1
|
House M, Khadayat K, Trybala TN, Nambiar N, Jones E, Abel SM, Baccile J, Joshi AS. Phosphatidic acid drives spatiotemporal distribution of Pex30 at ER-LD contact sites. J Cell Biol 2025; 224:e202405162. [PMID: 40407416 PMCID: PMC12101077 DOI: 10.1083/jcb.202405162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/18/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
Lipid droplets (LDs) are ubiquitous neutral lipid storage organelles that form at discrete subdomains in the ER bilayer. The assembly of these ER subdomains and the mechanism by which proteins are recruited to them is poorly understood. Here, we investigate the spatiotemporal distribution of Pex30 at the ER-LD membrane contact sites (MCSs). Pex30, an ER membrane-shaping protein, has a reticulon homology domain, a dysferlin (DysF) domain, and a Duf4196 domain. Deletion of SEI1, which codes for seipin, a highly conserved protein required for LD biogenesis, results in accumulation of Pex30 and phosphatidic acid (PA) at ER-LD contact sites. We show that PA recruits Pex30 at ER subdomains by binding to the DysF domain. The distribution of Pex30 as well as PA is also affected by phosphatidylcholine (PC) levels. We propose that PA regulates the spatiotemporal distribution of Pex30 at ER subdomains that plays a critical role in driving the formation of LDs in the ER membrane.
Collapse
Affiliation(s)
- Morgan House
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Karan Khadayat
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Thomas N. Trybala
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Nikhil Nambiar
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth Jones
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Joshua Baccile
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Amit S. Joshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
2
|
Ferreira JV, Ahmed Y, Heunis T, Jain A, Johnson E, Räschle M, Ernst R, Vanni S, Carvalho P. Pex30-dependent membrane contact sites maintain ER lipid homeostasis. J Cell Biol 2025; 224:e202409039. [PMID: 40407417 PMCID: PMC12101078 DOI: 10.1083/jcb.202409039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/28/2025] [Accepted: 03/12/2025] [Indexed: 05/26/2025] Open
Abstract
In eukaryotic cells, communication between organelles and the coordination of their activities depend on membrane contact sites (MCS). How MCS are regulated under the dynamic cellular environment remains poorly understood. Here, we investigate how Pex30, a membrane protein localized to the endoplasmic reticulum (ER), regulates multiple MCS in budding yeast. We show that Pex30 is critical for the integrity of ER MCS with peroxisomes and vacuoles. This requires the dysferlin (DysF) domain on the Pex30 cytosolic tail. This domain binds to phosphatidic acid (PA) both in vitro and in silico, and it is important for normal PA metabolism in vivo. The DysF domain is evolutionarily conserved and may play a general role in PA homeostasis across eukaryotes. We further show that the ER-vacuole MCS requires a Pex30 C-terminal domain of unknown function and that its activity is controlled by phosphorylation in response to metabolic cues. These findings provide new insights into the dynamic nature of MCS and their coordination with cellular metabolism.
Collapse
Affiliation(s)
| | - Yara Ahmed
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
- Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Markus Räschle
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
- Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Furrer R, Dilbaz S, Steurer SA, Santos G, Karrer-Cardel B, Ritz D, Sinnreich M, Handschin C. Metabolic dysregulation contributes to the development of dysferlinopathy. Life Sci Alliance 2025; 8:e202402991. [PMID: 40021220 PMCID: PMC11871293 DOI: 10.26508/lsa.202402991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Dysferlin is a transmembrane protein that plays a prominent role in membrane repair of damaged muscle fibers. Accordingly, mutations in the dysferlin gene cause progressive muscular dystrophies, collectively referred to as dysferlinopathies for which no effective treatment exists. Unexpectedly, experimental approaches that successfully restore membrane repair fail to prevent a dystrophic phenotype, suggesting that additional, hitherto unknown dysferlin-dependent functions contribute to the development of the pathology. Our experiments revealed an altered metabolic phenotype in dysferlin-deficient muscles, characterized by (1) mitochondrial abnormalities and elevated death signaling and (2) increased glucose uptake, reduced glycolytic protein levels, and pronounced glycogen accumulation. Strikingly, elevating mitochondrial volume density and muscle glycogen accelerates disease progression; whereas, improvement of mitochondrial function and recruitment of muscle glycogen with exercise ameliorated functional parameters in a mouse model of dysferlinopathy. Collectively, our results not only shed light on a metabolic function of dysferlin but also imply new therapeutic avenues aimed at promoting mitochondrial function and normalizing muscle glycogen to ameliorate dysferlinopathies, complementing efforts that target membrane repair.
Collapse
Affiliation(s)
| | - Sedat Dilbaz
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Gesa Santos
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Sinnreich
- Department of Biomedicine and Neurology, University and University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
4
|
Meizoso-Huesca A, Lamboley CR, Krycer JR, Hodson MP, Hudson JE, Launikonis BS. Muscle-specific Ryanodine receptor 1 properties underlie limb-girdle muscular dystrophy 2B/R2 progression. Nat Commun 2025; 16:3056. [PMID: 40155594 PMCID: PMC11953303 DOI: 10.1038/s41467-025-58393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Ryanodine receptor 1 Ca2+ leak is a signal in skeletal muscle, but chronic leak can underlie pathology. Here we show that in healthy male mouse, limb-girdle muscle presents higher sympathetic input, elevated ryanodine receptor 1 basal phosphorylation, Ca2+ leak and mitochondrial Ca2+ content compared to distal leg muscles. These regional differences are consistent with heat generation in resting muscle to maintain core temperature. The dysferlin-null mouse develops severe pathology in the limb-girdle but not leg muscles. Absence of dysferlin disrupts dihydropyridine receptors' inhibitory control over ryanodine receptor 1 leak, synergistically increasing leak through the already phosphorylated channel of limb-girdle muscle. This alters Ca2+ handling and distribution leading to reactive oxygen species production prior to disease onset. With age, oxidation of Ca2+ -handling proteins in dysferlin-null limb-girdle muscle alters basal Ca2+ movements. Our results show that muscle-specific pathology in dysferlin-null mice is linked to increased ryanodine receptor 1 Ca2+ leak.
