1
|
Lundgren JG, Flynn MG, List K. GPI-anchored serine proteases: essential roles in development, homeostasis, and disease. Biol Chem 2025; 406:1-28. [PMID: 40094301 DOI: 10.1515/hsz-2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The glycosylphosphatidylinositol (GPI)-anchored serine proteases, prostasin and testisin, have essential roles in diverse physiological functions including development, reproduction, homeostasis and barrier function of epithelia, angiogenesis, coagulation, and fibrinolysis. Important functions in pathological conditions such as cancer, kidney disease and cardiovascular disease have also been reported. In this review, we summarize current knowledge of the cellular and in vivo roles of prostasin and testisin in physiology and pathophysiology and explore the underlying molecular mechanisms. We discuss how new insights of their role in cancer and cardiovascular disease may facilitate translation into clinical settings in the future.
Collapse
Affiliation(s)
- Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Michael G Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Huang N, Wang Q, Bernard RB, Chen CY, Hu JM, Wang JK, Chan KS, Johnson MD, Lin CY. SPINT2 mutations in the Kunitz domain 2 found in SCSD patients inactivate HAI-2 as prostasin inhibitor via abnormal protein folding and N-glycosylation. Hum Mol Genet 2024; 33:752-767. [PMID: 38271183 PMCID: PMC11031362 DOI: 10.1093/hmg/ddae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Mutations in the Kunitz-type serine protease inhibitor HAI-2, encoded by SPINT2, are responsible for the pathogenesis of syndromic congenital sodium diarrhea (SCSD), an intractable secretory diarrhea of infancy. Some of the mutations cause defects in the functionally required Kunitz domain 1 and/or subcellular targeting signals. Almost all SCSD patients, however, harbor SPINT2 missense mutations that affect the functionally less important Kunitz domain 2. How theses single amino acid substitutions inactivate HAI-2 was, here, investigated by the doxycycline-inducible expression of three of these mutants in HAI-2-knockout Caco-2 human colorectal adenocarcinoma cells. Examining protein expressed from these HAI-2 mutants reveals that roughly 50% of the protein is synthesized as disulfide-linked oligomers that lose protease inhibitory activity due to the distortion of the Kunitz domains by disarrayed disulfide bonding. Although the remaining protein is synthesized as monomers, its glycosylation status suggests that the HAI-2 monomer remains in the immature, lightly glycosylated form, and is not converted to the heavily glycosylated mature form. Heavily glycosylated HAI-2 possesses full anti-protease activity and appropriate subcellular targeting signals, including the one embedded in the complex-type N-glycan. As predicted, these HAI-2 mutants cannot suppress the excessive prostasin proteolysis caused by HAI-2 deletion. The oligomerization and glycosylation defects have also been observed in a colorectal adenocarcinoma line that harbors one of these SPINT2 missense mutations. Our study reveals that the abnormal protein folding and N-glycosylation can cause widespread HAI-2 inactivation in SCSD patents.
Collapse
Affiliation(s)
- Nanxi Huang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Qiaochu Wang
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Robert B Bernard
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Chao-Yang Chen
- School of Medicine, National Defense Medical Center, No. 161, sec. 6, Minquan E. Road, Neihu Dist. Taipei City 11490, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggon Road, Neihu Dist. Taipei City 114202, Taiwan, ROC
| | - Je-Ming Hu
- School of Medicine, National Defense Medical Center, No. 161, sec. 6, Minquan E. Road, Neihu Dist. Taipei City 11490, Taiwan, ROC
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggon Road, Neihu Dist. Taipei City 114202, Taiwan, ROC
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, sec. 6, Minquan E. Neihu Dist. Taipei City 11490, Taiwan, ROC
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, No. 161, sec. 6, Minquan E. Road, Taipei City, 11490, Taiwan, ROC
| | - Khee-Siang Chan
- Department of Intensive Care Medicine, Chi Mei Medical Center, No. 901, Zhonghua Road, Yongkang Dist., Tainan City, 71004, Taiwan, ROC
| | - Michael D Johnson
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| | - Chen-Yong Lin
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, 3970 Reservoir Road NW W422 New Research Building, Washington DC 20057, United States
| |
Collapse
|
3
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
4
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Kidney-Specific CAP1/Prss8-Deficient Mice Maintain ENaC-Mediated Sodium Balance through an Aldosterone Independent Pathway. Int J Mol Sci 2022; 23:ijms23126745. [PMID: 35743186 PMCID: PMC9224322 DOI: 10.3390/ijms23126745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
The serine protease prostasin (CAP1/Prss8, channel-activating protease-1) is a confirmed in vitro and in vivo activator of the epithelial sodium channel ENaC. To test whether proteolytic activity or CAP1/Prss8 abundance itself are required for ENaC activation in the kidney, we studied animals either hetero- or homozygous mutant at serine 238 (S238A; Prss8cat/+ and Prss8cat/cat), and renal tubule-specific CAP1/Prss8 knockout (Prss8PaxLC1) mice. When exposed to varying Na+-containing diets, no changes in Na+ and K+ handling and only minor changes in the expression of Na+ and K+ transporting protein were found in both models. Similarly, the α- or γENaC subunit cleavage pattern did not differ from control mice. On standard and low Na+ diet, Prss8cat/+ and Prss8cat/cat mice exhibited standard plasma aldosterone levels and unchanged amiloride-sensitive rectal potential difference indicating adapted ENaC activity. Upon Na+ deprivation, mice lacking the renal CAP1/Prss8 expression (Prss8PaxLC1) exhibit significantly decreased plasma aldosterone and lower K+ levels but compensate by showing significantly higher plasma renin activity. Our data clearly demonstrated that the catalytic activity of CAP1/Prss8 is dispensable for proteolytic ENaC activation. CAP1/Prss8-deficiency uncoupled ENaC activation from its aldosterone dependence, but Na+ homeostasis is maintained through alternative pathways.
