1
|
Segars KL, Azzari N, Cole M, Kushimi L, Rapaka S, Rich CB, Trinkaus-Randall V. Diverse calcium signaling profiles regulate migratory behavior in avascular wound healing and aberrant signal hierarchy occurs early in diabetes. Am J Physiol Cell Physiol 2024; 327:C1051-C1072. [PMID: 39129489 PMCID: PMC11482046 DOI: 10.1152/ajpcell.00249.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
In avascular wound repair, calcium signaling events are the predominant mechanism cells use to transduce information about stressors in the environment into an effective and coordinated migratory response. Live cell imaging and computational analysis of corneal epithelial wound healing revealed that signal initiation and propagation at the wound edge are highly ordered, with groups of cells engaging in cyclical patterns of initiation and propagation. The cells in these groups exhibit a diverse range of signaling behavior, and dominant "conductor cells" drive activity in groups of lower-signaling neighbors. Ex vivo model systems reveal that conductor cells are present in wing cell layers of the corneal epithelium and that signaling propagates both within and between wing and basal layers. There are significant aberrations in conductor phenotype and interlayer propagation in type II diabetic murine models, indicating that signal hierarchy breakdown is an early indicator of disease. In vitro models reveal that signaling profile diversity and conductor cell phenotype is eliminated with P2X7 inhibition and is altered in Pannexin-1 or P2Y2 but not Connexin-43 inhibition. Conductor cells express significantly less P2X7 than their lower-signaling neighbors and exhibit significantly less migratory behavior after injury. Together, our results show that the postinjury calcium signaling cascade exhibits significantly more ordered and hierarchical behavior than previously thought, that proteins previously shown to be essential for regulating motility are also essential for determining signaling phenotype, and that loss of signal hierarchy integrity is an early indicator of disease state. NEW & NOTEWORTHY Calcium signaling in corneal epithelial cells after injury is highly ordered, with groups of cells engaged in cyclical patterns of event initiation and propagation driven by high-signaling cells. Signaling behavior is determined by P2X7, Pannexin-1, and P2Y2 and influences migratory behavior. Signal hierarchy is observed in healthy ex vivo models after injury and becomes aberrant in diabetes. This represents a paradigm shift, as signaling was thought to be random and determined by factors in the environment.
Collapse
Affiliation(s)
- Kristen L Segars
- Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Nicholas Azzari
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Malia Cole
- STaRS Program, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Landon Kushimi
- Department of Computer Science, Boston University Center for Computing and Data Sciences, Boston, Massachusetts, United States
| | - Srikar Rapaka
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Celeste B Rich
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Vickery Trinkaus-Randall
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Azzari NA, Segars KL, Rapaka S, Kushimi L, Rich CB, Trinkaus-Randall V. Aberrations in Cell Signaling Quantified in Diabetic Murine Globes after Injury. Cells 2023; 13:26. [PMID: 38201230 PMCID: PMC10778404 DOI: 10.3390/cells13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The corneal epithelium is an avascular structure that has a unique wound healing mechanism, which allows for rapid wound closure without compromising vision. This wound healing mechanism is attenuated in diabetic patients, resulting in poor clinical outcomes and recurrent non-healing erosion. We investigated changes in cellular calcium signaling activity during the wound response in murine diabetic tissue using live cell imaging from both ex vivo and in vitro models. The calcium signaling propagation in diabetic cells was significantly decreased and displayed altered patterns compared to non-diabetic controls. Diabetic cells and tissue display distinct expression of the purinergic receptor, P2X7, which mediates the wound healing response. We speculate that alterations in P2X7 expression, interactions with other proteins, and calcium signaling activity significantly impact the wound healing response. This may explain aberrations in the diabetic wound response.
Collapse
Affiliation(s)
- Nicholas A. Azzari
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; (N.A.A.); (C.B.R.)
| | - Kristen L. Segars
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA;
| | - Srikar Rapaka
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA;
| | - Landon Kushimi
- Department of Computer Science, Center for Computing and Data Sciences, Boston University, 665 Commonwealth Ave, Boston, MA 02115, USA;
| | - Celeste B. Rich
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; (N.A.A.); (C.B.R.)
| | - Vickery Trinkaus-Randall
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA; (N.A.A.); (C.B.R.)
