1
|
Berrocal M, Alvarez-Barrientos A, Mata AM. Neurotoxic amyloid β-peptide and tau produce cytokine-like effects on PMCA in glioblastoma cell lines, enhancing its activity and isoforms expression. FEBS Open Bio 2025. [PMID: 40325855 DOI: 10.1002/2211-5463.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
The transformation of astrocytes into neurotoxic reactive astrocytes, classified as A1, by inflammatory cytokines, and their link to brain damage and neurodegenerative diseases has been widely documented. However, the roles of two biomarkers of Alzheimer's disease (AD), amyloid β-peptide (Aβ) and tau, and that of calcium pumps which are involved in the fine-tuning of calcium homeostasis, are poorly understood in astrocytes. In this study, we showed that treating astrocytoma U-251 cells with a cocktail of cytokines significantly increased plasma membrane Ca2+-ATPase (PMCA) activity and expression levels of the four PMCA isoforms. Moreover, treatment of cells with Aβ1-42 or tau induced a similar upregulation of PMCA activity and isoform expression levels as cytokines. These effects support the close association of Aβ and tau with inflammation. This study may help better understand the role of PMCA in promoting calcium extrusion from astrocytes transformed by AD markers.
Collapse
Affiliation(s)
- María Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares (IBPM), Universidad de Extremadura, Badajoz, Spain
| | - Alberto Alvarez-Barrientos
- Servicio de Técnicas Aplicadas a la Biociencia (STAB), Edificio Guadiana, SAIUEx, Universidad de Extremadura, Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- Instituto de Biomarcadores de Patologías Moleculares (IBPM), Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Wang Y, Wang J, Chen X, Lin Z, You Z, He K, Guo T, Zhao J, Huang Q, Ni R, Guan Y, Li B, Xie F. Tau pathology is associated with postsynaptic metabotropic glutamate receptor 5 (mGluR5) in early Alzheimer's disease in a sex-specific manner. Alzheimers Dement 2025; 21:e70004. [PMID: 39998900 PMCID: PMC11853735 DOI: 10.1002/alz.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION To investigate the associations of metabotropic glutamate receptor 5 (mGluR5) with tau deposition and cognitive ability in patients with early Alzheimer's disease (AD). METHODS Twenty-six cognitively impaired (CI) and 14 cognitively unimpaired (CU) individuals underwent mGluR5 positron emission tomography (PET) ([18F]PSS232), amyloid PET ([18F]florbetapir), and tau PET ([18F]MK6240), and neuropsychological assessment. The relationships among mGluR5 availability, tau deposition, and neuropsychological assessment were analyzed using Spearman's correlation and mediation analyses. RESULTS CI patients had lower mGluR5 in the hippocampus than CU (standardized uptake value ratio [SUVr]: 2.03 ± 0.25 vs 1.79 ± 0.17, p = 0.003). Hippocampal mGluR5 was negatively associated with hippocampal tau deposition (r = -.46, p = 0.003) and positively associated with cognitive performance, but only in women. Hippocampal tau deposition mediated the effect of mGluR5 on cognitive performance. DISCUSSION Reduced hippocampal mGluR5 is negatively related with tau deposition in most cortical regions and positively associated with cognitive performance, making it a promising biomarker for AD diagnosis and therapy. HIGHLIGHTS Cognitively impaired (CI) patients exhibited lower metabotropic glutamate receptor 5 (mGluR5) availability in the hippocampus than cognitively unimpaired (CU) subjects. Hippocampal mGluR5 availability was negatively associated with tau deposition in widespread cortex. Hippocampal mGluR5 availability was positively associated with cognitive performance. The close association of mGluR5 with tau and cognition performance exists only in females. Tau pathology mediated the relationship between mGluR5 availability and cognition.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Zengping Lin
- Central Research InstituteUnited Imaging Health Care Group Co., Ltd.ShanghaiChina
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Ruiqing Ni
- Institute for Biomedical Engineering, Institute for Regenerative MedicineUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Hakimi Naeini S, Rajabi-Maham H, Hosseini A, Azizi V. Neuroprotective impact of glycitin on memory impairment in a pentylenetetrazol-induced chronic epileptic rat model: insights into hippocampal histology, oxidative stress, and inflammation. J Nat Med 2025; 79:59-72. [PMID: 39365539 DOI: 10.1007/s11418-024-01846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Epilepsy, characterized by recurrent seizures, often accompanies neurocognitive impairments and is associated with increased oxidative stress and inflammation. This study investigates the possible neuroprotective properties of glycitin, a soy isoflavone, on memory impairment, its impact on oxidative stress responses, and inflammatory gene expression in a chronic epileptic rat model induced by pentylenetetrazol (PTZ). Glycitin was administered at varying doses to evaluate its potential neuroprotective impact on memory, oxidative stress, and inflammation in this model. Behavioural assessments, memory retention and recall capabilities, histopathological examinations, measurements of oxidative stress biomarkers, and molecular assessments were employed for comprehensive evaluation. The results demonstrated that glycitin significantly improved memory impairment and reduced oxidative stress in epileptic rats. Additionally, glycitin treatment decreased the expression of tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB), indicating its potential to modulate the inflammatory response associated with epilepsy. These observations underscore the potential of glycitin as a therapeutic candidate for mitigating memory impairments linked to chronic epilepsy due to its antioxidant and anti-inflammatory properties, offering insights into novel avenues for the development of targeted interventions aimed at preserving cognitive function and ameliorating oxidative damage and inflammation in epileptic conditions.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Hossen F, Geng X, Sun GY, Yao X, Lee JC. Oligomeric Amyloid-β and Tau Alter Cell Adhesion Properties and Induce Inflammatory Responses in Cerebral Endothelial Cells Through the RhoA/ROCK Pathway. Mol Neurobiol 2024; 61:8759-8776. [PMID: 38561558 PMCID: PMC11445398 DOI: 10.1007/s12035-024-04138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Dysfunction of cerebral endothelial cells (CECs) has been implicated in the pathology of Alzheimer's disease (AD). Despite evidence showing cytotoxic effects of oligomeric amyloid-β (oAβ) and Tau (oTau) in the central nervous system, their direct effects on CECs have not been fully investigated. In this study, we examined the direct effects of oAβ, oTau, and their combination on cell adhesion properties and inflammatory responses in CECs. We found that both oAβ and oTau increased cell stiffness, as well as the p-selectin/Sialyl-LewisX (sLeX) bonding-mediated membrane tether force and probability of adhesion in CECs. Consistent with these biomechanical alterations, treatments with oAβ or oTau also increased actin polymerization and the expression of p-selectin at the cell surface. These toxic oligomeric peptides also triggered inflammatory responses, including upregulations of p-NF-kB p65, IL-1β, and TNF-α. In addition, they rapidly activated the RhoA/ROCK pathway. These biochemical and biomechanical changes were further enhanced by the treatment with the combination of oAβ and oTau, which were significantly suppressed by Fasudil, a specific inhibitor for the RhoA/ROCK pathway. In conclusion, our data suggest that oAβ, oTau, and their combination triggered subcellular mechanical alterations and inflammatory responses in CECs through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Faruk Hossen
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xue Geng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Xincheng Yao
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James C Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
5
|
Basheer N, Muhammadi MK, Freites CL, Avila M, Momand MUD, Hryntsova N, Smolek T, Katina S, Zilka N. TLR4-mediated chronic neuroinflammation has no effect on tangle pathology in a tauopathy mouse model. Front Aging Neurosci 2024; 16:1468602. [PMID: 39503044 PMCID: PMC11536299 DOI: 10.3389/fnagi.2024.1468602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is marked by the accumulation of fibrillary aggregates composed of pathological tau protein. Although neuroinflammation is frequently observed in conjunction with tau pathology, current preclinical evidence does not sufficiently establish a direct causal role in tau tangle formation. This study aimed to evaluate whether chronic Toll-like receptor 4 (TLR4) stimulation, induced by a high dose of lipopolysaccharide (LPS, 5 mg/kg), exacerbates neurofibrillary tangle (NFT) pathology in a transgenic mouse model of tauopathy that expresses human truncated 151-391/3R tau, an early feature of sporadic AD. Methods We utilized a transgenic mouse model of tauopathy subjected to chronic TLR4 stimulation via weekly intraperitoneal injections of LPS over nine consecutive weeks. Neurofibrillary tangle formation, microglial activation, and tau hyperphosphorylation in the brainstem and hippocampus were assessed through immunohistochemistry, immunofluorescence, and detailed morphometric analysis of microglia. Results Chronic LPS treatment led to a significant increase in the number of Iba-1+ microglia in the LPS-treated group compared to the sham group (p < 0.0001). Notably, there was a 1.5- to 1.7-fold increase in microglia per tangle-bearing neuron in the LPS-treated group. These microglia exhibited a reactive yet exhausted phenotype, characterized by a significant reduction in cell area (p < 0.0001) without significant changes in other morphometric parameters, such as perimeter, circumference, solidity, aspect ratio, or arborization degree. Despite extensive microglial activation, there was no observed reduction in tau hyperphosphorylation or a decrease in tangle formation in the brainstem, where pathology predominantly develops in this model. Discussion These findings suggest that chronic TLR4 stimulation in tau-transgenic mice results in significant microglial activation but does not influence tau tangle formation. This underscores the complexity of the relationship between neuroinflammation and tau pathology, indicating that additional mechanisms may be required for neuroinflammation to directly contribute to tau tangle formation.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Carlos Leandro Freites
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Martin Avila
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Miraj Ud Din Momand
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Natalia Hryntsova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislav Katina
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czechia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Mishra P, Sivakumar A, Johnson A, Pernaci C, Warden AS, El-Hachem LR, Hansen E, Badell-Grau RA, Khare V, Ramirez G, Gillette S, Solis AB, Guo P, Coufal N, Cherqui S. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich's ataxia iPSC-derived neurons. Front Pharmacol 2024; 15:1323491. [PMID: 38420191 PMCID: PMC10899513 DOI: 10.3389/fphar.2024.1323491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Anusha Sivakumar
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Carla Pernaci
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Anna S. Warden
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Lilas Rony El-Hachem
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Rafael A. Badell-Grau
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Sydney Gillette
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Angelyn B. Solis
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Peng Guo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Nicole Coufal
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Wu YC, Bogale TA, Koistinaho J, Pizzi M, Rolova T, Bellucci A. The contribution of β-amyloid, Tau and α-synuclein to blood-brain barrier damage in neurodegenerative disorders. Acta Neuropathol 2024; 147:39. [PMID: 38347288 PMCID: PMC10861401 DOI: 10.1007/s00401-024-02696-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid β (Aβ), hyperphosphorylated Tau or α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenerative diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aβ, Tau and α-syn species. While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cellular and molecular mechanisms driving Aβ, Tau and α-syn-related brain damage remain to be fully clarified. In the last few years, studies have shown that Aβ, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting blood-brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation and dysfunction. Here, we summarize and critically discuss key findings showing how Aβ, Tau and α-syn can contribute to BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis and treatment of acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Ying-Chieh Wu
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tizibt Ashine Bogale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
- Department of Acute Brain and Cardiovascular Injury, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, BS, Italy.