Collapse
Affiliation(s)
- Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Cedric R Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - James R Krycer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark P Hodson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Bruge C, Bourg N, Pellier E, Tournois J, Polentes J, Benabides M, Grossi N, Bigot A, Brureau A, Richard I, Nissan X. High-throughput screening identifies bazedoxifene as a potential therapeutic for dysferlin-deficient limb girdle muscular dystrophy. Br J Pharmacol 2025. [PMID: 40108832 DOI: 10.1111/bph.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Limb-girdle muscular dystrophy R2 (LGMD R2) is a rare genetic disorder characterised by progressive weakness and wasting of proximal muscles. LGMD R2 is caused by the loss of function of dysferlin, a transmembrane protein crucial for plasma membrane repair in skeletal muscles. This study aimed to identify drugs that could improve the localisation and restore the function of an aggregated mutant form of dysferlin (DYSFL1341P). EXPERIMENTAL APPROACH We developed an in vitro high-throughput assay to monitor the expression and reallocation of aggregated mutant dysferlin (DYSFL1341P) in immortalised myoblasts. After screening 2239 clinically approved drugs and bioactive compounds, the ability of the more promising candidates to improve cell survival following hypo-osmotic shock was assessed. Their protective effects were evaluated on immortalised myoblasts carrying other dysferlin mutations and on dysferlin-deficient muscle fibres from Bla/J mice. KEY RESULTS We identified two compounds, saracatinib and bazedoxifene, that increase dysferlin content in cells carrying the DYSFL1341P mutation. Both drugs improved cell survival and plasma membrane resistance following osmotic shock. Whereas saracatinib acts specifically on misfolded L1341P dysferlin, bazedoxifene shows an additional protective effect on dysferlin KO immortalised myoblasts and mice muscle fibres. Further analysis revealed that bazedoxifene induces autophagy flux, which may enhance the survival of LGMD R2 myofibres. CONCLUSION AND IMPLICATIONS Our drug screening identified saracatinib and bazedoxifene as potential treatments for LGMD R2, especially for patients with the L1341P mutation. The widespread protective effect of bazedoxifene reveals a new avenue toward genotype-independent treatment of LGMD R2 patients.
Collapse
Affiliation(s)
- Celine Bruge
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Nathalie Bourg
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Emilie Pellier
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Johana Tournois
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Jerome Polentes
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Manon Benabides
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Noella Grossi
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Anthony Brureau
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Isabelle Richard
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| | - Xavier Nissan
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- CECS, IStem, Corbeil-Essonnes, France
| |
Collapse
|
6
|
Escobar H, Di Francescantonio S, Smirnova J, Graf R, Müthel S, Marg A, Zhogov A, Krishna S, Metzler E, Petkova M, Daumke O, Kühn R, Spuler S. Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy. Nat Commun 2025; 16:120. [PMID: 39747848 PMCID: PMC11695731 DOI: 10.1038/s41467-024-55086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing, rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation, hEx44mut, recapitulates the patients' phenotype and an identical re-framing outcome in primary muscle stem cells. Finally, gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility, not only in treating dysferlin deficiency syndromes, but also perhaps other forms of muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Silvia Di Francescantonio
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia Smirnova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Robin Graf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefanie Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Marg
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexej Zhogov
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Supriya Krishna
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eric Metzler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Spuler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
8
|
Vásquez W, Toro CA, Cardozo CP, Cea LA, Sáez JC. Pathophysiological role of connexin and pannexin hemichannels in neuromuscular disorders. J Physiol 2024. [PMID: 39173050 DOI: 10.1113/jp286173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
A growing body of research has provided evidence that de novo expression of connexin hemichannels and upregulation of pannexin hemichannels (Cx HCs and Panx HCs, respectively) in the cytoplasmic membrane of skeletal muscle (sarcolemma) are critical steps in the pathogenesis of muscle dysfunction of many genetic and acquired muscle diseases. This review provides an overview of the current understanding of the molecular mechanisms regulating the expression of Cx and Panx HCs in skeletal muscle, as well as their roles in both muscle physiology and pathologies. Additionally, it addresses existing gaps in knowledge and outlines future challenges in the field.
Collapse
Affiliation(s)
- Walter Vásquez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos A Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis A Cea
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario De Neurociencia De Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
9
|
Hnilicova P, Grendar M, Turcanova Koprusakova M, Trancikova Kralova A, Harsanyiova J, Krssak M, Just I, Misovicova N, Hikkelova M, Grossmann J, Spalek P, Meciarova I, Kurca E, Zilka N, Zelenak K, Bogner W, Kolisek M. Brain of miyoshi myopathy/dysferlinopathy patients presents with structural and metabolic anomalies. Sci Rep 2024; 14:19267. [PMID: 39164335 PMCID: PMC11336102 DOI: 10.1038/s41598-024-69966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.
Collapse
Affiliation(s)
- Petra Hnilicova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Marian Grendar
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Monika Turcanova Koprusakova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Alzbeta Trancikova Kralova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Jana Harsanyiova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Martin Krssak
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | - Jan Grossmann
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Peter Spalek
- Center for Neuromuscular Disease, Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, Pazitkova 4, 83303, Bratislava, Slovakia
| | - Iveta Meciarova
- Department of Pathology, Unilabs Slovensko Patologia s.r.o., Ruzinovska 6, 82606, Bratislava, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 5779/9, 84510, Bratislava, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin Kolisek
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia.
