1
|
Shariatzadeh S, Sazi AT, Dunn JCY. Distraction Enterogenesis Induces Desert Hedgehog in the Lengthened Murine Colon. J Pediatr Surg 2024; 59:161960. [PMID: 39349347 DOI: 10.1016/j.jpedsurg.2024.161960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Distraction enterogenesis lengthens the intestine through applied mechanical stress. The Hedgehog pathway (Hh) is responsible for intestinal tract development and directing the multi-layer patterning of the intestinal lumen. This study investigates the alteration in the principal components of this pathway in spring-mediated colonic lengthening. METHODS Samples from the murine cecal lengthening model were used to study Hh alteration during the cecal lengthening process. Primary components of this pathway were analyzed using RT-qPCR and immunostaining after 7 and 14 days of force application. The spring-mediated lengthened segments were compared to untreated control segments within each animal. RESULTS The spring-treated segments showed a 50% increase in length. There was a significant increase in the expression of the Desert Hedgehog ligand as opposed to the Sonic Hedgehog and Indian Hedgehog ligands. Additionally, the downstream targets of the pathway, Gli1, Gli2, and Gli3, were significantly overexpressed. The highest alterations in these components occurred at the earlier time point, after 7 days. CONCLUSIONS These findings highlight the contribution of the conserved Hedgehog developmental pathway during mechanical force-induced cecal lengthening, primarily through the Desert Hedgehog ligand. These data suggest that the Desert Hedgehog pathway may serve as therapeutic targets for intestinal regeneration.
Collapse
Affiliation(s)
| | | | - James C Y Dunn
- Department of Surgery, Stanford University, Stanford, CA, United States; Division of Bioengineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
2
|
Kast RE. IC Regimen: Delaying Resistance to Lorlatinib in ALK Driven Cancers by Adding Repurposed Itraconazole and Cilostazol. Cells 2024; 13:1175. [PMID: 39056757 PMCID: PMC11274432 DOI: 10.3390/cells13141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.
Collapse
|
3
|
Di Mauro A, Rega RA, Leongito M, Albino V, Palaia R, Gualandi A, Belli A, D’Arbitrio I, Moccia P, Tafuto S, De Chiara A, Ottaiano A, Ferrara G. Plexiform Fibromyxoma in the Stomach: Immunohistochemical Profile and Comprehensive Genetic Characterization. Int J Mol Sci 2024; 25:4847. [PMID: 38732067 PMCID: PMC11084853 DOI: 10.3390/ijms25094847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Plexiform fibromyxoma (PF), also referred to as plexiform angiomyxoid myofibroblast tumor, is an exceedingly rare mesenchymal neoplasm primarily affecting the stomach. Herein, we present a case of PF diagnosed in a 71-year-old male with a history of lung cancer, initially suspected to have a gastrointestinal stromal tumor (GIST) of the stomach, who subsequently underwent subtotal gastrectomy. The histopathological and molecular features of the tumor, including mutations in ABL1, CCND1, CSF1R, FGFR4, KDR, and MALAT1-GLI1 fusion, are elucidated and discussed in the context of diagnostic, prognostic, and therapeutic considerations.
Collapse
Affiliation(s)
- Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Rosalia Anna Rega
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Maddalena Leongito
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Vittorio Albino
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Raffaele Palaia
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Alberto Gualandi
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Andrea Belli
- Department of Gastro-Hepato-Pancreato-Biliary Surgery, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (M.L.); (V.A.); (R.P.); (A.B.)
| | - Imma D’Arbitrio
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Pasquale Moccia
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Annarosaria De Chiara
- Histopathology of Lymphomas and Sarcomas SSD, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Alessandro Ottaiano
- Division of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy;
| | - Gerardo Ferrara
- Pathology Unit, Istituto Nazionale Tumori, IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (R.A.R.); (A.G.); (I.D.); (P.M.); (G.F.)
| |
Collapse
|
4
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Babakhanlou R, Ravandi-Kashani F. Non-intensive acute myeloid leukemia therapies for older patients. Expert Rev Hematol 2023; 16:171-180. [PMID: 36864772 DOI: 10.1080/17474086.2023.2184342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive disease predominantly affecting the elderly population. The elderly population represents a challenging group to treat and the prognosis is generally poor with significantly worse treatment outcomes compared to the younger population. While the goal of treatment for younger fit patients is cure and includes intensive chemotherapy and stem cell transplantation, these strategies are not always feasible for elderly unfit patients due to increased frailty, co-morbidities, and, subsequently, an increased risk of treatment-related toxicity and mortality. AREAS COVERED This review will discuss both patient- and disease-related factors, outline prognostication models and summarize current treatment options, including intensive and less intensive treatment strategies and novel agents. EXPERT OPINION Although recent years have seen major advances in the development of low-intensity therapies, there is still a lack of consensus on the optimal treatment for this patient group. Because of the heterogeneity of the disease, personalizing the treatment strategy is important and curative-oriented approaches should be selected wisely, rather than following a rigid hierarchical algorithm.
Collapse
Affiliation(s)
- Rodrick Babakhanlou
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi-Kashani
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Doghish AS, Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Fathi D, Elsakka EGE. miRNAs as cornerstones in chronic lymphocytic leukemia pathogenesis and therapeutic resistance- An emphasis on the interaction of signaling pathways. Pathol Res Pract 2023; 243:154363. [PMID: 36764011 DOI: 10.1016/j.prp.2023.154363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Chronic lymphocytic leukemia (CLL) accounts for the vast majority of cases of leukemia. Patients of advanced age are more likely to develop the condition, which has a highly varied clinical course. Consideration of illness features and preceding treatment sequence, as well as patient preferences and comorbidities, is necessary for selecting the appropriate treatment for the appropriate patient. Therefore, there is an urgent need for novel biomarkers with high sensitivity and specificity to detect CLL early, monitor CLL patients, select the treatment responders, and reduce ineffective treatment, unwanted side effects, and unnecessary expenses. In both homeostasis and illness, microRNAs (miRNAs/miRs) play a vital role as master regulators of gene expression and, by extension, protein expression. MiRNAs typically reduce the stability of mRNAs, including those encoding genes involved in tumorigenesis processes as cell cycle regulation, inflammation, stress response, angiogenesis, differentiation, apoptosis, and invasion. Due to their unique properties, miRNAs are rapidly being exploited as accurate biomarkers for illness detection, and medicines based on miRNA targets are finding widespread application in clinical practice. Accordingly, the current review serves as a quick primer on CLL and the biogenesis of miRNAs. In addition to providing a brief overview of the miRNAs whose function in the progression of CLL has been established by recent in vitro or in vivo research through articulating the influence of these miRNAs on a wide variety of cellular functions, including increased proliferative potential; support for angiogenesis; cell cycle aberration; evasion of apoptosis; promotion of metastasis; and reduced sensitivity to specific treatments.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
7
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
8
|
Dilower I, Niloy AJ, Kumar V, Kothari A, Lee EB, Rumi MAK. Hedgehog Signaling in Gonadal Development and Function. Cells 2023; 12:358. [PMID: 36766700 PMCID: PMC9913308 DOI: 10.3390/cells12030358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors (PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH system is highly conserved across species and essential for organogenesis. HH signaling pathways play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal tract. While the sonic HH (SHH) pathway plays a major role in the development of the central nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian HH (IHH) acts on the development of bones and joints. There are also overlapping roles among the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH. This review article focuses on the roles of HH signaling in gonadal development and reproductive functions with an emphasis on ovarian functions. We have acknowledged the original research work that initially reported the findings and discussed the subsequent studies that have further analyzed the role of HH signaling in testes and ovaries.
Collapse
Affiliation(s)
| | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Gołos A, Góra-Tybor J, Robak T. Experimental drugs in clinical trials for acute myeloid leukemia: innovations, trends, and opportunities. Expert Opin Investig Drugs 2023; 32:53-67. [PMID: 36669827 DOI: 10.1080/13543784.2023.2171860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a heterogeneous disease characterized by many cytogenetic and molecular alterations. Due to better knowledge of the molecular basis of AML, many targeted therapies have been introduced and registered, e.g. FMS-like tyrosine kinase 3 inhibitors, isocitrate dehydrogenase 1/2 mutation inhibitors, and Bcl-2 inhibitor. Despite that, the cure for AML remains an unmet clinical need in most patients. AREAS COVERED The review aims to present new, not yet registered drugs for AML. We searched the English literature for articles concerning AML, targeted drugs, menin inhibitors, DOT1L, BET, IDH inhibitors, FLT3, hedgehog inhibitors, Polo-like kinase inhibitors, RNA splicing, and immune therapies via PubMed. Publications from January 2000 to August 2022 were scrutinized. Additional relevant publications were obtained by reviewing the references from the chosen articles and Google search. Conference proceedings from the previous 5 years of The American Society of Hematology, the European Hematology Association, and the American Society of Clinical Oncology were searched manually. Additional relevant publications were obtained by reviewing the references. EXPERT OPINION For several years, the therapeutic approach in AML has become more individualized. Novel groups of drugs give hope for greater curability. High response rates have agents that restore the activity of the p53 protein. In addition, agents that work independently of a particular mutation seem promising for AML without any known mutation.