| |
Collapse
|
8
|
Jiang Z, Wang J, Qin Y, Liu S, Luo B, Bai F, Wei H, Zhang S, Wei J, Ding G, Ma L, He S, Chen R, Sun Y, Chen Y, Wang L, Xu H, Wang X, Chen G, Lei W. A nonhuman primate model with Alzheimer's disease-like pathology induced by hippocampal overexpression of human tau. Alzheimers Res Ther 2024; 16:22. [PMID: 38281031 PMCID: PMC10821564 DOI: 10.1186/s13195-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most burdening diseases of the century with no disease-modifying treatment at this time. Nonhuman primates (NHPs) share genetic, anatomical, and physiological similarities with humans, making them ideal model animals for investigating the pathogenesis of AD and potential therapies. However, the use of NHPs in AD research has been hindered by the paucity of AD monkey models due to their long generation time, ethical considerations, and technical challenges in genetically modifying monkeys. METHODS Here, we developed an AD-like NHP model by overexpressing human tau in the bilateral hippocampi of adult rhesus macaque monkeys. We evaluated the pathological features of these monkeys with immunostaining, Nissl staining, cerebrospinal fluid (CSF) analysis, magnetic resonance imaging (MRI), positron emission tomography (PET), and behavioural tests. RESULTS We demonstrated that after hippocampal overexpression of tau protein, these monkeys displayed multiple pathological features of AD, including 3-repeat (3R)/4-repeat (4R) tau accumulation, tau hyperphosphorylation, tau propagation, neuronal loss, hippocampal atrophy, neuroinflammation, Aβ clearance deficits, blood vessel damage, and cognitive decline. More interestingly, the accumulation of both 3R and 4R tau is specific to NHPs but not found in adult rodents. CONCLUSIONS This work establishes a tau-induced AD-like NHP model with many key pathological and behavioural features of AD. In addition, our model may potentially become one of the AD NHP models adopted by researchers worldwide since it can be generated within 2 ~ 3 months through a single injection of AAVs into the monkey brains. Hence, our model NHPs may facilitate mechanistic studies and therapeutic treatments for AD.
Collapse
Affiliation(s)
- Zhouquan Jiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jing Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yongpeng Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Bin Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Fan Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Huiyi Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Junjie Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Guoyu Ding
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Long Ma
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shu He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Rongjie Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ying Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yi Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
9
|
Lendvai-Emmert D, Magyar-Sumegi ZD, Hegedus E, Szarka N, Fazekas B, Amrein K, Czeiter E, Buki A, Ungvari Z, Toth P. Mild traumatic brain injury-induced persistent blood-brain barrier disruption is prevented by cyclosporine A treatment in hypertension. Front Neurol 2023; 14:1252796. [PMID: 38073626 PMCID: PMC10699755 DOI: 10.3389/fneur.2023.1252796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Mild traumatic brain injury (mTBI) and hypertension synergize to induce persistent disruption of the blood-brain barrier (BBB), neuroinflammation and cognitive decline. However, the underlying mechanisms are not known. Cerebral production of Cyclophilin A (CyPA) is induced in hypertension and after TBI, and it was demonstrated to activate the nuclear factor-κB (NF-kB)- matrix-metalloproteinase-9 (MMP-9) pathway in cerebral vessels leading to BBB disruption. Methods To test the role of CyPA in mTBI- and hypertension-induced BBB disruption we induced mTBI in normotensive and spontaneously hypertensive rats (SHR), then the animals were treated with cyclosporine A (a specific inhibitor of CyPA production) or vehicle for 7 days. We assessed BBB permeability and integrity, cerebral expression and activity of the CyPA-NF-kB-MMP-9 pathway, extravasation of fibrin and neuroinflammation. Results We found that mild TBI induced BBB disruption and upregulation of the CyPA-NF-kB-MMP-9 pathway in hypertension, which were prevented by blocking CyPA. Cyclosporine treatment and preservation of BBB function prevented accumulation of blood-derived fibrin in the brain parenchyma of hypertensive rats after mTBI and reversed increased neuroinflammation. Discussion We propose that mTBI and hypertension interact to promote BBB disruption via the CyPA-NF-kB-MMP-9 pathway, and inhibition of cyclophilin production after mTBI may exert neuroprotection and improve cognitive function in hypertensive patients.
Collapse
Affiliation(s)
- Dominika Lendvai-Emmert
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsofia Dina Magyar-Sumegi
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pecs, Pecs, Hungary
| | - Nikolett Szarka
- Department of Primary Health Care, Medical School, University of Pecs, Pecs, Hungary
| | - Balint Fazekas
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Andras Buki
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Faculty of Medicine and Health, Orebro University, Orebro, Sweden
| | - Zoltan Ungvari
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Guangming G, Mei C, Qinfeng Y, Xiang G, Chenchen Z, Qingyuan S, Wei X, Junhua G. Neurexin and neuroligins jointly regulate synaptic degeneration at the Drosophila neuromuscular junction based on TEM studies. Front Cell Neurosci 2023; 17:1257347. [PMID: 38026694 PMCID: PMC10646337 DOI: 10.3389/fncel.2023.1257347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
The Drosophila larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, primarily based on transmission electron microscopy (TEM) studies. When degeneration starts, the subsynaptic reticulum (SSR) swells, retracts and folds inward, and the residual SSR then degenerates into a disordered, thin or linear membrane. The axon terminal begins to degenerate from the central region, and the T-bar detaches from the presynaptic membrane with clustered synaptic vesicles to accelerate large-scale degeneration. There are two degeneration modes for clear synaptic vesicles. In the first mode, synaptic vesicles without actin filaments degenerate on the membrane with ultrafine spots and collapse and disperse to form an irregular profile with dark ultrafine particles. In the second mode, clear synaptic vesicles with actin filaments degenerate into dense synaptic vesicles, form irregular dark clumps without a membrane, and collapse and disperse to form an irregular profile with dark ultrafine particles. Last, all residual membranes in NMJ boutons degenerate into a linear shape, and all the residual elements in axon terminals degenerate and eventually form a cluster of dark ultrafine particles. Swelling and retraction of the SSR occurs prior to degradation of the axon terminal, which degenerates faster and with more intensity than the SSR. NMJ bouton degeneration occurs under normal physiological conditions but is accelerated in Drosophila neurexin (dnrx) dnrx273, Drosophila neuroligin (dnlg) dnlg1 and dnlg4 mutants and dnrx83;dnlg3 and dnlg2;dnlg3 double mutants, which suggests that both neurexin and neuroligins play a vital role in preventing synaptic degeneration.
Collapse
Affiliation(s)
- Gan Guangming
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Chen Mei
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Yu Qinfeng
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gao Xiang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhang Chenchen
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Qingyuan
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Xie Wei
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
- The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu, China
| | - Geng Junhua
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
- Shenzhen Research Institute of Southeast University, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
12
|
Swinford CG, Risacher SL, Vosmeier A, Deardorff R, Chumin EJ, Dzemidzic M, Wu YC, Gao S, McDonald BC, Yoder KK, Unverzagt FW, Wang S, Farlow MR, Brosch JR, Clark DG, Apostolova LG, Sims J, Wang DJ, Saykin AJ. Amyloid and tau pathology are associated with cerebral blood flow in a mixed sample of nondemented older adults with and without vascular risk factors for Alzheimer's disease. Neurobiol Aging 2023; 130:103-113. [PMID: 37499587 PMCID: PMC10529454 DOI: 10.1016/j.neurobiolaging.2023.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Identification of biomarkers for the early stages of Alzheimer's disease (AD) is an imperative step in developing effective treatments. Cerebral blood flow (CBF) is a potential early biomarker for AD; generally, older adults with AD have decreased CBF compared to normally aging peers. CBF deviates as the disease process and symptoms progress. However, further characterization of the relationships between CBF and AD risk factors and pathologies is still needed. We assessed the relationships between CBF quantified by arterial spin-labeled magnetic resonance imaging, hypertension, APOEε4, and tau and amyloid positron emission tomography in 77 older adults: cognitively normal, subjective cognitive decline, and mild cognitive impairment. Tau and amyloid aggregation were related to altered CBF, and some of these relationships were dependent on hypertension or APOEε4 status. Our findings suggest a complex relationship between risk factors, AD pathologies, and CBF that warrants future studies of CBF as a potential early biomarker for AD.
