1
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
2
|
Sepulveda J, Kim JY, Binder J, Vicini S, Rebeck GW. APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Mol Neurodegener 2024; 19:24. [PMID: 38468308 DOI: 10.1186/s13024-024-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 μm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid β (Aβ), we infused locally Hi-Lyte Fluor 555-labeled Aβ in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aβ, and less Aβ coverage at early time points after Aβ injection. To test whether P2RY12 is involved in process movement in response to Aβ, we treated acute brain slices with a P2RY12 antagonist before Aβ injection; microglial processes no longer migrated towards Aβ. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aβ pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.
Collapse
Affiliation(s)
- Jordy Sepulveda
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - Jennifer Yejean Kim
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Joseph Binder
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
3
|
Blumenfeld J, Yip O, Kim MJ, Huang Y. Cell type-specific roles of APOE4 in Alzheimer disease. Nat Rev Neurosci 2024; 25:91-110. [PMID: 38191720 PMCID: PMC11073858 DOI: 10.1038/s41583-023-00776-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
The ɛ4 allele of the apolipoprotein E gene (APOE), which translates to the APOE4 isoform, is the strongest genetic risk factor for late-onset Alzheimer disease (AD). Within the CNS, APOE is produced by a variety of cell types under different conditions, posing a challenge for studying its roles in AD pathogenesis. However, through powerful advances in research tools and the use of novel cell culture and animal models, researchers have recently begun to study the roles of APOE4 in AD in a cell type-specific manner and at a deeper and more mechanistic level than ever before. In particular, cutting-edge omics studies have enabled APOE4 to be studied at the single-cell level and have allowed the identification of critical APOE4 effects in AD-vulnerable cellular subtypes. Through these studies, it has become evident that APOE4 produced in various types of CNS cell - including astrocytes, neurons, microglia, oligodendrocytes and vascular cells - has diverse roles in AD pathogenesis. Here, we review these scientific advances and propose a cell type-specific APOE4 cascade model of AD. In this model, neuronal APOE4 emerges as a crucial pathological initiator and driver of AD pathogenesis, instigating glial responses and, ultimately, neurodegeneration. In addition, we provide perspectives on future directions for APOE4 research and related therapeutic developments in the context of AD.
Collapse
Affiliation(s)
- Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Ayyubova G. APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:342-352. [PMID: 36872358 DOI: 10.2174/1871527322666230303114425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, the main pathological hallmark of which is the loss of neurons, resulting in cognitive and memory impairments. Sporadic late-onset AD is a prevalent form of the disease and the apolipoprotein E4 (APOE4) genotype is the strongest predictor of the disease development. The structural variations of APOE isoforms affect their roles in synaptic maintenance, lipid trafficking, energy metabolism, inflammatory response, and BBB integrity. In the context of AD, APOE isoforms variously control the key pathological elements of the disease, including Aβ plaque formation, tau aggregation, and neuroinflammation. Taking into consideration the limited number of therapy choices that can alleviate symptoms and have little impact on the AD etiology and progression to date, the precise research strategies guided by apolipoprotein E (APOE) polymorphisms are required to assess the potential risk of age-related cognitive decline in people carrying APOE4 genotype. In this review, we summarize the evidence implicating the significance of APOE isoforms on brain functions in health and pathology with the aim to identify the possible targets that should be addressed to prevent AD manifestation in individuals with the APOE4 genotype and to explore proper treatment strategies.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
5
|
Perna A, Montine KS, White LR, Montine TJ, Cholerton BA. Paradigm Shift: Multiple Potential Pathways to Neurodegenerative Dementia. Neurotherapeutics 2023; 20:1641-1652. [PMID: 37733209 PMCID: PMC10684852 DOI: 10.1007/s13311-023-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Neurodegenerative dementia can result from multiple underlying abnormalities, including neurotransmitter imbalances, protein aggregation, and other neurotoxic events. A major complication in identifying effective treatment targets is the frequent co-occurrence of multiple neurodegenerative processes, occurring either in parallel or sequentially. The path towards developing effective treatments for Alzheimer's disease (AD) and other dementias has been relatively slow and until recently has focused on disease symptoms. Aducanumab and lecanemab, recently approved by the FDA, are meant to target disease structures but have only modest benefit on symptom progression and remain unproven in reversing or preventing dementia. A third, donanemab, appears more promising but awaits FDA approval. Ongoing trials include potential cognition enhancers, new combinations of known drugs for synergistic effects, prodrugs with less toxicity, and increasing interest in drugs targeting neuroinflammation or microbiome. Scientific and technological advances offer the opportunity to move in new therapy directions, such as modifying microglia to prevent or suppress underlying disease. A major challenge, however, is that underlying comorbidities likely influence the effectiveness of therapies. Indeed, the full range of comorbidity, today only definitively identified postmortem, likely contributes to failed clinical trials and overmedication of older adults, since it is difficult to exclude (during life) people unlikely to respond. Our current knowledge thus signals that a paradigm shift towards individualized and multimodal treatments is necessary to effectively advance the field of dementia therapeutics.