Collapse
Affiliation(s)
- Aleksandra Gołos
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Joanna Góra-Tybor
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland.,Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
10
|
Molica M, Perrone S. Molecular targets for the treatment of AML in the forthcoming 5th World Health Organization Classification of Haematolymphoid Tumours. Expert Rev Hematol 2022; 15:973-986. [PMID: 36271671 DOI: 10.1080/17474086.2022.2140137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a genetically heterogeneous disease for which the treatment armamentarium has been historically restricted to chemotherapy. However, genomic and epigenomic alterations that contribute to AML initiation, maintenance, and relapse have disclosed new insights to the 5th update in WHO Classification of Haematolymphoid Tumours. AREAS COVERED After four decades of intensive chemotherapy as a 'one-size-fits-all' concept, several targeted agents have been approved for the treatment of AML. Several compounds, directed against regulators of apoptotic, epigenetic, or micro-environmental pathways, and immune-system modulators, are currently in development and investigation in clinical trials. We review advances in target-based therapy for AML focusing on their mechanism of action, examining the intracellular events and pathways, and the results from published clinical trials. EXPERT OPINION To improve patient clinical outcomes, find new biomarkers for therapeutic response, and pinpoint patients who might benefit from novel targeted medicines, next-generation sequencing is being used to evaluate AML-associated mutations. In fact, the new 5th edition of WHO classification has reaffirmed the importance of genetically defined entities that have a prognostic impact, but not all have a specific treatment available. New class of target drugs are in clinical development and could be beneficial to improve the therapeutic armamentarium available.
Collapse
Affiliation(s)
| | - Salvatore Perrone
- Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, Latina, Italy.,Division of Hematology, University Hospital Paolo Giaccone, Palermo, Italy
| |
Collapse
|
11
|
Iyer SG, Stanchina M, Bradley TJ, Watts J. Profile of Glasdegib for the Treatment of Newly Diagnosed Acute Myeloid Leukemia (AML): Evidence to Date. Cancer Manag Res 2022; 14:2267-2272. [PMID: 35937938 PMCID: PMC9354757 DOI: 10.2147/cmar.s195723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy primarily affecting older adults. Historically, the highest rates of response have been achieved with intensive induction chemotherapy; however, a significant portion of older or unfit adults with AML are unable to tolerate intensive therapy or have chemotherapy-resistant disease, creating a large need for active and less intensive treatment strategies. Glasdegib, an oral inhibitor of the transmembrane protein Smoothened (SMO) involved in the Hedgehog (Hh) signaling pathway, was approved in 2018 for older or unfit adults with AML and attained a role in clinical practice after showing an overall survival (OS) advantage when combined with the established agent low-dose cytarabine (LDAC). Since that time, however, several other highly active lower intensity therapies such as venetoclax plus a hypomethylating agent (HMA) have garnered a dominant role in the treatment of this patient population. In this review, we summarize the role of glasdegib in the current treatment landscape of newly diagnosed AML and discuss ongoing investigations into its role in novel combination therapies.
Collapse
Affiliation(s)
- Sunil Girish Iyer
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michele Stanchina
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Terrence J Bradley
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, FL, USA
- Correspondence: Terrence J Bradley, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, 90 SW 3rd Street #2210, Miami, FL, 33130, USA, Tel +1 3052439290, Fax +1 305-243-9161, Email
| | - Justin Watts
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Wellbrock J, Behrmann L, Muschhammer J, Modemann F, Khoury K, Brauneck F, Bokemeyer C, Campeau E, Fiedler W. The BET bromodomain inhibitor ZEN-3365 targets the Hedgehog signaling pathway in acute myeloid leukemia. Ann Hematol 2021; 100:2933-2941. [PMID: 34333666 PMCID: PMC8592969 DOI: 10.1007/s00277-021-04602-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Modern cancer therapies increased the survival rates of acute myeloid leukemia (AML) patients tremendously. However, the complexity of the disease and the identification of new targets require the adaptation of treatment protocols to reduce side effects and increase benefit for the patients. One key regulator of leukemogenesis and chemotherapy resistance in AML is the Hedgehog (HH) signaling pathway. It is deregulated in numerous cancer entities and inhibition of its downstream transcription factors GLI translates into anti-leukemic effects. One major regulator of GLI is BRD4, a BET family member with epigenetic functions. We investigated the effect of ZEN-3365, a novel BRD4 inhibitor, on AML cells in regard to the HH pathway. We show that ZEN-3365 alone or in combination with GANT-61 reduced GLI promoter activity, cell proliferation and colony formation in AML cell lines and primary cells. Our findings strongly support the evaluation of the BRD4 inhibitor ZEN-3365 as a new therapeutic option in AML.
Collapse
Affiliation(s)
- Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Franziska Modemann
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Kais Khoury
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Eric Campeau
- Zenith Epigenetics Ltd, 4820 Richard Road SW, Suite 300, Calgary, AB, T3E 6L1, Canada
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
13
|
Acute Myeloid Leukemia Mutations and Future Mechanistic Target to Overcome Resistance. Curr Treat Options Oncol 2021; 22:76. [PMID: 34213682 DOI: 10.1007/s11864-021-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT Cytogenetics and mutation identification in acute myeloid leukemia have allowed for more targeted therapy. Many therapies have been approved by the FDA in the last 3 years including gilteritinib and azacitidine but the overall survival has remained stagnant at 25%. The inability to achieve complete remission was related to the residual leukemic stem cells (LSCs). Thus, the relationship between bone marrow niche and LSCs must be further explored to prevent treatment relapse/resistance. The development of immunotherapy and nanotechnology may play a role in future therapy to achieve the complete remission. Nano-encapsulation of drugs can improve drugs' bioavailability, help drugs evade resistance, and provide combination therapy directly to the cancer cells. Studies indicate targeting surface antigens such as CLL1 and CD123 using chimeric antibody receptor T cells can improve survival outcomes. Finally, new discoveries indicate that inhibiting integrin αvβ3 and acid ceramidase may prove to be efficacious.
Collapse
|
14
|
Glasdegib as maintenance therapy for patients with AML and MDS patients at high risk for postallogeneic stem cell transplant relapse. Blood Adv 2021; 4:3102-3108. [PMID: 32634235 DOI: 10.1182/bloodadvances.2020001991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/26/2020] [Indexed: 11/20/2022] Open
Abstract
Key Points
Posttransplantation, glasdegib maintenance therapy in patients at high risk for relapse did not meaningfully reduce relapse incidence. Use of glasdegib in the posttransplantation setting was complicated by adverse events requiring drug holds and occasional discontinuation.
Collapse
|
15
|
Ruan T, Sun J, Liu W, Prinz RA, Peng D, Liu X, Xu X. H1N1 Influenza Virus Cross-Activates Gli1 to Disrupt the Intercellular Junctions of Alveolar Epithelial Cells. Cell Rep 2021; 31:107801. [PMID: 32610119 DOI: 10.1016/j.celrep.2020.107801] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 06/01/2020] [Indexed: 02/09/2023] Open
Abstract
Influenza A virus (IAV) primarily infects the airway and alveolar epithelial cells and disrupts the intercellular junctions, leading to increased paracellular permeability. Although this pathological change plays a critical role in lung tissue injury and secondary infection, the molecular mechanism of IAV-induced damage to the alveolar barrier remains obscure. Here, we report that Gli1, a transcription factor in the sonic hedgehog (Shh) signaling pathway, is cross-activated by the MAP and PI3 kinase pathways in H1N1 virus (PR8)-infected A549 cells and in the lungs of H1N1 virus-infected mice. Gli1 activation induces Snail expression, which downregulates the expression of intercellular junction proteins, including E-cadherin, ZO-1, and Occludin, and increases paracellular permeability. Inhibition of the Shh pathway restores the levels of Snail and intercellular junction proteins in H1N1-infected cells. Our study suggests that Gli1 activation plays an important role in disrupting the intercellular junctions and in promoting the pathogenesis of H1N1 virus infections.