Collapse
|
6
|
Anand D, Hummler E, Rickman OJ. ENaC activation by proteases. Acta Physiol (Oxf) 2022; 235:e13811. [PMID: 35276025 PMCID: PMC9540061 DOI: 10.1111/apha.13811] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
Proteases are fundamental for a plethora of biological processes, including signalling and tissue remodelling, and dysregulated proteolytic activity can result in pathogenesis. In this review, we focus on a subclass of membrane‐bound and soluble proteases that are defined as channel‐activating proteases (CAPs), since they induce Na+ ion transport through an autocrine mechanism when co‐expressed with the highly amiloride‐sensitive epithelial sodium channel (ENaC) in Xenopus oocytes. These experiments first identified CAP1 (channel‐activating protease 1, prostasin) followed by CAP2 (channel‐activating protease 2, TMPRSS4) and CAP3 (channel‐activating protease 3, matriptase) as in vitro mediators of ENaC current. Since then, more serine‐, cysteine‐ and metalloproteases were confirmed as in vitro CAPs that potentially cleave and regulate ENaC, and thus this nomenclature was not further followed, but is accepted as functional term or alias. The precise mechanism of ENaC modulation by proteases has not been fully elucidated. Studies in organ‐specific protease knockout models revealed evidence for their role in increasing ENaC activity, although the proteases responsible for ENaC activation are yet to be identified. We summarize recent findings in animal models of these CAPs with respect to their implication in ENaC activation. We discuss the consequences of dysregulated CAPs underlying epithelial phenotypes in pathophysiological conditions, and the role of selected protease inhibitors. We believe that these proteases may present interesting therapeutic targets for diseases with aberrant sodium homoeostasis.
Collapse
Affiliation(s)
- Deepika Anand
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- National Center of Competence in Research, Kidney.CH Lausanne Switzerland
| | - Edith Hummler
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- National Center of Competence in Research, Kidney.CH Lausanne Switzerland
| | - Olivia J. Rickman
- Department of Biomedical Sciences University of Lausanne Lausanne Switzerland
- National Center of Competence in Research, Kidney.CH Lausanne Switzerland
| |
Collapse
|
7
|
Membrane-anchored serine proteases as regulators of epithelial function. Biochem Soc Trans 2020; 48:517-528. [PMID: 32196551 PMCID: PMC9869603 DOI: 10.1042/bst20190675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.
Collapse
|
8
|
Sugitani Y, Nishida A, Inatomi O, Ohno M, Imai T, Kawahara M, Kitamura K, Andoh A. Sodium absorption stimulator prostasin (PRSS8) has an anti-inflammatory effect via downregulation of TLR4 signaling in inflammatory bowel disease. J Gastroenterol 2020; 55:408-417. [PMID: 31916038 DOI: 10.1007/s00535-019-01660-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/20/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Prostasin (PRSS8) is a stimulator of epithelial sodium transport. In this study, we evaluated alteration of prostasin expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD) and investigated the role of prostasin in the gut inflammation. METHODS Prostasin expression was evaluated by immunohistochemical staining. Dextran sodium sulfate (DSS)-colitis was induced in mice lacking prostasin specifically in intestinal epithelial cells (PRSS8ΔIEC mice). RESULTS In colonic mucosa of healthy individuals, prostasin was strongly expressed at the apical surfaces of epithelial cells, and this was markedly decreased in active mucosa of both ulcerative colitis and Crohn's disease. DSS-colitis was exacerbated in PRSS8ΔIEC mice compared to control PRSS8lox/lox mice. Toll-like receptor4 (TLR4) expression in colonic epithelial cells was stronger in DSS-treated PRSS8ΔIEC mice than in DSS-treated PRSS8 lox/lox mice. NF-κB activation in colonic epithelial cells was more pronounced in DSS-treated PRSS8ΔIEC mice than in DSS-treated PRSS8lox/lox mice, and the mRNA expression of inflammatory cytokines was significantly higher in DSS-treated PRSS8ΔIEC mice. Broad-spectrum antibiotic treatment completely suppressed the exacerbation of DSS-colitis in PRSS8ΔIEC mice. The mRNA expression of tight junction proteins and mucosal permeability assessed using FITC-dextran were comparable between DSS-treated PRSS8lox/lox and DSS-treated PRSS8ΔIEC mice. CONCLUSION Prostasin has an anti-inflammatory effect via downregulation of TLR4 expression in colonic epithelial cells. Reduced prostasin expression in IBD mucosa is linked to the deterioration of local anti-inflammatory activity and may contribute to the persistence of mucosal inflammation.
Collapse
Affiliation(s)
- Yoshihiko Sugitani
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, 520-2192, Japan
| | - Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, 520-2192, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, 520-2192, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu, 520-2192, Japan.