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA;
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118, USA
| |
Collapse
|
3
|
Tsai TY, Chang HT, Weng SW, Chu CC, Wang YC, Zhao Z, Mai ELC. Ocular surface reconstruction of Steven Johnson syndrome / toxic epidermal necrolysis affected eye - A case report. Heliyon 2022; 9:e12590. [PMID: 36820177 PMCID: PMC9938410 DOI: 10.1016/j.heliyon.2022.e12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Toxic epidermal necrolysis (TEN), also known as Steven Johnson syndrome (SJS), is a devastating disease. Patients develop blindness and symblepharon despite multiple reconstructive surgeries. We report a case of SJS/TEN with ocular involvement where treatment with hyperbaric oxygen therapy (HBOT) resulted in a significant improvement in the visual acuity after surgery. Case presentation A woman with SJS/TEN with severe ocular complication (SOC) had limbal stem cell deficiency and symblepharon of the superior and inferior fornix. Pannus grew over her cornea, reducing the vision to counting finger. The symblepharon produced shortening of the fornix, causing entropion. The in-turned eyelid caused her eyelashes to rub against the cornea, causing great damage to the ocular surface. Limbal stem cell deficiency led to the loss of normal corneal morphology and invasion of the pannus onto the central visual axis, resulting in poor vision. She experienced ocular inflammation for 3 months before transfer to our hospital for admission. Ophthalmic examination showed bilateral corneal opacity with conjunctivalization, and inferior and superior fornix shortening. Symblepharon-lysis with amniotic membrane transplantation was attempted but the outcome was poor, with recurrence of superior scaring and symblepharon. She finally underwent major reconstructive surgery with allogeneic limbal stem cell transplantation with her sister as the donor, autologous minor salivary gland transplantation, and oral buccal mucosa flap transplant. HBOT was given daily post-surgery for supporting the grafts and suppressing inflammation. After 17 HBOT sessions and 3 months of autoserum drops, her left eye vision increased from the initial counting finger to 0.4 due to the successful growth of the corneal epithelium from the donor corneal limbal cell line. When a scleral contact lens which vaulted over the corneal limbal area was fitted, her vision improved to 0.8 due to redressal of high order aberration and astigmatism from the cornea scar. Conclusion After major reconstruction of the ocular surface with multiple cell type transplants, including limbal stem cells, minor salivary gland acinar cells, and oral mucosa cells, HBOT proved useful in supporting the graft uptake and oxygenation of the donor tissues, enabling fast recovery of the grafts and cell functioning, with eventual return of the working vision of the patient.
Collapse
Key Words
- AMT, amniotic membrane transplantation
- CLAL, conjunctival limbal allograft
- CLAU, conjunctival limbal autograft
- CLET, Cultivated limbal epithelial transplantation
- Case report
- HBOT, Hyperbaric oxygen therapy
- HLA typing, human leucocyte antigen typing
- Hyperbaric oxygen therapy
- LSCD, Limbal stem cell deficiency
- Limbal stem cell deficiency
- Limbal stem cell transplantation
- Minor salivary gland transplant
- Oral buccal mucosa flap transplantation
- SJS, Steven Johnson syndrome
- SOC, severe ocular complication
- Stevens-Johnson syndrome
- TEN, toxic epidermal necrolysis
- Toxic epidermal necrolysis
- lr-CLAL, living-related conjunctival limbal allograft
Collapse
Affiliation(s)
- Tzu-Yun Tsai
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Department of Ophthalmology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hou-Tai Chang
- Center of Hyperbaric Oxygen, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Department of Critical Care Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan
| | - Shao-Wei Weng
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chan-Ching Chu
- Department of Chest Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yi-Chun Wang
- Department of Chest Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China,Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Elsa Lin-Chin Mai
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Department of Optometry, Yuanpei University of Medical Technology, Hsinchu, Taiwan,Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan,Corresponding author.
