1
|
Zhang Y, Yu Z, Zhao Y, Zou L, Deng B, Liu X. Metformin ameliorates trophoblastic immunometabolic disorders via attenuating TLR4/NF-κB signaling through ATXN7L3-mediated histone H2B monoubiquitination. Placenta 2025; 165:50-61. [PMID: 40209519 DOI: 10.1016/j.placenta.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Trophoblastic inflammation and glycometabolic reprogramming represent two hallmarks of numerous diverse placental disorders, including but not limited to preterm labor, preeclampsia, and fetal growth restriction. Recent evidence indicates that TLR4/NF-κB signaling mediate the interaction between trophoblastic inflammation and glycometabolism disturbance while pharmacologic doses of metformin (MET, 10 μM) corrected these vicious states via its suppression on this pathway. However, the underlying precise mechanism remain incompletely understood. METHODS ATXN7L3 was identified through comprehensive proteomic screening. The oxidative phosphorylation and glycolysis were detected to evaluate the metabolic reprogramming. ELISA and adhesion experiment were used to evaluate the trophoblastic inflammation. Chromatin immunoprecipitation assay and co-immunoprecipitation assays were used to clarify the precise mechanism of MET on TLR4/NF-κB signaling. RESULTS MET corrected trophoblastic glycometabolic reprogramming and attenuated excessive inflammation via ATXN7L3. Mechanistically, MET regulated the TLR4/NF-κB signaling pathway through ATXN7L3-mediated Histone H2B monoubiquitylation. CONCLUSIONS Our findings elucidate a novel epigenetic regulatory mechanism whereby pharmacologic doses of MET ameliorated the TLR4/NF-κB signaling-induced immunometabolic disorders in trophoblasts through ATXN7L3-mediated H2Bub1. This study exploratively elucidated a novel mechanism underlying MET's pharmacological effects and provided novel insights into its role in ameliorating placental immunometabolism and development, potentially offering a novel pharmacological strategy for treating preeclampsia, fetal growth restriction, and related obstetrical syndromes.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Prenatal Diagnosis Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Prenatal Diagnosis Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Prenatal Diagnosis Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Prenatal Diagnosis Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Famá EAB, Pinhal MAS. Extracellular matrix components in preeclampsia. Clin Chim Acta 2025; 568:120132. [PMID: 39798685 DOI: 10.1016/j.cca.2025.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Preeclampsia (PE) is a gestational complication affecting 5% to 10% of all pregnancies. PE is characterized by hypertension and endothelial dysfunction, whose etiology involves, among other factors, alterations in the extracellular matrix (ECM) that can compromise vascular remodeling and trophoblast invasion, ie, processes essential for placental development. Endothelial dysfunction is caused by release of antiangiogenic factors, mainly a soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes two endothelial angiogenic factors, the vascular endothelial growth factor (VEGF) and placental growth factor (PLGF). This angiogenic imbalance contributes to clinical symptoms including hypertension and multisystem dysfunction. This review aims to summarize recent advances in understanding PE, particularly with altered ECM components such as heparan sulfate proteoglycans, the glycosidase heparanase, fibronectin, collagen XVIII (endostatin), and metalloproteases. This comprehensive narrative review was conducted on PubMed from 1994 to 2024, focusing on articles on the pathophysiology of PE, particularly endothelial dysfunction caused by ECM modifications. The data shows a reduced expression of matrix metalloproteinases, increased collagen fragment XVIII, and significant changes in fibronectin associated with PE. Furthermore, endothelial dysfunction was associated with increased degradation of heparan sulfate chains from proteoglycans and increased sFlt-1. Understanding these ECM modifications is crucial for developing potential new therapeutic interventions that improve maternal and fetal outcome in PE.
Collapse
Affiliation(s)
- Eduardo Augusto Brosco Famá
- Obstetrics/Gynecology Department, Centro Universitário Faculdade de Medicina ABC (FMABC), Santo André, São Paulo, Brazil.
| | | |
Collapse
|
3
|
Oğuz Y, Ağaoğlu RT, Ulusoy CO, Kurt D, Özgürlük İ, Soysal Ç, Yılmaz Vural Z, Yakut Yücel K. The significance of Syndecan 1, a new marker for endothelial dysfunction, in cases of fetal growth retardation. Am J Reprod Immunol 2024; 91:e13858. [PMID: 38762781 DOI: 10.1111/aji.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/20/2024] Open
Abstract
PROBLEM In the current study we aimed to investigate Syndecan 1 (SDC1) levels in pregnant women diagnosed with fetal growth restriction (FGR) and the relationship between SDC1 levels and clinical and doppler parameters in FGR cases associated with endothelial dysfunction, angiogenesis and uteroplacental insufficiency METHOD OF STUDY: A total of 90 pregnant women included in the study, (45 with FGR, 45 healthy control) matched by week of gestation and maternal age. Venous blood samples were collected and plasma concentrations of SDC1 were determined by a specific immunoassay. Doppler examination was performed to evaluate the relationship between the SDC1 levels and placental blood supply. RESULTS Doppler parameters; mean UtA-PI (p < .001), CPR (p = .002) and CPUR (p < .001) were different between the groups, however MCA PI, umbilical artery PI and umbilical artery S/D were not (p > .05). While gestational age at delivery, birth weight, APGAR score at 1 and 5 min were significantly lower (all, p < .001) in the study group, non-reassure fetal heart rate tracing (p = .09) and NICU admission (p = .02) were significantly higher. SDC 1 level was 2,00 ± 1,47 ng/mL and 2,34 ± 1,12 ng/mL in the FGR and control groups, respectively (p = .008). In the study group SDC 1 level was 1,69 ± 2,00 in those with gestational age below 32 weeks and 2,13 ± 1,18 in those with gestational age above 32 weeks and there was a statistically significant difference between the groups (p = .015). Plasma SDC 1 concentration of 2,1850 ng/mL or less had a sensitivity of 70%, a specificity of 72%, area under the ROC curve .65 (p < .005). CONCLUSIONS Low maternal plasma SDC1 level may be associated with placental insufficiency and FGR. Low levels of SDC1 may be helpful as a predictor for the development of FGR during gestation.