| |
Collapse
|
9
|
Szabo R, Callies LK, Bugge TH. Matriptase drives early-onset intestinal failure in a mouse model of congenital tufting enteropathy. Development 2019; 146:dev183392. [PMID: 31628112 PMCID: PMC6899019 DOI: 10.1242/dev.183392] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Syndromic congenital tufting enteropathy (CTE) is a life-threatening recessive human genetic disorder that is caused by mutations in SPINT2, encoding the protease inhibitor HAI-2, and is characterized by severe intestinal dysfunction. We recently reported the generation of a Spint2-deficient mouse model of CTE. Here, we show that the CTE-associated early-onset intestinal failure and lethality of Spint2-deficient mice is caused by unchecked activity of the serine protease matriptase. Macroscopic and histological defects observed in the absence of HAI-2, including villous atrophy, luminal bleeding, loss of mucin-producing goblet cells, loss of defined crypt architecture and the resulting acute inflammatory response in the large intestine, were all prevented by intestinal-specific inactivation of the St14 gene encoding matriptase. The CTE-associated loss of the cell junctional proteins EpCAM and claudin 7 was also prevented. As a result, inactivation of intestinal matriptase allowed Spint2-deficient mice to gain weight after birth and dramatically increased their lifespan. These data implicate matriptase as a causative agent in the development of CTE and may provide a new target for the treatment of CTE in individuals carrying SPINT2 mutations.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - LuLu K Callies
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Szabo R, Bugge TH. Loss of HAI-2 in mice with decreased prostasin activity leads to an early-onset intestinal failure resembling congenital tufting enteropathy. PLoS One 2018; 13:e0194660. [PMID: 29617460 PMCID: PMC5884512 DOI: 10.1371/journal.pone.0194660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/07/2018] [Indexed: 01/15/2023] Open
Abstract
Prostasin (CAP1/PRSS8) is a glycosylphosphatidylinositol (GPI)-anchored serine protease that is essential for epithelial development and overall survival in mice. Prostasin is regulated primarily by the transmembrane serine protease inhibitor, hepatocyte growth factor activator inhibitor (HAI)-2, and loss of HAI-2 function leads to early embryonic lethality in mice due to an unregulated prostasin activity. We have recently reported that critical in vivo functions of prostasin can be performed by proteolytically-inactive or zymogen-locked variants of the protease. Here we show that the zymogen form of prostasin does not bind to HAI-2 and, as a result, loss of HAI-2 does not affect prenatal development and survival of mice expressing only zymogen-locked variant of prostasin (Prss8 R44Q). Indeed, HAI-2-deficient mice homozygous for R44Q mutation (Spint2-/-;Prss8R44Q/R44Q) are born in the expected numbers and do not exhibit any obvious developmental abnormality at birth. However, postnatal growth in these mice is severely impaired and they all die within 4 to 7 days after birth due to a critical failure in the development of small and large intestines, characterized by a widespread villous atrophy, tufted villi, near-complete loss of mucin-producing goblet cells, loss of colonic crypt structure, and bleeding into the intestinal lumen. Intestines of Spint2-/-;Prss8R44Q/R44Q mice showed altered expression of epithelial junctional proteins, including reduced levels of EpCAM, E-cadherin, occludin, claudin-1 and -7, as well as an increased level of claudin-4, indicating that the loss of HAI-2 compromises intestinal epithelial barrier function. Our data indicate that the loss of HAI-2 in Prss8R44Q/R44Q mice leads to development of progressive intestinal failure that at both histological and molecular level bears a striking resemblance to human congenital tufting enteropathy, and may provide important clues for understanding and treating this debilitating human disease.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (RS); (THB)
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (RS); (THB)
| |
Collapse
|
11
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Membrane-Anchored Serine Proteases: Host Cell Factors in Proteolytic Activation of Viral Glycoproteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122464 DOI: 10.1007/978-3-319-75474-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among these, the trypsin-like serine proteases comprise one of the best characterized subfamilies due to their essential roles in blood coagulation, food digestion, fibrinolysis, or immunity. Trypsin-like serine proteases possess primary substrate specificity for basic amino acids. Most of the well-characterized trypsin-like proteases such as trypsin, plasmin, or urokinase are soluble proteases that are secreted into the extracellular environment. At the turn of the millennium, a number of novel trypsin-like serine proteases have been identified that are anchored in the cell membrane, either by a transmembrane domain at the N- or C-terminus or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 membrane-anchored serine proteases (MASPs) have been identified in human and mouse, and some of them have emerged as key regulators of mammalian development and homeostasis. Thus, the MASP corin and TMPRSS6/matriptase-2 have been demonstrated to be the activators of the atrial natriuretic peptide (ANP) and key regulator of hepcidin expression, respectively. Furthermore, MASPs have been recognized as host cell factors activating respiratory viruses including influenza virus as well as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. In particular, transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be essential for proteolytic activation and consequently spread and pathogenesis of a number of influenza A viruses in mice and as a factor associated with severe influenza virus infection in humans. This review gives an overview on the physiological functions of the fascinating and rapidly evolving group of MASPs and a summary of the current knowledge on their role in proteolytic activation of viral fusion proteins.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps Universität, Marburg, Germany
| | - Hans Dieter Klenk
- 0000 0004 1936 9756grid.10253.35Institut für Virologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
12
|
Friis S, Tadeo D, Le-Gall SM, Jürgensen HJ, Sales KU, Camerer E, Bugge TH. Matriptase zymogen supports epithelial development, homeostasis and regeneration. BMC Biol 2017; 15:46. [PMID: 28571576 PMCID: PMC5452369 DOI: 10.1186/s12915-017-0384-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its zymogen displays measurable enzymatic activity. Results Here, we used gain and loss of function genetics to investigate the possible biological functions of zymogen matriptase. Unexpectedly, transgenic mice mis-expressing a zymogen-locked version of matriptase in the epidermis displayed pathologies previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible with these observations, wildtype and zymogen-locked matriptase were equipotent activators of PAR-2 inflammatory signaling. Conclusion The study demonstrates that the matriptase zymogen is biologically active and is capable of executing developmental and homeostatic functions of the protease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stine Friis
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Section for Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Georgetown University School of Medicine, Washington, DC, 20057, USA
| | - Sylvain M Le-Gall
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Henrik Jessen Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA
| | - Katiuchia Uzzun Sales
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.,Department of Cell and Molecular Biology, Ribierão Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Université Sorbonne Paris Cité, Paris, France
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 320, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
The Transmembrane Serine Protease HAT-like 4 Is Important for Epidermal Barrier Function to Prevent Body Fluid Loss. Sci Rep 2017; 7:45262. [PMID: 28338078 PMCID: PMC5364460 DOI: 10.1038/srep45262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
Membrane-bound proteases are essential for epidermal integrity. Human airway trypsin-like protease 4 (HAT-L4) is a type II transmembrane serine protease. Currently, its biochemical property, cellular distribution and physiological function remain unknown. Here we examined HAT-L4 expression and function in vitro and in vivo. In Western analysis, HAT-L4 expressed in transfected CHO cells appeared as a 48-kDa protein. Flow cytometry confirmed HAT-L4 expression on the cell surface with the expected membrane topology. RT-PCR and immunostaining experiments indicated that HAT-L4 was expressed in epithelial cells and exocrine glands in tissues including skin, esophagus, trachea, tongue, eye, bladder, testis and uterus. In the skin, HAT-L4 expression was abundant in keratinocytes and sebaceous glands. We generated HAT-L4 knockout mice by disrupting the Tmprss11f gene encoding HAT-L4. HAT-L4 knockout mice were viable and fertile. No defects were found in HAT-L4 knockout mice in hair growth, wound healing, water repulsion and body temperature regulation. Compared with wild-type controls, HAT-L4-deficient newborn mice had greater body fluid loss and higher mortality in a trans-epidermal body fluid loss test. In metabolic studies, HAT-L4-deficient adult mice drank water more frequently than wild-type controls did. These results indicate that HAT-L4 is important in epidermal barrier function to prevent body fluid loss.