| |
Collapse
|
10
|
Lloyd EM, Crew RC, Haynes VR, White RB, Mark PJ, Jackaman C, Papadimitriou JM, Pinniger GJ, Murphy RM, Watt MJ, Grounds MD. Pilot investigations into the mechanistic basis for adverse effects of glucocorticoids in dysferlinopathy. Skelet Muscle 2024; 14:19. [PMID: 39123261 PMCID: PMC11312411 DOI: 10.1186/s13395-024-00350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by gene mutations resulting in deficiency of the membrane-associated protein dysferlin. They manifest post-growth and are characterised by muscle wasting (primarily in the limb and limb-gridle muscles), inflammation, and replacement of myofibres with adipose tissue. The precise pathomechanism for dysferlinopathy is currently unclear; as such there are no treatments currently available. Glucocorticoids (GCs) are widely used to reduce inflammation and treat muscular dystrophies, but when administered to patients with dysferlinopathy, they have unexpected adverse effects, with accelerated loss of muscle strength. METHODS To investigate the mechanistic basis for the adverse effects of GCs in dysferlinopathy, the potent GC dexamethasone (Dex) was administered for 4-5 weeks (0.5-0.75 µg/mL in drinking water) to dysferlin-deficient BLA/J and normal wild-type (WT) male mice, sampled at 5 (Study 1) or 10 months (Study 2) of age. A wide range of analyses were conducted. Metabolism- and immune-related gene expression was assessed in psoas muscles at both ages and in quadriceps at 10 months of age. For the 10-month-old mice, quadriceps and psoas muscle histology was assessed. Additionally, we investigated the impact of Dex on the predominantly slow and fast-twitch soleus and extensor digitorum longus (EDL) muscles (respectively) in terms of contractile function, myofibre-type composition, and levels of proteins related to contractile function and metabolism, plus glycogen. RESULTS At both ages, many complement-related genes were highly expressed in BLA/J muscles, and WT mice were generally more responsive to Dex than BLA/J. The effects of Dex on BLA/J mice included (i) increased expression of inflammasome-related genes in muscles (at 5 months) and (ii) exacerbated histopathology of quadriceps and psoas muscles at 10 months. A novel observation was pronounced staining for glycogen in many myofibres of the damaged quadriceps muscles, with large pale vacuolated myofibres, suggesting possible myofibre death by oncosis. CONCLUSION These pilot studies provide a new focus for further investigation into the adverse effects of GCs on dysferlinopathic muscles.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Rachael C Crew
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Vanessa R Haynes
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Robert B White
- MD Education Unit, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Peter J Mark
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - John M Papadimitriou
- Department of Pathology and Laboratory Medicine, UWA Medical School, The University of Western Australia, Perth, WA, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
11
|
Khodabukus A, Prabhu NK, Roberts T, Buldo M, Detwiler A, Fralish ZD, Kondash ME, Truskey GA, Koves TR, Bursac N. Bioengineered Model of Human LGMD2B Skeletal Muscle Reveals Roles of Intracellular Calcium Overload in Contractile and Metabolic Dysfunction in Dysferlinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400188. [PMID: 38887849 PMCID: PMC11336985 DOI: 10.1002/advs.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Indexed: 06/20/2024]
Abstract
Dysferlin is a multi-functional protein that regulates membrane resealing, calcium homeostasis, and lipid metabolism in skeletal muscle. Genetic loss of dysferlin results in limb girdle muscular dystrophy 2B/2R (LGMD2B/2R) and other dysferlinopathies - rare untreatable muscle diseases that lead to permanent loss of ambulation in humans. The mild disease severity in dysferlin-deficient mice and diverse genotype-phenotype relationships in LGMD2B patients have prompted the development of new in vitro models for personalized studies of dysferlinopathy. Here the first 3-D tissue-engineered hiPSC-derived skeletal muscle ("myobundle") model of LGMD2B is described that exhibits compromised contractile function, calcium-handling, and membrane repair, and transcriptomic changes indicative of impaired oxidative metabolism and mitochondrial dysfunction. In response to the fatty acid (FA) challenge, LGMD2B myobundles display mitochondrial deficits and intracellular lipid droplet (LD) accumulation. Treatment with the ryanodine receptor (RyR) inhibitor dantrolene or the dissociative glucocorticoid vamorolone restores LGMD2B contractility, improves membrane repair, and reduces LD accumulation. Lastly, it is demonstrated that chemically induced chronic RyR leak in healthy myobundles phenocopies LGMD2B contractile and metabolic deficit, but not the loss of membrane repair capacity. Together, these results implicate intramyocellular Ca2+ leak as a critical driver of dysferlinopathic phenotype and validate the myobundle system as a platform to study LGMD2B pathogenesis.
Collapse
Affiliation(s)
| | - Neel K. Prabhu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Taylor Roberts
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Meghan Buldo
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Amber Detwiler
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Megan E. Kondash
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Timothy R. Koves
- Duke Molecular Physiology InstituteDuke UniversityDurhamNC27708USA
| | - Nenad Bursac
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
12
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
13
|
Bardakov SN, Titova AA, Nikitin SS, Nikitins V, Sokolova MO, Tsargush VA, Yuhno EA, Vetrovoj OV, Carlier PG, Sofronova YV, Isaev АА, Deev RV. Miyoshi myopathy associated with spine rigidity and multiple contractures: a case report. BMC Musculoskelet Disord 2024; 25:146. [PMID: 38365661 PMCID: PMC10870593 DOI: 10.1186/s12891-024-07270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Dysferlinopathy is a phenotypically heterogeneous group of hereditary diseases caused by mutations in the DYSF gene. Early contractures are considered rare, and rigid spine syndrome in dysferlinopathy has been previously reported only once. CASE PRESENTATION We describe a 23-year-old patient with Miyoshi myopathy with a rigid spine and multiple contractures, a rare phenotypic variant. The disease first manifested when the patient was 13 years old, with fatigue of the gastrocnemius muscles and the development of pronounced contractures of the Achilles tendons, flexors of the fingers, and extensors of the toes, followed by the involvement of large joints and the spine. Magnetic resonance imaging revealed signs of connective tissue and fatty replacement of the posterior muscles of the thighs and lower legs. Edema was noted in the anterior and medial muscle groups of the thighs, lower legs, and the multifidus muscle of the back. Whole genome sequencing revealed previously described mutations in the DYSF gene in exon 39 (c.4282 C > T) and intron 51 (c.5785-824 C > T). An immunohistochemical analysis and Western blot showed the complete absence of dysferlin protein expression in the muscle fibers. CONCLUSIONS This case expands the range of clinical and phenotypic correlations of dysferlinopathy and complements the diagnostic search for spine rigidity.