| |
Collapse
|
4
|
Segars KL, Azzari NA, Gomez S, Machen C, Rich CB, Trinkaus-Randall V. Age Dependent Changes in Corneal Epithelial Cell Signaling. Front Cell Dev Biol 2022; 10:886721. [PMID: 35602595 PMCID: PMC9117764 DOI: 10.3389/fcell.2022.886721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
The cornea is exposed daily to a number of mechanical stresses including shear stress from tear film and blinking. Over time, these stressors can lead to changes in the extracellular matrix that alter corneal stiffness, cell-substrate structures, and the integrity of cell-cell junctions. We hypothesized that changes in tissue stiffness of the cornea with age may alter calcium signaling between cells after injury, and the downstream effects of this signaling on cellular motility and wound healing. Nanoindentation studies revealed that there were significant differences in the stiffness of the corneal epithelium and stroma between corneas of 9- and 27-week mice. These changes corresponded to differences in the timeline of wound healing and in cell signaling. Corneas from 9-week mice were fully healed within 24 h. However, the wounds on corneas from 27-week mice remained incompletely healed. Furthermore, in the 27-week cohort there was no detectable calcium signaling at the wound in either apical or basal corneal epithelial cells. This is in contrast to the young cohort, where there was elevated basal cell activity relative to background levels. Cell culture experiments were performed to assess the roles of P2Y2, P2X7, and pannexin-1 in cellular motility during wound healing. Inhibition of P2Y2, P2X7, or pannexin-1 all significantly reduce wound closure. However, the inhibitors all have different effects on the trajectories of individual migrating cells. Together, these findings suggest that there are several significant differences in the stiffness and signaling that underlie the decreased wound healing efficacy of the cornea in older mice.
Collapse
Affiliation(s)
- Kristen L. Segars
- Department of Pharmacology, School of Medicine, Boston University, Boston, MA, United States
| | - Nicholas A. Azzari
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Stephanie Gomez
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Cody Machen
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Celeste B. Rich
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
- *Correspondence: Vickery Trinkaus-Randall,
| |
Collapse
|
5
|
Lee Y, Kim MT, Rhodes G, Sack K, Son SJ, Rich CB, Kolachalama VB, Gabel CV, Trinkaus-Randall V. Sustained Ca2+ mobilizations: A quantitative approach to predict their importance in cell-cell communication and wound healing. PLoS One 2019; 14:e0213422. [PMID: 31017899 PMCID: PMC6481807 DOI: 10.1371/journal.pone.0213422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 01/12/2023] Open
Abstract
Epithelial wound healing requires the coordination of cells to migrate as a unit over the basement membrane after injury. To understand the process of this coordinated movement, it is critical to study the dynamics of cell-cell communication. We developed a method to characterize the injury-induced sustained Ca2+ mobilizations that travel between cells for periods of time up to several hours. These events of communication are concentrated along the wound edge and are reduced in cells further away from the wound. Our goal was to delineate the role and contribution of these sustained mobilizations and using MATLAB analyses, we determined the probability of cell-cell communication events in both in vitro models and ex vivo organ culture models. We demonstrated that the injury response was complex and represented the activation of a number of receptors. In addition, we found that pannexin channels mediated the cell-cell communication and motility. Furthermore, the sustained Ca2+ mobilizations are associated with changes in cell morphology and motility during wound healing. The results demonstrate that both purinoreceptors and pannexins regulate the sustained Ca2+ mobilization necessary for cell-cell communication in wound healing.