Collapse
|
14
|
Antalis TM, Conway GD, Peroutka RJ, Buzza MS. Membrane-anchored proteases in endothelial cell biology. Curr Opin Hematol 2016; 23:243-52. [PMID: 26906027 DOI: 10.1097/moh.0000000000000238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The endothelial cell plasma membrane is a metabolically active, dynamic, and fluid microenvironment where pericellular proteolysis plays a critical role. Membrane-anchored proteases may be expressed by endothelial cells as well as mural cells and leukocytes with distribution both inside and outside of the vascular system. Here, we will review the recent advances in our understanding of the direct and indirect roles of membrane-anchored proteases in vascular biology and the possible conservation of their extravascular functions in endothelial cell biology. RECENT FINDINGS Membrane-anchored proteases belonging to the serine or metalloprotease families contain amino-terminal or carboxy-terminal domains, which serve to tether their extracellular protease domains directly at the plasma membrane. This architecture enables protease function and substrate repertoire to be regulated through dynamic localization in distinct areas of the cell membrane. These proteases are proving to be key components of the cell machinery for regulating vascular permeability, generation of vasoactive peptides, receptor tyrosine kinase transactivation, extracellular matrix proteolysis, and angiogenesis. SUMMARY A complex picture of the interdependence between membrane-anchored protease localization and function is emerging that may provide a mechanism for precise coordination of extracellular signals and intracellular responses through communication with the cytoskeleton and with cellular signaling molecules.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
15
|
Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis. Inflamm Bowel Dis 2016; 22:2824-2839. [PMID: 27755216 DOI: 10.1097/mib.0000000000000940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn's disease are diseases with impaired epithelial barrier function. We aimed to investigate whether mutated prostasin and thus, reduced colonic epithelial sodium channel activity predisposes to develop an experimentally dextran sodium sulfate (DSS)-induced colitis. METHODS Wildtype, heterozygous (fr/+), and homozygous (fr/fr) prostasin-mutant rats were treated 7 days with DSS followed by 7 days of recovery and analyzed with respect to histology, clinicopathological parameters, inflammatory marker mRNA transcript expression, and sodium transporter protein expression. RESULTS In this study, a more detailed analysis on rat fr/fr colons revealed reduced numbers of crypt and goblet cells, and local angiodysplasia, as compared with heterozygous (fr/+) and wildtype littermates. Following 2% DSS treatment for 7 days followed by 7 days recovery, fr/fr animals lost body weight, and reached maximal diarrhea score and highest disease activity after only 3 days, and strongly increased cytokine levels. The histology score significantly increased in all groups, but fr/fr colons further displayed pronounced histological alterations with near absence of goblet cells, rearrangement of the lamina propria, and presence of neutrophils, eosinophils, and macrophages. Additionally, fr/fr colons showed ulcerations and edemas that were absent in fr/+ and wildtype littermates. Following recovery, fr/fr rats reached, although significantly delayed, near-normal diarrhea score and disease activity, but exhibited severe architectural remodeling, despite unchanged sodium transporter protein expression. CONCLUSIONS In summary, our results demonstrate a protective role of colonic prostasin expression against experimental colitis, and thus represent a susceptibility gene in the development of inflammatory bowel disease.
Collapse
|
16
|
Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 2016; 173:2671-701. [PMID: 27278329 DOI: 10.1111/bph.13533] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC) are both members of the ENaC/degenerin family of amiloride-sensitive Na(+) channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na(+) reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone-dependent ENaC regulation and the evidence for an aldosterone-independent control of ENaC activity, such as regulation by dietary K(+) . We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles.
Collapse
Affiliation(s)
- Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Omar Alijevic
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
17
|
Szabo R, Lantsman T, Peters DE, Bugge TH. Delineation of proteolytic and non-proteolytic functions of the membrane-anchored serine protease prostasin. Development 2016; 143:2818-28. [PMID: 27385010 DOI: 10.1242/dev.137968] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022]
Abstract
The membrane-anchored serine proteases prostasin (PRSS8) and matriptase (ST14) initiate a cell surface proteolytic pathway essential for epithelial function. Mice expressing only catalytically inactive prostasin are viable, unlike prostasin null mice, indicating that at least some prostasin functions are non-proteolytic. Here we used knock-in mice expressing catalytically inactive prostasin (Prss8(Ki/Ki)) to show that the physiological and pathological functions of prostasin vary in their dependence on its catalytic activity. Whereas prostasin null mice exhibited partial embryonic and complete perinatal lethality, Prss8(Ki/Ki) mice displayed normal prenatal and postnatal survival. Unexpectedly, catalytically inactive prostasin caused embryonic lethality in mice lacking its cognate inhibitors HAI-1 (SPINT1) or HAI-2 (SPINT2). Proteolytically inactive prostasin, unlike the wild-type protease, was unable to activate matriptase during placentation. Surprisingly, all essential functions of prostasin in embryonic and postnatal development were compensated for by loss of HAI-1, indicating that prostasin is only required for mouse development and overall viability in the presence of this inhibitor. This study expands our knowledge of non-proteolytic functions of membrane-anchored serine proteases and provides unexpected new data on the mechanistic interactions between matriptase and prostasin in the context of epithelial development.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taliya Lantsman
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diane E Peters
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02110, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Abstract
Membrane-anchored serine proteases are a group of extracellular serine proteases tethered directly to plasma membranes, via a C-terminal glycosylphosphatidylinositol linkage (GPI-anchored), a C-terminal transmembrane domain (Type I), or an N-terminal transmembrane domain (Type II). A variety of biochemical, cellular, and in vivo studies have established that these proteases are important pericellular contributors to processes vital for the maintenance of homeostasis, including food digestion, blood pressure regulation, hearing, epithelial permeability, sperm maturation, and iron homeostasis. These enzymes are hijacked by viruses to facilitate infection and propagation, and their misregulation is associated with a wide range of diseases, including cancer malignancy.