Collapse
Affiliation(s)
- Cecily G Swinford
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Aaron Vosmeier
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Rachael Deardorff
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Evgeny J Chumin
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Mario Dzemidzic
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David G Clark
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA
| | - Justin Sims
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danny J Wang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
13
|
Sun H, Xu L, Wang K, Li Y, Bai T, Dong S, Wu H, Yao Z. κ-Carrageenan Oligosaccharides Protect Nerves by Regulating Microglial Autophagy in Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3540-3550. [PMID: 37650601 DOI: 10.1021/acschemneuro.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
κ-Carrageenan is a linear sulfated polysaccharide extracted from the cell wall of marine red algae, and its enzymatically digested oligosaccharides (KOS) can inhibit microglial hyperactivation. Alzheimer's disease (AD) is a common chronic neurodegenerative disease, characterized by cognitive and memory impairment accompanied by nerve cell damage. Microglia activation causing enhancement of proinflammatory effects and neurotoxicity is one of the early events in AD disease. In this study, whether KOS have therapeutic or preventive effects in the AD model prepared from APP/PS1 transgenic mice was determined. Learning and memory of AD mice were detected by water maze experiments, and microglial activation-related protein expression and deposition of APP and Aβ1-42 in the brain were examined. The effects of KOS on expressed inflammatory factors and inflammation-related proteins by microglia were tested by cell experiments. Transwell coculture was used to investigate the effect of microglia on neural cell activity after KOS treatment. The results showed that KOS could relieve the clinical symptoms in AD mice, and a decrease in the expression of inflammatory factors and inflammation-related proteins in brain tissue was detected. KOS alleviated nerve cell apoptosis by inhibiting the overactivation of microglia, thus exhibiting neuroprotective effects. Exploring the protective effect of KOS inhibition of microglia inflammation is expected to provide a theoretical basis for KOS as a therapeutic drug for neurodegenerative diseases.
Collapse
Affiliation(s)
- Haojian Sun
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Dalian University, Liaoning 116021, Dalian, China
| | - Kangkang Wang
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Yanfeng Li
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Tongning Bai
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Shuo Dong
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Haige Wu
- College of Life health, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Liaoning 116622, Dalian, China
| | - Ziang Yao
- College of Life Science, Dalian Minzu University, No. 18 Liaohe West Road, Jinpu New Area, Liaoning 116600, Dalian, China
| |
Collapse
|
14
|
Brackhan M, Arribas-Blazquez M, Lastres-Becker I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel) 2023; 12:1564. [PMID: 37627559 PMCID: PMC10451380 DOI: 10.3390/antiox12081564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Although the trigger for the neurodegenerative disease process is unknown, the relevance of aging stands out as a major risk for the development of neurodegeneration. In this review, we highlighted the relationship between the different cellular mechanisms that occur as a consequence of aging and transcription factor nuclear factor erythroid-2-related factor 2 (NRF2) and the connection with the TAU protein. We focused on the relevance of NRF2 in the main processes involved in neurodegeneration and associated with aging, such as genomic instability, protein degradation systems (proteasomes/autophagy), cellular senescence, and stem cell exhaustion, as well as inflammation. We also analyzed the effect of aging on TAU protein levels and its aggregation and spread process. Finally, we investigated the interconnection between NRF2 and TAU and the relevance of alterations in the NRF2 signaling pathway in both primary and secondary tauopathies. All these points highlight NRF2 as a possible therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Arribas-Blazquez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| |
Collapse
|
15
|
Liu Q, Contreras A, Afaq MS, Yang W, Hsu DK, Russell M, Lyeth B, Zanto TP, Zhao M. Intensity-dependent gamma electrical stimulation regulates microglial activation, reduces beta-amyloid load, and facilitates memory in a mouse model of Alzheimer's disease. Cell Biosci 2023; 13:138. [PMID: 37507776 PMCID: PMC10386209 DOI: 10.1186/s13578-023-01085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Gamma sensory stimulation may reduce AD-specific pathology. Yet, the efficacy of alternating electrical current stimulation in animal models of AD is unknown, and prior research has not addressed intensity-dependent effects. METHODS The intensity-dependent effect of gamma electrical stimulation (GES) with a sinusoidal alternating current at 40 Hz on Aβ clearance and microglia modulation were assessed in 5xFAD mouse hippocampus and cortex, as well as the behavioral performance of the animals with the Morris Water Maze. RESULTS One hour of epidural GES delivered over a month significantly (1) reduced Aβ load in the AD brain, (2) increased microglia cell counts, decreased cell body size, increased length of cellular processes of the Iba1 + cells, and (3) improved behavioral performance (learning & memory). All these effects were most pronounced when a higher stimulation current was applied. CONCLUSION The efficacy of GES on the reduction of AD pathology and the intensity-dependent feature provide guidance for the development of this promising therapeutic approach.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Adam Contreras
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Muhammad Shan Afaq
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, CA, 95616, USA
| | - Daniel K Hsu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Michael Russell
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Bruce Lyeth
- Department of Neurological Surgery, University of California, Davis, CA, 95616, USA
| | - Theodore P Zanto
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
16
|
Pampuscenko K, Morkuniene R, Krasauskas L, Smirnovas V, Brown GC, Borutaite V. Extracellular tau stimulates phagocytosis of living neurons by activated microglia via Toll-like 4 receptor-NLRP3 inflammasome-caspase-1 signalling axis. Sci Rep 2023; 13:10813. [PMID: 37402829 DOI: 10.1038/s41598-023-37887-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
In tauopathies, abnormal deposition of intracellular tau protein followed by gradual elevation of tau in cerebrospinal fluids and neuronal loss has been documented, however, the mechanism how actually neurons die under tau pathology is largely unknown. We have previously shown that extracellular tau protein (2N4R isoform) can stimulate microglia to phagocytose live neurons, i.e. cause neuronal death by primary phagocytosis, also known as phagoptosis. Here we show that tau protein induced caspase-1 activation in microglial cells via 'Toll-like' 4 (TLR4) receptors and neutral sphingomyelinase. Tau-induced neuronal loss was blocked by caspase-1 inhibitors (Ac-YVAD-CHO and VX-765) as well as by TLR4 antibodies. Inhibition of caspase-1 by Ac-YVAD-CHO prevented tau-induced exposure of phosphatidylserine on the outer leaflet of neuronal membranes and reduced microglial phagocytic activity. We also show that suppression of NLRP3 inflammasome, which is down-stream of TLR4 receptors and mediates caspase-1 activation, by a specific inhibitor (MCC550) also prevented tau-induced neuronal loss. Moreover, NADPH oxidase is also involved in tau-induced neurotoxicity since neuronal loss was abolished by its pharmacological inhibitor. Overall, our data indicate that extracellular tau protein stimulates microglia to phagocytose live neurons via Toll-like 4 receptor-NLRP3 inflammasome-caspase-1 axis and NADPH oxidase, each of which may serve as a potential molecular target for pharmacological treatment of tauopathies.
Collapse
Affiliation(s)
- Katryna Pampuscenko
- Neuroscience Institute, Lithuanian University of Health Sciences, 50161, Kaunas, Lithuania.
| | - Ramune Morkuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, 50161, Kaunas, Lithuania
| | - Lukas Krasauskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, 10257, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, 10257, Vilnius, Lithuania
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, 50161, Kaunas, Lithuania
| |
Collapse
|
17
|
Zhang Z, Gan Q, Han J, Tao Q, Qiu WQ, Madri JA. CD31 as a probable responding and gate-keeping protein of the blood-brain barrier and the risk of Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:1027-1041. [PMID: 37051650 PMCID: PMC10291450 DOI: 10.1177/0271678x231170041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and β-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, USA
| | - Qiushan Tao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Psychiatry, Boston University School of Medicine, Boston, MA, USA
- The Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
18
|
Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration. Int J Mol Sci 2023; 24:ijms24043372. [PMID: 36834781 PMCID: PMC9967100 DOI: 10.3390/ijms24043372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aβ) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aβ were noted.
Collapse
|
19
|
Tetlow AM, Jackman BM, Alhadidy MM, Perumal V, Morgan DG, Gordon MN. Influence of Host Age on Intracranial AAV9 TauP301L Induced Tauopathy. J Alzheimers Dis 2023; 93:365-378. [PMID: 36970910 PMCID: PMC10540220 DOI: 10.3233/jad-221276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Advanced age is the greatest risk factor for the development of Alzheimer's disease (AD). This implies that some aspect of the aged milieu is possibly accelerating the development of AD related pathologies. OBJECTIVE We hypothesized that intracranially injected with AAV9 tauP301L may cause a greater degree of pathology in old versus young mice. METHODS Animals were injected with viral vectors overexpressing the mutant tauP301L or control protein (green fluorescent protein, GFP) into the brains of mature, middle-aged, and old C57BL/6Nia mice. The tauopathy phenotype was monitored four months after injection using behavioral, histological, and neurochemical measures. RESULTS Phosphorylated-tau immunostaining (AT8) or Gallyas staining of aggregated tau increased with age, but other measures of tau accumulation were not significantly affected. Overall, AAV-tau injected mice had impaired radial arm water maze performance, increased microglial activation, and showed evidence of hippocampal atrophy. Aging impaired open field and rotarod performance in both AAV-tau and control mice. The efficiency of viral transduction and gene expression were the same at all animal ages. CONCLUSION We conclude that tauP301L over expression results in a tauopathy phenotype with memory impairment and accumulation of aggregated tau. However, the effects of aging on this phenotype are modest and not detected by some markers of tau accumulation, similar to prior work on this topic. Thus, although age does influence the development of tauopathy, it is likely that other factors, such as ability to compensate for tau pathology, are more responsible for the increased risk of AD with advanced age.