Collapse
Affiliation(s)
- Yoonjoo Lee
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Min Tae Kim
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Garrett Rhodes
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kelsey Sack
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Sung Jun Son
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Celeste B. Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Vijaya B. Kolachalama
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christopher V. Gabel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Vickery Trinkaus-Randall
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Onochie OE, Onyejose AJ, Rich CB, Trinkaus-Randall V. The Role of Hypoxia in Corneal Extracellular Matrix Deposition and Cell Motility. Anat Rec (Hoboken) 2019; 303:1703-1716. [PMID: 30861330 DOI: 10.1002/ar.24110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
The cornea is an excellent model tissue to study how cells adapt to periods of hypoxia as it is naturally exposed to diurnal fluxes in oxygen. It is avascular, transparent, and highly innervated. In certain pathologies, such as diabetes, limbal stem cell deficiency, or trauma, the cornea may be exposed to hypoxia for variable lengths of time. Due to its avascularity, the cornea requires atmospheric oxygen, and a reduction in oxygen availability can impair its physiology and function. We hypothesize that hypoxia alters membrane stiffness and the deposition of matrix proteins, leading to changes in cell migration, focal adhesion formation, and wound repair. Two systems-a 3D corneal organ culture model and polyacrylamide substrates of varying stiffness-were used to examine the response of corneal epithelium to normoxic and hypoxic environments. Exposure to hypoxia alters the deposition of the matrix proteins such as laminin and Type IV collagen. In addition, previous studies had shown a change in fibronectin after injury. Studies performed on matrix-coated acrylamide substrates ranging from 0.2 to 50 kPa revealed stiffness-dependent changes in cell morphology. The localization, number, and length of paxillin pY118- and vinculin pY1065-containing focal adhesions were different in wounded corneas and in human corneal epithelial cells incubated in hypoxic environments. Overall, these results demonstrate that low-oxygenated environments modify the composition of the extracellular matrix, basal lamina stiffness, and focal adhesion dynamics, leading to alterations in the function of the cornea. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Obianamma E Onochie
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Anwuli J Onyejose
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Onochie OE, Zollinger A, Rich CB, Smith M, Trinkaus-Randall V. Epithelial cells exert differential traction stress in response to substrate stiffness. Exp Eye Res 2019; 181:25-37. [PMID: 30653966 DOI: 10.1016/j.exer.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
Abstract
Epithelial wound healing is essential for maintaining the function and clarity of the cornea. Successful repair after injury involves the coordinated movements of cell sheets over the wounded region. While collective migration has been the focus of studies, the effects that environmental changes have on this form of movement are poorly understood. To examine the role of substrate compliancy on multi-layered epithelial sheet migration, we performed traction force and confocal microscopy to determine differences in traction forces and to examine focal adhesions on synthetic and biological substrates. The leading edges of corneal epithelial sheets undergo retraction or contraction prior to migration, and alterations in the sheet's stiffness are affected by the amount of force exerted by cells at the leading edge. On substrates of 30 kPa, cells exhibited greater and more rapid movement than on substrates of 8 kPa, which are similar to that of the corneal basement membrane. Vinculin and its phosphorylated residue Y1065 were prominent along the basal surface of migrating cells, while Y822 was prominent between neighboring cells along the leading edge. Vinculin localization was diffuse on a substrate where the basement membrane was removed. Furthermore, when cells were cultured on fibronectin-coated acrylamide substrates of 8 and 50 kPa and then wounded, there was an injury-induced phosphorylation of Y1065 and substrate dependent changes in the number and size of vinculin containing focal adhesions. These results demonstrate that changes in substrate stiffness affected traction forces and vinculin dynamics, which potentially could contribute to the delayed healing response associated with certain corneal pathologies.
Collapse
Affiliation(s)
- Obianamma E Onochie
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Alicia Zollinger
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Michael Smith
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
9
|
Chen BJ, Lam TC, Liu LQ, To CH. Post-translational modifications and their applications in eye research (Review). Mol Med Rep 2017; 15:3923-3935. [PMID: 28487982 DOI: 10.3892/mmr.2017.6529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
Gene expression is the process by which genetic information is used for the synthesis of a functional gene product, and ultimately regulates cell function. The increase of biological complexity from genome to proteome is vast, and the post-translational modification (PTM) of proteins contribute to this complexity. The study of protein expression and PTMs has attracted attention in the post‑genomic era. Due to the limited capability of conventional biochemical techniques in the past, large‑scale PTM studies were technically challenging. The introduction of effective protein separation methods, specific PTM purification strategies and advanced mass spectrometers has enabled the global profiling of PTMs and the identification of a targeted PTM within the proteome. The present review provides an overview of current proteomic technologies being applied in eye research, with a particular focus on studies of PTMs in ocular tissues and ocular diseases.