Collapse
|
19
|
Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B, Barragán C, Fernández AI, Rey AI, Medrano JF, Cánovas Á, González-Bulnes A, López-Bote C, Ovilo C. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS One 2015; 10:e0145162. [PMID: 26695515 PMCID: PMC4687939 DOI: 10.1371/journal.pone.0145162] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits.
Collapse
Affiliation(s)
- Miriam Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | - Ana Isabel Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Ángela Cánovas
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | | | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Ovilo
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Keppner A, Andreasen D, Mérillat AM, Bapst J, Ansermet C, Wang Q, Maillard M, Malsure S, Nobile A, Hummler E. Epithelial Sodium Channel-Mediated Sodium Transport Is Not Dependent on the Membrane-Bound Serine Protease CAP2/Tmprss4. PLoS One 2015; 10:e0135224. [PMID: 26309024 PMCID: PMC4550455 DOI: 10.1371/journal.pone.0135224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 01/27/2023] Open
Abstract
The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.
Collapse
Affiliation(s)
- Anna Keppner
- Department of Pharmacology & Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Ditte Andreasen
- Department of Pharmacology & Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Anne-Marie Mérillat
- Department of Pharmacology & Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Julie Bapst
- Department of Pharmacology & Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Camille Ansermet
- Department of Pharmacology & Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Qing Wang
- Department of Medicine/Division of Nephrology and Hypertension, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Marc Maillard
- Department of Medicine/Division of Nephrology and Hypertension, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sumedha Malsure
- Department of Pharmacology & Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Antoine Nobile
- Institut Universitaire de Pathologie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology & Toxicology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Verouti SN, Boscardin E, Hummler E, Frateschi S. Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice. Curr Opin Pharmacol 2015; 21:60-72. [PMID: 25613995 DOI: 10.1016/j.coph.2014.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
Abstract
The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.
Collapse
Affiliation(s)
- Sophia N Verouti
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Boscardin
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | - Simona Frateschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
22
|
Svenningsen P, Andersen H, Nielsen LH, Jensen BL. Urinary serine proteases and activation of ENaC in kidney--implications for physiological renal salt handling and hypertensive disorders with albuminuria. Pflugers Arch 2014; 467:531-42. [PMID: 25482671 DOI: 10.1007/s00424-014-1661-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
Abstract
Serine proteases, both soluble and cell-attached, can activate the epithelial sodium channel (ENaC) proteolytically through release of a putative 43-mer inhibitory tract from the ectodomain of the γ-subunit. ENaC controls renal Na(+) excretion and loss-of-function mutations lead to low blood pressure, while gain-of-function mutations lead to impaired Na(+) excretion, hypertension, and hypokalemia. We review an emerging pathophysiological concept that aberrant glomerular filtration of plasma proteases, e.g., plasmin, prostasin, and kallikrein, contributes to proteolytic activation of ENaC, both in acute conditions with proteinuria, like nephrotic syndrome and preeclampsia, and in chronic diseases, such as diabetes with microalbuminuria. A vast literature on renin-angiotensin-aldosterone system and volume homeostasis from the last four decades show a number of common characteristics for conditions with albuminuria compatible with impaired renal Na(+) excretion: hypertension and volume retention is secondary to proteinuria in, e.g., preeclampsia and nephrotic syndrome; plasma concentrations of renin, angiotensin II, and aldosterone are frequently suppressed in proteinuric conditions, e.g., preeclampsia and diabetic nephropathy; blood pressure is salt-sensitive in conditions with microalbuminuria/proteinuria; and extracellular volume is expanded, plasma atrial natriuretic peptide (ANP) concentration is increased, and diuretics, like amiloride and spironolactone, are effective blood pressure-reducing add-ons. Active plasmin in urine has been demonstrated in diabetes, preeclampsia, and nephrosis. Urine from these patients activates, plasmin-dependently, amiloride-sensitive inward current in vitro. The concept predicts that patients with albuminuria may benefit particularly from reduced salt intake with RAS blockers; that distally acting diuretics, in particular amiloride, are warranted in low-renin/albuminuric conditions; and that urine serine proteases and their activators may be pharmacological targets.