Collapse
Affiliation(s)
- Amber M. Tetlow
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Neuroscience Institute, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Brianna M. Jackman
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Mohammed M. Alhadidy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Varshini Perumal
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David G. Morgan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Marcia N. Gordon
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
20
|
Al‐kharboosh R, Perera JJ, Bechtle A, Bu G, Quinones‐Hinojosa A. Emerging point-of-care autologous cellular therapy using adipose-derived stromal vascular fraction for neurodegenerative diseases. Clin Transl Med 2022; 12:e1093. [PMID: 36495120 PMCID: PMC9736801 DOI: 10.1002/ctm2.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by the gradual decline and irreversible loss of cognitive functions and CNS structures. As therapeutic recourse stagnates, neurodegenerative diseases will cost over a trillion dollars by 2050. A dearth of preventive and regenerative measures to hinder regression and enhance recovery has forced patients to settle for traditional therapeutics designed to manage symptoms, leaving little hope for a cure. In the last decade, pre-clinical animal models and clinical investigations in humans have demonstrated the safety and promise of an emerging cellular product from subcutaneous fat. The adipose-derived stromal vascular fraction (SVF) is an early intervention and late-stage novel 'at point' of care cellular treatment, demonstrating improvements in clinical applications for Multiple Sclerosis, Alzheimer's disease, and Parkinson's disease. SVF is a heterogeneous fraction of cells forming a robust cellular ecosystem and serving as a novel and valuable source of point-of-care autologous cell therapy, providing an easy-to-access population that we hypothesize can mediate repair through 'bi-directional' communication in response to pathological cues. We provide the first comprehensive review of all pre-clinical and clinical findings available to date and highlight major challenges and future directions. There is a greater medical and economic urgency to innovate and develop novel cellular therapy solutions that enable the repair and regeneration of neuronal tissue that has undergone irreversible and permanent damage.
Collapse
Affiliation(s)
- Rawan Al‐kharboosh
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida,Department of Regenerative SciencesMayo Clinic Graduate SchoolRochesterMinnesota,Department of NeurosurgeryMayo ClinicJacksonvilleFlorida
| | | | | | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFlorida
| | | |
Collapse
|
21
|
Odfalk KF, Bieniek KF, Hopp SC. Microglia: Friend and foe in tauopathy. Prog Neurobiol 2022; 216:102306. [PMID: 35714860 PMCID: PMC9378545 DOI: 10.1016/j.pneurobio.2022.102306] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Aggregation of misfolded microtubule associated protein tau into abnormal intracellular inclusions defines a class of neurodegenerative diseases known as tauopathies. The consistent spatiotemporal progression of tau pathology in Alzheimer's disease (AD) led to the hypothesis that tau aggregates spread in the brain via bioactive tau "seeds" underlying advancing disease course. Recent studies implicate microglia, the resident immune cells of the central nervous system, in both negative and positive regulation of tau pathology. Polymorphisms in genes that alter microglial function are associated with the development of AD and other tauopathies. Experimental manipulation of microglia function can alter tau pathology and microglia-mediated neuroinflammatory cascades can exacerbate tau pathology. Microglia also exert protective functions by mitigating tau spread: microglia internalize tau seeds and have the capacity to degrade them. However, when microglia fail to degrade these tau seeds there are deleterious consequences, including secretion of exosomes containing tau that can spread to neurons. This review explores the intersection of microglia and tau from the perspective of neuropathology, neuroimaging, genetics, transcriptomics, and molecular biology. As tau-targeted therapies such as anti-tau antibodies advance through clinical trials, it is critical to understand the interaction between tau and microglia.
Collapse
Affiliation(s)
- Kristian F Odfalk
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
22
|
The synapse as a treatment avenue for Alzheimer's Disease. Mol Psychiatry 2022; 27:2940-2949. [PMID: 35444256 DOI: 10.1038/s41380-022-01565-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with devastating symptoms, including memory impairments and cognitive deficits. Hallmarks of AD pathology are amyloid-beta (Aβ) deposition forming neuritic plaques and neurofibrillary tangles (NFTs). For many years, AD drug development has mainly focused on directly targeting the Aβ aggregation or the formation of tau tangles, but this disease has no cure so far. Other common characteristics of AD are synaptic abnormalities and dysfunctions such as synaptic damage, synaptic loss, and structural changes in the synapse. Those anomalies happen in the early stages of the disease before behavioural symptoms have occurred. Therefore, better understanding the mechanisms underlying the synaptic dysfunction found in AD and targeting the synapse, especially using early treatment windows, can lead to finding novel and more effective treatments that could improve the lives of AD patients. Researchers have recently started developing different disease-modifying treatments targeting the synapse to rescue and prevent synaptic dysfunction in AD. The main objectives of these new strategies are to halt synaptic loss, strengthen synaptic connections, and improve synaptic density, potentially leading to the rescue or prevention of cognitive impairments. This article aims to address the mechanisms of synaptic degeneration in AD and discuss current strategies that focus on the synapse for AD therapy. Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impairs memory and causes cognitive and behavioural deficits. Scientists worldwide have tried to find a treatment that can reverse or rescue AD symptoms, but there is no cure so far. One prominent characteristic of AD is the brain atrophy caused by significant synaptic loss and overall neuronal damage, which starts at the early stages of the disease before other AD hallmarks such as neuritic plaques and NFTs. The present review addresses the underlying mechanisms behind synaptic loss and dysfunction in AD and discusses potential strategies that target the synapse.
Collapse
|
23
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
24
|
Guo L, Li K, Zhou J, Luo L. Panax Notoginseng Saponin Rg1 Can Effectively Improve the Cognitive Function of 5 × FAD Mice. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5152761. [PMID: 35449867 PMCID: PMC9017436 DOI: 10.1155/2022/5152761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
Abstract
In order to investigate the effect of notoginsenoside Rg1 on cognitive function in 5∗FAD mice and the mechanism of Cx43 in improving cognitive function in mice, the methods 5∗FAD mice are selected as experimental animals and normal mice as healthy control. They were divided into three groups: healthy control group (n = 10), disease group (n = 10), and treatment group (n = 10, Panax notoginsenoside Rg 1150 mg/kg/d) for 2 months. Two months later, three groups of mice were subjected to classical water maze and Y-maze to test the cognitive ability of mice, and the correct response times and total response time were recorded. At the end of the cognitive function test, the mice were executed, and the brain tissues were taken. The expression of Cx43 protein and the changes of glial cells and neurons in the brain of the mice were analyzed at the cellular level. After treatment with Panax notoginseng saponin Rg 1150 mg/kg/d, it was found that the escape latency of mice in the treatment group was significantly lower than that in the disease group from the third day of training (P < 0.05); the time spent on the platform quadrant and the number of times crossing the platform in the treated mice were significantly increased, and the difference was statistically significant (P < 0.05); the expression of Cx43 protein in the brain of mice after treatment was significantly higher than that of mice in the disease group (P < 0.05). Conclusion. Panax notoginseng saponin Rg1 can effectively improve the cognitive function of 5∗FAD mice by increasing the secretion of Cx43 protein, thus increasing the reactivity of glial cells and neurons.
Collapse
Affiliation(s)
- Lili Guo
- Department of Neurology, Hangzhou Xixi Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310024, China
| | - Kun Li
- Department of Neurology, Hangzhou Xixi Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310024, China
| | - Jiajun Zhou
- Department of Neurology, Hangzhou Xixi Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310024, China
| | - Lian Luo
- Department of Neurology, Hangzhou Xixi Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310024, China
| |
Collapse
|
25
|
Zou X, Yuan Y, Liao Y, Jiang C, Zhao F, Ding D, Gu Y, Chen L, Chu Y, Hsu Y, Liebig PA, Xu B, Mao Y. Moyamoya disease: A human model for chronic hypoperfusion and intervention in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12285. [PMID: 35415209 PMCID: PMC8985488 DOI: 10.1002/trc2.12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/07/2022]
Abstract
Introduction Chronic cerebral hypoperfusion has been considered the etiology for sporadic Alzheimer's disease (AD). However, no valid clinical evidence exists due to the similar risk factors between cerebrovascular disease and AD. Methods We used moyamoya disease (MMD) as a model of chronic hypoperfusion and cognitive impairment, without other etiology interference. Results Based on the previous reports and preliminary findings, we hypothesized that chronic cerebral hypoperfusion could be an independent upstream crucial variable, resulting in AD, and induce pathological hallmarks such as amyloid beta peptide and hyperphosphorylated tau accumulation. Discussion Timely intervention with revascularisation would help reverse the brain damage with AD hallmarks and lead to cognitive improvement.