Collapse
Affiliation(s)
- Amalia Perna
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA.
| | - Kathleen S Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Lon R White
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Brenna A Cholerton
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Chen Y, Hong T, Chen F, Sun Y, Wang Y, Cui L. Interplay Between Microglia and Alzheimer's Disease-Focus on the Most Relevant Risks: APOE Genotype, Sex and Age. Front Aging Neurosci 2021; 13:631827. [PMID: 33897406 PMCID: PMC8060487 DOI: 10.3389/fnagi.2021.631827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
As the main immune cells of the central nervous system (CNS), microglia regulates normal development, homeostasis and general brain physiology. These functions put microglia at the forefront of CNS repair and recovery. Uncontrolled activation of microglia is related to the course of neurodegenerative diseases such as Alzheimer’s disease. It is clear that the classic pathologies of amyloid β (Aβ) and Tau are usually accompanied by the activation of microglia, and the activation of microglia also serves as an early event in the pathogenesis of AD. Therefore, during the occurrence and development of AD, the key susceptibility factors for AD—apolipoprotein E (APOE) genotype, sex and age—may further interact with microglia to exacerbate neurodegeneration. In this review, we discuss the role of microglia in the progression of AD related to the three risk factors for AD: APOE genotype, sex and aging. APOE-expressing microglia accumulates around Aβ plaques, and the presence of APOE4 may disrupt the phagocytosis of Aβ aggregates and aggravate neurodegeneration in Tau disease models. In addition, females have a high incidence of AD, and normal female microglia and estrogen have protective effects under normal conditions. However, under the influence of AD, female microglia seem to lose their protective effect and instead accelerate the course of AD. Aging, another major risk factor, may increase the sensitivity of microglia, leading to the exacerbation of microglial dysfunction in elderly AD. Obviously, in the role of microglia in AD, the three main risk factors of APOE, sex, and aging are not independent and have synergistic effects that contribute to the risk of AD. Moreover, new microglia can replace dysfunctional microglia after microglial depletion, which is a new promising strategy for AD treatment.
Collapse
Affiliation(s)
- Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Wang M, Kou J, Wang C, Yu X, Xie X, Pang X. Curcumin inhibits APOE4-induced injury by activating peroxisome proliferator-activated receptor-γ (PPARγ) in SH-SY5Y cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1576-1583. [PMID: 33489032 PMCID: PMC7811813 DOI: 10.22038/ijbms.2020.47184.10858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective(s): The human apolipoprotein E4 (APOE4) is associated with various brain injuries and neurodegenerative changes. Curcumin is an active ingredient isolated from the root of turmeric and is believed to have therapeutic effects on neurodegenerative diseases. The aim of this study was to investigate the effects of curcumin on APOE4-induced neurological damage and explore its molecular mechanisms. Materials and Methods: SH-SY5Y cells were pretreated with curcumin for 24 hr and transfected with human APOE4 gene using Lipofectamine 2000. Then, the effect of curcumin on the transfected cells was detected by ELISA, immunofluorescence staining and Western blot. Results: The production or expression of proinflammatory cytokines and proteins, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was significantly increased in SH-SY5Y cells transfected with APOE4, and curcumin inhibited APOE4-induced cellular inflammatory damage. Western blot analysis showed that, after transfection with APOE4, the expression of total nuclear factor kappa B (NF-κB) p65 and p-NF-κB p65 in the nucleus was increased, and curcumin inhibited the nuclear translocation of p65. The overexpression of APOE4 inhibited the expression of peroxisome proliferator-activated receptor-γ (PPARγ), whereas curcumin reversed and increased the expression of PPARγ protein. Down-regulating PPAR-γ with the inhibitor GW9662 and the shPPARγ gene confirmed that the NF-κB signaling pathway was inhibited by PPARγ. Conclusion: This study suggests that APOE4 overexpression can induce cellular inflammatory damage, and pretreatment of curcumin could exert an anti-inflammatory effect by upregulating the expression of PPARγ to inhibit the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Minghui Wang
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Jiejian Kou
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Chunli Wang
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Xiuying Yu
- Agricultural College of Inner Mongolia University for Nationalities, Tongliao, 028043, China
| | - Xinmei Xie
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Xiaobin Pang
- Pharmaceutical Institute, Pharmaceutical College of Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Roda AR, Montoliu-Gaya L, Villegas S. The Role of Apolipoprotein E Isoforms in Alzheimer's Disease. J Alzheimers Dis 2020; 68:459-471. [PMID: 30775980 DOI: 10.3233/jad-180740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia worldwide, is characterized by high levels of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Genetically, the ɛ4 allele of apolipoprotein E (ApoE) has been established as the major risk factor for developing late-onset AD (LOAD), the most common form of the disease. Although the role ApoE plays in AD is still not completely understood, a differential role of its isoforms has long been known. The current review compiles the involvement of ApoE isoforms in amyloid-β protein precursor transcription, Aβ aggregation and clearance, synaptic plasticity, neuroinflammation, lipid metabolism, mitochondrial function, and tau hyperphosphorylation. Due to the complexity of LOAD, an accurate description of the interdependence among all the related molecular mechanisms involved in the disease is needed for developing successful therapies.