Collapse
Affiliation(s)
- Sergey N Bardakov
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia.
| | - Angelina A Titova
- Kazan (Volga Region) Federal University, 18 Kremlyevskaya str., Kazan, 420008, Russia
| | - Sergey S Nikitin
- Research Centre for Medical Genetics, 1 Moskvorechye str., Moscow, 115522, Russia
| | - Valentin Nikitins
- North-Western State Medical University named after I.I. Mechnikov, 47 Piskarevskij prospect, St. Petersburg, 191015, Russia
| | - Margarita O Sokolova
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia
| | - Vadim A Tsargush
- Department of Neurology, S.M. Kirov Military Medical Academy, 6 Lebedeva str., St. Petersburg, 194044, Russia
| | - Elena A Yuhno
- FSBI All-Russian Center for Emergency and Radiation Medicine named after A.M. Nikiforov EMERCOM of Russia, 4/2 Lebedev str., St. Petersburg, 194044, Russia
| | - Oleg V Vetrovoj
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb, St. Petersburg, 199034, Russia
| | - Pierre G Carlier
- Neuromuscular Disease Reference Center, University of Liege, and Department of Neurology, St Luc University Hospital, Avenue Hippocrate 10, Brussels, 1200, Belgium
| | | | - Аrtur А Isaev
- Artgen Biotech PJSC, 3 Gubkina str., Moscow, 119333, Russia
| | - Roman V Deev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy str., Moscow, 117418, Russia
- Artgen Biotech PJSC, 3 Gubkina str., Moscow, 119333, Russia
| |
Collapse
|
14
|
Rawls A, Diviak BK, Smith CI, Severson GW, Acosta SA, Wilson-Rawls J. Pharmacotherapeutic Approaches to Treatment of Muscular Dystrophies. Biomolecules 2023; 13:1536. [PMID: 37892218 PMCID: PMC10605463 DOI: 10.3390/biom13101536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders that are subdivided based on the region of the body impacted by muscle weakness as well as the functional activity of the underlying genetic mutations. A common feature of the pathophysiology of muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however, long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus, it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis to reduce muscle damage and promote repair. Here, we examine the pathophysiology, genetic background, and emerging therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| | - Bridget K. Diviak
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Cameron I. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Sofia A. Acosta
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| |
Collapse
|
15
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Ballouhey O, Chapoton M, Alary B, Courrier S, Da Silva N, Krahn M, Lévy N, Weisleder N, Bartoli M. A Dysferlin Exon 32 Nonsense Mutant Mouse Model Shows Pathological Signs of Dysferlinopathy. Biomedicines 2023; 11:biomedicines11051438. [PMID: 37239109 DOI: 10.3390/biomedicines11051438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Dysferlinopathies are a group of autosomal recessive muscular dystrophies caused by pathogenic variants in the DYSF gene. While several animal models of dysferlinopathy have been developed, most of them involve major disruptions of the Dysf gene locus that are not optimal for studying human dysferlinopathy, which is often caused by single nucleotide substitutions. In this study, the authors describe a new murine model of dysferlinopathy that carries a nonsense mutation in Dysf exon 32, which has been identified in several patients with dysferlinopathy. This mouse model, called Dysf p.Y1159X/p.Y1159X, displays several molecular, histological, and functional defects observed in dysferlinopathy patients and other published mouse models. This mutant mouse model is expected to be useful for testing various therapeutic approaches such as termination codon readthrough, pharmacological approaches, and exon skipping. Therefore, the data presented in this study strongly support the use of this animal model for the development of preclinical strategies for the treatment of dysferlinopathies.
Collapse
Affiliation(s)
- Océane Ballouhey
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | - Marie Chapoton
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | - Benedicte Alary
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | | | - Nathalie Da Silva
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| | - Martin Krahn
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
- Département de Génétique Médicale et de Biologie Cellulaire, AP-HM, Hôpital d'Enfants de la Timone, 13005 Marseille, France
| | - Nicolas Lévy
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
- Département de Génétique Médicale et de Biologie Cellulaire, AP-HM, Hôpital d'Enfants de la Timone, 13005 Marseille, France
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Marc Bartoli
- Aix Marseille University, INSERM, MMG, U1251, 13005 Marseille, France
| |
Collapse
|
17
|
Wang SJ, Liu BR, Zhang F, Li YP, Su XR, Yang CT, Cong B, Zhang ZH. Abnormal fatty acid metabolism and ceramide expression may discriminate myocardial infarction from strangulation death: A pilot study. Tissue Cell 2023; 80:101984. [PMID: 36434828 DOI: 10.1016/j.tice.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Determining myocardial infarction (MI) and mechanical asphyxia (MA) was one of the most challenging tasks in forensic practice. The present study aimed to investigate the potential of fatty acid (FAs) metabolism, and lipid alterations in determining MI and MA. MA and MI mouse models were constructed, and metabolic profiles were obtained by LC-MS-based untargeted metabolomics. The metabolic alterations were explored using the PCA, OPLS-DA, the Wilcoxon test, and fold change analysis. The contents of lipid droplets (LDs) were detected by the transmission scanning electron microscope and Oil red O staining. The immunohistochemical assay was performed to detect CD36 and dysferlin. The ceramide was assessed by LC-MS. PCA showed considerable differences in the metabolite profiles, and the well-fitting OPLS-DA model was developed to screen differential metabolites. Thereinto, 9 metabolites in the MA were reduced, while metabolites were up- and down-regulated in MI. The increased CD36 suggested that MI and MA could enhance the intake of FAs and disturb energy metabolism. The increased LDs, decreased dysferlin, and increased ceramide (C18:0, C22:0, and C24:0) were observed in MI groups, confirming the lipid deposition. The present study indicated significant differences in myocardial FAs metabolism and lipid alterations between MI and MA, suggesting that FAs metabolism and related proteins, certain ceramide may harbor the potential as biomarkers for discrimination of MI and MA.
Collapse
Affiliation(s)
- Song-Jun Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Bing-Rui Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Fu Zhang
- Forensic Pathology Lab, Guangdong Public Security Department, China.
| | - Ya-Ping Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Xiao-Rui Su
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Chen-Teng Yang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Zhi-Hua Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China; HeBei Chest Hospital, China.
| |
Collapse
|
18
|
Yasa J, Reed CE, Bournazos AM, Evesson FJ, Pang I, Graham ME, Wark JR, Nijagal B, Kwan KH, Kwiatkowski T, Jung R, Weisleder N, Cooper ST, Lemckert FA. Minimal expression of dysferlin prevents development of dysferlinopathy in dysferlin exon 40a knockout mice. Acta Neuropathol Commun 2023; 11:15. [PMID: 36653852 PMCID: PMC9847081 DOI: 10.1186/s40478-022-01473-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.
