by using non-adherent suspension culture. We used this model to study a group of breast cancer cell lines with distinct molecular subtypes (TNBC, HER2+, and ER+/PR+). We found that, when these breast cancer cell lines lost their attachment to the extracellular matrix, they accumulated a subtype of cancer stem cells (CSC) that expressed the surface markers of stem cells (e.g., CD44+CD24-). These stem-like CTCs also showed high expressions of hypoxia-inducible gene products, particularly the hypoxia-inducible carbonic anhydrase IX (CAIX). Inhibition of CAIX activity was found to reduce CAIX expression and stem cell phenotypes in the targeted CTCs. Further studies are needed, using CTC samples from breast cancer patients, to determine the role of CAIX in CTC survival, CSC transition, and metastasis. CAIX may be a useful surface marker for the detection of CSCs in the blood, and a potential target for treating metastatic breast cancers.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
19
|
Johnson A, Olelewe C, Kim JH, Northcote-Smith J, Mertens RT, Passeri G, Singh K, Awuah SG, Suntharalingam K. The anti-breast cancer stem cell properties of gold(i)-non-steroidal anti-inflammatory drug complexes. Chem Sci 2023; 14:557-565. [PMID: 36741517 PMCID: PMC9847679 DOI: 10.1039/d2sc04707a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
The anti-breast cancer stem cell (CSC) properties of a series of gold(i) complexes comprising various non-steroidal anti-inflammatory drugs (NSAIDs) and triphenylphosphine 1-8 are reported. The most effective gold(i)-NSAID complex 1, containing indomethacin, exhibits greater potency for breast CSCs than bulk breast cancer cells (up to 80-fold). Furthermore, 1 reduces mammosphere viability to a better extent than a panel of clinically used breast cancer drugs and salinomycin, an established anti-breast CSC agent. Mechanistic studies suggest 1-induced breast CSC death results from breast CSC entry, cytoplasm localisation, an increase in intracellular reactive oxygen species levels, cyclooxygenase-2 downregulation and inhibition, and apoptosis. Remarkably, 1 also significantly inhibits tumour growth in a murine metastatic triple-negative breast cancer model. To the best of our knowledge, 1 is the first gold complex of any geometry or oxidation state to demonstrate anti-breast CSC properties.
Collapse
Affiliation(s)
- Alice Johnson
- School of Chemistry, University of LeicesterLeicesterUK,Biomolecular Sciences Research Centre, Sheffield Hallam UniversitySheffieldUK
| | - Chibuzor Olelewe
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA
| | - Jong Hyun Kim
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA
| | | | - R. Tyler Mertens
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA
| | | | - Kuldip Singh
- School of Chemistry, University of LeicesterLeicesterUK
| | - Samuel G. Awuah
- Department of Chemistry, University of KentuckyLexingtonKentuckyUSA,Department of Pharmaceutical Sciences, University of KentuckyLexingtonKentuckyUSA
| | | |
Collapse
|
20
|
Rosas-Cruz A, Salinas-Jazmín N, Valdés-Rives A, Velasco-Velázquez MA. DRD1 and DRD4 are differentially expressed in breast tumors and breast cancer stem cells: pharmacological implications. Transl Cancer Res 2022; 11:3941-3950. [PMID: 36523297 PMCID: PMC9745373 DOI: 10.21037/tcr-22-783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/17/2022] [Indexed: 08/29/2023]
Abstract
BACKGROUND Abnormal expression of dopamine receptors (DRs) has been described in multiple tumors, but their roles in breast cancer are inconclusive or contradictory since evidence of pro- and anti-tumoral effects have been reported. Herein, we analyzed the expression of DRs in breast cancer, especially in the subpopulation of cancer stem cells (CSCs), and evaluated the functional role of the receptors by pharmacological targeting. METHODS Expression of DRD1, DRD2, DRD3, DRD4 and DRD5 was investigated in human breast tumors and cancer cell lines using public databases. Correlation between gene expression and clinical outcome was studied by Kaplan-Mayer analyses. By flow cytometry, we assessed DRD1, DRD2, and DRD4 expression in cultures of MCF-7 (luminal) and MDA-MB-231 (triple-negative) cells. Using the previously reported SORE6 reporter system we examined the differential expression of DRD1, DRD2, and DRD4 in CSCs and tumor-bulk cells. The effect of pharmacological modulation of DRs on stemness and cell migration was studied by quantification of the reporter-positive fraction and wound healing assays, respectively. RESULTS DRD1, DRD2 and DRD4 transcripts were expressed in breast tumors. DRD4 was overexpressed compared to normal tissue and showed prognostic value. DRD1, DRD2 and DRD4 transcripts were also found in MCF-7 and MDA-MB-231 cells, but only DRD1 and DRD4 proteins were detected. DRD4 was underexpressed in CSCs compared to tumor-bulk cells, whereas DRD1 was found only in the CSCs fraction, suggesting that those receptors may have relevance in stemness control. Subtoxic concentrations of DRD1-targeting compounds did not induced significant changes in the CSCs pool. On the other hand, DRD4 inhibition by Haloperidol slightly increased the CSCs content but also reduced cell migration. CONCLUSIONS Pharmacological modulation of DRD1 in MCF-7 or MDA-MB-231 cells seems to be irrelevant for stemness maintenance. DRD4 reduced expression in breast CSCs or its inhibition by Haloperidol favors CSCs-pool expansion. DRD4 inhibition can also reduce cell migration, indicating that DRD4 plays different roles in stem and non-stem breast cancer cells.