Collapse
Affiliation(s)
- Alejandro R Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laia Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
In silico, in vitro and in vivo studies indicate resveratrol analogue as a potential alternative for neuroinflammatory disorders. Life Sci 2020; 249:117538. [DOI: 10.1016/j.lfs.2020.117538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
|
10
|
Li C, Chen YH, Zhang K. Neuroprotective Properties and Therapeutic Potential of Bone Marrow-Derived Microglia in Alzheimer's Disease. Am J Alzheimers Dis Other Demen 2020; 35:1533317520927169. [PMID: 32536247 PMCID: PMC10623913 DOI: 10.1177/1533317520927169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which is characterized by a progressive cognitive decline and senile plaques formed by amyloid β (Aβ). Microglia are the immune cells of the central nervous system (CNS). Studies have proposed 2 types of microglia, namely, the resident microglia and bone marrow-derived microglia (BMDM). Recent studies suggested that BMDM, not the resident microglia, can phagocytose Aβ, which has a great therapeutic potential in AD. Bone marrow-derived microglia can populate the CNS in an efficient manner and their functions can be regulated by some genes. Thus, methods that increase their recruitment and phagocytosis could be used as a new tool that clears Aβ and ameliorates cognitive impairment. Herein, we review the neuroprotective functions of BMDM and their therapeutic potential in AD.
Collapse
Affiliation(s)
- Chang Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Stephen TL, Cacciottolo M, Balu D, Morgan TE, LaDu MJ, Finch CE, Pike CJ. APOE genotype and sex affect microglial interactions with plaques in Alzheimer's disease mice. Acta Neuropathol Commun 2019; 7:82. [PMID: 31113487 PMCID: PMC6528326 DOI: 10.1186/s40478-019-0729-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Microglia affect Alzheimer’s disease (AD) pathogenesis in opposing manners, by protecting against amyloid accumulation in early phases of the disease and promoting neuropathology in advanced stages. Recent research has identified specific microglial interactions with amyloid plaques that exert important protective functions including attenuation of early pathology. It is unknown how these protective microglial interactions with plaques are affected by apolipoprotein E (APOE) genotype and sex, two well-established AD risk factors that modulate microglial function. We investigated this question using quantitative confocal microscopy to compare microglial interactions with amyloid plaques in male and female EFAD mice across APOE3 and APOE4 genotypes at 6 months of age. We observed that microglial coverage of plaques is highest in male APOE3 mice with significant reductions in coverage observed with both APOE4 genotype and female sex. Plaque compaction, a beneficial consequence of microglial interactions with plaques, showed a similar pattern in which APOE4 genotype and female sex were associated with significantly lower values. Within the plaque environment, microglial expression of triggering receptor expressed on myeloid cells 2 (TREM2), a known regulator of microglial plaque coverage, was highest in male APOE3 mice and reduced by APOE4 genotype and female sex. These differences in plaque interactions were unrelated to the number of microglial processes in the plaque environment across groups. Interestingly, the pattern of amyloid burden across groups was opposite to that of microglial plaque coverage, with APOE4 genotype and female sex showing the highest amyloid levels. These findings suggest a possible mechanism by which microglia may contribute to the increased AD risk associated with APOE4 genotype and female sex.