Collapse
Affiliation(s)
- Yüksel Oğuz
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Recep Taha Ağaoğlu
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Can Ozan Ulusoy
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Dilara Kurt
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - İzzet Özgürlük
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Çağanay Soysal
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Zehra Yılmaz Vural
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| | - Kadriye Yakut Yücel
- Ministry of Health, Etlik City Hospital, Perinatology Department, Ankara, Turkey
| |
Collapse
|
4
|
Paul M, Ain R. Evaluation of Molecular Interactions and Cellular Dynamics at the Maternal-Fetal Interface During Placental Morphogenesis. Methods Mol Biol 2024; 2728:45-76. [PMID: 38019391 DOI: 10.1007/978-1-0716-3495-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Molecular events at the maternal-fetal interface establish successful pregnancies. Identifying and characterizing the heterogeneous cell population and their cross-talk at the cellular and molecular levels are essential to expand our knowledge on the progression and maintenance of pregnancy. In this chapter, we briefly discuss the organization of maternal-fetal interface in mice/rats and humans. We illustrate methods for studying the cell composition using flow cytometry, immunocytochemical and biochemical studies, intercellular interaction using co-culture system and spheroid assay, and function of trophoblast cells using ELISA, RNA sequencing, mass spectrometry (MS) to analyze the proteome, invasion assay, and scratch wound assay.
Collapse
Affiliation(s)
- Madhurima Paul
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
5
|
Juusela A, Jung E, Gallo DM, Bosco M, Suksai M, Diaz-Primera R, Tarca AL, Than NG, Gotsch F, Romero R, Tinnakorn Chaiworapongsa. Maternal plasma syndecan-1: a biomarker for fetal growth restriction. J Matern Fetal Neonatal Med 2023; 36:2150074. [PMID: 36597808 PMCID: PMC10291740 DOI: 10.1080/14767058.2022.2150074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The identification of fetal growth disorders is an important clinical priority given that they increase the risk of perinatal morbidity and mortality as well as long-term diseases. A subset of small-for-gestational-age (SGA) infants are growth-restricted, and this condition is often attributed to placental insufficiency. Syndecan-1, a product of the degradation of the endothelial glycocalyx, has been proposed as a biomarker of endothelial damage in different pathologies. During pregnancy, a "specialized" form of the glycocalyx-the "syncytiotrophoblast glycocalyx"-covers the placental villi. The purpose of this study was to determine whether the concentration of maternal plasma syndecan-1 can be proposed as a biomarker for fetal growth restriction. STUDY DESIGN A cross-sectional study was designed to include women with normal pregnancy (n = 130) and pregnant women who delivered an SGA neonate (n = 50). Doppler velocimetry of the uterine and umbilical arteries was performed in women with an SGA fetus at the time of diagnosis. Venipuncture was performed within 48 h of Doppler velocimetry and plasma concentrations of syndecan-1 were determined by a specific and sensitive immunoassay. RESULTS (1) Plasma syndecan-1 concentration followed a nonlinear increase with gestational age in uncomplicated pregnancies (R2 = 0.27, p < .001); (2) women with a pregnancy complicated with an SGA fetus had a significantly lower mean plasma concentration of syndecan-1 than those with an appropriate-for-gestational-age fetus (p = .0001); (3) this difference can be attributed to fetal growth restriction, as the mean plasma syndecan-1 concentration was significantly lower only in the group of women with an SGA fetus who had abnormal umbilical and uterine artery Doppler velocimetry compared to controls (p = .00071; adjusted p = .0028). A trend toward lower syndecan-1 concentrations was also noted for SGA with abnormal uterine but normal umbilical artery Doppler velocimetry (p = .0505; adjusted p = .067); 4) among women with an SGA fetus, those with abnormal umbilical and uterine artery Doppler findings had a lower mean plasma syndecan-1 concentration than women with normal Doppler velocimetry (p = .02; adjusted p = .04); 5) an inverse relationship was found between the maternal plasma syndecan-1 concentration and the umbilical artery pulsatility index (r = -0.5; p = .003); and 6) a plasma syndecan-1 concentration ≤ 850 ng/mL had a positive likelihood ratio of 4.4 and a negative likelihood ratio of 0.24 for the identification of a mother with an SGA fetus who had abnormal umbilical artery Doppler velocimetry (area under the ROC curve 0.83; p < .001). CONCLUSION Low maternal plasma syndecan-1 may reflect placental diseases and this protein could be a biomarker for fetal growth restriction. However, as a sole biomarker for this condition, its accuracy is low.