Collapse
Affiliation(s)
- Tao Ruan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL 60201, USA
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PRC; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PRC; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC; Institutes of Agricultural Science and Technology Development, Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu Province, PRC.
| |
Collapse
|
16
|
Li B, Wang S, Duan H, Wang Y, Guo Z. Discovery of gene module acting on ubiquitin-mediated proteolysis pathway by co-expression network analysis for endometriosis. Reprod Biomed Online 2021; 42:429-441. [PMID: 33189575 DOI: 10.1016/j.rbmo.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
RESEARCH QUESTION Is abnormal gene module expression in the eutopic endometrium related to the occurrence of endometriosis? DESIGN Nine datasets of normal and eutopic endometrium were searched and collected through the National Center for Biotechnology Information Gene Expression Omnibus, which included genome-wide expression studies of 71 normal cases and 142 endometriosis cases. Surrogate variable analysis was used for dataset integration. The network module and hub genes were selected by weighted gene co-expression network analysis. Machine learning was used to establish a diagnostic model of endometriosis. RESULTS A gene module that was most relevant to endometriosis was selected through weighted gene co-expression network analysis. After further analysis of this module, four hub genes that represent the function of this module were selected: SCAF11, KRAS, MDM2 and KIF3A. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the four hub genes revealed that all of them were most highly correlated with genes enriched in the ubiquitin-mediated proteolysis pathway. Moreover, in the correlation analysis between hub genes and Jab1, SCAF11 was found to be closely related to Jab1. Furthermore, hub genes were effective indicators for clinical diagnosis. The deep machine learning diagnostic model based on hub genes was highly sensitive. CONCLUSIONS The gene module identified is highly correlated with endometriosis. The four hub genes in this module degrade p27kip1 through the ubiquitin-mediated proteolysis pathway to regulate the endometrium cell cycle and affect the development of endometriosis. The hub genes and the deep learning model based on them are valuable for clinical diagnosis.
Collapse
Affiliation(s)
- Bohan Li
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | - Sha Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | - Hua Duan
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China.
| | - Yiyi Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| | - Zhengchen Guo
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China
| |
Collapse
|
17
|
Lu Y, Zhu Y, Deng S, Chen Y, Li W, Sun J, Xu X. Targeting the Sonic Hedgehog Pathway to Suppress the Expression of the Cancer Stem Cell (CSC)-Related Transcription Factors and CSC-Driven Thyroid Tumor Growth. Cancers (Basel) 2021; 13:cancers13030418. [PMID: 33499351 PMCID: PMC7866109 DOI: 10.3390/cancers13030418] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Poorly differentiated and anaplastic thyroid cancers respond poorly to surgery, radiation, and hormone therapy. Cancer stem cells play an important role in tumor growth, drug resistance, and recurrence. This study focuses on how the sonic hedgehog (Shh) pathway maintains thyroid cancer stem cell self-renewal and whether it can be targeted for anticancer therapy. The authors report that the Shh pathway regulates the expression of BMI1 and SOX2, two genes involved in stem cell self-renewal, and that targeting the Shh pathway has little effect on thyroid tumor xenografts but can inhibit the growth of tumor xenografts derived from thyroid cancer stem cells. This study advances the knowledge on how thyroid cancer stem cells regenerate and highlights the potential therapeutic values of targeting the Shh pathway. Abstract The sonic hedgehog (Shh) pathway plays important roles in tumorigenesis, tumor growth, drug resistance, and metastasis. We and others have reported earlier that this pathway is highly activated in thyroid cancer. However, its role in thyroid cancer stem cell (CSC) self-renewal and tumor development remains incompletely understood. B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and SRY-Box Transcription Factor 2 (SOX2) are two CSC-related transcription factors that have been implicated in promoting CSC self-renewal. The objective of our current investigation was to determine the role of the Shh pathway in regulating BMI1 and SOX2 expression in thyroid cancer and promoting thyroid tumor growth and development. Here we report that inhibition of the Shh pathway by Gli1 siRNA or by cyclopamine and GANT61 reduced BMI1 and SOX2 expression in SW1736 and KAT-18 cells, two anaplastic thyroid cancer cell lines. The opposite results were obtained in cells overexpressing Gli1 or its downstream transcription factor Snail. The Shh pathway regulated SOX2 and BMI1 expression at a transcriptional and post-transcriptional level, respectively. GANT61 treatment suppressed the growth of SW1736 CSC-derived tumor xenografts but did not significantly inhibit the growth of tumors grown from bulk tumor cells. Clinicopathological analyses of thyroid tumor specimens by immunohistochemical (IHC) staining revealed that BMI1 and SOX2 were highly expressed in thyroid cancer and correlated with Gli1 expression. Our study provides evidence that activation of the Shh pathway leads to increased BMI1 and SOX2 expression in thyroid cancer and promotes thyroid CSC-driven tumor initiation. Targeting the Shh pathway may have therapeutic value for treating thyroid cancer and preventing recurrence.
Collapse
Affiliation(s)
- Yurong Lu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Yiwen Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Shihan Deng
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Yuhuang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Wei Li
- College of Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China;
| | - Jing Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Correspondence: ; Tel.: +86-514-8797-7382; Fax: +86-514-8797-7046
| |
Collapse
|
18
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
19
|
Cortes JE, Candoni A, Clark RE, Leber B, Montesinos P, Vyas P, Zeidan AM, Heuser M. Selection and management of older patients with acute myeloid leukemia treated with glasdegib plus low-dose cytarabine: expert panel review. Leuk Lymphoma 2020; 61:3287-3305. [DOI: 10.1080/10428194.2020.1817445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jorge E. Cortes
- Division of Hematology and SCT, Georgia Cancer Center, Augusta, GA, USA
| | - Anna Candoni
- University Hospital of Udine-ASUFC, Udine, Italy
| | - Richard E. Clark
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Brian Leber
- Division of Hematology and Thromboembolism, Department of Medicine, McMaster University Medical Centre, Hamilton, Canada
| | - Pau Montesinos
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Paresh Vyas
- Weatherall Institute of Molecular Medicine, Oxford, UK
- National Institute of Health Research Oxford, Biomedical Research Centre, Oxford, UK
| | | | | |
Collapse
|
20
|
Hedgehog Pathway Inhibitors: A New Therapeutic Class for the Treatment of Acute Myeloid Leukemia. Blood Cancer Discov 2020; 1:134-145. [DOI: 10.1158/2643-3230.bcd-20-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
|
21
|
Lin CC, Kuo IY, Wu LT, Kuan WH, Liao SY, Jen J, Yang YE, Tang CW, Chen YR, Wang YC. Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression. Am J Cancer Res 2020; 10:10001-10015. [PMID: 32929330 PMCID: PMC7481419 DOI: 10.7150/thno.47491] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis enhances cancer metastasis and progression, however, the roles of transcription regulation in angiogenesis are not fully defined. ZNF322A is an oncogenic zinc-finger transcription factor. Here, we demonstrate a new mechanism of Kras mutation-driven ZNF322A transcriptional activation and elucidate the interplay between ZNF322A and its upstream transcriptional regulators and downstream transcriptional targets in promoting neo-angiogenesis. Methods: Luciferase activity, RT-qPCR and ChIP-qPCR assays were used to examine transcription regulation in cell models. In vitro and in vivo angiogenesis assays were conducted. Immunohistochemistry, Kaplan-Meier method and multivariate Cox regression assays were performed to examine the clinical correlation in tumor specimens from lung cancer patients. Results: We validated that Yin Yang 1 (YY1) upregulated ZNF322A expression through targeting its promoter in the context of Kras mutation. Reconstitution experiments by knocking down YY1 under KrasG13V activation decreased KrasG13V-promoted cancer cell migration, proliferation and ZNF322A promoter activity. Knockdown of YY1 or ZNF322A attenuated angiogenesis in vitro and in vivo. Notably, we validated that ZNF322A upregulated the expression of sonic hedgehog (Shh) gene which encodes a secreted factor that activates pro-angiogenic responses in endothelial cells. Clinically, ZNF322A protein expression positively correlated with Shh and CD31, an endothelial cell marker, in 133 lung cancer patient samples determined using immunohistochemistry analysis. Notably, patients with concordantly high expression of ZNF322A, Shh and CD31 correlated with poor prognosis. Conclusions: These findings highlight the mechanism by which dysregulation of Kras/YY1/ZNF322/Shh transcriptional axis enhances neo-angiogenesis and cancer progression in lung cancer. Therapeutic strategies that target Kras/YY1/ZNF322A/Shh signaling axis may provide new insight on targeted therapy for lung cancer patients.