Collapse
Affiliation(s)
- Arely Rosas-Cruz
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
- Posgrado en Ciencias Bioquímicas, UNAM, CDMX, México
| | - Nohemí Salinas-Jazmín
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Anahí Valdés-Rives
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Marco A. Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| |
Collapse
|
21
|
Shah L, Latif A, Williams KJ, Tirella A. Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness. Acta Biomater 2022; 152:273-289. [PMID: 36087866 DOI: 10.1016/j.actbio.2022.08.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/16/2023]
Abstract
Several physico-chemical properties of the tumour microenvironment (TME) are dysregulated during tumour progression, such as tissue stiffness, extracellular pH and interstitial fluid flow. Traditional preclinical models, although useful to study biological processes, do not provide sufficient control over these physico-chemical properties, hence limiting the understanding of cause-effect relationships between the TME and cancer cells. Breast cancer stem cells (B-CSCs), a dynamic population within the tumour, are known to affect tumour progression, metastasis and therapeutic resistance. With their emerging importance in disease physiology, it is essential to study the interplay between above-mentioned TME physico-chemical variables and B-CSC marker expression. In this work, 3D in vitro models with controlled physico-chemical properties (hydrogel stiffness and composition, perfusion, pH) were used to mimic normal and tumour breast tissue to study changes in proliferation, morphology and B-CSC population in two separate breast cancer cell lines (MCF-7 and MDA-MB 231). Cells encapsulated in alginate-gelatin hydrogels varying in stiffness (2-10 kPa), density and adhesion ligand (gelatin) were perfused (500 µL/min) for up to 14 days. Physiological (pH 7.4) and tumorigenic (pH 6.5) media were used to mimic changes in extracellular pH within the TME. We found that both cell lines have distinct responses to changes in physico-chemical factors in terms of proliferation, cell aggregates size and morphology. Most importantly, stiff and dense hydrogels (10 kPa) and acidic pH (6.5) play a key role in B-CSCs dynamics, increasing both epithelial (E-CSCs) and mesenchymal cancer stem cell (M-CSCs) marker expression, supporting direct impact of the physico-chemical microenvironment on disease onset and progression. STATEMENT OF SIGNIFICANCE: Currently no studies evaluate the impact of physico-chemical properties of the tumour microenvironment on breast cancer stem cell (B-CSC) marker expression in a single in vitro model and at the same time. In this study, 3D in vitro models with varying stiffness, extracellular pH and fluid flow are used to recapitulate the breast tumour microenvironment to evaluate for the first time their direct effect on multiple breast cancer phenotypes: cell proliferation, cell aggregate size and shape, and B-CSC markers. Results suggest these models could open new ways of monitoring disease phenotypes, from the early-onset to progression, as well as being used as testing platforms for effective identification of specific phenotypes in the presence of relevant tumour physico-chemical microenvironment.
Collapse
Affiliation(s)
- Lekha Shah
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Ayşe Latif
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom; BIOtech - Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, Trento 38123, Italy.
| |
Collapse
|
22
|
El Baba R, Pasquereau S, Haidar Ahmad S, Diab-Assaf M, Herbein G. Oncogenic and Stemness Signatures of the High-Risk HCMV Strains in Breast Cancer Progression. Cancers (Basel) 2022; 14:cancers14174271. [PMID: 36077806 PMCID: PMC9455011 DOI: 10.3390/cancers14174271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Lately, human cytomegalovirus (HCMV) has been progressively implicated in carcinogenesis alongside its oncomodulatory impact. CMV-Transformed Human mammary epithelial cells (CTH) phenotype might be defined by giant cell cycling, whereby the generation of polyploid giant cancer cells (PGCCs) could expedite the acquisition of malignant phenotypes. Herein, the main study objectives were to assess the transformation potential in vitro and evaluate the obtained cellular phenotype, the genetic and molecular features, and the activation of cellular stemness programs of HCMV strains, B544 and B693, which were previously isolated from triple-negative breast cancer (TNBC) biopsies. The strains’ sensitivity to paclitaxel and ganciclovir combination therapy was evaluated. A unique molecular landscape was unveiled in the tumor microenvironment of TNBC harboring high-risk HCMV. Overall, the explicit oncogenic and stemness signatures highlight HCMV potential in breast cancer progression thus paving the way for targeted therapies and clinical interventions which prolong the overall survival of breast cancer patients. Abstract Background: Human cytomegalovirus (HCMV) oncomodulation, molecular mechanisms, and ability to support polyploid giant cancer cells (PGCCs) generation might underscore its contribution to oncogenesis, especially breast cancers. The heterogeneity of strains can be linked to distinct properties influencing the virus-transforming potential, cancer types induced, and patient’s clinical outcomes. Methods: We evaluated the transforming potential in vitro and assessed the acquired cellular phenotype, genetic and molecular features, and stimulation of stemness of HCMV strains, B544 and B693, isolated from EZH2HighMycHigh triple-negative breast cancer (TNBC) biopsies. Therapeutic response assessment after paclitaxel (PTX) and ganciclovir (GCV) treatment was conducted in addition to the molecular characterization of the tumor microenvironment (TME). Findings: HCMV-B544 and B693 transformed human mammary epithelial cells (HMECs). We detected multinucleated and lipid droplet-filled PGCCs harboring HCMV. Colony formation was detected and Myc was overexpressed in CMV-Transformed-HMECs (CTH cells). CTH-B544 and B693 stimulated stemness and established an epithelial/mesenchymal hybrid state. HCMV-IE1 was detected in CTH long-term cultures indicating a sustained viral replication. Biopsy B693 unveiled a tumor signature predicting a poor prognosis. CTH-B544 cells were shown to be more sensitive to PTX/GCV therapy. Conclusion: The oncogenic and stemness signatures of HCMV strains accentuate the oncogenic potential of HCMV in breast cancer progression thereby leading the way for targeted therapies and innovative clinical interventions that will improve the overall survival of breast cancer patients.
Collapse
Affiliation(s)
- Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
| | - Mona Diab-Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Lebanese University, Beirut 1500, Lebanon
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), 25030 Besançon, France
- Department of Virology, CHU Besançon, 25030 Besançon, France
- Correspondence: ; Tel.: +33-381-665-616; Fax: +33-381-665-695
| |
Collapse
|
23
|
Xu H, Zhang F, Gao X, Zhou Q, Zhu L. Fate decisions of breast cancer stem cells in cancer progression. Front Oncol 2022; 12:968306. [PMID: 36046046 PMCID: PMC9420991 DOI: 10.3389/fonc.2022.968306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has a marked recurrence and metastatic trait and is one of the most prevalent malignancies affecting women’s health worldwide. Tumor initiation and progression begin after the cell goes from a quiescent to an activated state and requires different mechanisms to act in concert to regulate t a specific set of spectral genes for expression. Cancer stem cells (CSCs) have been proven to initiate and drive tumorigenesis due to their capability of self-renew and differentiate. In addition, CSCs are believed to be capable of causing resistance to anti-tumor drugs, recurrence and metastasis. Therefore, exploring the origin, regulatory mechanisms and ultimate fate decision of CSCs in breast cancer outcomes has far-reaching clinical implications for the development of breast cancer stem cell (BCSC)-targeted therapeutic strategies. In this review, we will highlight the contribution of BCSCs to breast cancer and explore the internal and external factors that regulate the fate of BCSCs.
Collapse
|
24
|
Pal AK, Sharma P, Zia A, Siwan D, Nandave D, Nandave M, Gautam RK. Metabolomics and EMT Markers of Breast Cancer: A Crosstalk and Future Perspective. PATHOPHYSIOLOGY 2022; 29:200-222. [PMID: 35736645 PMCID: PMC9230911 DOI: 10.3390/pathophysiology29020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer cells undergo transient EMT and MET phenomena or vice versa, along with the parallel interplay of various markers, often correlated as the determining factor in decoding metabolic profiling of breast cancers. Moreover, various cancer signaling pathways and metabolic changes occurring in breast cancer cells modulate the expression of such markers to varying extents. The existing research completed so far considers the expression of such markers as determinants regulating the invasiveness and survival of breast cancer cells. Therefore, this manuscript is crosstalk among the expression levels of such markers and their correlation in regulating the aggressiveness and invasiveness of breast cancer. We also attempted to cover the possible EMT-based metabolic targets to retard migration and invasion of breast cancer.