Collapse
Affiliation(s)
- Xiang Zou
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Yifan Yuan
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Yujun Liao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Conglin Jiang
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Fan Zhao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Ding Ding
- Huashan HospitalInstitute of NeurologyFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Yuxiang Gu
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Liang Chen
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Tianqiao and Chrissy Chen International Institute for Brain DiseasesShanghaiChina
| | - Ying‐Hua Chu
- MR CollaborationSiemens Healthineers Ltd.ShanghaiChina
| | - Yi‐Cheng Hsu
- MR CollaborationSiemens Healthineers Ltd.ShanghaiChina
| | | | - Bin Xu
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
| | - Ying Mao
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Huashan HospitalInstitute of NeurologyFudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceSchool of Basic Medical Sciences and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
26
|
Cheng HY, Li LF, Wu WJ, Zhang QW, Liu M, Wong TL, Kong HY, Lai CH, Bao WR, Huo CY, Zheng HM, Hou QK, Xu J, Zhou Y, Han QB. Qualitative and quantitative analysis of agar in edible bird's nest and related products based on a daughter oligosaccharide-marker approach using LC-QTOF-MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Chandramowlishwaran P, Raja S, Maheshwari A, Srinivasan S. Enteric Nervous System in Neonatal Necrotizing Enterocolitis. Curr Pediatr Rev 2022; 18:9-24. [PMID: 34503418 DOI: 10.2174/1573396317666210908162745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of necrotizing enterocolitis (NEC) is not clear, but increasing information suggests that the risk and severity of NEC may be influenced by abnormalities in the enteric nervous system (ENS). OBJECTIVE The purpose of this review was to scope and examine the research related to ENS-associated abnormalities that have either been identified in NEC or have been noted in other inflammatory bowel disorders (IBDs) with histopathological abnormalities similar to NEC. The aim was to summarize the research findings, identify research gaps in existing literature, and disseminate them to key knowledge end-users to collaborate and address the same in future studies. METHODS Articles that met the objectives of the study were identified through an extensive literature search in the databases PubMed, EMBASE, and Scopus. RESULTS The sources identified through the literature search revealed that: (1) ENS may be involved in NEC development and post-NEC complications, (2) NEC development is associated with changes in the ENS, and (3) NEC-associated changes could be modulated by the ENS. CONCLUSION The findings from this review identify the enteric nervous as a target in the development and progression of NEC. Thus, factors that can protect the ENS can potentially prevent and treat NEC and post-NEC complications. This review serves to summarize the existing literature and highlights a need for further research on the involvement of ENS in NEC.
Collapse
Affiliation(s)
- Pavithra Chandramowlishwaran
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Shreya Raja
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Shanthi Srinivasan
- Department of Medicine, Emory University School of Medicine, Decatur, GA, USA.,Gastroenterology Research, Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
28
|
Monteiro-Fernandes D, Silva JM, Soares-Cunha C, Dalla C, Kokras N, Arnaud F, Billiras R, Zhuravleva V, Waites C, Bretin S, Sousa N, Sotiropoulos I. Allosteric modulation of AMPA receptors counteracts Tau-related excitotoxic synaptic signaling and memory deficits in stress- and Aβ-evoked hippocampal pathology. Mol Psychiatry 2021; 26:5899-5911. [PMID: 32467647 DOI: 10.1038/s41380-020-0794-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Despite considerable progress in the understanding of its neuropathology, Alzheimer's disease (AD) remains a complex disorder with no effective treatment that counteracts the memory deficits and the underlying synaptic malfunction triggered by the accumulation of amyloid beta (Aβ) and Tau protein. Mounting evidence supports a precipitating role for chronic environmental stress and glutamatergic excitotoxicity in AD, suggesting that targeting of glutamate receptor signaling may be a promising approach against both stress and AD pathologies. In light of the limited cognitive benefit of the direct antagonism of NMDA receptors in AD, we here focus on an alternative way to modify glutamatergic signaling through positive allosteric modulation of AMPA receptors, by the use of a PAM-AMPA compound. Using non-transgenic animal model of Aβ oligomer injection as well as the combined stress and Aβ i.c.v. infusion, we demonstrate that positive allosteric modulation of AMPA receptors by PAM-AMPA treatment reverted memory, but not mood, deficits. Furthermore, PAM-AMPA treatment reverted stress/Aβ-driven synaptic missorting of Tau and associated Fyn/GluN2B-driven excitotoxic synaptic signaling accompanied by recovery of neurotransmitter levels in the hippocampus. Our findings suggest that positive allosteric modulation of AMPA receptors restores synaptic integrity and cognitive performance in stress- and Aβ-evoked hippocampal pathology. As the prevalence of AD is increasing at an alarming rate, novel therapeutic targeting of glutamatergic signaling should be further explored against the early stages of AD synaptic malfunction with the goal of attenuating further synaptic damage before it becomes irreversible.
Collapse
Affiliation(s)
- Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - François Arnaud
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Rodolphe Billiras
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Viktoriya Zhuravleva
- Neurobiology and Behavior Graduate Program, Columbia University, New York, NY, USA
| | - Clarissa Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Sylvie Bretin
- Pôle Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Internationales Servier, Suresnes, France
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Campus Gualtar, Minho, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
29
|
Taccola C, Barneoud P, Cartot-Cotton S, Valente D, Schussler N, Saubaméa B, Chasseigneaux S, Cochois V, Mignon V, Curis E, Lochus M, Nicolic S, Dodacki A, Cisternino S, Declèves X, Bourasset F. Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology 2021; 191:108588. [PMID: 33940010 DOI: 10.1016/j.neuropharm.2021.108588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
The inducible p25 overexpression mouse model recapitulate many hallmark features of Alzheimer's disase including progressive neuronal loss, elevated Aβ, tau pathology, cognitive dysfunction, and impaired synaptic plasticity. We chose p25 mice to evaluate the physical and functional integrity of the blood-brain barrier (BBB) in a context of Tau pathology (pTau) and severe neurodegeneration, at an early (3 weeks ON) and a late (6 weeks ON) stage of the pathology. Using in situ brain perfusion and confocal imaging, we found that the brain vascular surface area and the physical integrity of the BBB were unaltered in p25 mice. However, there was a significant 14% decrease in cerebrovascular volume in 6 weeks ON mice, possibly explained by a significant 27% increase of collagen IV in the basement membrane of brain capillaries. The function of the BBB transporters GLUT1 and LAT1 was evaluated by measuring brain uptake of d-glucose and phenylalanine, respectively. In 6 weeks ON p25 mice, d-glucose brain uptake was significantly reduced by about 17% compared with WT, without any change in the levels of GLUT1 protein or mRNA in brain capillaries. The brain uptake of phenylalanine was not significantly reduced in p25 mice compared with WT. Lack of BBB integrity, impaired BBB d-glucose transport have been observed in several mouse models of AD. In contrast, reduced cerebrovascular volume and an increased basement membrane thickness may be more specifically associated with pTau in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Camille Taccola
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France; INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Pascal Barneoud
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Sylvaine Cartot-Cotton
- Pharmacokinetics, Dynamics and Metabolism, Translational Medicine & Early Development, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Delphine Valente
- Drug Metabolism & Pharmacokinetics, Research platform, Sanofi, 3 Digue d'Alfortville, 94140, Alfortville, France
| | - Nathalie Schussler
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Bruno Saubaméa
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Stéphanie Chasseigneaux
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Véronique Cochois
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Mignon
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB(2), EA 7537 « BioSTM », UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France; Service de bioinformatique et statistique médicale, hôpital Saint-Louis, APHP, 1, avenue Claude Vellefaux, 75010, Paris, France
| | - Murielle Lochus
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Sophie Nicolic
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Agnès Dodacki
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Salvatore Cisternino
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Xavier Declèves
- INSERM UMR-S 1144, UFR de Pharmacie, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fanchon Bourasset
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, 19 rue Ambroise Paré, 25000, Besançon, France.
| |
Collapse
|
30
|
Ekundayo TC, Olasehinde TA, Okaiyeto K, Okoh AI. Microbial Pathogenesis and Pathophysiology of Alzheimer's Disease: A Systematic Assessment of Microorganisms' Implications in the Neurodegenerative Disease. Front Neurosci 2021; 15:648484. [PMID: 33994926 PMCID: PMC8113417 DOI: 10.3389/fnins.2021.648484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial infections have been linked to the pathogenesis and pathophysiology of Alzheimer's disease (AD) and other neurodegenerative diseases. The present study aimed to synthesise and assess global evidence of microbial pathogenesis and pathophysiology in AD (MPP-AD) and associated neurodegenerative conditions using integrated science mapping and content analytics to explore the associated research landscape. Relevant MPP-AD documents were retrieved from Web of Science and Scopus according to PRISMA principles and analysed for productivity/trend linked to authors/countries, thematic conceptual framework, and international collaborative networks. A total of 258 documents published from 136 sources to 39.42 average citations/document were obtained on MPP-AD. The co-authors per document were 7.6, and the collaboration index was 5.71. The annual research outputs increased tremendously in the last 6 years from 2014 to 2019, accounting for 66% compared with records in the early years from 1982 to 1990 (16%). The USA (n = 71, freq. = 30.34%), United Kingdom (n = 32, freq. = 13.68%) and China (n = 27, 11.54%) ranked in first three positions in term of country's productivity. Four major international collaboration clusters were found in MPP-AD research. The country collaboration network in MPP-AD was characteristic of sparse interaction and acquaintanceship (density = 0.11, diameter = 4). Overall, international collaboration is globally inadequate [centralisation statistics: degree (40.5%), closeness (4%), betweenness (23%), and eigenvector (76.7%)] against the robust authors' collaboration index of 5.71 in MPP-AD research. Furthermore, four conceptual thematic frameworks (CTF) namely, CTF#1, roles of microbial/microbiome infection and dysbiosis in cognitive dysfunctions; CTF#2, bacterial infection specific roles in dementia; CTF#3, the use of yeast as a model system for studying MPP-AD and remediation therapy; and CFT#4, flow cytometry elucidation of amyloid-beta and aggregation in Saccharomyces cerevisiae model. Finally, aetiology-based mechanisms of MPP-AD, namely, gut microbiota, bacterial infection, and viral infection, were comprehensively discussed. This study provides an overview of MPP-AD and serves as a stepping stone for future preparedness in MPP-AD-related research.
Collapse
Affiliation(s)
- Temitope Cyrus Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Biological Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Tosin Abiola Olasehinde
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Environmental Health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
31
|
Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep 2021; 11:4083. [PMID: 33602969 PMCID: PMC7892569 DOI: 10.1038/s41598-021-81697-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomal transfers represent an important mode of intercellular communication. Syntenin is a small scaffold protein that, when binding ALIX, can direct endocytosed syndecans and syndecan cargo to budding endosomal membranes, supporting the formation of intraluminal vesicles that compose the source of a major class of exosomes. Syntenin, however, can also support the recycling of these same components to the cell surface. Here, by studying mice and cells with syntenin-knock out, we identify syntenin as part of dedicated machinery that integrates both the production and the uptake of secreted vesicles, supporting viral/exosomal exchanges. This study significantly extends the emerging role of heparan sulfate proteoglycans and syntenin as key components for macromolecular cargo internalization into cells.