Collapse
|
22
|
Yuan YF, Zhu WX, Liu T, He JQ, Zhou Q, Zhou X, Zhang X, Yang J. Cyclopamine functions as a suppressor of benign prostatic hyperplasia by inhibiting epithelial and stromal cell proliferation via suppression of the Hedgehog signaling pathway. Int J Mol Med 2020; 46:311-319. [PMID: 32319534 PMCID: PMC7255449 DOI: 10.3892/ijmm.2020.4569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Stromal-epithelial interaction serves a pivotal role in normal prostate growth, as well as the onset of benign prostatic hyperplasia (BPH). The present study aimed to explore the role of cyclopamine in the proliferation and apoptosis of epithelial and stromal cells in rats with BPH by blocking the Hedgehog signaling pathway. Cyclopamine (an inhibitor of the Hedgehog signaling pathway) was administered in a rat model of BPH, and the expression of Ki67 (proliferation factor) was determined by immunohistochemistry. In addition, epithelial and stromal cells were separated and cultured in order to investigate the role of cyclopamine in the progression of BPH. The expression of Hedgehog signaling pathway- and apoptosis-related genes, including basic fibroblastic growth factor (b-FGF) and transforming growth factor β (TGF-β), was evaluated using reverse transcription-quantitative polymerase chain reaction and western blot analysis. Cell proliferation, cell cycle and apoptosis were analyzed using an MTT assay and flow cytometry. We identified upregulated Ki67 expression and activated Hedgehog signaling pathway in rats with BPH. Cyclopamine inhibited the activation of the Hedgehog signaling pathway. In response to cyclopamine treatment, epithelial and stromal cell proliferation was inhibited; this was concomitant with decreased Ki67, TGF-β, and b-FGF expression. On the other hand, epithelial cell apoptosis was enhanced, which was associated with increased Bax and reduced Bcl-2 expression. Based on these findings, we proposed that cyclopamine may serve as a potential therapeutic agent in the treatment of BPH. Cyclopamine could inhibit epithelial and stromal cell proliferation, and induce epithelial cell apoptosis by suppressing the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yi-Feng Yuan
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Wen-Xiong Zhu
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Tao Liu
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Ju-Qiao He
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Qing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xi Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jing Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
23
|
Thompson DL, Moore DC. Glasdegib: A Novel Hedgehog Pathway Inhibitor for Acute Myeloid Leukemia. J Adv Pract Oncol 2020; 11:196-200. [PMID: 33532119 PMCID: PMC7848813 DOI: 10.6004/jadpro.2020.11.2.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive myeloid disorder that is associated with a generally poor prognosis. Effective treatment options have been limited for older patients with AML who are not able to undergo intensive remission induction chemotherapy due to advanced age or comorbidities. New and novel agents are needed to improve treatment outcomes for this patient population. Glasdegib is a novel Hedgehog signaling pathway inhibitor approved by the U.S. Food & Drug Administration for the treatment of patients with newly diagnosed AML who are 75 years of age or older or who have comorbidities that preclude intensive induction chemotherapy. Glasdegib is approved in combination with low-dose cytarabine (LDAC). This approval is based on the results of a multicenter, open-label, randomized trial of glasdegib plus LDAC vs. LDAC monotherapy in which the addition of glasdegib resulted in an improvement in median overall survival.
Collapse
Affiliation(s)
| | - Donald C Moore
- Levine Cancer Institute, Atrium Health, Concord, North Carolina
| |
Collapse
|
24
|
Patel SA, Gerber JM. A User's Guide to Novel Therapies for Acute Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:277-288. [PMID: 32113891 DOI: 10.1016/j.clml.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Few diseases have been marked by a 40-year period of stagnation with regard to therapeutic advances and United States Food and Drug Administration (FDA) approvals, as has been the case for acute myeloid leukemia (AML). Cytarabine and anthracyclines were introduced for the treatment of AML in the 1970s, and in the ensuing 4 decades, the pharmacologic pipeline has experienced a standstill. The absence of FDA approvals in AML is not a reflection of the lack of understanding of the disease biology. The field has seen major advances from the standpoint of stem cell biology and clonal evolution, and the field has also seen some therapeutic advances, but these therapeutic advances have arisen from optimization of the same traditional cytotoxic chemotherapeutics rather than the development of novel therapies. The year 2017 marked a turning point with regard to FDA approvals. This review summarizes the salient clinical trials that led to the approval of 8 novel agents in AML in the past 2 years. For these agents, the clinical activity is often defined by specific molecular aberrations or metabolic features of AML cells. We also emphasize the principles of management of AML in the current era of genomic medicine, with a focus on considerations for targeting mutation-specific vulnerabilities in select patients. This review also highlights unique challenges to the use of novel agents in 2020, including considerations of curative potential with regards to bridging to allogeneic stem cell transplant, tolerability, financial toxicities, and microenvironmental hurdles. Finally, we discuss prospects on future immunotherapeutic investigational agents in the pharmacologic pipeline.
Collapse
Affiliation(s)
- Shyam A Patel
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA
| | - Jonathan M Gerber
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA.
| |
Collapse
|
25
|
van Dijk AD, de Bont ESJM, Kornblau SM. Targeted therapy in acute myeloid leukemia: current status and new insights from a proteomic perspective. Expert Rev Proteomics 2020; 17:1-10. [PMID: 31945303 DOI: 10.1080/14789450.2020.1717951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The biological heterogeneity of acute myeloid leukemia (AML) complicates personalized medicine. Individual prognosis is typically based on the presence of chromosomal and genetic lesions. Nevertheless, these classifications often lack a priori information about response to therapy. Since the protein expression landscape reflects the functional activity state of cells, we hypothesize that analyzing this can be used for the identification of protein activity markers to provide better risk stratification as well as may provide targeted therapeutic guidance in AML.Areas covered: Herein, we review recently new adopted drugs in the treatment for AML and discuss how quantitative proteomic techniques may contribute to better therapeutic selection in AML.Expert commentary: The net functional state of the cell is defined by the activity of protein within all the pathways that are active in the cell. Recognition of the proteomic profile of the leukemic blast could, therefore, complement current classification systems by providing a better a priori description of what pathways are important within a cell as a guide to the selection of therapy for the patient.
Collapse
Affiliation(s)
- Anneke D van Dijk
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Eveline S J M de Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Palmieri R, Paterno G, De Bellis E, Mercante L, Buzzatti E, Esposito F, Del Principe MI, Maurillo L, Buccisano F, Venditti A. Therapeutic Choice in Older Patients with Acute Myeloid Leukemia: A Matter of Fitness. Cancers (Basel) 2020; 12:cancers12010120. [PMID: 31906489 PMCID: PMC7016986 DOI: 10.3390/cancers12010120] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Acute myeloid leukemia (AML), with an incidence increasing with age, is the most common acute leukemia in adults. Concurrent comorbidities, mild to severe organ dysfunctions, and low performance status (PS) are frequently found in older patients at the onset, conditioning treatment choice and crucially influencing the outcome. Although anthracyclines plus cytarabine-based chemotherapy, also called “7 + 3” regimen, remains the standard of care in young adults, its use in patients older than 65 years should be reserved to selected cases because of higher incidence of toxicity. These adverse features of AML in the elderly underline the importance of a careful patient assessment at diagnosis as a critical tool in the decision-making process of treatment choice. In this review, we will describe selected recently approved drugs as well as examine prognostic algorithms that may be helpful to assign treatment in elderly patients properly.
Collapse
Affiliation(s)
- Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Giovangiacinto Paterno
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Eleonora De Bellis
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Lisa Mercante
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Fabiana Esposito
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Luca Maurillo
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Francesco Buccisano
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-0620903226
| |
Collapse
|
27
|
Abstract
The hedgehog-smoothened (HH/SMO) pathway has been proposed as a potential therapeutic target for hematological malignancies. Our previous studies designed a series of HH inhibitors with novel scaffolds distinctive from vismodegib, the first Food and Drug Administration-approved HH inhibitor for the treatment of basal-cell carcinoma and medulloblastoma. In the present study, we evaluated these HH inhibitors against blood cancers and found that HH78 displayed potent activity in suppressing the HH signaling pathway. HH78 competitively bound to SMO and suppressed the transcriptional activity of GLI by the luciferase reporter gene assay and the measurement of HH/SMO-downregulated genes, including cyclin D2, cyclin E, PTCH1, PTCH2, and GLI. HH78 at low micromolar concentrations induced significant cancer cell apoptosis showed by increased caspase-3 activation, annexin V-staining and downregulated prosurvival proteins, including c-Myc, Bcl-2, Mcl-1, and Bcl-xL. In contrast, vismodegib did not show any effects on these apoptotic events. HH78 also suppressed the activation of the AKT/mTOR pathway, which cross-talks with the HH/SMO pathway. Finally, HH78 inhibited the growth of human leukemia K562 in nude mice xenografts with no overt toxicity. Collectively, the present study identified a novel HH inhibitor with great potential for the treatment of hematological malignancies.