Collapse
|
12
|
Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The Role of APOE4 in Disrupting the Homeostatic Functions of Astrocytes and Microglia in Aging and Alzheimer's Disease. Front Aging Neurosci 2019; 11:14. [PMID: 30804776 PMCID: PMC6378415 DOI: 10.3389/fnagi.2019.00014] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
APOE4 is the greatest genetic risk factor for late-onset Alzheimer’s disease (AD), increasing the risk of developing the disease by 3-fold in the 14% of the population that are carriers. Despite 25 years of research, the exact mechanisms underlying how APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the brain is primarily expressed by astrocytes and microglia, cell types that are now widely appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur during normal aging to ultimately cause neurodegeneration and cognitive dysfunction. This review article will summarize how APOE4 alters specific pathways in astrocytes and microglia in the context of AD and the aging brain. APOE itself, as a secreted lipoprotein without enzymatic activity, may prove challenging to directly target therapeutically in the classical sense. Therefore, a deeper understanding of the underlying pathways responsible for APOE4 toxicity is needed so that more tractable pathways and drug targets can be identified to reduce APOE4-mediated disease risk.
Collapse
Affiliation(s)
- Celia G Fernandez
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mary E Hamby
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Morgan L McReynolds
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William J Ray
- The Neurodegeneration Consortium, Institute of Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
Martinez B, Peplow PV. Amelioration of Alzheimer's disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer's disease. Neural Regen Res 2019; 14:1158-1176. [PMID: 30804241 PMCID: PMC6425849 DOI: 10.4103/1673-5374.251192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The most common age-related neurodegenerative disease is Alzheimer’s disease (AD) characterized by aggregated amyloid-β (Aβ) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intraneuronal neurofibrillary tangles, together with loss of cholinergic neurons, synaptic alterations, and chronic inflammation within the brain. These lead to progressive impairment of cognitive function. There is evidence of innate immune activation in AD with microgliosis. Classically-activated microglia (M1 state) secrete inflammatory and neurotoxic mediators, and peripheral immune cells are recruited to inflammation sites in the brain. The few drugs approved by the US FDA for the treatment of AD improve symptoms but do not change the course of disease progression and may cause some undesirable effects. Translation of active and passive immunotherapy targeting Aβ in AD animal model trials had limited success in clinical trials. Treatment with immunomodulatory/anti-inflammatory agents early in the disease process, while not preventive, is able to inhibit the inflammatory consequences of both Aβ and tau aggregation. The studies described in this review have identified several agents with immunomodulatory properties that alleviated AD pathology and cognitive impairment in animal models of AD. The majority of the animal studies reviewed had used transgenic models of early-onset AD. More effort needs to be given to creat models of late-onset AD. The effects of a combinational therapy involving two or more of the tested pharmaceutical agents, or one of these agents given in conjunction with one of the cell-based therapies, in an aged animal model of AD would warrant investigation.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, Merced, CA, USA; Department of Medicine, St. Georges University School of Medicine, Grenada; Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Chang YT, Mori E, Suzuki M, Ikeda M, Huang CW, Lee JJ, Chang WN, Chang CC. APOE-MS4A genetic interactions are associated with executive dysfunction and network abnormality in clinically mild Alzheimer's disease. Neuroimage Clin 2018; 21:101621. [PMID: 30528368 PMCID: PMC6411654 DOI: 10.1016/j.nicl.2018.101621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/17/2018] [Accepted: 12/01/2018] [Indexed: 11/09/2022]
Abstract
PURPOSE OF THE RESEARCH Although single nucleotide polymorphisms of membrane-spanning 4A (MS4A) (rs670139) and several other susceptibility genes have shown interaction effects on the risk of Alzheimer's disease (AD), little is known about the interaction effects of apolipoprotein E (APOE) with MS4A (rs670139) on cognitive performances, and the underlying pathogenesis is unclear. The study aimed to investigate the APOE-MS4A (rs670139) interaction effects on cognitive performances, cortical volumes, and functional connectivity (FC) in brain networks. PRINCIPAL RESULTS Cognitive performances were characterized in each genotypic group, and were compared between normal controls and patients in each genotypic group. APOE-MS4A interaction effects on memory and executive function scores, cortical volumes, and FC in brain networks were demonstrated. Significant effects of APOE-MS4A interactions on FC were observed in executive control network (ECN) (T maxima = 4.99, false discovery rate-corrected p < .001), the calculation score (F3, 87 = 6.218; p = .015), and the volume in prefrontal (F3, 87 = 4.374; p = .039) and orbitofrontal cortices (F3, 87 = 6.022; p = .016). The calculation score was correlated with each frontal volume (cc) (ρ = 0.304; p = .004) and genetic interaction-associated FC in ECN (ρ = 0.282; p = .008). Variations in genotypes affected the relationship between the calculation score and each frontal volume (cc). MAJOR CONCLUSIONS These findings indicate that the genetic interaction effects on FC in ECN might contribute to pathogenic mechanisms underlying the interaction effects of APOE-MS4A on calculation ability in AD.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Etsuro Mori
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
| | - Maki Suzuki
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chi-Wei Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jun-Jun Lee
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
15
|
Apolipoprotein E plays crucial roles in maintaining bone mass by promoting osteoblast differentiation via ERK1/2 pathway and by suppressing osteoclast differentiation via c-Fos, NFATc1, and NF-κB pathway. Biochem Biophys Res Commun 2018; 503:644-650. [DOI: 10.1016/j.bbrc.2018.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
|
16
|
Harrison-Brown M, Liu GJ, Banati R. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. Int J Mol Sci 2016; 17:E2030. [PMID: 27918464 PMCID: PMC5187830 DOI: 10.3390/ijms17122030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as "assistants" in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several 'checkpoints' from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.