Collapse
|
32
|
Canepa E, Fossati S. Impact of Tau on Neurovascular Pathology in Alzheimer's Disease. Front Neurol 2021; 11:573324. [PMID: 33488493 PMCID: PMC7817626 DOI: 10.3389/fneur.2020.573324] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.
Collapse
Affiliation(s)
- Elisa Canepa
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
33
|
Barrett T, Stangis KA, Saito T, Saido T, Park KH. Neuronal Cell Cycle Re-Entry Enhances Neuropathological Features in AppNLF Knock-In Mice. J Alzheimers Dis 2021; 82:1683-1702. [PMID: 34219712 PMCID: PMC8461670 DOI: 10.3233/jad-210091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant cell cycle re-entry is a well-documented process occurring early in Alzheimer's disease (AD). This is an early feature of the disease and may contribute to disease pathogenesis. OBJECTIVE To assess the effect of forced neuronal cell cycle re-entry in mice expressing humanized Aβ, we crossed our neuronal cell cycle re-entry mouse model with AppNLF knock-in (KI) mice. METHODS Our neuronal cell cycle re-entry (NCCR) mouse model is bitransgenic mice heterozygous for both Camk2a-tTA and TRE-SV40T. The NCCR mice were crossed with AppNLF KI mice to generate NCCR-AppNLF animals. Using this tet-off system, we triggered NCCR in our animals via neuronal expression of SV40T starting at 1 month of age. The animals were examined at the following time points: 9, 12, and 18 months of age. Various neuropathological features in our mice were evaluated by image analysis and stereology on brain sections stained using either immunofluorescence or immunohistochemistry. RESULTS We show that neuronal cell cycle re-entry in humanized Aβ plaque producing AppNLF KI mice results in the development of additional AD-related pathologies, namely, pathological tau, neuroinflammation, brain leukocyte infiltration, DNA damage response, and neurodegeneration. CONCLUSION Our findings show that neuronal cell cycle re-entry enhances AD-related neuropathological features in AppNLF mice and highlight our unique AD mouse model for studying the pathogenic role of aberrant cell cycle re-entry in AD.
Collapse
Affiliation(s)
- Tomás Barrett
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kevin H.J. Park
- Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
- Biochemistry, Cellular & Molecular Biology Graduate Program, Central Michigan University, Mount Pleasant, MI, USA
- Michigan Alzheimer’s Disease Research Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Subramanian J, Savage JC, Tremblay MÈ. Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Front Cell Neurosci 2020; 14:592607. [PMID: 33408613 PMCID: PMC7780885 DOI: 10.3389/fncel.2020.592607] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton in vivo imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.
Collapse
Affiliation(s)
- Jaichandar Subramanian
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States
| | - Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
36
|
Ho CL, Li LH, Weng YC, Hua KF, Ju TC. Eucalyptus essential oils inhibit the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through reducing MAPK and NF-κB pathways. BMC Complement Med Ther 2020; 20:200. [PMID: 32600338 PMCID: PMC7325248 DOI: 10.1186/s12906-020-02999-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Eucalyptus essential oils have been used in traditional medicine for centuries. It was reported that Eucalyptus leaves possess antioxidant and antimicrobial effects. Here, we investigated the anti-inflammatory activity of the essential oils extracted from the leaves of four different Eucalyptus species in RAW264.7 macrophages. Methods Lipopolysaccharide (LPS)-activated RAW264.7 macrophages were used to evaluate the anti-inflammatory activity of the leaf essential oils of Eucalyptus. The cell survival was quantified by an Alamar Blue assay. Nitric oxide (NO) production was assessed by Griess reaction. TNF-α and IL-6 production were measured by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-κB (NF-κB) transcriptional activity was measured by NF-κB reporter assay. Intracellular protein expression levels were determined by Western blot. The expression levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and NF-κB pathway were measured by western blot in LPS-activated RAW 264.7 macrophage. Results The essential oils extracted from Eucalyptus citriodora leaf exert the best NO inhibitory activity in LPS-activated RAW264.7 macrophages. The essential oils were fractionated into fractions A-H, and fraction F has been demonstrated to inhibit the expression levels of TNF-α, IL-6, NO, iNOS and COX-2 in LPS-activated RAW264.7 macrophages. Mechanistic analysis revealed that fraction F reduced the phosphorylation levels of ERK1/2, p38, PKC-α, PKC-ε and PKC-δ, and inhibited the NF-κB transcriptional activity. The chemical composition of Fraction F was determined by GC-MS. Conclusions The discoveries made herein could help develop innovative nonsteroidal anti-inflammatory drugs with minimal side effects and strong efficacy. Clinical trials on these Eucalyptus leaf essential oils will help customize and optimize their therapeutic administration.
Collapse
Affiliation(s)
- Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Chun Weng
- EMA program in College of Bioresources, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, No. 1727, Sec. 4, Taiwan Blvd., Xitun Dist, Taichung City, 40704, Taiwan.
| |
Collapse
|
37
|
Müller-Thomsen L, Borgmann D, Morcinek K, Schröder S, Dengler B, Moser N, Neumaier F, Schneider T, Schröder H, Huggenberger S. Consequences of hyperphosphorylated tau on the morphology and excitability of hippocampal neurons in aged tau transgenic mice. Neurobiol Aging 2020; 93:109-123. [PMID: 32278495 DOI: 10.1016/j.neurobiolaging.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
The intracellular accumulation of hyperphosphorylated tau characterizes many neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. A critical role for tau is supported by studies in transgenic mouse models expressing the P301L mutation with accumulation of hyperphosphorylated human tau in hippocampal pyramidal neurons of aged mice. Especially, the somatodendritic mislocalization of hyperphosphorylated tau seems to affect the neuronal network of the hippocampus. To show the consequences of aggregation of hyperphosphorylated tau within hippocampal neurons of aged mice, the CA1 pyramidal cells were analyzed morphologically and electrophysiologically. Here we demonstrate in the P301L pR5 mouse model that hyperphosphorylated tau leads to an increase in stubby spines and filopodia, as well as a decrease in total dendritic length of hippocampal pyramidal neurons due to a decrease in apical dendritic length and nodes. This atrophy is in line with the significant reduction in CA1 long-term potentiation. Furthermore, mutant tau induced a depolarized threshold for action potential initiation and an increased current of inward rectifying potassium channels, which should lead, together with the long-term potentiation decrease, to a decreased excitability of CA1 neurons.
Collapse
Affiliation(s)
| | - Diba Borgmann
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Kerstin Morcinek
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Sophia Schröder
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Brigitte Dengler
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Natasha Moser
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Stefan Huggenberger
- Department II of Anatomy, University of Cologne, Cologne, Germany; Institute of Anatomy and Clinical Morphology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
38
|
Winston CN, Aulston B, Rockenstein EM, Adame A, Prikhodko O, Dave KN, Mishra P, Rissman RA, Yuan SH. Neuronal Exosome-Derived Human Tau is Toxic to Recipient Mouse Neurons in vivo. J Alzheimers Dis 2020; 67:541-553. [PMID: 30584143 DOI: 10.3233/jad-180776] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Progressive accumulation of aggregation-prone proteins, amyloid-β (Aβ) and hyperphosphorylated tau (p-tau), are the defining hallmarks of Alzheimer's disease (AD). The mechanisms by which Aβ and p-tau are transmitted throughout the diseased brain are not yet completely understood. Interest in exosome research has grown dramatically over the past few years, specifically due to their potential role as biomarkers for staging of neurodegenerative diseases, including AD. Despite their diagnostic utility, the pathogenic potential of exosomes has yet to be fully elucidated. In this study, we use a series of recombinant tau antibodies to characterize a new model of human tau in vivo. Exosome suspensions derived from neuronally-differentiated, human induced pluripotent stem cells that express the repeat domain of tau P301L and V337M mutations (NiPSCEs) were injected into the wild-type mouse brain and pathological changes were characterized by immunostaining at one- (1 m) and two-month (2 m) post-injection. We found that tau inclusions were present throughout the brain at 2 m post-injection, which were detectable using antibodies raised against full-length tau (K9JA) and misfolded tau (MC1). Furthermore, we found that phosphorylated tau immunoreactivity was elevated 1 m post-injection, which was surprisingly normalized after 2 m. Finally, we observed extensive degeneration of neuronal dendrites in both ipsilateral and contralateral hippocampi in NiPSCE treated mice. In summary, we demonstrate that exosomes are sufficient to cause long-distance propagation of tau pathology and neurodegeneration in vivo. These novel findings support an active role of exosomes in AD pathogenesis.