Collapse
|
28
|
Wolska-Washer A, Robak T. Glasdegib in the treatment of acute myeloid leukemia. Future Oncol 2019; 15:3219-3232. [DOI: 10.2217/fon-2019-0171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmacologic inhibition of the Hedgehog pathway significantly enhanced the sensitivity of leukemic cells to cytotoxic drugs. Glasdegib (PF-04449913; DAURISMO™) is a potent and selective oral inhibitor of the Hedgehog signaling pathway with clinical activity in patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), particularly in combination with chemotherapy. The results of Phase Ib/II studies evaluating safety and efficacy of glasdegib combined with chemotherapy in previously untreated patients with AML or high-risk myelodysplastic syndrome have recently been published. In the BRIGHT AML 1003 study, glasdegib in combination with low-dose cytarabine (LDAC) was well tolerated and demonstrated a significant 54% reduction in mortality compared with LDAC for AML patients. In 2018, the US FDA approved glasdegib in combination with LDAC for the treatment of newly diagnosed patients with AML who are 75 years old or older or who have co-morbidities that preclude use of intensive induction chemotherapy.
Collapse
Affiliation(s)
- Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz, ul. Ciolkowskiego 2, 93-510 Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, ul. Ciolkowskiego 2, 93-510 Lodz, Poland
| |
Collapse
|
29
|
Xie Y, Liu J, Jiang H, Wang J, Li X, Wang J, Zhu S, Guo J, Li T, Zhong Y, Zhang Q, Liu Z. Proteasome inhibitor induced SIRT1 deacetylates GLI2 to enhance hedgehog signaling activity and drug resistance in multiple myeloma. Oncogene 2019; 39:922-934. [PMID: 31576013 DOI: 10.1038/s41388-019-1037-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Multiple myeloma (MM) is still incurable despite the successful application of proteasome inhibitors in clinic. Bortezomib represents the most common chemotherapy for MM, whereas acquired drug resistance and eventually developed relapse remain the major obstruction. In the current study, we established bortezomib-resistant myeloma cell lines and screened gene expression profiles using single cell RNA-sequencing. Resistant MM cells exhibited increased clonogenic potential, specific metabolic, and epigenetic signatures, along with the self-renewal signaling characteristic of MM stem-like cells. Aberrant activation of hedgehog (Hh) signaling was correlated with drug resistance and stem cell-like transcriptional program. The key transcriptional factor GLI2 of the Hh pathway was restricted in the high acetylation and low ubiquitination states in bortezomib-resistant myeloma cells. Further investigation revealed that SIRT1 deacetylates and stabilizes GLI2 protein at lysine 757 and consequentially activates the Hh signaling, and itself serves as a direct target of Hh signaling to format a positive regulating loop. Using combination screening with an epigenetic compound library, we identified the SIRT1 specific inhibitor S1541 and S2804 had very obvious synergetic antimyeloma effect. Sirt1 inhibition could partially impeded the Hh pathway and conferred bortezomib sensitivity in vitro and in vivo. Notably, elevated SIRT1 level was also a prominent hallmark for the resistant myeloma cells, and this expression pattern was confirmed in myeloma patients, but independent of RAS/RAF mutations. Clinically, SIRT1 expression in patients with complete response was suppressed but elevated in relapsed patients, and retrospective analysis showed patients with higher SIRT1 expression had poorer outcomes. In conclusion, the cooperation of SIRT1 and Hh is an important mechanism of drug resistance in myeloma, and therapeutics combining SIRT1 inhibitors will sensitize myeloma cells to proteasome inhibitors.
Collapse
Affiliation(s)
- Ying Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Hongmei Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Shuai Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Jing Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| | - Tao Li
- School of Medicine, Hunan Normal University, Changsha, Hunan, 410006, China
| | - Yuping Zhong
- Department of Hematology, Myeloma Research Center of Beijing, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang, Beijing, 100020, China
| | - Qiguo Zhang
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China.
| |
Collapse
|
30
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
31
|
Cortes JE, Gutzmer R, Kieran MW, Solomon JA. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat Rev 2019; 76:41-50. [PMID: 31125907 DOI: 10.1016/j.ctrv.2019.04.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The hedgehog signaling pathway is normally tightly regulated. Mutations in hedgehog pathway components may lead to abnormal activation. Aberrantly activated hedgehog signaling plays a major role in the development of solid and hematological cancer. In recent years, inhibitors have been developed that attenuate hedgehog signaling; 2 have been approved for use in basal cell carcinoma (BCC), while others are under development or in clinical trials. The aim of this review is to provide an overview of known hedgehog inhibitors (HHIs) and their potential for the treatment of hematological cancers and solid tumors beyond BCC. DESIGN Published literature was searched to identify articles relating to HHIs in noncutaneous cancer. Both preclinical and clinical research articles were included. In addition, relevant clinical trial results were identified from www.clinicaltrials.gov. Information on the pharmacology of HHIs is also included. RESULTS HHIs show activity in a variety of solid and hematological cancers. In preclinical studies, HHIs demonstrated efficacy in pancreatic cancer, rhabdomyosarcoma, breast cancer, and acute myeloid leukemia (AML). In clinical studies, HHIs showed activity in medulloblastoma, as well as prostate, pancreatic, and hematological cancers. Current clinical trials testing the efficacy of HHIs are underway for prostate, pancreatic, and breast cancers, as well as multiple myeloma and AML. CONCLUSIONS As clinical trial results become available, it will be possible to discern which additional tumor types are suited to HHI mono- or combination therapy with other anticancer agents. The latter strategy may be useful for delaying or overcoming drug resistance.
Collapse
Affiliation(s)
- Jorge E Cortes
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd. #428, Houston, TX 77030, USA.
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Carl-Neuberg Str 1, D-30625 Hannover, Germany.
| | - Mark W Kieran
- Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| | - James A Solomon
- Ameriderm Research, 725 W Granada Blvd Ste 44, Ormond Beach, FL 32174, USA; University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
32
|
Bohl SR, Bullinger L, Rücker FG. New Targeted Agents in Acute Myeloid Leukemia: New Hope on the Rise. Int J Mol Sci 2019; 20:E1983. [PMID: 31018543 PMCID: PMC6515298 DOI: 10.3390/ijms20081983] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
The therapeutic approach for acute myeloid leukemia (AML) remains challenging, since over the last four decades a stagnation in standard cytotoxic treatment has been observed. But within recent years, remarkable advances in the understanding of the molecular heterogeneity and complexity of this disease have led to the identification of novel therapeutic targets. In the last two years, seven new targeted agents (midostaurin, gilteritinib, enasidenib, ivosidenib, glasdegib, venetoclax and gemtuzumab ozogamicin) have received US Food and Drug Administration (FDA) approval for the treatment of AML. These drugs did not just prove to have a clinical benefit as single agents but have especially improved AML patient outcomes if they are combined with conventional therapy. In this review, we will focus on currently approved and promising upcoming agents and we will discuss controversial aspects and limitations of targeted treatment strategies.
Collapse
Affiliation(s)
- Stephan R Bohl
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine, 13353 Berlin, Germany.
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany.
| |
Collapse
|
33
|
Cai K, Na W, Guo M, Xu R, Wang X, Qin Y, Wu Y, Jiang J, Huang H. Targeting the cross-talk between the hedgehog and NF-κB signaling pathways in multiple myeloma. Leuk Lymphoma 2019; 60:772-781. [PMID: 30644322 DOI: 10.1080/10428194.2018.1493727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy. Aberrant activation of the Hedgehog (Hh) and NF-κB signaling pathways is observed in MM and plays a pivotal role in the development of MM by promoting myeloma cell growth, survival, and drug resistance. In this study, we found that the Sonic Hh (SHh) ligand in the bone marrow microenvironment is responsible for the enhancement of NF-κB activity in MM cell lines NCI-H929 and U266. Notably, we discovered that Hh signaling regulates NF-κB through its classical pathway (SHh/PTCH1/SMO/GLI1) in MM cells. Meanwhile, non-classical pathway by SMO recruitment of TRAF6 to ubiquitination is also involved in it. Moreover, the SMO inhibitor cyclopamine enhances the cytotoxic effects of bortezomib in MM cell lines. Our study reveals the cross-talk between Hh members and the NF-κB pathway in the myeloma cells and provides a theoretical basis for combined utilization of Hh members and proteasome inhibition in MM.