Collapse
Affiliation(s)
- Alexander Juusela
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic, Budapest, Hungary
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
6
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
7
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
8
|
Oravecz O, Balogh A, Romero R, Xu Y, Juhasz K, Gelencser Z, Xu Z, Bhatti G, Pique-Regi R, Peterfia B, Hupuczi P, Kovalszky I, Murthi P, Tarca AL, Papp Z, Matko J, Than NG. Proteoglycans: Systems-Level Insight into Their Expression in Healthy and Diseased Placentas. Int J Mol Sci 2022; 23:5798. [PMID: 35628608 PMCID: PMC9147780 DOI: 10.3390/ijms23105798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zhonghui Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Balint Peterfia
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | | | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia;
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Janos Matko
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| |
Collapse
|
9
|
Greeley ET, Rochelson B, Krantz DA, Xue X, Carmichael JB, Ashour S, Woo S, Augustine S, Metz CN. Evaluation of Syndecan-1 as a Novel Biomarker for Adverse Pregnancy Outcomes. Reprod Sci 2020; 27:355-363. [DOI: 10.1007/s43032-019-00032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 10/25/2022]
|
10
|
Ranzil S, Ellery S, Walker DW, Vaillancourt C, Alfaidy N, Bonnin A, Borg A, Wallace EM, Ebeling PR, Erwich JJ, Murthi P. Disrupted placental serotonin synthetic pathway and increased placental serotonin: Potential implications in the pathogenesis of human fetal growth restriction. Placenta 2019; 84:74-83. [PMID: 31176514 PMCID: PMC6724713 DOI: 10.1016/j.placenta.2019.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Placental insufficiency contributes to altered maternal-fetal amino acid transfer, and thereby to poor fetal growth. An important placental function is the uptake of tryptophan and its metabolism to serotonin (5-HT) and kynurenine metabolites, which are essential for fetal development. We hypothesised that placental 5-HT content will be increased in pregnancies affected with fetal growth restriction (FGR). METHODS The components of the 5-HT synthetic pathway were determined in chorionic villus samples (CVS) from small-for gestation (SGA) and matched control collected at 10-12 weeks of human pregnancy; and in placentae from third trimester FGR and gestation-matched control pregnancies using the Fluidigm Biomarker array for mRNA expression, the activity of the enzyme TPH and 5-HT concentrations using an ELISA. RESULTS Gene expression for the rate limiting enzymes, TPH1 and TPH2; 5-HT transporter, SLC6A4; and 5-HT receptors HTR5A, HTR5B, HTR1D and HTR1E were detected in all CVS and third trimester placentae. No significant difference in mRNA was observed in SGA compared with control. Although there was no significant change in TPH1 mRNA, the mRNA of TPH2 and SLC6A4 was significantly decreased in FGR placentae (p < 0.05), while 5-HT receptor mRNA was significantly increased in FGR compared with control (p < 0.01). Placental TPH enzyme activity was significantly increased with a concomitant increase in the total placental 5-HT concentrations in FGR compared with control. CONCLUSION This study reports differential expression and activity of the key components of the 5-HT synthetic pathway associated with the pathogenesis of FGR. Further studies are required to elucidate the functional consequences of increased placental 5-HT in FGR pregnancies.
Collapse
Affiliation(s)
- Suveena Ranzil
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stacey Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - David W Walker
- Royal Melbourne Institute of Technology University - Bundoora Campus, Melbourne, Victoria, Australia
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, Laval, QC, Canada; BioMed Research Centre, Laval, QC, Canada Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Universite du Quebec a Montreal, Montreal, QC, Canada
| | - Nadia Alfaidy
- Institut National de la Santé, et de la Recherche Médicale, Unité, 1036, Grenoble, France; Univ. Grenoble-Alpes, 38000, Grenoble, France; Commissariat à l'Energie Atomique (CEA), iRTSV- Biology of Cancer and infection, Grenoble, France
| | - Alexander Bonnin
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, USA
| | - Anthony Borg
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jan Jaap Erwich
- Department of Obstetrics and Gynecology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Padma Murthi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Victoria, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Gougoula C, Bielfeld AP, Pour SJ, Sager M, Krüssel JS, Benten WPM, Baston-Büst DM. Metabolic and behavioral parameters of mice with reduced expression of Syndecan-1. PLoS One 2019; 14:e0219604. [PMID: 31299063 PMCID: PMC6625734 DOI: 10.1371/journal.pone.0219604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022] Open
Abstract
Energy balance is essential for all species. Ligand-receptor interactions mediate processes that regulate body activities like reproduction and metabolism based on the energy status. Such receptors are the heparan sulfate proteoglycans and specifically the family of syndecans. Therefore we investigated the differences of metabolic parameters of heterozygous Syndecan 1 mice (Sdc1+/-) with reduced expression of Sdc1 and the corresponding wild type mice. Sdc1+/- mice have a reduced body weight although they show increased leptin and decreased corticosterone levels. Furthermore, their food and water intake is increased. This is accompanied with less adipose tissue, smaller adipocytes and thus an increased density of adipocytes. For the detailed analysis of the metabolism the automated PhenoMaster system has been used, which allowed continuous and undisturbed recording of food and water intake, energy expenditure and movement. The reason for the lower body weight was the higher energy expenditure of these animals compared to controls. Additionally, female Sdc1+/- mice showed an increased locomotor activity. Referring to organs, the intestine in Sdc1+/- mice was heavier and longer, but no differences at the cellular level could be observed. These findings were independent of normal mating or vice versa embryo transfers of Sdc1+/- and wild type embryos in recipient females of the other genotype. Herein we showed that the reduced expression of Sdc1 led to an altered metabolism on fetal as well as on maternal side, which may play a role in the growth restriction observed in human pregnancy pathologies and in mice lacking Sdc1.