Collapse
Affiliation(s)
- Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
23
|
Carattino MD, Mueller GM, Palmer LG, Frindt G, Rued AC, Hughey RP, Kleyman TR. Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the γ-subunit by a second protease. Am J Physiol Renal Physiol 2014; 307:F1080-7. [PMID: 25209858 DOI: 10.1152/ajprenal.00157.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During maturation, the α- and γ-subunits of the epithelial Na+ channel (ENaC) undergo proteolytic processing by furin. Cleavage of the γ-subunit by furin at the consensus site γRKRR143 and subsequent cleavage by a second protease at a distal site strongly activate the channel. For example, coexpression of prostasin with ENaC increases both channel function and cleavage at the γRKRK186 site. We generated a polyclonal antibody that recognizes the region 144-186 in the γ-subunit (anti-γ43) to determine whether prostasin promotes the release of the intervening tract between the putative furin and γRKRK186 cleavage sites. Anti-γ43 precipitated both full-length (93 kDa) and furin-processed (83 kDa) γ-subunits from extracts obtained from oocytes expressing αβHA-γ-V5 channels, but only the full-length (93 kDa) γ-subunit from oocytes expressing αβHA-γ-V5 channels and either wild-type or a catalytically inactive prostasin. Although both wild-type and catalytically inactive prostasin activated ENaCs in an aprotinin-sensitive manner, only wild-type prostasin bound to aprotinin beads, suggesting that catalytically inactive prostasin facilitates the cleavage of the γ-subunit by an endogenous protease in Xenopus oocytes. As dietary salt restriction increases cleavage of the renal γ-subunit, we assessed release of the 43-mer inhibitory tract on rats fed a low-Na+ diet. We found that a low-Na+ diet increased γ-subunit cleavage detected with the anti-γ antibody and dramatically reduced the fraction precipitated with the anti-γ43 antibody. Our results suggest that the inhibitory tract dissociates from the γ-subunit in kidneys from rats on a low-Na+ diet.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Gunhild M Mueller
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Gustavo Frindt
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Anna C Rued
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
24
|
PSP94, an upstream signaling mediator of prostasin found highly elevated in ovarian cancer. Cell Death Dis 2014; 5:e1407. [PMID: 25188517 PMCID: PMC4540204 DOI: 10.1038/cddis.2014.374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 01/04/2023]
Abstract
Ovarian cancer is a leading cause of cancer death as diagnosis is frequently delayed to an advanced stage. Effective biomarkers and screening strategies for early detection are urgently needed. In the current study, we identify PSP94 as a key upstream factor in mediating prostasin (a protein previously reported to be overexpressed in ovarian cancer) signaling that regulates prostasin expression and action in ovarian cancer cells. PSP94 is overexpressed in ovarian cancer cell lines and patients, and is significantly correlated with prostasin levels. Signaling pathway analysis demonstrated that both PSP94 and prostasin, as potential upstream regulators of the Lin28b/Let-7 pathway, regulate Lin28b and its downstream partner Let-7 in ovarian cancer cells. Expression of PSP94 and prostasin show a strong correlation with the expression levels of Lin28b/Let-7 in ovarian cancer patients. Thus, PSP94/prostasin axis appears to be linked to the Lin28b/Let-7 loop, a well-known signaling mechanism in oncogenesis in general that is also altered in ovarian cancer. The findings suggest that PSP94 and PSP94/prostasin axis are key factors and potential therapeutic targets or early biomarkers for ovarian cancer.
Collapse
|
25
|
Crisante G, Battista L, Iwaszkiewicz J, Nesca V, Mérillat AM, Sergi C, Zoete V, Frateschi S, Hummler E. The CAP1/Prss8 catalytic triad is not involved in PAR2 activation and protease nexin-1 (PN-1) inhibition. FASEB J 2014; 28:4792-805. [PMID: 25138159 DOI: 10.1096/fj.14-253781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Serine proteases, serine protease inhibitors, and protease-activated receptors (PARs) are responsible for several human skin disorders characterized by impaired epidermal permeability barrier function, desquamation, and inflammation. In this study, we addressed the consequences of a catalytically dead serine protease on epidermal homeostasis, the activation of PAR2 and the inhibition by the serine protease inhibitor nexin-1. The catalytically inactive serine protease CAP1/Prss8, when ectopically expressed in the mouse, retained the ability to induce skin disorders as well as its catalytically active counterpart (75%, n=81). Moreover, this phenotype was completely normalized in a PAR2-null background, indicating that the effects mediated by the catalytically inactive CAP1/Prss8 depend on PAR2 (95%, n=131). Finally, nexin-1 displayed analogous inhibitory capacity on both wild-type and inactive mutant CAP1/Prss8 in vitro and in vivo (64% n=151 vs. 89% n=109, respectively), indicating that the catalytic site of CAP1/Prss8 is dispensable for nexin-1 inhibition. Our results demonstrate a novel inhibitory interaction between CAP1/Prss8 and nexin-1, opening the search for specific CAP1/Prss8 antagonists that are independent of its catalytic activity.
Collapse
Affiliation(s)
| | | | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | | - Chloé Sergi
- Department of Pharmacology and Toxicology and
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
26
|
Affiliation(s)
| | - Thomas R Kleyman
- Department of Medicine and Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Faller N, Gautschi I, Schild L. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea. PLoS One 2014; 9:e94267. [PMID: 24722141 PMCID: PMC3983116 DOI: 10.1371/journal.pone.0094267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/14/2014] [Indexed: 12/15/2022] Open
Abstract
Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.
Collapse
Affiliation(s)
- Nicolas Faller
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Ivan Gautschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Laurent Schild
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Peters DE, Szabo R, Friis S, Shylo NA, Uzzun Sales K, Holmbeck K, Bugge TH. The membrane-anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity. J Biol Chem 2014; 289:14740-9. [PMID: 24706745 DOI: 10.1074/jbc.m113.541318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The membrane-anchored serine protease prostasin (CAP1/PRSS8) is part of a cell surface proteolytic cascade that is essential for epithelial barrier formation and homeostasis. Here, we report the surprising finding that prostasin executes these functions independent of its own enzymatic activity. Prostasin null (Prss8(-/-)) mice lack barrier formation and display fatal postnatal dehydration. In sharp contrast, mice homozygous for a point mutation in the Prss8 gene, which causes the substitution of the active site serine within the catalytic histidine-aspartate-serine triad with alanine and renders prostasin catalytically inactive (Prss8(Cat-/Cat-) mice), develop barrier function and are healthy when followed for up to 20 weeks. This striking difference could not be explained by genetic modifiers or by maternal effects, as these divergent phenotypes were displayed by Prss8(-/-) and Prss8(Cat-/Cat-) mice born within the same litter. Furthermore, Prss8(Cat-/Cat-) mice were able to regenerate epidermal covering following cutaneous wounding. This study provides the first demonstration that essential in vivo functions of prostasin are executed by a non-enzymatic activity of this unique membrane-anchored serine protease.