Collapse
Affiliation(s)
- Ke Cai
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| | - Wenxiu Na
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| | - Mengjie Guo
- b School of Medicine and Life Sciences , Nanjing University of Chinese Medicine , Nanjing , 210023 , P.R. China
| | - Ruirong Xu
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| | - Xinfeng Wang
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| | - Yi Qin
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| | - Yan Wu
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| | - Jie Jiang
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| | - Hongming Huang
- a Department of Hematology , The Affiliated Hospital of Nantong University , Nantong , Jiangsu , 226001 , P.R. China
| |
Collapse
|
34
|
Cortes JE, Heidel FH, Hellmann A, Fiedler W, Smith BD, Robak T, Montesinos P, Pollyea DA, DesJardins P, Ottmann O, Ma WW, Shaik MN, Laird AD, Zeremski M, O'Connell A, Chan G, Heuser M. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 2018; 33:379-389. [PMID: 30555165 PMCID: PMC6365492 DOI: 10.1038/s41375-018-0312-9] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023]
Abstract
Glasdegib is a Hedgehog pathway inhibitor. This phase II, randomized, open-label, multicenter study (ClinicalTrials.gov, NCT01546038) evaluated the efficacy of glasdegib plus low-dose cytarabine (LDAC) in patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome unsuitable for intensive chemotherapy. Glasdegib 100 mg (oral, QD) was administered continuously in 28-day cycles; LDAC 20 mg (subcutaneous, BID) was administered for 10 per 28 days. Patients (stratified by cytogenetic risk) were randomized (2:1) to receive glasdegib/LDAC or LDAC. The primary endpoint was overall survival. Eighty-eight and 44 patients were randomized to glasdegib/LDAC and LDAC, respectively. Median (80% confidence interval [CI]) overall survival was 8.8 (6.9–9.9) months with glasdegib/LDAC and 4.9 (3.5–6.0) months with LDAC (hazard ratio, 0.51; 80% CI, 0.39–0.67, P = 0.0004). Fifteen (17.0%) and 1 (2.3%) patients in the glasdegib/LDAC and LDAC arms, respectively, achieved complete remission (P < 0.05). Nonhematologic grade 3/4 all-causality adverse events included pneumonia (16.7%) and fatigue (14.3%) with glasdegib/LDAC and pneumonia (14.6%) with LDAC. Clinical efficacy was evident across patients with diverse mutational profiles. Glasdegib plus LDAC has a favorable benefit–risk profile and may be a promising option for AML patients unsuitable for intensive chemotherapy.
Collapse
Affiliation(s)
- Jorge E Cortes
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Florian H Heidel
- Otto-von-Guericke University Medical Center, Magdeburg, Germany.,Internal Medicine II, University Hospital Jena, Jena, Germany
| | - Andrzej Hellmann
- Department of Haematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Walter Fiedler
- Department of Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - B Douglas Smith
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Pau Montesinos
- Hospital Universitari i Politècnic La Fe, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Oliver Ottmann
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018; 7:cells7110208. [PMID: 30423843 PMCID: PMC6262325 DOI: 10.3390/cells7110208] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that plays a crucial role in many fundamental processes, including embryonic development and tissue homeostasis. Moreover, emerging evidence has suggested that aberrant activation of Hh is associated with neoplastic transformations, malignant tumors, and drug resistance of a multitude of cancers. At the molecular level, it has been shown that Hh signaling drives the progression of cancers by regulating cancer cell proliferation, malignancy, metastasis, and the expansion of cancer stem cells (CSCs). Thus, a comprehensive understanding of Hh signaling during tumorigenesis and development of chemoresistance is necessary in order to identify potential therapeutic strategies to target various human cancers and their relapse. In this review, we discuss the molecular basis of the Hh signaling pathway and its abnormal activation in several types of human cancers. We also highlight the clinical development of Hh signaling inhibitors for cancer therapy as well as CSC-targeted therapy.
Collapse
|
36
|
Bhat A, Sharma A, Bharti AC. Upstream Hedgehog signaling components are exported in exosomes of cervical cancer cell lines. Nanomedicine (Lond) 2018; 13:2127-2138. [PMID: 30265222 DOI: 10.2217/nnm-2018-0143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate export of Hedgehog pathway (Hh) proteins Patched1, Smoothened, Sonic hedgehog and Indian hedgehog in cervical cancer cell line (CaCx) exosomes. METHODS Exosomes were isolated and characterized by Western blotting, scanning electron microscopy and in a colorimetric assay. Nucleic acids (RNA, DNA) and protein content of exosomes were analyzed. Hh pathway proteins in exosomes were detected using Western blotting. RESULTS CaCx secrete bio-macromolecule (DNA, RNA and proteins) enriched exosomes. CaCx exosomes contained higher amount of RNA with respect to DNA. CaCx preferentially exported Hh proteins (Patched1, Smoothened, Sonic hedgehog, Indian hedgehog) in their exosomes. Cellular uptake assay revealed rapid internalization of CaCx exosomes in human umbilical vein endothelial cells. CONCLUSION Our study showed that Hh proteins are exported in CaCx exosomes.
Collapse
Affiliation(s)
- Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, North Campus, University Of Delhi, New Delhi 110007, India
| | - Aman Sharma
- ExoCan Healthcare Technologies Pvt Ltd, Lab 4, 400 NCL Innovation Park, Dr Homi Bhabha Road, Pune 411008, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, North Campus, University Of Delhi, New Delhi 110007, India
| |
Collapse
|
37
|
Giroux-Leprieur E, Costantini A, Ding VW, He B. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance. Int J Mol Sci 2018; 19:E2835. [PMID: 30235830 PMCID: PMC6165231 DOI: 10.3390/ijms19092835] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Hedgehog signaling pathway is physiologically activated during embryogenesis, especially in lung development. It is also reactivated in many solid tumors. In lung cancer, Hedgehog pathway is closely associated with cancer stem cells (CSCs). Recent works have shown that CSCs produced a full-length Sonic Hedgehog (Shh) protein, with paracrine activity and induction of tumor development. Hedgehog pathway is also involved in tumor drug resistance in lung cancer, as cytotoxic chemotherapy, radiotherapy, and targeted therapies. This review proposes to describe the activation mechanisms of Hedgehog pathway in lung cancer, the clinical implications for overcoming drug resistance, and the perspectives for further research.
Collapse
Affiliation(s)
- Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France.
- EA 4340, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France.
| | - Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France.
- EA 4340, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France.
| | - Vivianne W Ding
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Réda J, Vachtenheim J, Vlčková K, Horák P, Vachtenheim J, Ondrušová L. Widespread Expression of Hedgehog Pathway Components in a Large Panel of Human Tumor Cells and Inhibition of Tumor Growth by GANT61: Implications for Cancer Therapy. Int J Mol Sci 2018; 19:ijms19092682. [PMID: 30201866 PMCID: PMC6163708 DOI: 10.3390/ijms19092682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
The sonic Hedgehog/GLI signaling pathway (HH) is critical for maintaining tissue polarity in development and contributes to tumor stemness. Transcription factors GLI1–3 are the downstream effectors of HH and activate oncogenic targets. To explore the completeness of the expression of HH components in tumor cells, we performed a screen for all HH proteins in a wide spectrum of 56 tumor cell lines of various origin using Western blot analysis. Generally, all HH proteins were expressed. Important factors GLI1 and GLI2 were always expressed, only exceptionally one of them was lowered, suggesting the functionality of HH in all tumors tested. We determined the effect of a GLI inhibitor GANT61 on proliferation in 16 chosen cell lines. More than half of tumor cells were sensitive to GANT61 to various extents. GANT61 killed the sensitive cells through apoptosis. The inhibition of reporter activity containing 12xGLI consensus sites by GANT61 and cyclopamine roughly correlated with cell proliferation influenced by GANT61. Our results recognize the sensitivity of tumor cell types to GANT61 in cell culture and support a critical role for GLI factors in tumor progression through restraining apoptosis. The use of GANT61 in combined targeted therapy of sensitive tumors, such as melanomas, seems to be immensely helpful.