Collapse
Affiliation(s)
- Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Prateek Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Alishan Zia
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Dipali Nandave
- Department of Dravyaguna, Karmavir V. T. Randhir Ayurved College, Boradi 425428, India;
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
- Correspondence: (M.N.); (R.K.G.)
| | - Rupesh K. Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Ambala 134007, India
- Correspondence: (M.N.); (R.K.G.)
| |
Collapse
|
25
|
Priyadarshini P, Sarath S, Hemavathy V. Breast cancer awareness package on knowledge, attitude and practice towards breast self examination to prevent breast cancer among women in adopted communities – a pilot analysis. CARDIOMETRY 2022. [DOI: 10.18137/cardiometry.2022.22.471483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Breast health is extremely important for all women. However, the breast is another region of the human body that is susceptible to cancer. Breast cancer is becoming increasingly common these days, and it is now one of the leading causes of mortality globally. According to the World Health Organization, breast cancer is the most common disease among women worldwide, claiming the lives of hundreds of thousands of women each year and impacting nations at all stages of development. In fact, it is the most common cancer in women, with a significant incidence observed among those aged 30 to 50. The goal of the World Health Organization’s Worldwide Breast Cancer Initiative (GBCI) is to reduce global breast cancer mortality by 2.5 percent each year; As a result, 2.5 million breast cancer deaths will be avoided globally between 2020 and 2040. To achieve these goals, three pillars must be in place: health endorsement for early detection, suitable identification at the right time, and comprehensive breast cancer management. Because of advances in early detection and care, the incidence of women dying of breast cancer has decreased by 41% from 1989 to 2018. During that time, more than 403,000 breast cancer deaths were prevented.
Collapse
|
26
|
Nguyen YTK, To NB, Truong VNP, Kim HY, Ediriweera MK, Lim Y, Cho SK. Impairment of Glucose Metabolism and Suppression of Stemness in MCF-7/SC Human Breast Cancer Stem Cells by Nootkatone. Pharmaceutics 2022; 14:pharmaceutics14050906. [PMID: 35631492 PMCID: PMC9145028 DOI: 10.3390/pharmaceutics14050906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Targeting cancer stem cell metabolism has emerged as a promising therapeutic strategy for cancer treatment. Breast cancer stem cells (BCSCs) exert distinct metabolism machinery, which plays a major role in radiation and multidrug resistance. Therefore, exploring the mechanisms involved in energy utilization of BCSCs could improve the effectiveness of therapeutic strategies aimed at their elimination. This study was conducted to clarify the glucose metabolism machinery and the function of nootkatone, a bioactive component of grapefruit, in regulating glucose metabolism and stemness characteristics in human breast carcinoma MCF-7 stem cells (MCF-7SCs). In vivo experiments, transcriptomic analysis, seahorse XF analysis, MTT assay, Western blotting, mammosphere formation, wound healing, invasion assay, flow cytometric analysis, reverse transcription-quantitative polymerase chain reaction, and in silico docking experiments were performed. MCF-7SCs showed a greater tumorigenic capacity and distinct gene profile with enrichment of the genes involved in stemness and glycolysis signaling pathways compared to parental MCF-7 cells, indicating that MCF-7SCs use glycolysis rather than oxidative phosphorylation (OXPHOS) for their energy supply. Nootkatone impaired glucose metabolism through AMPK activation and reduced the stemness characteristics of MCF-7SCs. In silico docking analysis demonstrated that nootkatone efficiently bound to the active site of AMPK. Therefore, this study indicates that regulation of glucose metabolism through AMPK activation could be an attractive target for BCSCs.
Collapse
Affiliation(s)
- Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Ngoc Bao To
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Vi Nguyen-Phuong Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
| | - Meran Keshawa Ediriweera
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 00300, Sri Lanka
| | - Yoongho Lim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea;
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (Y.T.-K.N.); (N.B.T.); (V.N.-P.T.); (H.Y.K.)
- Subtropical—Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-10-8660-1842
| |
Collapse
|
27
|
Huang A, Huang SY, Shah P, Ku WC, Huang KT, Liu YF, Su CL, Huang RFS. Suboptimal folic acid exposure rewires oncogenic metabolism and proteomics signatures to mediate human breast cancer malignancy. J Nutr Biochem 2022; 106:109000. [PMID: 35460832 DOI: 10.1016/j.jnutbio.2022.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
Abstract
Whether treatment with folic acid (FA) affects human breast cancer positively or negatively remains unclear. We subjected human MCF-7 cells, a human breast cancer cell line, to suboptimal FA at low levels (10 nM; LF) and high levels (50 μM; HF) and investigated the molecular mechanisms underlying their effects through metabolic flux and systematic proteomics analyses. The data indicated that LF induced and HF aggravated 2-fold higher mitochondrial toxicity in terms of suppressed oxidative respiration, increased fermented glycolysis, and enhanced anchorage-independent oncospheroid formation. Quantitative proteomics and Gene Ontology enrichment analysis were used to profile LF- and HF-altered proteins involved in metabolism, apoptosis, and malignancy pathways. Through STRING analysis, we identified a connection network between LF- and HF-altered proteins with mTOR. Rapamycin-induced blockage of mTOR complex 1 (mTORC1) signaling, which regulates metabolism, differentially inhibited LF- and HF-modulated protein signatures of mitochondrial NADH dehydrogenase ubiquinone flavoprotein 2, mitochondrial glutathione peroxidase 4, kynureninase, and alpha-crystallin B chain as well as programmed cell death 5 in transcript levels; it subsequently diminished apoptosis and oncospheroid formation in LF/HF-exposed cells. Taken together, our data indicate that suboptimal FA treatment rewired oncogenic metabolism and mTORC1-mediated proteomics signatures to promote breast cancer development.