Collapse
Affiliation(s)
- Diane E Peters
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, the Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Roman Szabo
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Stine Friis
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, the Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Natalia A Shylo
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Katiuchia Uzzun Sales
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, the Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenn Holmbeck
- the Connective Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Thomas H Bugge
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
29
|
Abstract
The epidermis functions as a physical barrier to the external environment and works to prevent loss of water from the skin. Numerous factors have been implicated in the formation of epidermal barriers, such as cornified envelopes, corneocytes, lipids, junctional proteins, proteases, protease inhibitors, antimicrobial peptides, and transcription factors. This review illustrates human diseases (ichthyoses) and animal models in which the epidermal barrier is disrupted or dysfunctional at steady state owing to ablation of one or more of the above factors. These diseases and animal models help us to understand the complicated mechanisms of epidermal barrier formation and give further insights on epidermal development.
Collapse
|
30
|
Malsure S, Wang Q, Charles RP, Sergi C, Perrier R, Christensen BM, Maillard M, Rossier BC, Hummler E. Colon-specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance. J Am Soc Nephrol 2014; 25:1453-64. [PMID: 24480829 DOI: 10.1681/asn.2013090936] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Collapse
Affiliation(s)
- Sumedha Malsure
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Qing Wang
- Service of Nephrology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; and Division of Physiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Roch-Philippe Charles
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Chloe Sergi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Romain Perrier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | - Marc Maillard
- Service of Nephrology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; and
| | - Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
31
|
Yan BX, Ma JX, Zhang J, Guo Y, Mueller MD, Remick SC, Yu JJ. Prostasin may contribute to chemoresistance, repress cancer cells in ovarian cancer, and is involved in the signaling pathways of CASP/PAK2-p34/actin. Cell Death Dis 2014; 5:e995. [PMID: 24434518 PMCID: PMC4043260 DOI: 10.1038/cddis.2013.523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the deadliest of gynecologic cancers, largely due to the development of drug resistance in chemotherapy. Prostasin may have an essential role in the oncogenesis. In this study, we show that prostasin is decreased in an ovarian cancer drug-resistant cell line and in ovarian cancer patients with high levels of excision repair cross-complementing 1, a marker for chemoresistance. Our cell cultural model investigation demonstrates prostasin has important roles in the development of drug resistance and cancer cell survival. Forced overexpression of prostasin in ovarian cancer cells greatly induces cell death (resulting in 99% cell death in a drug-resistant cell line and 100% cell death in other tested cell lines). In addition, the surviving cells grow at a much lower rate compared with non-overexpressed cells. In vivo studies indicate that forced overexpression of prostasin in drug-resistant cells greatly inhibits the growth of tumors and may partially reverse drug resistance. Our investigation of the molecular mechanisms suggests that prostasin may repress cancer cells and/or contribute to chemoresistance by modulating the CASP/P21-activated protein kinase (PAK2)-p34 pathway, and thereafter PAK2-p34/JNK/c-jun and PAK2-p34/mlck/actin signaling pathways. Thus, we introduce prostain as a potential target for treating/repressing some ovarian tumors and have begun to identify their relevant molecular targets in specific signaling pathways.
Collapse
Affiliation(s)
- B-x Yan
- 1] Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA [2] IcesnowYanyan Bioscience Association, Beijing 00094, China
| | - J-x Ma
- 1] Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA [2] Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - J Zhang
- 1] IcesnowYanyan Bioscience Association, Beijing 00094, China [2] Beijing Animal Science Institute, Beijing 00097, China
| | - Y Guo
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - M D Mueller
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - S C Remick
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - J J Yu
- Department of Biochemistry, School of Medicine, Department of Basic Pharmaceutical Sciences, School of Pharmacy, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
32
|
Bisaillon JJ, Radden LA, Szabo ET, Hughes SR, Feliciano AM, Nesta AV, Petrovic B, Palanza KM, Lancinskas D, Szmurlo TA, Artus DC, Kapper MA, Mulrooney JP, King TR. The retarded hair growth ( rhg) mutation in mice is an allele of ornithine aminotransferase ( Oat). Mol Genet Metab Rep 2014; 1:378-390. [PMID: 25264521 PMCID: PMC4171744 DOI: 10.1016/j.ymgmr.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Because of the similar phenotypes they generate and their proximate reported locations on Chromosome 7, we tested the recessive retarded hair growth (rhg) and frizzy (fr) mouse mutations for allelism, but found instead that these defects complement. To discover the molecular basis of rhg, we analyzed a large intraspecific backcross panel that segregated for rhg and restricted this locus to a 0.9 Mb region that includes fewer than ten genes, only five of which have been reported to be expressed in skin. Complementation testing between rhg and a recessive null allele of fibroblast growth factor receptor 2 eliminated Fgfr2 as the possible basis of the retarded hair growth phenotype, but DNA sequencing of another of these candidates, ornithine aminotransferase (Oat), revealed a G to C transversion specifically associated with the rhg allele that would result in a glycine to alanine substitution at residue 353 of the gene product. To test whether this missense mutation might cause the mutant phenotype, we crossed rhg/rhg mice with mice that carried a recessive, perinatal-lethal, null mutation in Oat (designated OatΔ herein). Hybrid offspring that inherited both rhg and OatΔ displayed markedly delayed postnatal growth and hair development, indicating that these two mutations are allelic, and suggesting strongly that the G to C mutation in Oat is responsible for the retarded hair growth phenotype. Comparisons among +/+, +/rhg, rhg/rhg and rhg/OatΔ mice showed plasma ornithine levels and ornithine aminotransferase activities (in liver lysates) consistent with this assignment. Because histology of 7- and 12-month-old rhg/rhg and rhg/OatΔ retinas revealed chorioretinal degeneration similar to that described previously for OatΔ/OatΔ mice, we suggest that the rhg mutant may offer an ideal model for gyrate atrophy of the choroid and retina (GACR) in humans, which is also caused by the substitution of glycine 353 in some families. Genetic mapping identifies a small number of candidates for the mouse rhg mutation. Complementation testing between a null allele of Fgfr2 and rhg rules out allelism. A null allele of ornithine aminotransferase (Oat) fails to complement rhg. The rhg mutation results from a missense mutation in Oat. Mutant rhg/rhg mice show diminished OAT function, and chorioretinal degeneration.