Collapse
Affiliation(s)
- Charisse N Winston
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Brent Aulston
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward M Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Olga Prikhodko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kishan N Dave
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Priyanka Mishra
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Zheng F, Zhou YT, Feng DD, Li PF, Tang T, Luo JK, Wang Y. Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav 2020; 10:e01520. [PMID: 31908160 PMCID: PMC7010586 DOI: 10.1002/brb3.1520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) has increased in rank among traumatic injuries worldwide. Traumatic brain injury is a serious obstacle given that its complex pathology represents a long-term process. Recently, systems biology strategies such as metabolomics to investigate the multifactorial nature of TBI have facilitated attempts to find biomarkers and probe molecular pathways for its diagnosis and therapy. METHODS This study included a group of 20 rats with controlled cortical impact and a group of 20 sham rats. We utilized mNSS tests to investigate neurological metabolic impairments on day 1 and day 3. Furthermore, we applied metabolomics and bioinformatics to determine the metabolic perturbation caused by TBI during the acute period in the hippocampus tissue of controlled cortical impact (CCI) rats. Notably, TBI-protein-metabolite subnetworks identified from a database were assessed for associations between metabolites and TBI by the dysregulation of related enzymes and transporters. RESULTS Our results identified 7 and 8 biomarkers on day 1 and day 3, respectively. Additionally, related pathway disorders showed effects on arginine and proline metabolism as well as taurine and hypotaurine metabolism on day 3 in acute TBI. Furthermore, according to metabolite-protein database searches, 25 metabolite-protein pairs were established as causally associated with TBI. Further, bioinformation indicated that these TBI-associated proteins mainly take part in 5'-nucleotidase activity and carboxylic acid transmembrane transport. In addition, interweaved networks were constructed to show that the development of TBI might be affected by metabolite-related proteins and their protein pathways. CONCLUSION The overall results show that acute TBI is susceptible to metabolic disorders, and the joint metabolite-protein network analysis provides a favorable prediction of TBI pathogenesis mechanisms in the brain. The signatures in the hippocampus might be promising for the development of biomarkers and pathways relevant to acute TBI and could further guide testable predictions of the underlying mechanism of TBI.
Collapse
Affiliation(s)
- Fei Zheng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yan-Tao Zhou
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Dan-Dan Feng
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Li
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Amir Mishan M, Rezaei Kanavi M, Shahpasand K, Ahmadieh H. Pathogenic Tau Protein Species: Promising Therapeutic Targets for Ocular Neurodegenerative Diseases. J Ophthalmic Vis Res 2019; 14:491-505. [PMID: 31875105 PMCID: PMC6825701 DOI: 10.18502/jovr.v14i4.5459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tau is a microtubule-associated protein, which is highly expressed in the central nervous system as well as ocular neurons and stabilizes microtubule structure. It is a phospho-protein being moderately phosphorylated under physiological conditions but its abnormal hyperphosphorylation or some post-phosphorylation modifications would result in a pathogenic condition, microtubule dissociation, and aggregation. The aggregates can induce neuroinflammation and trigger some pathogenic cascades, leading to neurodegeneration. Taking these together, targeting pathogenic tau employing tau immunotherapy may be a promising therapeutic strategy in fighting with cerebral and ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Erdener ŞE, Dalkara T. Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Front Neurol 2019; 10:889. [PMID: 31474933 PMCID: PMC6707104 DOI: 10.3389/fneur.2019.00889] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
The cerebral microcirculation holds a critical position to match the high metabolic demand by neuronal activity. Functionally, microcirculation is virtually inseparable from other nervous system cells under both physiological and pathological conditions. For successful bench-to-bedside translation of neuroprotection research, the role of microcirculation in acute and chronic neurodegenerative disorders appears to be under-recognized, which may have contributed to clinical trial failures with some neuroprotectants. Increasing data over the last decade suggest that microcirculatory impairments such as endothelial or pericyte dysfunction, morphological irregularities in capillaries or frequent dynamic stalls in blood cell flux resulting in excessive heterogeneity in capillary transit may significantly compromise tissue oxygen availability. We now know that ischemia-induced persistent abnormalities in capillary flow negatively impact restoration of reperfusion after recanalization of occluded cerebral arteries. Similarly, microcirculatory impairments can accompany or even precede neural loss in animal models of several neurodegenerative disorders including Alzheimer's disease. Macrovessels are relatively easy to evaluate with radiological or experimental imaging methods but they cannot faithfully reflect the downstream microcirculatory disturbances, which may be quite heterogeneous across the tissue at microscopic scale and/or happen fast and transiently. The complexity and size of the elements of microcirculation, therefore, require utilization of cutting-edge imaging techniques with high spatiotemporal resolution as well as multidisciplinary team effort to disclose microvascular-neurodegenerative connection and to test treatment approaches to advance the field. Developments in two photon microscopy, ultrafast ultrasound, and optical coherence tomography provide valuable experimental tools to reveal those microscopic events with high resolution. Here, we review the up-to-date advances in understanding of the primary microcirculatory abnormalities that can result in neurodegenerative processes and the combined neurovascular protection approaches that can prevent acute as well as chronic neurodegeneration.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
42
|
Dong R, Wang H, Ye J, Wang M, Bi Y. Publication Trends for Alzheimer's Disease Worldwide and in China: A 30-Year Bibliometric Analysis. Front Hum Neurosci 2019; 13:259. [PMID: 31447661 PMCID: PMC6696880 DOI: 10.3389/fnhum.2019.00259] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Alzheimer's disease, the most common form of dementia, has tremendous social and economic impact worldwide. This study aimed to analyze global trends in Alzheimer's disease research and to investigate China's contribution to this research. Methods: The quantity and influence of publications related to Alzheimer's disease in China and elsewhere were compared. The Web of Science (WOS) and PubMed databases were searched from 1988 to 2017 using the terms “Alzheimer's disease” or “Alzheimers disease.” Global Alzheimer's disease publications were classified and analyzed. Keywords, countries, and institutions publishing articles on Alzheimer's disease were analyzed, and citations of these articles were examined. Results: A total of 181,116 articles regarding Alzheimer's disease research were identified and analyzed. Neuroscience and neurology were the main research categories both globally and in China. Basic research dominated Alzheimer's publications, accounting for 30.93% of global publications and 95.31% of publications in China. A total of 8,935 journals published articles related to Alzheimer's disease. The journal Neurobiology of Aging published the most Alzheimer's disease-related articles, numbering 5,206 over the time period examined. The National Institutes of Health, the National Institute on Aging, and the Department of Health and Human Services jointly sponsored 11,809 articles, ranking first in the world. The National Natural Science Foundation of China funded the largest number of studies on Alzheimer's disease in China and recognized the importance of traditional Chinese medicine in Alzheimer's disease research. Conclusions: The present study provides data for global researchers to understand research perspectives and develop future research directions. In recent years, Chinese researchers have contributed significantly to global Alzheimer's research. Still, strengthening international cooperation could improve the quality and number of publications regarding Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Dong
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hong Wang
- Department of Pediatrics, Qingdao Women and Children Hospital, Qingdao University, Qingdao, China
| | - Jishi Ye
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Ittner A, Ittner LM. Dendritic Tau in Alzheimer's Disease. Neuron 2019; 99:13-27. [PMID: 30001506 DOI: 10.1016/j.neuron.2018.06.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
The microtubule-associated protein tau and amyloid-β (Aβ) are key players in Alzheimer's disease (AD). Aβ and tau are linked in a molecular pathway at the post-synapse with tau-dependent synaptic dysfunction being a major pathomechanism in AD. Recent work on site-specific modification of dendritic and more specifically post-synaptic tau has revealed new endogenous functions of tau that limits synaptic Aβ toxicity. Thus, molecular studies opened a new perspective on tau, placing it at the center of neurotoxic and neuroprotective signaling at the post-synapse. Here, we review recent advances on tau in the dendritic compartments, with implications for understanding and treatment of AD and related neurological conditions.
Collapse
Affiliation(s)
- Arne Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; Neuroscience Research Australia, Sydney, New South Wales 2031, Australia; Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| |
Collapse
|
44
|
Vogels T, Murgoci AN, Hromádka T. Intersection of pathological tau and microglia at the synapse. Acta Neuropathol Commun 2019; 7:109. [PMID: 31277708 PMCID: PMC6612163 DOI: 10.1186/s40478-019-0754-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Tauopathies are a heterogenous class of diseases characterized by cellular accumulation of aggregated tau and include diseases such as Alzheimer’s disease (AD), progressive supranuclear palsy and chronic traumatic encephalopathy. Tau pathology is strongly linked to neurodegeneration and clinical symptoms in tauopathy patients. Furthermore, synapse loss is an early pathological event in tauopathies and is the strongest correlate of cognitive decline. Tau pathology is additionally associated with chronic neuroinflammatory processes, such as reactive microglia, astrocytes, and increased levels of pro-inflammatory molecules (e.g. complement proteins, cytokines). Recent studies show that as the principal immune cells of the brain, microglia play a particularly important role in the initiation and progression of tau pathology and associated neurodegeneration. Furthermore, AD risk genes such as Triggering receptor expressed on myeloid cells 2 (TREM2) and Apolipoprotein E (APOE) are enriched in the innate immune system and modulate the neuroinflammatory response of microglia to tau pathology. Microglia can play an active role in synaptic dysfunction by abnormally phagocytosing synaptic compartments of neurons with tau pathology. Furthermore, microglia are involved in synaptic spreading of tau – a process which is thought to underlie the progressive nature of tau pathology propagation through the brain. Spreading of pathological tau is also the predominant target for tau-based immunotherapy. Active tau vaccines, therapeutic tau antibodies and other approaches targeting the immune system are actively explored as treatment options for AD and other tauopathies. This review describes the role of microglia in the pathobiology of tauopathies and the mechanism of action of potential therapeutics targeting the immune system in tauopathies.