Collapse
Affiliation(s)
- Angel Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Su-Yu Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Pramod Shah
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Kuang-Ta Huang
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Yi-Fang Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Chun-Li Su
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taiwan.
| | - Rwei-Fen S Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan; Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
28
|
Use of piggyBac Transposon System Constructed Murine Breast Cancer Model for Reporter Gene Imaging and Characterization of Metastatic Tumor Cells. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Alvarez-Elizondo MB, Weihs D. Breast cancer stem cells: mechanobiology reveals highly invasive cancer cell subpopulations. Cell Mol Life Sci 2022; 79:134. [PMID: 35171381 PMCID: PMC11072724 DOI: 10.1007/s00018-022-04181-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/19/2022]
Abstract
Cancer stem-like cells (CSCs) are a typically small subpopulation of highly tumorigenic cells that can self-renew, differentiate, drive tumor progression, and may mediate drug resistance and metastasis. Metastasis driving CSCs are expected to be highly invasive. To determine the relative invasiveness of CSCs, we isolate distinct subpopulations in the metastatic, MDA-MB-231 breast-cancer cell line, identified by the stem-cell markers aldehyde dehydrogenase (ALDH) and CD44. We determine CSC-subpopulation invasiveness levels using our rapid (2 h) mechanobiology-based assay. Specifically, invasive cells forcefully push and indent the surface of physiological-stiffness synthetic gels to cell-scale depths, where the percentage of indenting cells and their attained depths have previously provided clinically relevant predictions of the metastatic risk in different cancer types. We observe that the small (3.2%) CD44+ALDH+ cell-subpopulation indents more and attains significantly deeper depths (65% indenting to 6 ± 0.3 µm) relative to CD44+ALDH-, CD44-ALDH-, CD44-ALDH+ cells, and the whole-sample control (with 18-44% indenting cells reaching average depths of 4.4-5 µm). The CD44+ALDH+ similarly demonstrates twofold higher migratory capacity in Boyden chambers. The higher invasiveness of CD44+ALDH+ cells reveals their likely role in facilitating disease progression, providing prognostic markers for increased risk of recurrence and metastasis.
Collapse
Affiliation(s)
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
30
|
Rasouli A, Aliebrahimi S, Montazeri V, Ghahremani MH, Ostad SN. Combination effect of doxorubicin and HIF inhibitor on MCF-7 CD44+/CD24- subpopulation cells in hypoxic condition. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | | | | | - Seyed Nasser Ostad
- Tehran University of Medical Sciences, Iran; Tehran University of Medical Sciences, Iran
| |
Collapse
|
31
|
Kim GD. Ursolic Acid Decreases the Proliferation of MCF-7 Cell-Derived Breast Cancer Stem-Like Cells by Modulating the ERK and PI3K/AKT Signaling Pathways. Prev Nutr Food Sci 2021; 26:434-444. [PMID: 35047440 PMCID: PMC8747966 DOI: 10.3746/pnf.2021.26.4.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are strong drivers of metastasis and cancer relapse, which makes them important therapeutic targets. Ursolic acid (UA), a pentacyclic triterpenoid, has anticancer effects in various types of cancer; however, little is known about its effect on the growth of MCF-7 cell-derived breast cancer stem (BCS)-like cells in estrogen receptor positive breast cancer. In this study, the anticancer activity of UA in MCF-7 cell-derived BCS-like cells and its mechanism of action were evaluated. Furthermore, its inhibitory effects on the proliferation of MCF-7 cell-derived BCS-like cells were compared with that on MCF-7 cells. In MCF-7 cells, UA increased p53 and p21 expression but decreased cyclin D, cyclin E, CDK4, and CDK2 expression to induce cell cycle arrest in the G0/G1 phase. Moreover, UA significantly suppressed migration, invasion, and colony formation in MCF-7 cells, and suppressed mammosphere formation in a concentration- dependent manner. In MCF-7 cell-derived BCS-like cells, UA significantly decreased migration, suppressed p-PI3K, p-AKT, and p-ERK expression, and enhanced p-FoxO1/FoxO3a expression. Accordingly, in MCF-7 cell-derived BCS-like cells, UA suppressed proliferation in part by downregulating ERK and PI3K/AKT signaling pathways. These findings provide the first evidence for the selective effects of UA in BCSs.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
32
|
Xiong Q, Wang M, Liu J, Lin CY. Breast Cancer Cells Metastasize to the Tissue-Engineered Premetastatic Niche by Using an Osteoid-Formed Polycaprolactone/Nanohydroxyapatite Scaffold. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9354202. [PMID: 34938359 PMCID: PMC8687766 DOI: 10.1155/2021/9354202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
It has been deemed that the premetastatic niche (PMN) plays a critical role in facilitating bone metastasis of breast cancer cells. Tissue engineering scaffolds provide an advantageous environment to promote osteogenesis that may mimic the bony premetastatic niches (BPMNs). In this study, human mesenchymal stem cells (hMSCs) were seeded onto designed polycaprolactone/nanohydroxyapatite (PCL-nHA) scaffolds for osteogenic differentiation. Subsequently, a coculture system was used to establish the tissue-engineered BPMNs by culturing breast cancer cells, hMSCs, and osteoid-formed PCL-nHA scaffolds. Afterwards, a migration assay was used to investigate the recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 cells to the BPMNs' supernatants. The cancer stem cell (CSC) properties of these migrated cells were investigated by flow cytometry. Our results showed that the mRNA expression levels of alkaline phosphatase (ALP), Osterix, runt-related transcription factor 2 (Runx2), and collagen type I alpha 1 (COL1A1) on the PCL-nHA scaffolds were dramatically increased compared to the PCL scaffolds on days 11, 18, and 32. The expression of CXCL12 in these BPMNs was increased gradually over coculturing time, and it may be a feasible marker for BPMNs. Furthermore, migration analysis results showed that the higher maturation of BPMNs collectively contributed to the creation of a more favorable niched site for the cancerous invasion. The subpopulation of breast cancer stem cells (BCSCs) was more likely to migrate to fertile BPMNs. The proportion of BCSCs in metastatic MDA-MB-231, MCF-7, and MDA-MB-453 cells were increased by approximately 63.47%, 149.48%, and 127.60%. The current study demonstrated that a designed tissue engineering scaffold can provide a novel method to create a bone-mimicking environment that serves as a useable platform to recapitulate the BPMNs and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jinglong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
33
|
He L, Wick N, Germans SK, Peng Y. The Role of Breast Cancer Stem Cells in Chemoresistance and Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13246209. [PMID: 34944829 PMCID: PMC8699562 DOI: 10.3390/cancers13246209] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Triple negative breast cancer (TNBC) remains an aggressive disease due to the lack of targeted therapies and low rate of response to chemotherapy that is currently the main treatment modality for TNBC. Breast cancer stem cells (BCSCs) are a small subpopulation of breast tumors and recognized as drivers of tumorigenesis. TNBC tumors are characterized as being enriched for BCSCs. Studies have demonstrated the role of BCSCs as the source of metastatic disease and chemoresistance in TNBC. Multiple targets against BCSCs are now under investigation, with the considerations of either selectively targeting BCSCs or co-targeting BCSCs and non-BCSCs (majority of tumor cells). This review article provides a comprehensive overview of recent advances in the role of BCSCs in TNBC and the identification of cancer stem cell biomarkers, paving the way for the development of new targeted therapies. The review also highlights the resultant discovery of cancer stem cell targets in TNBC and the ongoing clinical trials treating chemoresistant breast cancer. We aim to provide insights into better understanding the mutational landscape of BCSCs and exploring potential molecular signaling pathways targeting BCSCs to overcome chemoresistance and prevent metastasis in TNBC, ultimately to improve the overall survival of patients with this devastating disease.