Collapse
Affiliation(s)
- Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | - Sarah Jean Pour
- Düsseldorf University Hospital, Department of OB/GYN and REI (UniKiD), Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Jan-Steffen Krüssel
- Düsseldorf University Hospital, Department of OB/GYN and REI (UniKiD), Düsseldorf, Germany
| | - Wilhelm Peter M. Benten
- Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Dunja Maria Baston-Büst
- Düsseldorf University Hospital, Department of OB/GYN and REI (UniKiD), Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
12
|
Jannaway M, Yang X, Meegan JE, Coleman DC, Yuan SY. Thrombin-cleaved syndecan-3/-4 ectodomain fragments mediate endothelial barrier dysfunction. PLoS One 2019; 14:e0214737. [PMID: 31091226 PMCID: PMC6519803 DOI: 10.1371/journal.pone.0214737] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Objective The endothelial glycocalyx constitutes part of the endothelial barrier but its degradation leaves endothelial cells exposed to transmigrating cells and circulating mediators that can damage the barrier or promote intercellular gaps. Syndecan proteins are key components of the endothelial glycocalyx and are shed during disease states where expression and activity of proteases such as thrombin are elevated. We tested the ability of thrombin to cleave the ectodomains of syndecans and whether the products could act directly on endothelial cells to alter barrier function. Approach and results Using transmission electron microscopy, we illustrated the presence of glycocalyx in human lung microvasculature. We confirmed expression of all syndecan subtypes on the endothelial surface of agarose-inflated human lungs. ELISA and western blot analysis suggested that thrombin can cleave syndecan-3/-4 ectodomains to produce fragments. In vivo, syndecan-3 ectodomain fragments increased extravasation of albumin-bound Evans blue in mouse lung, indicative of plasma protein leakage into the surrounding tissue. Syndecan-3/-4 ectodomain fragments decreased transendothelial electrical resistance, a measure of cell-cell adhesive barrier integrity, in a manner sensitive to a Rho kinase inhibitor. These effects were independent of glycosylation and thrombin receptor PAR1. Moreover, these cleavage products caused rapid VE-cadherin-based adherens junction disorganization and increased F-actin stress fibers, supporting their direct effect on endothelial paracellular permeability. Conclusions We suggest that thrombin can cleave syndecan-3/4 ectodomain into fragments which interact with endothelial cells causing paracellular hyperpermeability. This may have important implications in the pathogenesis of vascular dysfunction during sepsis or thrombotic disease states where thrombin is activated.
Collapse
Affiliation(s)
- Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Danielle C. Coleman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gougoula C, Bielfeld AP, Pour SJ, Krüssel JS, Götte M, Benten WPM, Baston-Büst DM. Physiological and anatomical aspects of the reproduction of mice with reduced Syndecan-1 expression. Reprod Biol Endocrinol 2019; 17:28. [PMID: 30825879 PMCID: PMC6397749 DOI: 10.1186/s12958-019-0470-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Syndecan-1 is a heparan sulfate proteoglycan acting as a co-receptor for cytokines and growth factors mediating developmental, immunological and angiogenic processes. In human, the uteroplacental localization of Syndecan-1 and its reduced expression in pregnancy-associated pathologies, such as the intrauterine growth restriction, suggests an influence of Syndecan-1 in embryo-maternal interactions. The aim of the present study was to identify the effect of a reduced expression of Syndecan-1 on the reproductive phenotype of mice and their progenies. METHODS Reproductive characteristics have been investigated using animals with reduced Syndecan-1 and their wildtype controls after normal mating and after vice versa embryo transfers. Female mice were used to measure the estrus cycle length and the weight gain during pregnancy, as well as for histological examination of ovaries. Male mice were examined for the concentration, motility, viability and morphology of spermatozoa. Organs like heart, lung, liver, kidney, spleen, brain and ovaries or testes and epididymis of 6-month-old animals were isolated and weighed. Statistical analyses were performed using two-tailed students t-test with P < .05 and P < .02, chi square test (P < .05) and Fisher's Exact Test (P < .05). A linear and a non-linear mixed-effects model were generated to analyze the weight gain of pregnant females and of the progenies. RESULTS Focusing on the pregnancy outcome, the Syndecan-1 reduced females gave birth to larger litters. However, regarding the survival of the offspring, a higher percentage of pups with less Syndecan-1 died during the first postnatal days. Even though the ovaries and the testes of Syndecan-1 reduced mice showed no histological differences and the ovaries showed a similar number of primary and secondary follicles and corpora lutea, the spermatozoa of Syndecan-1 reduced males showed more tail and midpiece deficiencies. Concerning the postnatal and juvenile development the pups with reduced Syndecan-1 expression remained lighter and smaller regardless whether carried by mothers with reduced Syndecan-1 or wildtype foster mothers. With respect to anatomical differences kidneys of both genders as well as testes and epididymis of male mice with reduced syndecan-1 expression weighed less compared to controls. CONCLUSIONS These data reveal that the effects of Syndecan-1 reduction are rather genotype- than parental-dependent.