Collapse
Affiliation(s)
- Jiri Réda
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Kateřina Vlčková
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Pavel Horák
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| | - Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, 15006 Prague, Czech Republic.
| | - Lubica Ondrušová
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, 12108 Prague, Czech Republic.
| |
Collapse
|
39
|
Turner MW, Cruz R, Elwell J, French J, Mattos J, McDougal OM. Native V. californicum Alkaloid Combinations Induce Differential Inhibition of Sonic Hedgehog Signaling. Molecules 2018; 23:E2222. [PMID: 30200443 PMCID: PMC6225318 DOI: 10.3390/molecules23092222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
Veratrum californicum is a rich source of steroidal alkaloids such as cyclopamine, a known inhibitor of the Hedgehog (Hh) signaling pathway. Here we provide a detailed analysis of the alkaloid composition of V. californicum by plant part through quantitative analysis of cyclopamine, veratramine, muldamine and isorubijervine in the leaf, stem and root/rhizome of the plant. To determine whether additional alkaloids in the extracts contribute to Hh signaling inhibition, the concentrations of these four alkaloids present in extracts were replicated using commercially available standards, followed by comparison of extracts to alkaloid standard mixtures for inhibition of Hh signaling using Shh-Light II cells. Alkaloid combinations enhanced Hh signaling pathway antagonism compared to cyclopamine alone, and significant differences were observed in the Hh pathway inhibition between the stem and root/rhizome extracts and their corresponding alkaloid standard mixtures, indicating that additional alkaloids present in these extracts are capable of inhibiting Hh signaling.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Roberto Cruz
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Jordan Elwell
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - John French
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Jared Mattos
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| |
Collapse
|
40
|
Geng Y, Liu J, Xie Y, Jiang H, Zuo K, Li T, Liu Z. Trichostatin A promotes GLI1 degradation and P21 expression in multiple myeloma cells. Cancer Manag Res 2018; 10:2905-2914. [PMID: 30214285 PMCID: PMC6118243 DOI: 10.2147/cmar.s167330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Histone deacetylase inhibitors are promising drugs for the future application in cancer therapy. Trichostatin A (TSA), a histone deacetylase inhibitor, exhibits effective antitumor effects in various cancers. However, the effects and underlying mechanisms of TSA on multiple myeloma (MM) are not fully investigated. Methods In the present study, RPMI8226 and MM.1S cells treated with TSA were used for cell proliferation, cell cycle, and survival examinations, then the localization and post transcriptional modification of GLI1 protein as well as the target gene P21 were analyzed using immunofluorescence, immunoprecipitation, western blots and qPCR, respectively. Results TSA exerted a time and dose-dependent cytotoxicity on MM cell lines, and suppressed the proliferation of MM cells and induced an upregulation of p21 protein accompanied by a decreased expression of cyclin D1. TSA treatment led to a downregulation of GLI1, and the nuclear accumulation of GLI1 was also inhibited. As a result of hedgehog inhibition, the expression of MYC and SURVIVIN was greatly weakened after TSA treatment. Furthermore, TSA accelerated GLI1 degradation in a proteasome-dependent manner. Additionally, p21 induction also contributed to GLI1 downregulation via reducing the transcription of GLI in mRNA level. Rescue experiments verified that exogenous expression of GLI1 alleviated MM cell apoptosis induced by TSA. Conclusion These results indicated that TSA represses MM cell growth and induces cell apoptosis. The inhibition of hedgehog signaling is an important mechanism accounting for the cytotoxic effects of TSA.
Collapse
Affiliation(s)
- Yan Geng
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012 China
| | - Jing Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Heping, Tianjin, 300070 China,
| | - Ying Xie
- Department of Physiology and Pathophysiology, Tianjin Medical University, Heping, Tianjin, 300070 China,
| | - Hongmei Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Heping, Tianjin, 300070 China,
| | - Kai Zuo
- Department of Infectious Disease, Binzhou People's Hospital, Binzhou, Shandong, 264000 China
| | - Tao Li
- Department of Immunology, School of Medicine, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Heping, Tianjin, 300070 China,
| |
Collapse
|
41
|
Barbutti I, Xavier-Ferrucio JM, Machado-Neto JA, Ricon L, Traina F, Bohlander SK, Saad STO, Archangelo LF. CATS (FAM64A) abnormal expression reduces clonogenicity of hematopoietic cells. Oncotarget 2018; 7:68385-68396. [PMID: 27588395 PMCID: PMC5356563 DOI: 10.18632/oncotarget.11724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/21/2016] [Indexed: 11/25/2022] Open
Abstract
The CATS (FAM64A) protein interacts with CALM (PICALM) and the leukemic fusion protein CALM/AF10. CATS is highly expressed in leukemia, lymphoma and tumor cell lines and its protein levels strongly correlates with cellular proliferation in both malignant and normal cells. In order to obtain further insight into CATS function we performed an extensive analysis of CATS expression during differentiation of leukemia cell lines. While CATS expression decreased during erythroid, megakaryocytic and monocytic differentiation, a markedly increase was observed in the ATRA induced granulocytic differentiation. Lentivirus mediated silencing of CATS in U937 cell line resulted in somewhat reduced proliferation, altered cell cycle progression and lower migratory ability in vitro; however was not sufficient to inhibit tumor growth in xenotransplant model. Of note, CATS knockdown resulted in reduced clonogenicity of CATS-silenced cells and reduced expression of the self-renewal gene, GLI-1. Moreover, retroviral mediated overexpression of the murine Cats in primary bone marrow cells lead to decreased colony formation. Although our in vitro data suggests that CATS play a role in cellular processes important for tumorigenesis, such as cell cycle control and clonogenicity, these effects were not observed in vivo.
Collapse
Affiliation(s)
- Isabella Barbutti
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Juliana M Xavier-Ferrucio
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - João Agostinho Machado-Neto
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Lauremilia Ricon
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Fabiola Traina
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil
| | - Leticia Fröhlich Archangelo
- Hematology and Hemotherapy Center, State University of Campinas (UNICAMP), Carlos Chagas 480, Campinas-SP, Brazil.,Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
42
|
Ochando J, Braza MS. T follicular helper cells: a potential therapeutic target in follicular lymphoma. Oncotarget 2017; 8:112116-112131. [PMID: 29340116 PMCID: PMC5762384 DOI: 10.18632/oncotarget.22788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Follicular lymphoma (FL), the most common indolent B-cell non-Hodgkin lymphoma (B-NHL), is a germinal center (GC)-derived lymphoma. The mechanisms underlying B-cell differentiation/maturation in GCs could be also involved in their malignant transformation. Moreover, the non-malignant cell composition and architecture of the tumor microenvironment can influence FL development and outcome. Here, we review recent research advances on CD4 helper T cells in FL that highlight the pivotal role of T follicular helper (TFH) cells in a complex multicellular system where they interact with B cells during GC dynamics. After describing the mechanism of FL lymphomagenesis, we discuss the emerging evidence about TFH cell enrichment and involvement in FL tumorigenesis and in B-T cell interaction, TFH regulation by T follicular regulatory cells (TFR) and its potential effect on FL. Then, we provide an overview on the flexible interplay between the different CD4 T-cell subtypes and how this may be predicted in normal and pathologic contexts, according to the cell epigenetic state. Finally, we highlight the importance of targeting TFH cells in the clinic, summarize the main outstanding questions about TFH and TFR cells in FL, and describe strategies to potentiate FL therapy by taking into account TFH cells.
Collapse
Affiliation(s)
- Jordi Ochando
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mounia S Braza
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
43
|
Ding M, Wang X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol Lett 2017; 14:6327-6333. [PMID: 29391876 DOI: 10.3892/ol.2017.7030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.
Collapse
Affiliation(s)
- Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
44
|
Hay JF, Lappin K, Liberante F, Kettyle LM, Matchett KB, Thompson A, Mills KI. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy. Oncotarget 2017; 8:67891-67903. [PMID: 28978082 PMCID: PMC5620222 DOI: 10.18632/oncotarget.18910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/31/2017] [Indexed: 11/25/2022] Open
Abstract
Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.
Collapse
Affiliation(s)
- Jodie F Hay
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Molecular Oncology Laboratory, MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Katrina Lappin
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Fabio Liberante
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Laura M Kettyle
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Haematopoietic Stem Cell Biology, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Kyle B Matchett
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Alexander Thompson
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.,Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ken I Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
45
|
Association of expression of the hedgehog signal with Merkel cell polyomavirus infection and prognosis of Merkel cell carcinoma. Hum Pathol 2017; 69:8-14. [PMID: 28551328 DOI: 10.1016/j.humpath.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/26/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer that mostly occurs in the elderly. Merkel cell polyomavirus (MCPyV) is detected in approximately 80% of MCCs and is associated with carcinogenesis. Hedgehog signaling pathway plays a role in human embryogenesis and organogenesis. In addition, reactivation of this pathway later in life can cause tumors. Twenty-nineMCPyV-positive and 21 MCPyV-negative MCCs were immunohistochemically stained with primary antibodies for hedgehog signaling (SHH, IHH, PTCH1, SMO, GLI1, GLI2, and GLI3) and evaluated using H-score. Polymerase chain reaction and sequence analysis for SHH and GLI1 exons were also performed. Expression of SHH was higher in MCPyV-positive MCCs than in MCPyV-negative MCCs (P<.001). Higher expression of GLI1, MCPyV infection, male sex, and Japanese ethnicity were associated with better overall survival (P=.034, P=.001, P=.042, and P=.036, respectively). Higher expression of SHH and MCPyV infection were associated with improved MCC-specific survival (P=.037 and P=.002, respectively). The mutation analysis of prognosis-related GLI1 and SHH genes in our study revealed a low frequency of mutations in the 10 exons examined, except GLI1 exon 5 (18/22 cases), all having the same silent mutation of c.576G>A. Only 2 mutations with amino acid changes were detected in MCPyV-negative MCCs only: 1 missense mutation in GLI1 exon 4 and 1 nonsense mutation in SHH-3B. Expression of SHH and GLI1 may be useful prognostic markers of MCC because increased expression was associated with better prognosis. The high rate of c.576G>A silent mutation in GLI1 exon 5 was a feature of MCC.