Collapse
Affiliation(s)
- Lin He
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Neda Wick
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Sharon Koorse Germans
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (N.W.); (S.K.G.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235, USA
- Correspondence:
| |
Collapse
|
34
|
Yang H, Cao Y, Li D, Li F, Ma J, Peng S, Liu P. AS1411 and EpDT3-conjugated silver nanotriangle-mediated photothermal therapy for breast cancer and cancer stem cells. Nanomedicine (Lond) 2021; 16:2503-2519. [PMID: 34812051 DOI: 10.2217/nnm-2021-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to construct AS1411 and EpDT3-conjugated PEGylated silver nanotriangles (AENTs) and assess their ability to target breast cancer and cancer stem cells, as well as the antitumor and antimetastatic effects of AENT-mediated photothermal therapy. Materials & methods: AENTs were constructed and characterized. The targeting properties, as well as antitumor and antimetastatic activities, were evaluated in MDA-MB-231 breast cancer cells, cancer stem cells and breast cancer-bearing mice. Results: AENTs displayed excellent targeting property to breast cancer cells and cancer stem cells. AENT-mediated photothermal therapy greatly inhibited (>45%) the migration and invasion of breast cancer cells, as well as tumor growth and lung metastasis in the mice. Conclusion: AENT-mediated photothermal therapy might be an effective strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Huiquan Yang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Fan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Ma
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Siqi Peng
- School of Life Science & Technology, Key Laboratory of Developmental Genes & Human Disease, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Kammerud SC, Metge BJ, Elhamamsy AR, Weeks SE, Alsheikh HA, Mattheyses AL, Shevde LA, Samant RS. Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. J Transl Med 2021; 101:1439-1448. [PMID: 34267320 PMCID: PMC8510891 DOI: 10.1038/s41374-021-00642-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.
Collapse
Affiliation(s)
- Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr R Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
36
|
Ali A, Shafarin J, Unnikannan H, Al-Jabi N, Jabal RA, Bajbouj K, Muhammad JS, Hamad M. Co-targeting BET bromodomain BRD4 and RAC1 suppresses growth, stemness and tumorigenesis by disrupting the c-MYC-G9a-FTH1axis and downregulating HDAC1 in molecular subtypes of breast cancer. Int J Biol Sci 2021; 17:4474-4492. [PMID: 34803511 PMCID: PMC8579449 DOI: 10.7150/ijbs.62236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
BET bromodomain BRD4 and RAC1 oncogenes are considered important therapeutic targets for cancer and play key roles in tumorigenesis, survival and metastasis. However, combined inhibition of BRD4-RAC1 signaling pathways in different molecular subtypes of breast cancer including luminal-A, HER-2 positive and triple-negative breast (TNBC) largely remains unknown. Here, we demonstrated a new co-targeting strategy by combined inhibition of BRD4-RAC1 oncogenic signaling in different molecular subtypes of breast cancer in a context-dependent manner. We show that combined treatment of JQ1 (inhibitor of BRD4) and NSC23766 (inhibitor of RAC1) suppresses cell growth, clonogenic potential, cell migration and mammary stem cells expansion and induces autophagy and cellular senescence in molecular subtypes of breast cancer cells. Mechanistically, JQ1/NSC23766 combined treatment disrupts MYC/G9a axis and subsequently enhances FTH1 to exert antitumor effects. Furthermore, combined treatment targets HDAC1/Ac-H3K9 axis, thus suggesting a role of this combination in histone modification and chromatin modeling. C-MYC depletion and co-treatment with vitamin-C sensitizes different molecular subtypes of breast cancer cells to JQ1/NSC23766 combination and further reduces cell growth, cell migration and mammosphere formation. Importantly, co-targeting RAC1-BRD4 suppresses breast tumor growth in vivo using xenograft mouse model. Clinically, RAC1 and BRD4 expression positively correlates in breast cancer patient's samples and show high expression patterns across different molecular subtypes of breast cancer. Both RAC1 and BRD4 proteins predict poor survival in breast cancer patients. Taken together, our results suggest that combined inhibition of BRD4-RAC1 pathways represents a novel and potential therapeutic approach in different molecular subtypes of breast cancer and highlights the importance of co-targeting RAC1-BRD4 signaling in breast tumorigenesis via disruption of C-MYC/G9a/FTH1 axis and down regulation of HDAC1.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hema Unnikannan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nour Al-Jabi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rola Abu Jabal
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
37
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
38
|
Sánchez-Sánchez AV, García-España A, Sánchez-Gómez P, Font-de-Mora J, Merino M, Mullor JL. The Embryonic Key Pluripotent Factor NANOG Mediates Glioblastoma Cell Migration via the SDF1/CXCR4 Pathway. Int J Mol Sci 2021; 22:ijms221910620. [PMID: 34638956 PMCID: PMC8508935 DOI: 10.3390/ijms221910620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
NANOG is a key transcription factor required for maintaining pluripotency of embryonic stem cells. Elevated NANOG expression levels have been reported in many types of human cancers, including lung, oral, prostate, stomach, breast, and brain. Several studies reported the correlation between NANOG expression and tumor metastasis, revealing itself as a powerful biomarker of poor prognosis. However, how NANOG regulates tumor progression is still not known. We previously showed in medaka fish that Nanog regulates primordial germ cell migration through Cxcr4b, a chemokine receptor known for its ability to promote migration and metastasis in human cancers. Therefore, we investigated the role of human NANOG in CXCR4-mediated cancer cell migration. Of note, we found that NANOG regulatory elements in the CXCR4 promoter are functionally conserved in medaka fish and humans, suggesting an evolutionary conserved regulatory axis. Moreover, CXCR4 expression requires NANOG in human glioblastoma cells. In addition, transwell assays demonstrated that NANOG regulates cancer cell migration through the SDF1/CXCR4 pathway. Altogether, our results uncover NANOG-CXCR4 as a novel pathway controlling cellular migration and support Nanog as a potential therapeutic target in the treatment of Nanog-dependent tumor progression.
Collapse
Affiliation(s)
- Ana Virginia Sánchez-Sánchez
- Bionos Biotech, SL, Biopolo Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.V.S.-S.); (M.M.)
| | - Antonio García-España
- Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005 Tarragona, Spain;
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Crtra/Majadahonda-Pozuelo, Km 2, Majadahonda, 28220 Madrid, Spain;
| | - Jaime Font-de-Mora
- Laboratory of Cellular and Molecular Biology, Instituto de Investigación Sanitaria Hospital La Fe, 46026 Valencia, Spain;
| | - Marián Merino
- Bionos Biotech, SL, Biopolo Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.V.S.-S.); (M.M.)
| | - José Luis Mullor
- Bionos Biotech, SL, Biopolo Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (A.V.S.-S.); (M.M.)