Collapse
Affiliation(s)
- Christina Gougoula
- 0000 0001 2176 9917grid.411327.2Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexandra P. Bielfeld
- 0000 0000 8922 7789grid.14778.3dDepartment of OB/GYN and REI (UniKiD), University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sarah J. Pour
- 0000 0000 8922 7789grid.14778.3dDepartment of OB/GYN and REI (UniKiD), University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jan-S. Krüssel
- 0000 0000 8922 7789grid.14778.3dDepartment of OB/GYN and REI (UniKiD), University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Martin Götte
- 0000 0004 0551 4246grid.16149.3bDepartment of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - W. Peter M. Benten
- 0000 0001 2176 9917grid.411327.2Central Unit for Animal Research and Animal Welfare Affairs (ZETT) of the Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Dunja M. Baston-Büst
- 0000 0000 8922 7789grid.14778.3dDepartment of OB/GYN and REI (UniKiD), University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Ranzil S, Walker DW, Borg AJ, Wallace EM, Ebeling PR, Murthi P. The relationship between the placental serotonin pathway and fetal growth restriction. Biochimie 2018; 161:80-87. [PMID: 30605696 DOI: 10.1016/j.biochi.2018.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/26/2018] [Indexed: 01/18/2023]
Abstract
Fetal growth restriction (FGR) is a complex disorder of human pregnancy that leads to poor health outcomes in offspring. These range from immediate risks such as perinatal morbidity and stillbirths, to long-term complications including severe neurodevelopmental problems. Despite its relatively high global prevalence, the aetiology of FGR and its complications is not currently well understood. We now know that serotonin (5-HT) is synthesised in the placenta and is crucial for early fetal forebrain development in mice. However, the contribution of a disrupted placental 5-HT synthetic pathway to the pathophysiology of placental insufficiency in FGR and its significant fetal neurodevelopmental complications are unclear.
Collapse
Affiliation(s)
- Suveena Ranzil
- Department of Obstetrics and Gynaecology, Monash University, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | | | - Anthony J Borg
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Clayton, Victoria, Australia
| | - Padma Murthi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia; Department of Medicine, School of Clinical Sciences, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Gunatillake T, Chui A, Fitzpatrick E, Ignjatovic V, Monagle P, Whitelock J, Zanten D, Eijsink J, Borg A, Stevenson J, Brennecke SP, Erwich JJHM, Said JM, Murthi P. Decreased placental glypican expression is associated with human fetal growth restriction. Placenta 2018; 76:6-9. [PMID: 30803713 DOI: 10.1016/j.placenta.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Placental mediated fetal growth restriction (FGR) is a leading cause of perinatal morbidity and mortality. Heparan sulphate proteoglycans (HSPG) are highly expressed in placentae and regulate haemostasis. We hypothesise that altered expression of HSPGs, glypicans (GPC) may contribute to the development of FGR and small-for-gestational-age (SGA). GPC expression was determined in first-trimester chorionic villous samples collected from women with later SGA pregnancies and in placentae from third-trimester FGR and gestation-matched uncomplicated pregnancies. The expression of both GPC1 and GPC3 were significantly reduced in first-trimester SGA as well as in the third-trimester FGR placentae compared to controls. This is the first study to report a relationship between altered placental GPC expression and subsequent development of SGA/FGR.
Collapse
Affiliation(s)
- T Gunatillake
- Department of Obstetrics and Gynaecology, The University of Melbourne, Sunshine Hospital, St Albans, 3021, Australia.