Collapse
Affiliation(s)
- Bing-Jie Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| | - Long-Qian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chi-Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| |
Collapse
|
10
|
Heppner DE, Hristova M, Dustin CM, Danyal K, Habibovic A, van der Vliet A. The NADPH Oxidases DUOX1 and NOX2 Play Distinct Roles in Redox Regulation of Epidermal Growth Factor Receptor Signaling. J Biol Chem 2016; 291:23282-23293. [PMID: 27650496 DOI: 10.1074/jbc.m116.749028] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in regulating airway epithelial homeostasis and responses to injury. Activation of EGFR is regulated by redox-dependent processes involving reversible cysteine oxidation by reactive oxygen species (ROS) and involves both ligand-dependent and -independent mechanisms, but the precise source(s) of ROS and the molecular mechanisms that control tyrosine kinase activity are incompletely understood. Here, we demonstrate that stimulation of EGFR activation by ATP in airway epithelial cells is closely associated with dynamic reversible oxidation of cysteine residues via sequential sulfenylation and S-glutathionylation within EGFR and the non-receptor-tyrosine kinase Src. Moreover, the intrinsic kinase activity of recombinant Src or EGFR was in both cases enhanced by H2O2 but not by GSSG, indicating that the intermediate sulfenylation is the activating modification. H2O2-induced increase in EGFR tyrosine kinase activity was not observed with the C797S variant, confirming Cys-797 as the redox-sensitive cysteine residue that regulates kinase activity. Redox-dependent regulation of EGFR activation in airway epithelial cells was found to strongly depend on activation of either the NADPH oxidase DUOX1 or the homolog NOX2, depending on the activation mechanism. Whereas DUOX1 and Src play a primary role in EGFR transactivation by wound-derived signals such as ATP, direct ligand-dependent EGFR activation primarily involves NOX2 with a secondary role for DUOX1 and Src. Collectively, our findings establish that redox-dependent EGFR kinase activation involves a dynamic and reversible cysteine oxidation mechanism and that this activation mechanism variably involves DUOX1 and NOX2.
Collapse
Affiliation(s)
- David E Heppner
- From the Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| | - Milena Hristova
- From the Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| | - Christopher M Dustin
- From the Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| | - Karamatullah Danyal
- From the Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| | - Aida Habibovic
- From the Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| | - Albert van der Vliet
- From the Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
11
|
Minns MS, Trinkaus-Randall V. Purinergic Signaling in Corneal Wound Healing: A Tale of 2 Receptors. J Ocul Pharmacol Ther 2016; 32:498-503. [PMID: 27643999 DOI: 10.1089/jop.2016.0009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nucleotide release and purinergic signaling make up the earliest response to corneal injury and are vital for proper wound healing. In this study, we review the importance of nucleotide release in the injury response and focus on the contribution of 2 receptors that mediate purinergic signaling, P2Y2 and P2X7. These receptors mediate the early response to injury and activate downstream signaling to promote cytoskeletal rearrangement and cell migration. The contribution of corneal nerves to the purinergic injury response is also discussed. Finally, we look at implications of altered purinergic signaling in diabetic wound healing and important targets for future research.
Collapse
Affiliation(s)
- Martin S Minns
- 1 Department of Biochemistry, Boston University School of Medicine , Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- 1 Department of Biochemistry, Boston University School of Medicine , Boston, Massachusetts.,2 Department of Ophthalmology, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
12
|
Minns MS, Teicher G, Rich CB, Trinkaus-Randall V. Purinoreceptor P2X7 Regulation of Ca(2+) Mobilization and Cytoskeletal Rearrangement Is Required for Corneal Reepithelialization after Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:285-96. [PMID: 26683661 DOI: 10.1016/j.ajpath.2015.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 01/17/2023]
Abstract
The process of wound healing involves a complex network of signaling pathways working to promote rapid cell migration and wound closure. Activation of purinergic receptors by secreted nucleotides plays a major role in calcium mobilization and the subsequent calcium-dependent signaling that is essential for proper healing. The role of the purinergic receptor P2X7 in wound healing is still relatively unknown. We demonstrate that P2X7 expression increases at the leading edge of corneal epithelium after injury in an organ culture model, and that this change occurs despite an overall decrease in P2X7 expression throughout the epithelium. Inhibition of P2X7 prevents this change in localization after injury and impairs wound healing. In cell culture, P2X7 inhibition attenuates the amplitude and duration of injury-induced calcium mobilization in cells at the leading edge. Immunofluorescence analysis of scratch-wounded cells reveals that P2X7 inhibition results in an overall decrease in the number of focal adhesions along with a concentration of focal adhesions at the wound margin. Live cell imaging of green fluorescent protein-labeled actin and talin shows that P2X7 inhibition alters actin cytoskeletal rearrangements and focal adhesion dynamics after injury. Together, these data demonstrate that P2X7 plays a critical role in mediating calcium signaling and coordinating cytoskeletal rearrangement at the leading edge, both of which processes are early signaling events necessary for proper epithelial wound healing.