Collapse
Affiliation(s)
- Meredith Harrison-Brown
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Guo-Jun Liu
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Richard Banati
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
17
|
Londoño AC, Mora CA. Autologous Bone Marrow Transplantation in Multiple Sclerosis: Biomarker Relevance for Patient Recruitment and Follow up. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:455. [PMID: 28090375 PMCID: PMC5226132 DOI: 10.4172/2155-9899.1000455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Despite the current availability of disease modifying therapies for the treatment of multiple sclerosis, there are still patients who suffer from severe neurological dysfunction in the relapsing-remitting or early progressive forms of the disease. For these patients autologous hematopoietic stem cell transplant offers an important therapeutic solution to prevent progression to irreversible disability. In spite of multiple studies in the last two decades, patient inclusion criteria, protocols for peripheral blood stem cell mobilization and bone marrow cell conditioning and methodology of follow up for autologous hematopoietic stem cell transplant in multiple sclerosis have not been strictly unified. METHODS We reviewed five recent clinical studies that confirmed the positive outcome of transplant in spite of disclosing significant differences in methodology of enrollment including patient disease subtypes, disease duration range, disability, regimens of peripheral blood stem cell mobilization and bone marrow cell conditioning, scheduling of imaging studies after transplant, and absence of laboratory biomarkers consistently applied to these studies. RESULTS Therapy with autologous hematopoietic stem cell transplant has shown best results among young individuals with severe relapsing-remitting or early progressive disease through its ability to maintain no evidence of disease activity status in a significantly higher proportion of patients after transplant in comparison to patients treated with disease modifying therapies. Important cross-sectional differences in the reviewed studies were found. CONCLUSION A specific and careful selection of biomarkers, based on the current physiopathological mechanisms known to result in multiple sclerosis, will contribute to a better and earlier patient selection for autologous hematopoietic stem cell transplant and follow up process. An objective and measurable response could be obtained with the determination of biomarkers at the onset of treatment and after follow-up on reconstitution of the immune response. The application of such parameters could also help further our understanding of pathogenesis of the disease.
Collapse
Affiliation(s)
- Ana C. Londoño
- Instituto Neurológico de Colombia-INDEC (A.C.L.), Medellin, Colombia
| | - Carlos A. Mora
- Department of Neurology (C.A.M.), Georgetown Multiple Sclerosis Center, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
18
|
Keene CD, Darvas M, Kraemer B, Liggitt D, Sigurdson C, Ladiges W. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32397. [PMID: 27317189 PMCID: PMC4912600 DOI: 10.3402/pba.v6.32397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 11/14/2022]
Abstract
Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD), have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1) cerebrospinal fluid (CSF) AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2) structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG), and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3) cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines and standards for models of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Brian Kraemer
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care Systems, Seattle, WA, USA.,Division of Gerontology and Geriatrics Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Christina Sigurdson
- Department of Pathology, University of California at San Diego, La Jolla, CA, USA.,Scripps Research Institute, La Jolla, CA, USA
| | - Warren Ladiges
- Department of Pathology, University of Washington, Seattle, WA, USA.,Department of Comparative Medicine, University of Washington, Seattle, WA, USA;