Collapse
Affiliation(s)
- Joe Yasa
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia
| | - Claudia E. Reed
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Adam M. Bournazos
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Frances J. Evesson
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Ignatius Pang
- grid.414235.50000 0004 0619 2154Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Mark E. Graham
- grid.414235.50000 0004 0619 2154Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Jesse R. Wark
- grid.1013.30000 0004 1936 834XOperations, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW Australia
| | - Brunda Nijagal
- grid.1008.90000 0001 2179 088XMetabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Kim H. Kwan
- grid.1008.90000 0001 2179 088XMetabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Thomas Kwiatkowski
- grid.268132.c0000 0001 0701 2416West Chester University, West Chester, PA 19383 USA
| | - Rachel Jung
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210-1252 USA
| | - Noah Weisleder
- grid.412332.50000 0001 1545 0811Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210-1252 USA
| | - Sandra T. Cooper
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| | - Frances A. Lemckert
- grid.413973.b0000 0000 9690 854XKids Neuroscience Centre, The Children’s Hospital at Westmead, Cnr Hawkesbury Road, Hainsworth Street, Westmead, Sydney, NSW 2145 Australia ,grid.414235.50000 0004 0619 2154Functional Neuromics, Children’s Medical Research Institute, Westmead, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XDiscipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
19
|
Grounds MD, Lloyd EM. Considering the Promise of Vamorolone for Treating Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:1013-1030. [PMID: 37927274 PMCID: PMC10657680 DOI: 10.3233/jnd-230161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
This commentary provides an independent consideration of data related to the drug vamorolone (VBP15) as an alternative steroid proposed for treatment of Duchenne muscular dystrophy (DMD). Glucocorticoids such as prednisone and deflazacort have powerful anti-inflammatory benefits and are the standard of care for DMD, but their long-term use can result in severe adverse side effects; thus, vamorolone was designed as a unique dissociative steroidal anti-inflammatory drug, to retain efficacy and minimise these adverse effects. Extensive clinical trials (ongoing) have investigated the use of vamorolone for DMD, with two trials also for limb-girdle muscular dystrophies including dysferlinopathy (current), plus a variety of pre-clinical trials published. Vamorolone looks very promising, with similar efficacy and some reduced adverse effects (e.g., related to height) compared with other glucocorticoids, specifically prednisone/prednisolone, although it has not yet been directly compared with deflazacort. Of particular interest to clarify is the optimal clinical dose and other aspects of vamorolone that are proposed to provide additional benefits for membranes of dystrophic muscle: to stabilise and protect the sarcolemma from damage and enhance repair. The use of vamorolone (and other glucocorticoids) needs to be evaluated in terms of overall long-term efficacy and cost, and also in comparison with many candidate non-steroidal drugs with anti-inflammatory and other benefits for DMD.
Collapse
Affiliation(s)
- Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Lloyd EM, Pinniger GJ, Grounds MD, Murphy RM. Dysferlin Deficiency Results in Myofiber-Type Specific Differences in Abundances of Calcium-Handling and Glycogen Metabolism Proteins. Int J Mol Sci 2022; 24:ijms24010076. [PMID: 36613515 PMCID: PMC9820290 DOI: 10.3390/ijms24010076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Dysferlinopathies are a clinically heterogeneous group of muscular dystrophies caused by a genetic deficiency of the membrane-associated protein dysferlin, which usually manifest post-growth in young adults. The disease is characterized by progressive skeletal muscle wasting in the limb-girdle and limbs, inflammation, accumulation of lipid droplets in slow-twitch myofibers and, in later stages, replacement of muscles by adipose tissue. Previously we reported myofiber-type specific differences in muscle contractile function of 10-month-old dysferlin-deficient BLAJ mice that could not be fully accounted for by altered myofiber-type composition. In order to further investigate these findings, we examined the impact of dysferlin deficiency on the abundance of calcium (Ca2+) handling and glucose/glycogen metabolism-related proteins in predominantly slow-twitch, oxidative soleus and fast-twitch, glycolytic extensor digitorum longus (EDL) muscles of 10-month-old wild-type (WT) C57BL/6J and dysferlin-deficient BLAJ male mice. Additionally, we compared the Ca2+ activation properties of isolated slow- and fast-twitch myofibers from 3-month-old WT and BLAJ male mice. Differences were observed for some Ca2+ handling and glucose/glycogen metabolism-related protein levels between BLAJ soleus and EDL muscles (compared with WT) that may contribute to the previously reported differences in function in these BLAJ muscles. Dysferlin deficiency did not impact glycogen content of whole muscles nor Ca2+ activation of the myofilaments, although soleus muscle from 10-month-old BLAJ mice had more glycogen than EDL muscles. These results demonstrate a further impact of dysferlin deficiency on proteins associated with excitation-contraction coupling and glycogen metabolism in skeletal muscles, potentially contributing to altered contractile function in dysferlinopathy.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin J. Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| | - Robyn M. Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
21
|
Korokin MV, Kuzubova EV, Radchenko AI, Deev RV, Yakovlev IA, Deikin AV, Zhunusov NS, Krayushkina AM, Pokrovsky VM, Puchenkova OA, Chaprov KD, Ekimova NV, Bardakov SN, Chernova ON, Emelin AM, Limaev IS. В6.А-DYSFPRMD/GENEJ MICE AS A GENETIC MODEL OF DYSFERLINOPATHY. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-5-483-496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the work was behavioral and pathomorphological phenotyping of the mice knockout for the DYSF gene, which plays an important role in the development and progression of dysferlinopathy.Materials and methods. A B6.A-Dysfprmd/GeneJ (Bla/J) mice subline was used in the work. During the study, a muscle activity was determined basing on the following tests: “Inverted grid”, “Grip strength”, “Wire Hanging”, “Weight-loaded swimming”, Vertical Pole”. Histological and immunofluorescent examinations of skeletal muscles (m. gastrocnemius, m. tibialis) were performed. The presence and distribution of the dysferlin protein was assessed, and general histological changes in the skeletal muscle characteristics of mice at the age of 12 and 24 weeks, were described. A morphometric analysis with the determination of the following parameters was performed: the proportion of necrotic muscle fibers; the proportion of fibers with centrally located nuclei; the mean muscle fiber diameter.Results. The “Grip strength” test and the “Weight-loaded swimming” test revealed