Collapse
|
46
|
Siveen KS, Uddin S, Mohammad RM. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol Cancer 2017; 16:13. [PMID: 28137265 PMCID: PMC5282735 DOI: 10.1186/s12943-016-0571-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most commonly diagnosed leukemia in adults (25%) and comprises 15-20% in children. It is a genetically heterogeneous aggressive disease characterized by the accumulation of somatically acquired genetic changes, altering self-renewal, proliferation, and differentiation of hematopoietic progenitor cells, resulting in uncontrolled clonal proliferation of malignant progenitor myeloid cells in the bone marrow, peripheral blood, and occasionally in other body tissues. Treatment with modern chemotherapy regimen (cytarabine and daunorubicin) usually achieves high remission rates, still majority of patients are found to relapse, resulting in only 40-45% overall 5 year survival in young patients and less than 10% in the elderly AML patients. The leukemia stem cells (LSCs) are characterized by their unlimited self-renewal, repopulating potential and long residence in a quiescent state of G0/G1 phase. LSCs are considered to have a pivotal role in the relapse and refractory of AML. Therefore, new therapeutic strategies to target LSCs with limited toxicity towards the normal hematopoietic population is critical for the ultimate curing of AML. Ongoing research works with natural products like parthenolide (a natural plant extract derived compound) and its derivatives, that have the ability to target multiple pathways that regulate the self-renewal, growth and survival of LSCs point to ways for a possible complete remission in AML. In this review article, we will update and discuss various natural products that can target LSCs in AML.
Collapse
Affiliation(s)
- Kodappully Sivaraman Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Ramzi M Mohammad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| |
Collapse
|
47
|
Hedgehog pathway activation in T-cell acute lymphoblastic leukemia predicts response to SMO and GLI1 inhibitors. Blood 2016; 128:2642-2654. [PMID: 27694322 DOI: 10.1182/blood-2016-03-703454] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive childhood leukemia that is caused by the accumulation of multiple genomic lesions resulting in transcriptional deregulation and increased cell proliferation and survival. Through analysis of gene expression data, we provide evidence that the hedgehog pathway is activated in 20% of T-ALL samples. Hedgehog pathway activation is associated with ectopic expression of the hedgehog ligands Sonic hedgehog (SHH) or Indian hedgehog (IHH), and with upregulation of the transcription factor GLI1 Ectopic expression of SHH or IHH in mouse T cells in vivo caused hedgehog pathway activation in both lymphoid and epithelial cells in the thymus and resulted in increased expression of important T-cell stimulatory ligands (Dll4, Il7, and Vegf) by thymic epithelial cells. In T-ALL cell lines, pharmacological inhibition or short interfering RNA-mediated knockdown of SMO or GLI1 led to decreased cell proliferation. Moreover, primary T-ALL cases with high GLI1 messenger RNA levels, but not those with low or undetectable GLI1 expression, were sensitive to hedgehog pathway inhibition by GANT61 or GDC-0449 (vismodegib) using ex vivo cultures and in vivo xenograft models. We identify the hedgehog pathway as a novel therapeutic target in T-ALL and demonstrate that hedgehog inhibitors approved by the US Food and Drug Administration could be used for the treatment of this rare leukemia.
Collapse
|
48
|
Jiang T, Wang J, Wang Y, Li C. Development of mediastinal lymphoma after radiotherapy for concurrent medulloblastoma and PNET in a patient with Gorlin syndrome. World J Surg Oncol 2016; 14:215. [PMID: 27519263 PMCID: PMC4983054 DOI: 10.1186/s12957-016-0967-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/02/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Very young children with Gorlin syndrome are at risk for developing medulloblastoma. Patients with Gorlin syndrome may have multiple system abnormalities, including basal cell carcinomas, jaw cysts, desmoplastic medulloblastoma, palmar/plantar pits, rib abnormalities, and intracranial falx calcification. The early diagnosis of Gorlin syndrome in desmoplastic medulloblastoma patients is very important because these patients should receive chemotherapy as a first-line treatment and should avoid radiotherapy as much as possible. CASE PRESENTATION In the present study, a 5-year-old male patient had a concurrent cerebellar desmoplastic medulloblastoma and temporal primitive neuroectodermal tumor. Examinations of this patient revealed multiple café-au-lait spots, a jaw cyst, and a bifid rib. A molecular classification analysis revealed that the patient's cerebellar tumor was of the sonic hedgehog subtype. Twenty-seven months after tumor resection and cerebrospinal irradiation were performed, mediastinal lymphoma was found in the patient. The patient ultimately died of lymphoma. To the best of our knowledge, this is the first report of a concurrent medulloblastoma and primitive neuroectodermal tumor and the fourth report of multiple café-au-lait spots in a patient with Gorlin syndrome. This report is also the first account of the development of mediastinal lymphoma after spinal irradiation in a patient with Gorlin syndrome. CONCLUSIONS Chemotherapy should be the first-line treatment for medulloblastoma patients with Gorlin syndrome. Young patients with medulloblastoma of the desmoplastic subtype and multiple café-au-lait spots should be thoroughly examined for Gorlin syndrome.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan xili, Chonwen District, Beijing, 100050 China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050 China
| | - Junmei Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050 China
| | - Ying Wang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020 China
| | - Chunde Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan xili, Chonwen District, Beijing, 100050 China
| |
Collapse
|
49
|
Turner MW, Cruz R, Mattos J, Baughman N, Elwell J, Fothergill J, Nielsen A, Brookhouse J, Bartlett A, Malek P, Pu X, King MD, McDougal OM. Cyclopamine bioactivity by extraction method from Veratrum californicum. Bioorg Med Chem 2016; 24:3752-7. [PMID: 27338657 DOI: 10.1016/j.bmc.2016.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 02/04/2023]
Abstract
Veratrum californicum, commonly referred to as corn lily or Californian false hellebore, grows in high mountain meadows and produces the steroidal alkaloid cyclopamine, a potent inhibitor of the Hedgehog (Hh) signaling pathway. The Hh pathway is a crucial regulator of many fundamental processes during vertebrate embryonic development. However, constitutive activation of the Hh pathway contributes to the progression of various cancers. In the present study, a direct correlation was made between the extraction efficiency for cyclopamine from root and rhizome by eight methods, and the associated biological activity in Shh-Light II cells using the Dual-Glo® Luciferase Assay System. Alkaloid recovery ranged from 0.39 to 8.03mg/g, with ethanol soak being determined to be the superior method for obtaining biologically active cyclopamine. Acidic ethanol and supercritical extractions yielded degraded or contaminated cyclopamine with lower antagonistic activity towards Hh signaling.
Collapse
Affiliation(s)
- Matthew W Turner
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Sciences Ph.D. Program, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Roberto Cruz
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Jared Mattos
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Nic Baughman
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Jordan Elwell
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Jenny Fothergill
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Anna Nielsen
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Jessica Brookhouse
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Ashton Bartlett
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Petr Malek
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Matthew D King
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, United States.
| |
Collapse
|
50
|
Active IKKβ promotes the stability of GLI1 oncogene in diffuse large B-cell lymphoma. Blood 2015; 127:605-15. [PMID: 26603838 DOI: 10.1182/blood-2015-07-658781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022] Open
Abstract
GLI1 oncogene has been implicated in the pathobiology of several neoplasms including diffuse large B-cell lymphoma (DLBCL). However, mechanisms underlying GLI1-increased activity in DLBCL are poorly characterized. Herein, we demonstrate that IKKβ phosphorylates GLI1 in DLBCL. IKKβ activation increased GLI1 protein levels and transcriptional activity, whereas IKKβ silencing decreased GLI1 levels and transcriptional activity. Tumor necrosis factor-α (TNFα) mediated IKKβ activation-impaired GLI1 binding with the E3 ubiquitin ligase-ITCH, leading to decreased K48-linked ubiquitination/degradation of GLI1. We found 8 IKKβ-dependent phosphorylation sites that mediate GLI1 stability. Mutating or deleting these residues facilitated GLI1-ITCH interaction and decreased the protective effect of TNFα on GLI1 stability. IKKβ-GLI1 crosstalk is significant because combined inhibition of both molecules resulted in synergistic suppression of DLBCL viability in vivo and in vitro. By linking IKKβ-mediated nuclear factor-κB activity with GLI1, we identified a crosstalk between these 2 pathways that can inform the design of novel therapeutic strategies in DLBCL.
Collapse
|