- Correspondence: ; Tel.: +34-961243219
| |
Collapse
|
39
|
Crosstalks Among Cancer Stem Cells and Histopathologic Features in Determining Prognosis in Canine Mammary Gland Carcinomas. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The purpose of the present work was the evaluation of the prognostic potential of histopathologic features, cancer stem cells (CSCs), and epthelial-mesenchymal transition (EMT) in relation to lymph node status and lymphovascular invasion (LVI) in canine mammary gland carcinomas (CMGCs). CSCs are proposed as the main cause of tumorigenesis, therapy failure, and recurrence which form a small fraction of tumor bulk. We evaluated presence of micropapillary growth pattern (MGP), infiltration into surrounding tissues (IST), and vasculogenic mimicry (VM) in H&E stained slides of 26 paraffin-embedded tumor samples. Lymph nodes of all cases were assessed. Additionally, they were examined immunohistochemically in terms of vimentin expression as an indicator of EMT which is a well-known mechanism for metastasis, and CD44, CD24, and ALDH1 for CSCs detection. Data analyses showed significant relationships between MGP and CSCs (P = 0.037), VM and CSCs (P = 0.013), lymph node status and CSCs (P = 0.0001), lymph node status and EMT (P = 0.003), IST and LVI (P = 0.05), VM and LVI (P = 0.01), VM and lymph node status (P = 0.007), and LVI and lymph node status (P = 0.04). Results indicated the prognostic value of MGP, VM, and CSCs with respect to confirmed prognostic markers, including LVI and lymph node involvement, in CMGCs.
Collapse
|
40
|
Qiao X, Zhang Y, Sun L, Ma Q, Yang J, Ai L, Xue J, Chen G, Zhang H, Ji C, Gu X, Lei H, Yang Y, Liu C. Association of human breast cancer CD44 -/CD24 - cells with delayed distant metastasis. eLife 2021; 10:65418. [PMID: 34318746 PMCID: PMC8346282 DOI: 10.7554/elife.65418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/25/2021] [Indexed: 12/09/2022] Open
Abstract
Tumor metastasis remains the main cause of breast cancer-related deaths, especially delayed breast cancer distant metastasis. The current study assessed the frequency of CD44-/CD24- breast cancer cells in 576 tissue specimens for associations with clinicopathological features and metastasis and investigated the underlying molecular mechanisms. The results indicated that higher frequency (≥19.5%) of CD44-/CD24- cells was associated with delayed postoperative breast cancer metastasis. Furthermore, CD44-/CD24-triple negative breast cancer (TNBC) cells spontaneously converted into CD44+/CD24-cancer stem cells (CSCs) with properties similar to CD44+/CD24-CSCs from primary human breast cancer cells and parental TNBC cells in terms of stemness marker expression, self-renewal, differentiation, tumorigenicity, and lung metastasis in vitro and in NOD/SCID mice. RNA sequencing identified several differentially expressed genes (DEGs) in newly converted CSCs and RHBDL2, one of the DEGs, expression was upregulated. More importantly, RHBDL2 silencing inhibited the YAP1/USP31/NF-κB signaling and attenuated spontaneous CD44-/CD24- cell conversion into CSCs and their mammosphere formation. These findings suggest that the frequency of CD44-/CD24- tumor cells and RHBDL2 may be valuable for prognosis of delayed breast cancer metastasis, particularly for TNBC.
Collapse
Affiliation(s)
- Xinbo Qiao
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China.,Dapartment of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qingtian Ma
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jie Yang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Liping Ai
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guanglei Chen
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Ce Ji
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Manupati K, Yeeravalli R, Kaushik K, Singh D, Mehra B, Gangane N, Gupta A, Goswami K, Das A. Activation of CD44-Lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166228. [PMID: 34311079 DOI: 10.1016/j.bbadis.2021.166228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer stem cells (CSCs) are distinct CD44+-subpopulations that are involved in metastasis and chemoresistance. However, the underlying molecular mechanism of CD44 in breast CSCs-mediated tumorigenesis remains elusive. We observed high CD44 expression in advanced-stage clinical breast tumor samples. CD44 activation in breast CSCs sorted from various triple negative breast cancer (TNBC) cell lines induced proliferation, migration, invasion, mammosphere formation that were reversed in presence of inhibitor, 4-methyl umbelliferone or CD44 silencing. CD44 activation in breast CSCs induced Src, Akt, and nuclear translocation of pSTAT3. PCR arrays revealed differential expression of a metabolic gene, Lipoprotein lipase (LPL), and transcription factor, SNAI3. Differential transcriptional regulation of LPL by pSTAT3 and SNAI3 was confirmed by promoter-reporter and chromatin immunoprecipitation analysis. Orthotopic xenograft murine breast tumor model revealed high tumorigenicity of CD24-/CD44+-breast CSCs as compared with CD24+-breast cancer cells. Furthermore, stable breast CSCs-CD44 shRNA and/or intratumoral administration of Tetrahydrolipstatin (LPL inhibitor) abrogated tumor progression and neoangiogenesis. Thus, LPL serves as a potential target for an efficacious therapeutics against aggressive breast cancer.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Digvijay Singh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Bhupendra Mehra
- Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Nitin Gangane
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Anupama Gupta
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
42
|
Chen H, Zhang M, Wang Z, Li L, Li Q, Wang H. The Effect of p53-R249S on the Suppression of Hepatocellular Carcinoma Cells Survival Induced by Podophyllum Derivatives. Anticancer Agents Med Chem 2021; 20:865-874. [PMID: 32067620 DOI: 10.2174/1871520620666200218110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/01/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC), the second leading cause of cancer-related mortality with over half a million new cases diagnosed annually in the world, accounts for nearly 70% of cancer deaths in parts of Asia and Africa. Podophyllum, one of the important members of the lignane class of natural products derived from plants in Podophyllum peltatum L., has been shown to suppress tumor growth in various cancers. However, the effects of Podophyllum compounds on HCC and the mechanisms for its tumor-suppressive function remain unknown. METHODS A molecular docking study was employed to the analysis of the interaction between compounds and their targeted proteins. Cell proliferation was measured by MTT assay. Western blot analysis was used to evaluate protein expression. qRT-PCR was performed to assess RNA expression. RESULTS Molecular docking analysis was consistent with the beneficial effect of fluorine atom substituent in the 3-position of 2-aminopyridine in our previous study. Also, P-3F and D-3F displayed the most potent cytotoxicities against PLC/PRF/5 with p53-R249S and weakest inhibition of L02 (normal liver cell) growth. However, these derivatives had no effect on the suppression of HepG2 (wild-type p53) and Hep3B (p53-null) proliferation significantly. Further study showed that both compounds increase γ-H2AX expression in PLC/PRF/5 cell, along with repression of the c-Myc activation, purportedly by induction of p53 level and transcriptional activation. CONCLUSION The results suggested that podophyllum derivatives containing fluorine atom in the 3-position of 2- aminopyridine could inhibit the growth of HCC harboring p53-R249S by restoring the activity of p53 with decreasing the level of c-Myc.