| | - A Chui
- Department of Obstetrics and Gynaecology, The University of Melbourne, Sunshine Hospital, St Albans, 3021, Australia
| | - E Fitzpatrick
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Australia
| | - V Ignjatovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Australia; Department of Clinical Haematology, Royal Children's Hospital, Parkville, 3052, Australia
| | - P Monagle
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Australia; Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, 3052, Australia; Department of Clinical Haematology, Royal Children's Hospital, Parkville, 3052, Australia
| | - J Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia
| | - D Zanten
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - J Eijsink
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - A Borg
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Parkville, 3052, Australia
| | - J Stevenson
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Parkville, 3052, Australia
| | - S P Brennecke
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Parkville, 3052, Australia
| | - J J H M Erwich
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - J M Said
- Department of Obstetrics and Gynaecology, The University of Melbourne, Sunshine Hospital, St Albans, 3021, Australia; Maternal Fetal Medicine, Sunshine Hospital, Western Health, St Albans, 3021, Australia
| | - P Murthi
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, Parkville, 3052, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, 3052, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, 3168, Australia
| |
Collapse
|
16
|
Bovine placentomal heparanase and syndecan expression is related to placental maturation. Placenta 2017; 57:42-51. [DOI: 10.1016/j.placenta.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022]
|
17
|
Gandley RE, Althouse A, Jeyabalan A, Bregand-White JM, McGonigal S, Myerski AC, Gallaher M, Powers RW, Hubel CA. Low Soluble Syndecan-1 Precedes Preeclampsia. PLoS One 2016; 11:e0157608. [PMID: 27299886 PMCID: PMC4907460 DOI: 10.1371/journal.pone.0157608] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Syndecan-1 (Sdc1; CD138) is a major transmembrane heparan sulfate proteoglycan expressed on the extracellular, luminal surface of epithelial cells and syncytiotrophoblast, thus comprising a major component of the glycocalyx of these cells. The "soluble" (shed) form of Sdc1 has paracrine and autocrine functions and is normally produced in a regulated fashion. We compared plasma soluble Sdc1 concentrations, in relation to placental Sdc1 expression, in uncomplicated (control) and preeclamptic pregnancies. METHODS We evaluated soluble Sdc1 across uncomplicated pregnancy, and between preeclamptic, gestational hypertensive and control patients at mid-pregnancy (20 weeks) and 3rd trimester by ELISA. Placental expression level of Sdc1 was compared between groups in relation to pre-delivery plasma soluble Sdc1. Participants were recruited from Magee-Womens Hospital. RESULTS In uncomplicated pregnancy, plasma soluble Sdc1 rose significantly in the 1st trimester, and reached an approximate 50-fold increase at term compared to post pregnancy levels. Soluble Sdc1 was lower at mid-pregnancy in women who later developed preeclampsia (P<0.05), but not gestational hypertension, compared to controls, and remained lower at late pregnancy in preeclampsia (P<0.01) compared to controls. Sdc1 was prominently expressed on syncytiotrophoblast of microvilli. Syncytiotrophoblast Sdc1 immunostaining intensities, and mRNA content in villous homogenates, were lower in preeclampsia vs. controls (P<0.05). Soluble Sdc1 and Sdc1 immunostaining scores were inversely associated with systolic blood pressures, and positively correlated with infant birth weight percentile. CONCLUSION Soluble Sdc1 is significantly lower before the clinical onset of preeclampsia, with reduced expression of Sdc1 in the delivered placenta, suggesting a role for glycocalyx disturbance in preeclampsia pathophysiology.
Collapse
Affiliation(s)
- Robin E Gandley
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Althouse
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arundhathi Jeyabalan
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Clinical and Translational Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Julia M Bregand-White
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacy McGonigal
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ashley C Myerski
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marcia Gallaher
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert W Powers
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carl A Hubel
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal Fetal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
18
|
Ozler S, Oztas E, Guler BG, Pehlivan S, Kadioglu N, Ergin M, Uygur D, Danisman N. Role of ADAMTS5 in Unexplained Fetal Growth Restriction (FGR). Fetal Pediatr Pathol 2016; 35:220-30. [PMID: 27159841 DOI: 10.3109/15513815.2016.1173146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM We aim to determine the role of serum and placental A disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS5) in fetal growth restriction (FGR). MATERIAL AND METHODS 43 pregnancies suffering FGR and 45 healthy ones were homogenized for their body mass indices, ages, and gestational weeks. Expression of ADAMTS5 in placental samples was determined by immunohistochemical methods and concurrent maternal serum ADAMTS5 levels were determined with enzyme-linked immunosorbent assay. RESULTS Expression of ADAMTS5 was higher in FGR group than the healthy control in placenta. Both the cytoplasmic staining pattern of the syncytiotrophoblasts and staining of the decidual plate were shown in the FGR group; but not in the control group. A negative correlation between serum ADAMTS5 levels and birth weight in FGR group was observed. CONCLUSION Increased ADAMTS5 levels were observed in placental insufficiency cases. This study demonstrates that ADAMTS5 may be a sensitive indicator of placental insufficiency which has variable factors in etiology. Additional work is needed to delineate the mechanism of its involvement.