Collapse
Affiliation(s)
- Martin S Minns
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Gregory Teicher
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
13
|
Martínez-Ramírez AS, Garay E, García-Carrancá A, Vázquez-Cuevas FG. The P2RY2 Receptor Induces Carcinoma Cell Migration and EMT Through Cross-Talk With Epidermal Growth Factor Receptor. J Cell Biochem 2015; 117:1016-26. [PMID: 26443721 DOI: 10.1002/jcb.25390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/05/2015] [Indexed: 11/11/2022]
Abstract
Extracellular nucleotides are signaling elements present in the tumor microenvironment; however, their role in tumor growth is not completely understood. In the present study, we asked whether nucleotides regulate cell migration in ovarian carcinoma-derived cells. We observed that 100 μM UTP induced migration in SKOV-3 cells (1.57 ± 0.08 fold over basal), and RT-PCR showed expression of transcripts for the P2RY2 and P2RY4 receptors. Knockdown of P2RY2 expression in SKOV-3 cells (P2RY2-KD) abolished the UTP-induced migration. The mechanism activated by UTP to induce migration involves transactivation of the epidermal growth factor receptor (EGFR) since we observed that the EGFR kinase inhibitor AG1478 and the PI3K inhibitor Wortmannin inhibit this response (to 0.76 ± 0.23 and 0.46 ± 0.14 relative to the control, respectively). In agreement with these observations, UTP was able to modify the phosphorylation state of the EGFR; likewise, the induction of ERK1/2 phosphorylation promoted by UTP was abolished by a 30-60 min treatment with AG1478. Our data also suggested that the enhanced cell migration involves the epithelium to mesenchymal transition (EMT) process, since a 12 h stimulation of SKOV-3 cells with 100 μM UTP showed an increase in vimentin and SNAIL protein levels (459.8 ± 132.4% over basal for SNAIL). Interestingly, treatment with apyrase (10 U/mL) reduces the migration of control cells and induces a considerable enrichment of E-cadherin in the cell-cell contacts, favoring an epithelial phenotype and strongly suggesting that the nucleotides released by tumor cells and acting through the P2RY2 receptor are potential regulators of invasiveness.
Collapse
Affiliation(s)
- A S Martínez-Ramírez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, Mexico
| | - E Garay
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, Mexico
| | - A García-Carrancá
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando #22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico.,División de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, México. Av. San Fernando #22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP 76230, Querétaro, Mexico
| |
Collapse
|
14
|
Wilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen EM, Corsello SM, Capelletti M, Calles A, Butaney M, Sharifnia T, Gabriel SB, Mesirov JP, Hahn WC, Engelman JA, Meyerson M, Root DE, Jänne PA, Garraway LA. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell 2015; 27:397-408. [PMID: 25759024 PMCID: PMC4398996 DOI: 10.1016/j.ccell.2015.02.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/15/2014] [Accepted: 02/10/2015] [Indexed: 01/17/2023]
Abstract
We conducted a large-scale functional genetic study to characterize mechanisms of resistance to ALK inhibition in ALK-dependent lung cancer cells. We identify members of known resistance pathways and additional putative resistance drivers. Among the latter were members of the P2Y purinergic receptor family of G-protein-coupled receptors (P2Y1, P2Y2, and P2Y6). P2Y receptors mediated resistance in part through a protein-kinase-C (PKC)-dependent mechanism. Moreover, PKC activation alone was sufficient to confer resistance to ALK inhibitors, whereas combined ALK and PKC inhibition restored sensitivity. We observed enrichment of gene signatures associated with several resistance drivers (including P2Y receptors) in crizotinib-resistant ALK-rearranged lung tumors compared to treatment-naive controls, supporting a role for these identified mechanisms in clinical ALK inhibitor resistance.