| |
Collapse
|
19
|
Melief EJ, Gibbs JT, Li X, Morgan RG, Keene CD, Montine TJ, Palmiter RD, Darvas M. Characterization of cognitive impairments and neurotransmitter changes in a novel transgenic mouse lacking Slc10a4. Neuroscience 2016; 324:399-406. [PMID: 27001174 DOI: 10.1016/j.neuroscience.2016.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
An orphan member of the solute carrier (SLC) family SLC10, SLC10A4 has been found to be enriched in midbrain and brainstem neurons and has been found to co-localize with and to affect dopamine (DA) homeostasis. We generated an SLC10A4 knockout mouse (Slc10a4(Δ/Δ)) using Cre-targeted recombination, and characterized behavioral measures of motor and cognitive function as well as DA and acetylcholine (ACh) levels in midbrain and brainstem. In agreement with previous studies, Slc10a4 mRNA was preferentially expressed in neurons in the brains of wild-type (Slc10a4(+/+)) mice and was enriched in dopaminergic and cholinergic regions. Slc10a4(Δ/Δ) mice had no impairment in motor function or novelty-induced exploratory behaviors but performed significantly worse in measures of spatial memory and cognitive flexibility. Slc10a4(Δ/Δ) mice also did not differ from Slc10a4(+/+) in measures of anxiety. High-performance liquid chromatography (HPLC) measures on tissue punches taken from the dorsal and ventral striatum reveal a decrease in DA content and a corresponding increase in the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), indicating an increase in DA turnover. Punches taken from the brainstem revealed a decrease in ACh as compared with Slc10a4(+/+) littermates. Together, these data indicate that loss of SLC10A4 protein results in neurotransmitter imbalance and cognitive impairment.
Collapse
Affiliation(s)
- E J Melief
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - J T Gibbs
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - X Li
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - R G Morgan
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - C D Keene
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - T J Montine
- Department of Pathology, University of Washington, Seattle, WA 98104, United States
| | - R D Palmiter
- Department of Biochemistry, University of Washington, Seattle, WA 98104, United States; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98104, United States
| | - M Darvas
- Department of Pathology, University of Washington, Seattle, WA 98104, United States.
| |
Collapse
|
20
|
Abstract
Human cerebrospinal fluid (CSF) contains diverse lipid particles, including lipoproteins that are distinct from their plasma counterparts and contain apolipoprotein (apo) E isoforms, apoJ, and apoAI, and extracellular vesicles, which can be detected by annexin V binding. The aim of this study was to develop a method to quantify CSF particles and evaluate their relationship to aging and neurodegenerative diseases. We used a flow cytometric assay to detect annexin V-, apoE-, apoAI-, apoJ-, and amyloid (A) β42-positive particles in CSF from 131 research volunteers who were neurologically normal or had mild cognitive impairment (MCI), Alzheimer disease (AD) dementia, or Parkinson disease. APOE ε4/ε4 participants had CSF apoE-positive particles that were more frequently larger but at an 88% lower level versus those in APOE ε3/ε3 or APOE ε3/ε4 patients; this finding was reproduced in conditioned medium from mouse primary glial cell cultures with targeted replacement of apoE. Cerebrospinal fluid apoE-positive and β-amyloid (Aβ42)-positive particle concentrations were persistently reduced one-third to one-half in middle and older age subjects; apoAI-positive particle concentration progressively increased approximately 2-fold with age. Both apoAI-positive and annexin V-positive CSF particle levels were reduced one-third to one-half in CSF of MCI and/or AD dementia patients versus age-matched controls. Our approach provides new methods to investigate CNS lipid biology in relation to neurodegeneration and perhaps develop new biomarkers for diagnosis or treatment monitoring.