Collapse
Affiliation(s)
- Sibel Ozler
- a Zekai Tahir Burak Women's Health Education and Research Hospital , Department of Perinatology , Ankara , Turkey
| | - Efser Oztas
- a Zekai Tahir Burak Women's Health Education and Research Hospital , Department of Perinatology , Ankara , Turkey
| | - Basak Gumus Guler
- b Department of Obstetrics and Gynecology , Liv Hospital , Ankara , Turkey
| | - Sultan Pehlivan
- c Ankara Branch of Council of Forensic Medicine , Ankara , Turkey
| | - Nezaket Kadioglu
- d Department of Obstetrics and Gynecology , Serefli Kochisar State Hospital , Ankara , Turkey
| | - Merve Ergin
- e Faculty of Medicine , Department of Clinical Biochemistry, Yildirim Beyazit University , Ankara , Turkey
| | - Dilek Uygur
- a Zekai Tahir Burak Women's Health Education and Research Hospital , Department of Perinatology , Ankara , Turkey
| | - Nuri Danisman
- a Zekai Tahir Burak Women's Health Education and Research Hospital , Department of Perinatology , Ankara , Turkey
| |
Collapse
|
19
|
Boeddeker SJ, Baston-Buest DM, Fehm T, Kruessel J, Hess A. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli. PLoS One 2015; 10:e0121103. [PMID: 25830352 PMCID: PMC4382340 DOI: 10.1371/journal.pone.0121103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
Human embryo invasion and implantation into the inner wall of the maternal uterus, the endometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the endometrial epithelial layer was already correlated with the programmed cell death, the role of apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stromal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock down (KdS1), and second to further decidualize the cells with progesterone. As a replacement for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1 and anti-Fas antibody to mimic the embryo contact. Detection of apoptosis was verified via Caspase ELISAs, PARP cleavage and Annexin V staining. Apoptosis-related proteins were investigated via antibody arrays and underlying signaling pathways were analyzed by Western blot. Non-decidualized endometrial stromal cells showed a resistance towards apoptosis which was rescinded by decidualization and Syndecan-1 knock down independent of decidualization. This was correlated with an altered expression of several pro- and anti-apoptotic proteins and connected to a higher activation of pro-survival Akt in non-differentiated St-T1 as an upstream mediator of apoptotis-related proteins. This study provides insight into the largely elusive process of implantation, proposing an important role for stromal cell apoptosis to successfully establish a pregnancy. The impact of Syndecan-1 in attenuating the apoptotic signal is particularly interesting in the light of an already described influence on pregnancy disorders and therefore might provide a useful clinical tool in the future to prevent pregnancy complications provoked by inadequate implantation.
Collapse
Affiliation(s)
- Sarah Jean Boeddeker
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Dunja Maria Baston-Buest
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Center University of Duesseldorf, Duesseldorf, Germany
| | - Jan Kruessel
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
| | - Alexandra Hess
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility (UniKiD), Medical Center University of Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
20
|
Boeddeker SJ, Hess AP. The role of apoptosis in human embryo implantation. J Reprod Immunol 2015; 108:114-22. [PMID: 25779030 DOI: 10.1016/j.jri.2015.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 01/11/2023]
Abstract
The process of embryo attachment and invasion through the endometrial epithelial cells and subsequent implantation into the decidualized endometrial stroma is the groundbreaking step for the establishment of a successful pregnancy. Necessary prerequisites are a receptive endometrium, a good-quality embryo and a well-orchestrated molecular dialog between embryo and maternal endometrium. The embryo-maternal dialog is conducted via a wide scope of factors, including secreted cytokines, chemokines, and growth factors in addition to the expression of corresponding receptors and co-receptors. Several embryonic proteins, including the aforementioned, are involved in the process of apoptosis, which necessarily needs to take place at the maternal endometrium to allow the embryo to invade. The endometrial epithelium is thereby disintegrated completely within a particular area, whereas the endometrial stroma seems to require a more depth-limited apoptosis. As of today, the exact mechanisms and factors mediating the apoptotic process involved in those apparently differently regulated incidents are not fully understood, particularly with regard to stromal cell apoptosis. There is evidence though, that cytokines and their respective receptors play a major role. A suggested important co-receptor for cytokines, which is highly upregulated in the receptive human endometrium, is the heparan sulfate proteoglycan syndecan-1. It is present on the cell surface and involved in the regulation of cell-cell-interaction, cell binding, cell signaling and cytoskeletal organization and therefore represents a possible mediator of apoptosis regulation in human endometrium. Herein, the literature on endometrial epithelial and stromal apoptosis in general, and in light of the influence of syndecan-1, is reviewed.
Collapse
Affiliation(s)
- Sarah J Boeddeker
- Department of Obstetrics, Gynecology and REI (UniKiD), Medical Faculty, Medical Center University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Alexandra P Hess
- Department of Obstetrics, Gynecology and REI (UniKiD), Medical Faculty, Medical Center University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Ginath S, Lurie S, Golan A, Amsterdam A, Sandbank J, Sadan O, Kovo M. The expression of heparanase in normal and preeclamptic placentas. J Matern Fetal Neonatal Med 2014; 28:1589-93. [PMID: 25189635 DOI: 10.3109/14767058.2014.962506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Heparanase plays a central role in processes of placentation. Abnormal placentation may result in inadequate uteroplacental blood flow, leading to unsuccessful pregnancy outcome and preeclampsia. We aimed to evaluate heparanase expression in placentas of preeclamptic patients. MATERIALS AND METHODS Placental tissue samples were collected immediately after delivery from 9 preeclamptic patients and 3 healthy controls at term, and were analyzed by immunohistochemistry, western blot analysis and real-time PCR, with regard to the presence of heparanase. RESULTS Immunohistochemistry staining for heparanase did not differ between normal and preeclamptic placental sections. On the other hand, western blot analysis revealed increased expression of heparanase in preeclpamptic placentas compared to controls, p = 0.001. Similarly, RT-PCR analysis showed also an increased expression of heparanase m-RNA compared to health controls, p = 0.005. CONCLUSION Heparanase is over expressed in preeclamptic placentas compared to normal healthy controls, suggesting its role in the development of preeclampsia.