Collapse
Affiliation(s)
- Frederick H Wilson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Pablo Tamayo
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven M Corsello
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marzia Capelletti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Antonio Calles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mohit Butaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tanaz Sharifnia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacey B Gabriel
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill P Mesirov
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Root
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Sanderson J, Dartt DA, Trinkaus-Randall V, Pintor J, Civan MM, Delamere NA, Fletcher EL, Salt TE, Grosche A, Mitchell CH. Purines in the eye: recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exp Eye Res 2014; 127:270-9. [PMID: 25151301 DOI: 10.1016/j.exer.2014.08.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
This review highlights recent findings that describ how purines modulate the physiological and pathophysiological responses of ocular tissues. For example, in lacrimal glands the cross-talk between P2X7 receptors and both M3 muscarinic receptors and α1D-adrenergic receptors can influence tear secretion. In the cornea, purines lead to post-translational modification of EGFR and structural proteins that participate in wound repair in the epithelium and influence the expression of matrix proteins in the stroma. Purines act at receptors on both the trabecular meshwork and ciliary epithelium to modulate intraocular pressure (IOP); ATP-release pathways of inflow and outflow cells differ, possibly permitting differential modulation of adenosine delivery. Modulators of trabecular meshwork cell ATP release include cell volume, stretch, extracellular Ca(2+) concentration, oxidation state, actin remodeling and possibly endogenous cardiotonic steroids. In the lens, osmotic stress leads to ATP release following TRPV4 activation upstream of hemichannel opening. In the anterior eye, diadenosine polyphosphates such as Ap4A act at P2 receptors to modulate the rate and composition of tear secretion, impact corneal wound healing and lower IOP. The Gq11-coupled P2Y1-receptor contributes to volume control in Müller cells and thus the retina. P2X receptors are expressed in neurons in the inner and outer retina and contribute to visual processing as well as the demise of retinal ganglion cells. In RPE cells, the balance between extracellular ATP and adenosine may modulate lysosomal pH and the rate of lipofuscin formation. In optic nerve head astrocytes, mechanosensitive ATP release via pannexin hemichannels, coupled with stretch-dependent upregulation of pannexins, provides a mechanism for ATP signaling in chronic glaucoma. With so many receptors linked to divergent functions throughout the eye, ensuring the transmitters remain local and stimulation is restricted to the intended target may be a key issue in understanding how physiological signaling becomes pathological in ocular disease.
Collapse
Affiliation(s)
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Vickery Trinkaus-Randall
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Jesus Pintor
- Department of Biochemistry, Faculty of Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Mortimer M Civan
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas A Delamere
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, USA
| | - Erica L Fletcher
- Department of Anatomy and of Neuroscience, University of Melbourne, Victoria, Australia
| | - Thomas E Salt
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - Antje Grosche
- Institute of Human Genetics, Franz-Josef-Strauß-Allee, Regensburg, Germany
| | - Claire H Mitchell
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
El-Sayed FG, Camden JM, Woods LT, Khalafalla MG, Petris MJ, Erb L, Weisman GA. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells. Am J Physiol Cell Physiol 2014; 307:C83-96. [PMID: 24760984 DOI: 10.1152/ajpcell.00380.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42.
Collapse
Affiliation(s)
- Farid G El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Mahmoud G Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri; and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
17
|
Ceresa BP, Peterson JL. Cell and molecular biology of epidermal growth factor receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:145-78. [PMID: 25376492 DOI: 10.1016/b978-0-12-800177-6.00005-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.
Collapse
Affiliation(s)
- Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Joanne L Peterson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|