Collapse
|
45
|
Szarka N, Toth L, Czigler A, Kellermayer Z, Ungvari Z, Amrein K, Czeiter E, Bali ZK, Tadepalli SA, Wahr M, Hernadi I, Koller A, Buki A, Toth P. Single Mild Traumatic Brain Injury Induces Persistent Disruption of the Blood-Brain Barrier, Neuroinflammation and Cognitive Decline in Hypertensive Rats. Int J Mol Sci 2019; 20:E3223. [PMID: 31262044 PMCID: PMC6651357 DOI: 10.3390/ijms20133223] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) induces blood-brain barrier (BBB) disruption, which contributes to secondary injury of brain tissue and development of chronic cognitive decline. However, single mild (m)TBI, the most frequent form of brain trauma disrupts the BBB only transiently. We hypothesized, that co-morbid conditions exacerbate persistent BBB disruption after mTBI leading to long term cognitive dysfunction. Since hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive Wistar and spontaneously hypertensive rats (SHR) and we assessed BBB permeability, extravasation of blood-borne substances, neuroinflammation and cognitive function two weeks after trauma. We found that mTBI induced a significant BBB disruption two weeks after trauma in SHRs but not in normotensive Wistar rats, which was associated with a significant accumulation of fibrin and increased neuronal expression of inflammatory cytokines TNFα, IL-1β and IL-6 in the cortex and hippocampus. SHRs showed impaired learning and memory two weeks after mild TBI, whereas cognitive function of normotensive Wistar rats remained intact. Future studies should establish the mechanisms through which hypertension and mild TBI interact to promote persistent BBB disruption, neuroinflammation and cognitive decline to provide neuroprotection and improve cognitive function in patients with mTBI.
Collapse
Affiliation(s)
- Nikolett Szarka
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
- Clinical Medicine Doctoral School, University of Szeged, Tisza Lajos krt. 109., H-6725 Szeged, Hungary
| | - Luca Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Zoltan Kellermayer
- Department of Immunology and Biotechnology, University of Pecs, Medical School, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Krisztina Amrein
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
| | - Endre Czeiter
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2, H-7623 Pecs, Hungary
| | - Zsolt Kristof Bali
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
- Grastyan Translational Research Center, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
| | - Sai Ambika Tadepalli
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
| | - Matyas Wahr
- Cellular Neurobiology, Institute of Physiology, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary
| | - Istvan Hernadi
- Translational Neuroscience Research Group, Szentagothai Research Center, University of Pecs, Ifjusag utja 20, H-7624 Pecs, Hungary
- Grastyan Translational Research Center, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
- Department of Experimental Neurobiology, Faculty of Sciences, University of Pecs, Ifjusag utja 6, H-7624 Pecs, Hungary
| | - Akos Koller
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Andras Buki
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary
| | - Peter Toth
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Ret u. 2, H-7623 Pecs, Hungary.
- Institute for Translational Medicine, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary.
- Clinical Medicine Doctoral School, University of Szeged, Tisza Lajos krt. 109., H-6725 Szeged, Hungary.
- MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2, H-7623 Pecs, Hungary.
| |
Collapse
|
46
|
Ittner LM, Klugmann M, Ke YD. Adeno-associated virus-based Alzheimer's disease mouse models and potential new therapeutic avenues. Br J Pharmacol 2019; 176:3649-3665. [PMID: 30817847 DOI: 10.1111/bph.14637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/23/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that presents with cognitive decline. The current understanding of underlying disease mechanisms remains incomplete. Genetically modified mouse models have been instrumental in deciphering pathomechanisms in AD. While these models were typically generated by classical transgenesis and genome editing, the use of adeno-associated viruses (AAVs) to model and investigate AD in mice, as well as to develop novel gene-therapy approaches, is emerging. Here, we reviewed literature that used AAVs to study and model AD and discuss potential gene therapy strategies. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Castro-Sánchez S, García-Yagüe ÁJ, Kügler S, Lastres-Becker I. CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: Implications in tauopathies. Redox Biol 2019; 22:101118. [PMID: 30769286 PMCID: PMC6375000 DOI: 10.1016/j.redox.2019.101118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/11/2022] Open
Abstract
TAU protein aggregation is the main characteristic of neurodegenerative diseases known as tauopathies. Low-grade chronic inflammation is also another hallmark that indicates crosstalk between damaged neurons and glial cells. Previously, we have demonstrated that neurons overexpressing TAUP301L release CX3CL1, which activates the transcription factor NRF2 signalling to limit over-activation in microglial cells in vitro and in vivo. However, the connection between CX3CL1/CX3CR1 and NRF2 system and its functional implications in microglia are poorly described. We evaluated CX3CR1/NRF2 axis in the context of tauopathies and its implication in neuroinflammation. Regarding the molecular mechanisms that connect CX3CL1/CX3CR1 and NRF2 systems, we observed that in primary microglia from Cx3cr1-/- mice the mRNA levels of Nrf2 and its related genes were significantly decreased, establishing a direct linking between both systems. To determine functional relevance of CX3CR1, migration and phagocytosis assays were evaluated. CX3CR1-deficient microglia showed impaired cell migration and deficiency of phagocytosis, as previously described for NRF2-deficient microglia, reinforcing the idea of the relevance of the CX3CL1/CX3CR1 axis in these events. The importance of these findings was evident in a tauopathy mouse model where the effects of sulforaphane (SFN), an NRF2 inducer, were examined on neuroinflammation in Cx3cr1+/+ and Cx3cr1-/- mice. Interestingly, the treatment with SFN was able to modulate astrogliosis but failed to reduce microgliosis in Cx3cr1-/- mice. These findings suggest an essential role of the CX3CR1/NRF2 axis in microglial function and in tauopathies. Therefore, polymorphisms with loss of function in CX3CR1 or NRF2 have to be taken into account for the development of therapeutic strategies. CX3CR1-deficient primary microglial cells present impaired expression of the transcription factor NRF2 signature. TAM receptors expression is decreased in CX3CR1-deficient microglia. AXL receptor is a NRF2-dependent gene. Loss of CX3CR1 expression led to impaired phagocytosis and migration of microglia. Sulforaphane treatment did not reverse rAAV-TAUP301L induced microgliosis in CX3CR1-deficient mice.
Collapse
Affiliation(s)
- Sara Castro-Sánchez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain; Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain.
| | - Ángel J García-Yagüe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain; Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain.
| | - Sebastian Kügler
- Department of Neurology, Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Medicine Göttingen, Göttingen, Germany.
| | - Isabel Lastres-Becker
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain; Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
48
|
Azizi V, Allahyari F, Hosseini A. The antiepileptic and neuroprotective effect of the Buxus hyrcana Pojark hydroethanolic extract against the pentylentetrazol induced model of the seizures in the male rats. Int J Neurosci 2018; 128:913-919. [PMID: 29466898 DOI: 10.1080/00207454.2018.1443925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 02/01/2018] [Accepted: 02/18/2018] [Indexed: 01/03/2023]
Abstract
AIMS The genus Buxus grows up widespread in Europe and Western Asia. It is an important traditional plant that has been used in the treatment of many illnesses. In the present study, the effect of hydroethanolic extract of Buxus hyrcana Pojark (BHP) on the animal model of seizure was studied. MATERIALS AND METHODS In this experimental study, 42 male Wistar rats weighing 220-250 g were randomly selected and were divided into experimental and control groups (six rats per group). The experimental groups were treated by the intraperitoneal (i.p.) single injection of 150, 300, 450, 600 and 750 mg kg-1 of hydroalcoholic extracts of BHP. The control negative group received normal saline (0.9%) and the control positive group received phenobarbital (30 mg kg-1, i.p.) pre-treatment. Thirty minutes after the treatments, the seizure behaviors were evaluated by the pentylenetetrazole (PTZ) (70 mg kg-1, i.p.) challenge. In addition, after the experiment, the rats were put to death and their brains were removed for the histological study. RESULTS The ANOVA demonstrated that compared to the control group, all the BHP doses delayed the initiation and duration of the tonic, colonic and tonic-colonic seizures and significantly reduced the tonic and colonic seizures (p < 0.001). Furthermore, the administration of all five doses of the extract significantly prevented the production of the dark neurons (p < 0.001) in different areas of the hippocampus compared to PTZ group. CONCLUSION We can conclude that the BHP extract has beneficial effects for the prevention of the PTZ induced seizure.
Collapse
Affiliation(s)
- Vahid Azizi
- a Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology , Shahid Beheshti University , Tehran , Iran
| | - Farzin Allahyari
- a Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology , Shahid Beheshti University , Tehran , Iran
| | - Abdolkarim Hosseini
- a Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology , Shahid Beheshti University , Tehran , Iran
| |
Collapse
|
49
|
Thermal degradation of agar: Mechanism and toxicity of products. Food Chem 2018; 264:277-283. [DOI: 10.1016/j.foodchem.2018.04.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
|
50
|
Dendrobium polysaccharides attenuate cognitive impairment in senescence-accelerated mouse prone 8 mice via modulation of microglial activation. Brain Res 2018; 1704:1-10. [PMID: 30253123 DOI: 10.1016/j.brainres.2018.09.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Dendrobium is one of the most important traditional Chinese medicinal foods used to treat age-related disorders. However, it remains unclear whether Dendrobium affects the progression of Alzheimer's disease (AD). In the present study, we investigated the effects of Dendrobium officinale polysaccharides (DOP) on the BV2 microglial cell line and the senescence-accelerated mouse prone 8 (SAMP8) mouse strain. In vitro experiments showed that DOP pretreatment contributed to BV2 cells shifting from proinflammatory to anti-inflammatory phenotypes with enhanced Aβ clearance in response to Aβ insults. For the in vivo study, mice were chronically treated with DOP in drinking water from 4 to 7 months of age. The results showed that DOP remarkably attenuated cognitive decline in SAMP8 mice. DOP also inhibited the increased hippocampal microglial activation in SAMP8 mice with downregulation of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), while interleukin-10 (IL-10), neprilysin (NEP) and insulin-degrading enzyme (IDE) were upregulated. The accumulation of hippocampal Aβ42 and phosphated Tau proteins in SAMP8 mice was also reduced. Taken together, our data suggest that Dendrobium has the potential to provide neuroprotection against AD-related cognitive impairment via modulation of microglial activation.
Collapse
|