Collapse
|
21
|
Wang DB, Kinoshita Y, Kinoshita C, Uo T, Sopher BL, Cudaback E, Keene CD, Bilousova T, Gylys K, Case A, Jayadev S, Wang HG, Garden GA, Morrison RS. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain 2015; 138:2005-19. [PMID: 25981964 DOI: 10.1093/brain/awv128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/15/2015] [Indexed: 12/31/2022] Open
Abstract
Endophilin-B1, also known as Bax-interacting factor 1 (Bif-1, and encoded by SH3GLB1), is a multifunctional protein involved in apoptosis, autophagy and mitochondrial function. We recently described a unique neuroprotective role for neuron-specific alternatively spliced isoforms of endophilin-B1. To examine whether endophilin-B1-mediated neuroprotection could be a novel therapeutic target for Alzheimer's disease we used a double mutant amyloid precursor protein and presenilin 1 (APPswe/PSEN1dE9) mouse model of Alzheimer's disease and observed that expression of neuron-specific endophilin-B1 isoforms declined with disease progression. To determine if this reduction in endophilin-B1 has a functional role in Alzheimer's disease pathogenesis, we crossed endophilin-B1(-/-) mice with APPswe/PSEN1dE9 mice. Deletion of endophilin-B1 accelerated disease onset and progression in 6-month-old APPswe/PSEN1dE9/endophilin-B1(-/-) mice, which showed more plaques, astrogliosis, synaptic degeneration, cognitive impairment and mortality than APPswe/PSEN1dE9 mice. In mouse primary cortical neuron cultures, overexpression of neuron-specific endophilin-B1 isoforms protected against amyloid-β-induced apoptosis and mitochondrial dysfunction. Additionally, protein and mRNA levels of neuron-specific endophilin-B1 isoforms were also selectively decreased in the cerebral cortex and in the synaptic compartment of patients with Alzheimer's disease. Flow sorting of synaptosomes from patients with Alzheimer's disease demonstrated a negative correlation between amyloid-β and endophilin-B1 levels. The importance of endophilin-B1 in neuronal function was further underscored by the development of synaptic degeneration and cognitive and motor impairment in endophilin-B1(-/-) mice by 12 months. Our findings suggest that endophilin-B1 is a key mediator of a feed-forward mechanism of Alzheimer's disease pathogenesis where amyloid-β reduces neuron-specific endophilin-B1, which in turn enhances amyloid-β accumulation and neuronal vulnerability to stress.
Collapse
Affiliation(s)
- David B Wang
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Yoshito Kinoshita
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Chizuru Kinoshita
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Takuma Uo
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Bryce L Sopher
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Eiron Cudaback
- 3 Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - C Dirk Keene
- 3 Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Tina Bilousova
- 4 School of Nursing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Gylys
- 4 School of Nursing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda Case
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Suman Jayadev
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Hong-Gang Wang
- 5 Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 1703, USA
| | - Gwenn A Garden
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA 3 Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Richard S Morrison
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| |
Collapse
|
22
|
Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein‐Cline M, Kanabar P, Collins N, Ben‐Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, Van Eldik LJ, LaDu MJ. APOE-modulated Aβ-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 2015; 133:465-88. [PMID: 25689586 PMCID: PMC4400246 DOI: 10.1111/jnc.13072] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/12/2023]
Abstract
Chronic glial activation and neuroinflammation induced by the amyloid-β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ-independent neuroinflammation, data for APOE-modulated Aβ-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.
Collapse
Affiliation(s)
- Leon M. Tai
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Shivesh Ghura
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Kevin P. Koster
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | | | | | - Pinal Kanabar
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Nicole Collins
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Manel Ben‐Aissa
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Arden Zhengdeng Lei
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Neil Bahroos
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | | | - Bill Hendrickson
- UIC Research Resources CenterUniversity of IllinoisChicagoIllinoisUSA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| |
Collapse
|
23
|
Melief EJ, Cudaback E, Jorstad NL, Sherfield E, Postupna N, Wilson A, Darvas M, Montine KS, Keene CD, Montine TJ. Partial depletion of striatal dopamine enhances penetrance of cognitive deficits in a transgenic mouse model of Alzheimer's disease. J Neurosci Res 2015; 93:1413-22. [PMID: 25824456 DOI: 10.1002/jnr.23592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/23/2015] [Accepted: 03/07/2015] [Indexed: 01/23/2023]
Abstract
Parkinson's disease and Alzheimer's disease (AD) are recognized to coexist on a spectrum of neurodegeneration, and it has been proposed that molecular interactions among pathogenic proteins are a basis for the overlap between these two diseases. We instead hypothesized that degeneration of the nigrostriatal dopaminergic system enhances the clinical penetrance of early-stage AD. To determine the effect of striatal dopamine (DA) on the pathological effects in an experimental model of AD, APPSWE /PS1ΔE9 mice received striatal injections of the neurotoxin 6-hydroxydopamine (6OHDA). Animals were tested in a Barnes maze protocol and in a water T-maze protocol at different ages to determine the onset of cognitive impairment. APPSWE /PS1ΔE9 mice that received 6OHDA injections showed significant impairment in Barnes maze performance at an earlier age than controls. Additionally, at 12 months of age, APPswe /PS1ΔE9 + 6OHDA mice demonstrated worse behavioral flexibility than other groups in a task-switch phase of the water T-maze. To determine the neuroprotective effects of dopaminergic neurotransmission against amyloid-β42 (Aβ42 ) toxicity, neuronal branch order and dendrite length were quantified in primary medium spiny neuron (MSN) cultures pretreated with increasing doses of the D1 and D2 receptor agonists before being exposed to oligomerized Aβ42 . Although there were no differences in Aβ peptide levels or plaque burden among the groups, in murine MSN culture dopaminergic agonists prevented a toxic response to Aβ42. Depletion of DA in the striatum exacerbated the cognitive impairment seen in a mouse model of early-stage AD; this may be due to a protective effect of dopaminergic innervation against Aβ striatal neurotoxicity.