a decrease in the strength of the forelimbs and endurance in the studied mice of the Bla/J subline compared to the control line. The safety of physical performance was checked using the “Wire Hanging” test and the “Vertical Pole” test, which showed a statistically significant difference between the studied mice and control. The coordination of movements and muscle strength of the limbs examined in the “Inverted Grid” test did not change in these age marks. Decreased grip strength of the forelimbs, decreased physical endurance with age, reflects the progression of the underlying muscular disease. Histological methods in the skeletal muscles revealed signs of a myopathic damage pattern: necrotic muscle fibers, moderate lympho-macrophage infiltration, an increase in the proportion of fibers with centrally located nuclei, and an increase in the average fiber diameter compared to the control. The dysferlin protein was not found out in the muscle tissues.Conclusion. Taking into account the results of the tests performed, it was shown that the absence of Dysf-/- gene expressionin Bla/J subline mice led to muscular dystrophy with the onset of the development of phenotypic disease manifestations at the age of 12 weeks and their peak at 24 weeks. Histopathological phenotypic manifestations of the disease are generally nonspecific and corresponded to the data of intravital pathoanatomical examination in diferlinopathy patients. The mice of the studied subline Bla/J are a representative model of dysferlinopathy and can be used to evaluate new therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | - R. V. Deev
- North-Western State Medical University named after I.I. Mechnikov;
PJSC “Human Stem Cells Institute”
| | | | | | | | | | | | | | - K. D. Chaprov
- Belgorod State National Research University;
Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS)
| | | | | | - O. N. Chernova
- North-Western State Medical University named after I.I. Mechnikov
| | - A. M. Emelin
- Belgorod State National Research University;
North-Western State Medical University named after I.I. Mechnikov
| | - I. S. Limaev
- North-Western State Medical University named after I.I. Mechnikov
| |
Collapse
|
22
|
Inhibition of the immunoproteasome modulates innate immunity to ameliorate muscle pathology of dysferlin-deficient BlAJ mice. Cell Death Dis 2022; 13:975. [PMID: 36402750 PMCID: PMC9675822 DOI: 10.1038/s41419-022-05416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Muscle repair in dysferlinopathies is defective. Although macrophage (Mø)-rich infiltrates are prominent in damaged skeletal muscles of patients with dysferlinopathy, the contribution of the immune system to the disease pathology remains to be fully explored. Numbers of both pro-inflammatory M1 Mø and effector T cells are increased in muscle of dysferlin-deficient BlAJ mice. In addition, symptomatic BlAJ mice have increased muscle production of immunoproteasome. In vitro analyses using bone marrow-derived Mø of BlAJ mice show that immunoproteasome inhibition results in C3aR1 and C5aR1 downregulation and upregulation of M2-associated signaling. Administration of immunoproteasome inhibitor ONX-0914 to BlAJ mice rescues muscle function by reducing muscle infiltrates and fibro-adipogenesis. These findings reveal an important role of immunoproteasome in the progression of muscular dystrophy in BlAJ mouse and suggest that inhibition of immunoproteasome may produce therapeutic benefit in dysferlinopathy.
Collapse
|
23
|
Yamakawa D, Tsuboi J, Kasahara K, Matsuda C, Nishimura Y, Kodama T, Katayama N, Watanabe M, Inagaki M. Cilia-Mediated Insulin/Akt and ST2/JNK Signaling Pathways Regulate the Recovery of Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2202632. [PMID: 36373718 PMCID: PMC9811445 DOI: 10.1002/advs.202202632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/20/2022] [Indexed: 06/04/2023]
Abstract
Following injury, skeletal muscle regenerates but fatty tissue accumulation is seen in aged muscle or muscular dystrophies. Fibro/adipogenic progenitors (FAPs) are key players in these events; however, the effect of primary cilia on FAPs remains unclear. Here, it is reported that genetic ablation of trichoplein (TCHP), a ciliary regulator, induces ciliary elongation on FAPs after injury, which promotes muscle regeneration while inhibiting adipogenesis. The defective adipogenic differentiation of FAPs is attributed to dysfunction of cilia-dependent lipid raft dynamics, which is critical for insulin/Akt signaling. It is also found that interleukin (IL) 13 is substantially produced by intramuscular FAPs, which are upregulated by ciliary elongation and contribute to regeneration. Mechanistically, upon injury, long cilia excessively activate the IL33/ST2/JNK axis to enhance IL13 production, facilitating myoblast proliferation and M2 macrophage polarization. The results indicate that FAPs organize the regenerative responses to skeletal muscle injury via cilia-mediated insulin/Akt and ST2/JNK signaling pathways.
Collapse
Affiliation(s)
- Daishi Yamakawa
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Junya Tsuboi
- Department of Gastroenterology and HepatologyMie University Graduate School of MedicineTsuMie514‐8507Japan
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Kousuke Kasahara
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Chise Matsuda
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Yuhei Nishimura
- Department of Integrative PharmacologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Tatsuya Kodama
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Naoyuki Katayama
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masatoshi Watanabe
- Department of Oncogenic PathologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| | - Masaki Inagaki
- Department of PhysiologyMie University Graduate School of MedicineTsuMie514‐8507Japan
| |
Collapse
|
24
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Hwang Y, Choi YS, Grounds MD, Kennedy BF. Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5879-5899. [PMID: 36733728 PMCID: PMC9872891 DOI: 10.1364/boe.471062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/18/2023]
Abstract
Skeletal muscle function is governed by both the mechanical and structural properties of its constituent tissues, which are both modified by disease. Characterizing the mechanical properties of skeletal muscle tissue at an intermediate scale, i.e., between that of cells and organs, can provide insight into diseases such as muscular dystrophies. In this study, we use quantitative micro-elastography (QME) to characterize the micro-scale elasticity of ex vivo murine skeletal muscle in three-dimensions in whole muscles. To address the challenge of achieving high QME image quality with samples featuring uneven surfaces and geometry, we encapsulate the muscles in transparent hydrogels with flat surfaces. Using this method, we study aging and disease in quadriceps tissue by comparing normal wild-type (C57BL/6J) mice with dysferlin-deficient BLAJ mice, a model for the muscular dystrophy dysferlinopathy, at 3, 10, and 24 months of age (sample size of three per group). We observe a 77% decrease in elasticity at 24 months in dysferlin-deficient quadriceps compared to wild-type quadriceps.