Collapse
Affiliation(s)
- Jason J Bisaillon
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Legairre A Radden
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Eric T Szabo
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Samantha R Hughes
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Aaron M Feliciano
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Alex V Nesta
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Belinda Petrovic
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Kenneth M Palanza
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Dainius Lancinskas
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Theodore A Szmurlo
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - David C Artus
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Martin A Kapper
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - James P Mulrooney
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | - Thomas R King
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| |
Collapse
|
33
|
Ramirez F, Feliciano AM, Adkins EB, Child KM, Radden LA, Salas A, Vila-Santana N, Horák JM, Hughes SR, Spacek DV, King TR. The juvenile alopecia mutation (jal) maps to mouse Chromosome 2, and is an allele of GATA binding protein 3 (Gata3). BMC Genet 2013; 14:40. [PMID: 23659281 PMCID: PMC3656803 DOI: 10.1186/1471-2156-14-40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/22/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mice homozygous for the juvenile alopecia mutation (jal) display patches of hair loss that appear as soon as hair develops in the neonatal period and persist throughout life. Although a report initially describing this mouse variant suggested that jal maps to mouse Chromosome 13, our preliminary mapping analysis did not support that claim. RESULTS To map jal to a particular mouse chromosome, we produced a 103-member intraspecific backcross panel that segregated for jal, and typed it for 93 PCR-scorable, microsatellite markers that are located throughout the mouse genome. Only markers from the centromeric tip of Chromosome 2 failed to segregate independently from jal, suggesting that jal resides in that region. To more precisely define jal's location, we characterized a second, 374-member backcross panel for the inheritance of five microsatellite markers from proximal Chromosome 2. This analysis restricted jal's position between D2Mit359 and D2Mit80, an interval that includes Il2ra (for interleukin 2 receptor, alpha chain), a gene that is known to be associated with alopecia areata in humans. Complementation testing with an engineered null allele of Il2ra, however, showed that jal is a mutation in a distinct gene. To further refine the location of jal, the 374-member panel was typed for a set of four single-nucleotide markers located between D2Mit359 and D2Mit80, identifying a 0.55 Mb interval where jal must lie. This span includes ten genes-only one of which, Gata3 (for GATA binding protein 3)-is known to be expressed in skin. Complementation testing between jal and a Gata3 null allele produced doubly heterozygous, phenotypically mutant offspring. CONCLUSIONS The results presented indicate that the jal mutation is a mutant allele of the Gata3 gene on mouse Chromosome 2. We therefore recommend that the jal designation be changed to Gata3jal, and suggest that this mouse variant may provide an animal model for at least some forms of focal alopecia that have their primary defect in the hair follicle and lack an inflammatory component.
Collapse
Affiliation(s)
- Francisco Ramirez
- Biomolecular Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06053, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Buzza MS, Martin EW, Driesbaugh KH, Désilets A, Leduc R, Antalis TM. Prostasin is required for matriptase activation in intestinal epithelial cells to regulate closure of the paracellular pathway. J Biol Chem 2013; 288:10328-37. [PMID: 23443662 DOI: 10.1074/jbc.m112.443432] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The type II transmembrane serine protease matriptase is a key regulator of epithelial barriers in skin and intestine. In skin, matriptase acts upstream of the glycosylphosphatidylinositol-anchored serine protease, prostasin, to activate the prostasin zymogen and initiate a proteolytic cascade that is required for stratum corneum barrier functionality. Here, we have investigated the relationship between prostasin and matriptase in intestinal epithelial barrier function. We find that similar to skin, matriptase and prostasin are components of a common intestinal epithelial barrier-forming pathway. Depletion of prostasin by siRNA silencing in Caco-2 intestinal epithelium inhibits barrier development similar to loss of matriptase, and the addition of recombinant prostasin to the basal side of polarized Caco-2 epithelium stimulates barrier forming changes similar to the addition of recombinant matriptase. However, in contrast to the proteolytic cascade in skin, prostasin functions upstream of matriptase to activate the endogenous matriptase zymogen. Prostasin is unable to proteolytically activate the matriptase zymogen directly but induces matriptase activation indirectly. Prostasin requires expression of endogenous matriptase to stimulate barrier formation since matriptase depletion by siRNA silencing abrogates prostasin barrier-forming activity. Active recombinant matriptase, however, does not require the expression of endogenous prostasin for barrier-forming activity. Together, these data show that matriptase and not prostasin is the primary effector protease of tight junction assembly in simple columnar epithelia and further highlight a spatial and tissue-specific aspect of cell surface proteolytic cascades.
Collapse
Affiliation(s)
- Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hummler E, Dousse A, Rieder A, Stehle JC, Rubera I, Osterheld MC, Beermann F, Frateschi S, Charles RP. The channel-activating protease CAP1/Prss8 is required for placental labyrinth maturation. PLoS One 2013; 8:e55796. [PMID: 23405214 PMCID: PMC3565977 DOI: 10.1371/journal.pone.0055796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function.
Collapse
Affiliation(s)
- Edith Hummler
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|