Collapse
Affiliation(s)
- Shimon Ginath
- a Department of Obstetrics and Gynecology , Holon and Sackler Faculty of Medicine, Edith Wolfson Medical Center , Tel-Aviv , Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Mikhaylova M, Schumacher A, Borutzki C, Neumann JR, Macharadze T, El-Mousleh T, Wahle P, Zenclussen AC, Kreutz MR. Analysis of Y-P30/Dermcidin expression and properties of the Y-P30 peptide. BMC Res Notes 2014; 7:400. [PMID: 24969620 PMCID: PMC4082292 DOI: 10.1186/1756-0500-7-400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 06/20/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The survival promoting peptide Y-P30 has a variety of neuritogenic and neuroprotective effects in vitro and in vivo. In previous work we reported the expression of Y-P30/dermcidin in maternal peripheral blood mononuclear cells (PBMCs) and the transport of the protein to the fetal brain. In this study we analyzed hormonal regulation of Y-P30 in human immune cells and expression of Y-P30 in the placenta. We further studied the stability and secretion of the Y-P30 peptide. RESULTS We found indications that Y-P30 might be produced in human placenta. The Y-P30 mRNA was rarely found in isolated human PBMCs and alpha-feto-protein, human chorionic gonadotropin as well as estradiol combined with progesterone could not induce Y-P30 expression. Y-P30 was found to be extraordinarily stable; therefore, contamination with the peptide and the Y-P30/Dermcidin precursor mRNA is a serious concern in experiments looking at the expression of Y-P30/Dermcidin. In cultured cell lines and primary neurons we found that Y-P30 could be released, but neuronal uptake of Y-P30 was not observed. CONCLUSIONS Our data suggest that a source of Y-P30 apart from eccrine glands might be the placenta. The peptide can be secreted together with the signaling peptide and it might reach the fetal brain where it can exert its neuritogenic functions by binding to neuronal membranes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ana C Zenclussen
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany.
| | | |
Collapse
|
23
|
Chui A, Murthi P, Gunatillake T, Brennecke SP, Ignjatovic V, Monagle PT, Whitelock JM, Said JM. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction? Placenta 2014; 35:596-605. [PMID: 24947404 DOI: 10.1016/j.placenta.2014.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. APPROACH Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. RESULTS DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. CONCLUSIONS Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations.
Collapse
Affiliation(s)
- A Chui
- NorthWest Academic Centre, The University of Melbourne and Sunshine Hospital, PO Box 294, 176 Furlong Road, St Albans 3021, Australia.
| | - P Murthi
- Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, The University of Melbourne, Parkville 3052, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville 3052, Australia
| | - T Gunatillake
- NorthWest Academic Centre, The University of Melbourne and Sunshine Hospital, PO Box 294, 176 Furlong Road, St Albans 3021, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville 3052, Australia
| | - S P Brennecke
- Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, The University of Melbourne, Parkville 3052, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville 3052, Australia
| | - V Ignjatovic
- Murdoch Children's Research Institute, The Royal Children's Hospital and The University of Melbourne, Parkville 3052, Australia; Department of Clinical Haematology, The Royal Children's Hospital and The University of Melbourne, Parkville 3052, Australia; Department of Paediatrics, The Royal Children's Hospital and The University of Melbourne, Parkville 3052, Australia
| | - P T Monagle
- Murdoch Children's Research Institute, The Royal Children's Hospital and The University of Melbourne, Parkville 3052, Australia; Department of Clinical Haematology, The Royal Children's Hospital and The University of Melbourne, Parkville 3052, Australia; Department of Paediatrics, The Royal Children's Hospital and The University of Melbourne, Parkville 3052, Australia
| | - J M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington 2033, Australia
| | - J M Said
- NorthWest Academic Centre, The University of Melbourne and Sunshine Hospital, PO Box 294, 176 Furlong Road, St Albans 3021, Australia
| |
Collapse
|
24
|
Boeddeker SJ, Baston-Buest DM, Altergot-Ahmad O, Kruessel JS, Hess AP. Syndecan-1 knockdown in endometrial epithelial cells alters their apoptotic protein profile and enhances the inducibility of apoptosis. Mol Hum Reprod 2014; 20:567-78. [DOI: 10.1093/molehr/gau009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Abstract
Syndecan-3 is one of the four members of the syndecan family of heparan sulphate proteoglycans and has been shown to interact with numerous growth factors via its heparan sulphate chains. The extracellular core proteins of syndecan-1,-2 and -4 all possess adhesion regulatory motifs and we hypothesized that syndecan-3 may also possess such characteristics. Here we show that a bacterially expressed GST fusion protein consisting of the entire mature syndecan-3 ectodomain has anti-angiogenic properties and acts via modulating endothelial cell migration. This work identifies syndecan-3 as a possible therapeutic target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| | - James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| |
Collapse
|