Collapse
Affiliation(s)
- Erica J Melief
- Department of Pathology, University of Washington, Seattle, Washington
| | - Eiron Cudaback
- Department of Pathology, University of Washington, Seattle, Washington
| | - Nikolas L Jorstad
- Department of Pathology, University of Washington, Seattle, Washington
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, Washington
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, Washington
| | - Angela Wilson
- Department of Pathology, University of Washington, Seattle, Washington
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, Washington
| | | | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Li X, Montine KS, Keene CD, Montine TJ. Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J 2015; 29:1754-62. [PMID: 25593125 DOI: 10.1096/fj.14-262683] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/15/2014] [Indexed: 01/14/2023]
Abstract
Several lines of evidence support immune response in brain as a mechanism of injury in Alzheimer disease (AD). Moreover, immune activation is heightened in apolipoprotein E (APOE) ε4 carriers; inhibitors of prostaglandin (PG) synthesis show a partially protective effect on AD risk from APOE ε4; and genetic variants in triggering receptor expressed on myeloid cells 2 (TREM2) are a rare but potent risk for AD. We tested the hypothesis that APOE ε4 inheritance modulates both the PGE2 pathway and TREM2 expression using primary murine microglia from targeted replacement (TR) APOE3/3 and APOE4/4 mice. Microglial cyclooxygenase-2, microsomal PGE synthase, and PGE2 expression were increased 2- to 25-fold in both genotypes by TLR activators; however, this induction was significantly (P < 0.01) greater in TR APOE4/4 microglia with TLR3 and TLR4 activators. Microglial TREM2 expression was reduced approximately 85% by all TLR activators; this reduction was approximately one-third greater in microglia from TR APOE4/4 mice. Importantly, both receptor-associated protein and a nuclear factor κ-light-chain-enhancer inhibitor blocked TR APOE4/4-dependent effects on the PGE2 pathway but not on TREM2 expression. These data demonstrate complementary, but mechanistically distinct, regulation of pro- and anti-inflammatory mediators in TR APOE4/4 murine microglia that yields a more proinflammatory state than with TR APOE3/3.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Kathleen S Montine
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Yang Y, Aloi MS, Cudaback E, Josephsen SR, Rice SJ, Jorstad NL, Keene CD, Montine TJ. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice. J Transl Med 2014; 94:1224-36. [PMID: 25199051 PMCID: PMC4218738 DOI: 10.1038/labinvest.2014.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 01/25/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Yang
- Address correspondence to: Yue Yang, Ph.D., Harborview Medical Center, 300 9th Ave, Seattle, WA, 98104, Phone: 206-897-5246, Fax: 206-897-5249,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cudaback E, Yang Y, Montine TJ, Keene CD. APOE genotype-dependent modulation of astrocyte chemokine CCL3 production. Glia 2014; 63:51-65. [PMID: 25092803 DOI: 10.1002/glia.22732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (apoE) is well known as a regulator of cholesterol homeostasis, and is increasingly recognized to play a prominent role in the modulation of innate immune response, including cell-to-cell communication and migration. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder characterized by neuroinflammation that appears to be an important component of the pathophysiology of the disease. Astrocytes are the majority cell type in brain, exerting significant influence over a range of central nervous system activities, including microglial-mediated neuroinflammatory responses. As the resident innate immune effector cells of the brain, microglia respond to soluble chemical signals released from tissue during injury and disease by mobilizing to lesion sites, clearing toxic molecules, and releasing chemical signals of their own. While microglial-mediated neuroinflammation in the AD brain remains an area of intense investigation, the mechanisms underlying reinforcement and regulation of these aberrant microglial responses by astrocytes are largely unstudied. Moreover, although inheritance of APOE ɛ4 represents the greatest genetic risk factor for sporadic AD, the mechanism by which apoE isoforms differentially influence AD pathophysiology is unknown. Here we show that APOE ɛ4 genotype specifically modulates astrocyte secretion of potent microglial chemotactic agents, including CCL3, thus providing evidence that APOE modulation of central nervous system (CNS) innate immune response is mediated through astrocytes.
Collapse
Affiliation(s)
- Eiron Cudaback
- Department of Pathology, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
27
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|