Collapse
Affiliation(s)
- Huan Chen
- School of Public Health, Nanchang University, Nanchang, China,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Mingyang Zhang
- School of Public Health, Nanchang University, Nanchang, China,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Ziping Wang
- School of Public Health, Nanchang University, Nanchang, China,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Lingqi Li
- School of Public Health, Nanchang University, Nanchang, China,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Qiqi Li
- School of Public Health, Nanchang University, Nanchang, China,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Huai Wang
- School of Public Health, Nanchang University, Nanchang, China,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Koh MZ, Ho WY, Yeap SK, Ali NM, Boo L, Alitheen NB. Regulation of Cellular and Cancer Stem Cell-Related Putative Gene Expression of Parental and CD44 +CD24 - Sorted MDA-MB-231 Cells by Cisplatin. Pharmaceuticals (Basel) 2021; 14:ph14050391. [PMID: 33919109 PMCID: PMC8143088 DOI: 10.3390/ph14050391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/04/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that promotes a higher risk of metastasis and cancer reoccurrence. Cisplatin is one of the potential anticancer drugs for treating TNBC. However, the occurrence of cisplatin resistance still remains one of the challenges in fully eradicating TNBC. The presence of cancer stem cells (CSCs) has been proposed as one of the factors contributing to the development of cisplatin resistance. In this study, we aimed to characterize the cellular properties and reveal the corresponding putative target genes involved in cisplatin resistance associated with CSCs using the TNBC cell line (MDA-MB-231). CSC-like cells were isolated from parental cells and the therapeutic effect of cisplatin on CSC-like cells was compared to that of the parental cells via cell characterization bioassays. A PCR array was then conducted to study the expression of cellular mRNA for each subpopulation. As compared to treated parental cells, treated CSCs displayed lower events of late apoptosis/necrosis and G2/M phase cell arrest, with higher mammosphere formation capacity. Furthermore, a distinct set of putative target genes correlated to the Hedgehog pathway and angiogenesis were dysregulated solely in CSC-like cells after cisplatin treatment, which were closely related to the regulation of chemoresistance and self-renewability in breast cancer. In summary, both cellular and gene expression studies suggest the attenuated cytotoxicity of cisplatin in CSC-like cells as compared to parental cells. Understanding the role of dysregulated putative target genes induced by cisplatin in CSCs may aid in the potential development of therapeutic targets for cisplatin-resistant breast cancer.
Collapse
Affiliation(s)
- May Zie Koh
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia;
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih 43500, Malaysia;
- Correspondence: (W.Y.H.); (S.K.Y.)
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Malaysia
- Correspondence: (W.Y.H.); (S.K.Y.)
| | - Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.)
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras 43000, Malaysia; (N.M.A.); (L.B.)
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
44
|
Nasal Turbinate Mesenchymal Stromal Cells Preserve Characteristics of Their Neural Crest Origin and Exert Distinct Paracrine Activity. J Clin Med 2021; 10:jcm10081792. [PMID: 33924095 PMCID: PMC8074274 DOI: 10.3390/jcm10081792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The sources of mesenchymal stromal cells (MSCs) for cell therapy trials are expanding, increasing the need for their characterization. Here, we characterized multi-donor, turbinate-derived MSCs (TB-MSCs) that develop from the neural crest, and compared them to bone marrow-derived MSCs (BM-MSCs). TB-MSCs had higher proliferation potential and higher self-renewal of colony forming cells, but lower potential for multi-lineage differentiation than BM-MSCs. TB-MSCs expressed higher levels of neural crest markers and lower levels of pericyte-specific markers. These neural crest-like properties of TB-MSCs were reflected by their propensity to differentiate into neuronal cells and proliferative response to nerve growth factors. Proteomics (LC-MS/MS) analysis revealed a distinct secretome profile of TB-MSCs compared to BM and adipose tissue-derived MSCs, exhibiting enrichments of factors for cell-extracellular matrix interaction and neurogenic signaling. However, TB-MSCs and BM-MSCs exhibited comparable suppressive effects on the allo-immune response and comparable stimulatory effects on hematopoietic stem cell self-renewal. In contrast, TB-MSCs stimulated growth and metastasis of breast cancer cells more than BM-MSCs. Altogether, our multi-donor characterization of TB-MSCs reveals distinct cell autonomous and paracrine properties, reflecting their unique developmental origin. These findings support using TB-MSCs as an alternative source of MSCs with distinct biological characteristics for optimal applications in cell therapy.
Collapse
|
45
|
Rigiracciolo DC, Cirillo F, Talia M, Muglia L, Gutkind JS, Maggiolini M, Lappano R. Focal Adhesion Kinase Fine Tunes Multifaced Signals toward Breast Cancer Progression. Cancers (Basel) 2021; 13:645. [PMID: 33562737 PMCID: PMC7915897 DOI: 10.3390/cancers13040645] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer represents the most common diagnosed malignancy and the main leading cause of tumor-related death among women worldwide. Therefore, several efforts have been made in order to identify valuable molecular biomarkers for the prognosis and prediction of therapeutic responses in breast tumor patients. In this context, emerging discoveries have indicated that focal adhesion kinase (FAK), a non-receptor tyrosine kinase, might represent a promising target involved in breast tumorigenesis. Of note, high FAK expression and activity have been tightly correlated with a poor clinical outcome and metastatic features in several tumors, including breast cancer. Recently, a role for the integrin-FAK signaling in mechanotransduction has been suggested and the function of FAK within the breast tumor microenvironment has been ascertained toward tumor angiogenesis and vascular permeability. FAK has been also involved in cancer stem cells (CSCs)-mediated initiation, maintenance and therapeutic responses of breast tumors. In addition, the potential of FAK to elicit breast tumor-promoting effects has been even associated with the capability to modulate immune responses. On the basis of these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. Here, we recapitulate the multifaceted action exerted by FAK and its prognostic significance in breast cancer. Moreover, we highlight the recent clinical evidence regarding the usefulness of FAK inhibitors in the treatment of breast tumors.