Collapse
Affiliation(s)
- Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- These authors contributed equally to this work
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
25
|
Chernova ON, Chekmareva IA, Mavlikeev MO, Yakovlev IA, Kiyasov AP, Deev RV. Structural and ultrastructural changes in the skeletal muscles of dysferlin-deficient mice during postnatal ontogenesis. Ultrastruct Pathol 2022; 46:359-367. [PMID: 35880824 DOI: 10.1080/01913123.2022.2105464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A number of sarcolemma proteins are responsible for muscle fiber repair. Dysferlin encoded by the DYSF gene is one of these proteins. Dysferlin promotes membrane repair in striated muscle fibers (MFs). Mutations in DYSF lead to loss of or decreased dysferlin expression, impaired membrane repair in MF, and its destruction, clinically manifesting as dysferlinopathy. Preclinical studies of cell and gene therapies aimed at restoring impaired muscle regeneration require well-characterized small animal models. Our investigation aimed to distinguish the histopathological features of a mouse strain lacking dysferlin expression (Bla/J strain). Ultrastructural changes in the sarcolemma, mitochondria and contractile apparatus were observed. It was shown that postnatal histogenesis of skeletal muscles in genetically determined dysferlin deficiency is characterized by a higher proportion of necrotic muscle fibers, compensatory hypertrophy of muscle fibers with their subsequent atrophy, and decreases in proliferative activity and the level of myogenic differentiation of myogenic progenitor cells compared to wild-type mice (C57Bl/6).
Collapse
Affiliation(s)
- O N Chernova
- Human Morphology Department, North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russian Federation.,Pathology and Forensic Medicine Department, Saint-Petersburg Medico-Social Institute, Saint-Petersburg, Russian Federation
| | - I A Chekmareva
- A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russian Federation
| | - M O Mavlikeev
- Pathology Department, North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russian Federation
| | - I A Yakovlev
- Genotarget LLC, Moscow, Russian Federation.,Human Stem Cell Institute PJSC, Moscow, Russian Federation
| | - A P Kiyasov
- Morphology and General Pathology Department, Kazan (Volga region) Federal University, Kazan, Russian Federation
| | - R V Deev
- Pathology Department, North-Western State Medical University named after I.I. Mechnikov, Saint-Petersburg, Russian Federation.,Human Stem Cell Institute PJSC, Moscow, Russian Federation
| |
Collapse
|
26
|
Noor RAM, Shah NSM, Zin AAM, Sulaiman WAW, Halim AS. Disoriented Collagen Fibers and Disorganized, Fibrotic Orbicularis Oris Muscle Fiber with Mitochondrial Myopathy in Non-Syndromic Cleft Lip. Arch Oral Biol 2022; 140:105448. [DOI: 10.1016/j.archoralbio.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
|
27
|
Alharbi N, Matar R, Cupler E, Al-Hindi H, Murad H, Alhomud I, Monies D, Alshehri A, Alyahya M, Meyer B, Bohlega S. Clinical, Neurophysiological, Radiological, Pathological, and Genetic Features of Dysferlinopathy in Saudi Arabia. Front Neurosci 2022; 16:815556. [PMID: 35273475 PMCID: PMC8902167 DOI: 10.3389/fnins.2022.815556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo characterize the phenotypic, neurophysiological, radiological, pathological, and genetic profile of 33 Saudi Arabian families with dysferlinopathy.MethodsA descriptive observational study was done on a cohort of 112 Saudi Arabian families with LGMD. Screening for the Dysferlin (DYSF) gene was done in a tertiary care referral hospital in Saudi Arabia. Clinical, Neurophysiological, Radiological, Pathological, and Genetic findings in subjects with dysferlin mutation were the primary outcome variables. Statistical analysis was done by Epi-info.Results33 out of 112 families (29.46%) registered in the LGMD cohort had Dysferlinopathy. 53 subjects (28 males, 52.83%) from 33 families were followed up for various periods ranging from 1 to 28 years. The mean age of onset was 17.79 ± 3.48 years (Range 10 to 25 years). Miyoshi Myopathy phenotype was observed in 50.94% (27 out of 53), LGMDR2 phenotype in 30.19% (16 out of 53), and proximodistal phenotype in 15.09% (8 out of 53) of the subjects. Loss of ambulation was observed in 39.62% (21 out of 53 subjects). Electrophysiological, Radiological, and histopathological changes were compatible with the diagnosis. Mean serum Creatinine Kinase was 6,464.45 ± 4,149.24 with a range from 302 to 21,483 IU/L. In addition, 13 dysferlin mutations were identified two of them were compound heterozygous. One founder mutation was observed c.164_165insA in 19 unrelated families.ConclusionThe prevalence of Dysferlinopathy was 29.46% in the native Saudi LGMD cohort. It is the most prevalent subtype seconded by calpainopathy. The clinical course varied among the study subjects and was consistent with those reported from different ethnic groups. One founder mutation was identified. Initial screening of the founder mutations in new families is highly recommended.
Collapse
Affiliation(s)
- Norah Alharbi
- Department of Clinical Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Edward Cupler
- Department of Neuroscience, King Faisal Specialist Hospital, and Research Center, Jeddah, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hatem Murad
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Iftteah Alhomud
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Alshehri
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mossaed Alyahya
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Brian Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeed Bohlega
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- *Correspondence: Saeed Bohlega,
| |
Collapse
|
28
|
Foltz S, Wu F, Ghazal N, Kwong JQ, Hartzell HC, Choo HJ. Sex differences in the involvement of skeletal and cardiac muscles in myopathic Ano5-/- mice. Am J Physiol Cell Physiol 2022; 322:C283-C295. [PMID: 35020501 PMCID: PMC8836717 DOI: 10.1152/ajpcell.00350.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (ANO5, TMEM16E). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology. Because these sex differences could be explained in several ways, we compared males and females in a mouse model of LGMD-R12. This model recapitulates the sex differences in human LGMD-R12. Only male Ano5-/- mice had elevated serum creatine kinase after exercise and exhibited defective membrane repair after laser injury. In contrast, by these measures, female Ano5-/- mice were indistinguishable from wild type. Despite these differences, both male and female Ano5-/- mice exhibited exercise intolerance. Although exercise intolerance of male mice can be explained by skeletal muscle dysfunction, echocardiography revealed that Ano5-/- female mice had features of cardiomyopathy that may be responsible for their exercise intolerance. These findings heighten concerns that mutations of ANO5 in humans may be linked to cardiac disease.