Collapse
Affiliation(s)
- Damiano Cosimo Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Jorge Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (F.C.); (M.T.); (L.M.); (R.L.)
| |
Collapse
|
46
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
47
|
Castelli V, Catanesi M, Alfonsetti M, Laezza C, Lombardi F, Cinque B, Cifone MG, Ippoliti R, Benedetti E, Cimini A, d’Angelo M. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021; 9:biomedicines9020127. [PMID: 33525605 PMCID: PMC7912302 DOI: 10.3390/biomedicines9020127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most frequent cancer and the second leading cause of death among women. Triple-negative breast cancer is the most aggressive subtype of breast cancer and is characterized by the absence of hormone receptors and human epithelial growth factor receptor 2. Cancer stem cells (CSCs) represent a small population of tumor cells showing a crucial role in tumor progression, metastasis, recurrence, and drug resistance. The presence of CSCs can explain the failure of conventional therapies to completely eradicate cancer. Thus, to overcome this limit, targeting CSCs may constitute a promising approach for breast cancer treatment, especially in the triple-negative form. To this purpose, we isolated and characterized breast cancer stem cells from a triple-negative breast cancer cell line, MDA-MB-231. The obtained mammospheres were then treated with the specific PPARα antagonist GW6471, after which, glucose, lipid metabolism, and invasiveness were analyzed. Notably, GW6471 reduced cancer stem cell viability, proliferation, and spheroid formation, leading to apoptosis and metabolic impairment. Overall, our findings suggest that GW6471 may be used as a potent adjuvant for gold standard therapies for triple-negative breast cancer, opening the possibility for preclinical and clinical trials for this class of compounds.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology G. Salvatore, CNR, 80131 Naples, Italy;
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.d.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Correspondence: (A.C.); (M.d.)
| |
Collapse
|
48
|
Kumar S, Nandi A, Singh S, Regulapati R, Li N, Tobias JW, Siebel CW, Blanco MA, Klein-Szanto AJ, Lengner C, Welm AL, Kang Y, Chakrabarti R. Dll1 + quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nat Commun 2021; 12:432. [PMID: 33462238 PMCID: PMC7813834 DOI: 10.1038/s41467-020-20664-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
Development of chemoresistance in breast cancer patients greatly increases mortality. Thus, understanding mechanisms underlying breast cancer resistance to chemotherapy is of paramount importance to overcome this clinical challenge. Although activated Notch receptors have been associated with chemoresistance in cancer, the specific Notch ligands and their molecular mechanisms leading to chemoresistance in breast cancer remain elusive. Using conditional knockout and reporter mouse models, we demonstrate that tumor cells expressing the Notch ligand Dll1 is important for tumor growth and metastasis and bear similarities to tumor-initiating cancer cells (TICs) in breast cancer. RNA-seq and ATAC-seq using reporter models and patient data demonstrated that NF-κB activation is downstream of Dll1 and is associated with a chemoresistant phenotype. Finally, pharmacological blocking of Dll1 or NF-κB pathway completely sensitizes Dll1+ tumors to chemotherapy, highlighting therapeutic avenues for chemotherapy resistant breast cancer patients in the near future.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Snahlata Singh
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rohan Regulapati
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ning Li
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John W Tobias
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Mario Andres Blanco
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Christopher Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Liao YM, Wang YH, Hung JT, Lin YJ, Huang YL, Liao GS, Hsu YL, Wu JC, Yu AL. High B3GALT5 expression confers poor clinical outcome and contributes to tumor progression and metastasis in breast cancer. Breast Cancer Res 2021; 23:5. [PMID: 33413566 PMCID: PMC7792347 DOI: 10.1186/s13058-020-01381-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Existence of breast cancer stem cells (BCSCs) is implicated in disease relapse, metastasis, and resistance of treatment. β1,3-Galactosyltransferase 5 (B3GALT5) has been shown to be a pro-survival marker for BCSCs. However, little is known about the prognostic significance of B3GALT5 in breast cancer. METHODS Paired tissues (tumor part and adjacent non-tumor part) from a cohort of 202 women with breast cancer were used to determine the expression levels of B3GALT5 mRNA by qRT-PCR. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of relapse-free survival (RFS) and overall survival (OS). Both breast cancer cells and cancer stem cells (BCSCs) were used to see the in vitro effects of knockdown or overexpression of B3GALT5 on cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). A patient-derived xenograft (PDX) model was used to see the in vivo effects of knockdown of B3GALT5 in BCSCs on tumor growth and metastasis. RESULTS Higher expression of B3GALT5 in 202 breast cancer tissues, especially in adjacent non-tumor tissue, correlated with poor clinical outcomes including shorter OS and RFS in all patients, especially those with early stage breast cancer. In vitro studies showed B3GALT5 could enhance cell migration, invasion, mammosphere formation, and EMT. Of note, B3GALT5 upregulated the expression of β-catenin and EMT activator zinc finger E-box binding homeobox 1 (ZEB1) pathway in BCSCs. In vivo studies showed B3GALT5 expression in BCSCs is critical for not only tumor growth but also lymph node and lung metastasis in PDX mice. CONCLUSION Our results demonstrated the value of B3GALT5 as a prognostic marker of breast cancer, especially among the early stage patients, and its crucial roles in regulating EMT, cell migration, and stemness thereby promoting breast cancer progression.
Collapse
Affiliation(s)
- Yu-Mei Liao
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
- Ph.D. Program in Translational Medicine, Kaohsiung Medical University, Kaohsiung, and Academia Sinica, Taipei, 115, Taiwan
- Division of Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Yu-Ju Lin
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Yen-Lin Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Guo-Shiou Liao
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jen-Chien Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
- Department of Pediatrics, University of California in San Diego, San Diego, USA.
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
50
|
Solvent fractions of selected Ethiopian medicinal plants used in traditional breast cancer treatment inhibit cancer stem cells in a breast cancer cell line. BMC Complement Med Ther 2020; 20:366. [PMID: 33238963 PMCID: PMC7687706 DOI: 10.1186/s12906-020-03154-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background The incidence and mortality of breast cancer in women is increasing worldwide. Breast cancer contains a subpopulation of cells known as cancer stem cells (CSCs). The CSCs are believed to be responsible for chemotherapeutic resistance and are also involved in tumor initiation, progression, evolution, and metastasis to distant sites. The present study aimed to investigate the anti-CSC potential of selected Ethiopian medicinal plants traditionally used for breast cancer treatment. Methods The solvent fractions of three medicinal plants (the ethyl acetate fraction of Vernonia leopoldi, the aqueous fraction of Sideroxylon oxyacanthum, and the chloroform fraction of Clematis simensis) resulting from the methanolic crude extracts were selected based on their previously demonstrated cytotoxic effects on breast cancer cell lines. The effect of these solvent fractions on the status of the cancer stem cell subpopulation of the JIMT-1 cell line was assessed by flow cytometric evaluation of the proportion of aldehyde dehydrogenase positive cells and by measuring colony forming efficiency in a serum-free soft agar assay after treatment. Effects on cell migration using a wound healing assay and on tumor necrosis factor-α-induced translocation of nuclear factor-kappa B to the cell nucleus were also investigated. Results The solvent fractions showed a dose-dependent reduction in the aldehyde dehydrogenase positive subpopulation of JIMT-1 cells. The chloroform fraction of C. simensis (80 μg/mL) completely blocked colony formation of JIMT-1 cells. The wound healing assay showed that all fractions significantly reduced cell migration. The ethyl acetate fraction of V. leopoldi (0.87 μg/mL) significantly inhibited tumor necrosis factor-α-induced nuclear factor-kappa B translocation to the nucleus. Conclusion The solvent fractions of the medicinal plants showed desirable activities against breast cancer stem cells in the JIMT-1 cell line, which warrants further studies.
Collapse
|