Collapse
Affiliation(s)
- Steven Foltz
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Fang Wu
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Nasab Ghazal
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jennifer Q Kwong
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - H Criss Hartzell
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Hyojung J Choo
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
29
|
White Z, Theret M, Milad N, Tung LW, Chen WWH, Sirois MG, Rossi F, Bernatchez P. Cholesterol absorption blocker ezetimibe prevents muscle wasting in severe dysferlin-deficient and mdx mice. J Cachexia Sarcopenia Muscle 2022; 13:544-560. [PMID: 34927367 PMCID: PMC8818667 DOI: 10.1002/jcsm.12879] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Muscular dystrophy (MD) causes muscle wasting and is often lethal in patients due to a lack of proven therapies. In contrast, mouse models of MD are notoriously mild. We have previously shown severe human-like muscle pathology in mdx [Duchenne MD (DMD)] and dysferlin-deficient limb-girdle MD type 2B (LGMD2B) mice by inactivating the gene encoding for apolipoprotein E (ApoE), a lipid transporter synthesized by the liver, brain and adipocytes to regulate lipid and fat metabolism. Having recently established that human DMD is a novel type of primary genetic dyslipidaemia with elevated cholesterol, we sought to determine whether cholesterol could exacerbate the muscle wasting process observed in severe rodent MD. METHODS Severe mdx and dysferlin knock-out mice lacking ApoE were treated with ezetimibe (15 mg/kg/day), a clinically approved drug exhibiting few pleiotropic effects. In separate studies, dietary cholesterol was raised (from 0.2% to 2% cholesterol) in combination with experimental micro-injury and direct cholesterol injection assays. Muscles were assessed histologically for changes in collagen and adipocyte infiltration and both transcriptomic and cellular changes by RNA-seq and fluorescence-activated cell sorting analysis. RESULTS Treatment of severe DMD and LGMD2B mice with ezetimibe completely prevented clinical signs of ambulatory dysfunction (0% incidence vs. 33% for vehicle treatment; P < 0.05). Histological analyses revealed that ezetimibe-reduced fibro-fatty infiltration up to 84% and 63% in severely affected triceps (P ≤ 0.0001) and gastrocnemius (P ≤ 0.003) muscles, resulting in a respective 1.9-fold and 2.2-fold retention of healthy myofibre area (P ≤ 0.0001). Additionally, raising dietary cholesterol and thus concentrations of plasma low-density lipoprotein-associated cholesterol (by 250%; P < 0.0001) reduced overall survivability (by 100%; P < 0.001) and worsened muscle damage in the LGMD2B triceps by 767% (P < 0.03). Micro-pin-induced mechanical injury in LGMD2B mice fed a high cholesterol diet exacerbated muscle damage by 425% (P < 0.03) and increased macrophage recruitment (by 98%; P = 0.03) compared with those injured on a chow diet. Parallel RNA-seq analyses revealed that injury in cholesterol-fed mice also modulated the expression of 3671 transcripts (1953 up-regulated), with fibrogenic, inflammatory and programmed cell death-associated pathways among the most enriched. Mice lacking dysferlin also displayed heightened muscle necrosis (by 123%; P < 0.0001) following a direct intramuscular injection of cholesterol compared with control mice. CONCLUSIONS Cholesterol exacerbates rodent MD. Specific inhibition of cholesterol absorption with ezetimibe may safely attenuate human MD severity and delay death.
Collapse
Affiliation(s)
- Zoe White
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Marine Theret
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Nadia Milad
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Lin Wei Tung
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC, Canada
| | - William Wei-Han Chen
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Martin G Sirois
- Montreal Heart Institute, Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Fabio Rossi
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
30
|
Therapeutic Benefit of Galectin-1: Beyond Membrane Repair, a Multifaceted Approach to LGMD2B. Cells 2021; 10:cells10113210. [PMID: 34831431 PMCID: PMC8621416 DOI: 10.3390/cells10113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Two of the main pathologies characterizing dysferlinopathies are disrupted muscle membrane repair and chronic inflammation, which lead to symptoms of muscle weakness and wasting. Here, we used recombinant human Galectin-1 (rHsGal-1) as a therapeutic for LGMD2B mouse and human models. Various redox and multimerization states of Gal-1 show that rHsGal-1 is the most effective form in both increasing muscle repair and decreasing inflammation, due to its monomer-dimer equilibrium. Dose-response testing shows an effective 25-fold safety profile between 0.54 and 13.5 mg/kg rHsGal-1 in Bla/J mice. Mice treated weekly with rHsGal-1 showed downregulation of canonical NF-κB inflammation markers, decreased muscle fat deposition, upregulated anti-inflammatory cytokines, increased membrane repair, and increased functional movement compared to non-treated mice. Gal-1 treatment also resulted in a positive self-upregulation loop of increased endogenous Gal-1 expression independent of NF-κB activation. A similar reduction in disease pathologies in patient-derived human cells demonstrates the therapeutic potential of Gal-1 in LGMD2B patients.
Collapse
|
31
|
Phospholipids: Identification and Implication in Muscle Pathophysiology. Int J Mol Sci 2021; 22:ijms22158176. [PMID: 34360941 PMCID: PMC8347011 DOI: 10.3390/ijms22158176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.
Collapse
|
32
|
Farini A, Villa C, Tripodi L, Legato M, Torrente Y. Role of Immunoglobulins in Muscular Dystrophies and Inflammatory Myopathies. Front Immunol 2021; 12:666879. [PMID: 34335568 PMCID: PMC8316973 DOI: 10.3389/fimmu.2021.666879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Muscular dystrophies and inflammatory myopathies are heterogeneous muscular disorders characterized by progressive muscle weakness and mass loss. Despite the high variability of etiology, inflammation and involvement of both innate and adaptive immune response are shared features. The best understood immune mechanisms involved in these pathologies include complement cascade activation, auto-antibodies directed against muscular proteins or de-novo expressed antigens in myofibers, MHC-I overexpression in myofibers, and lymphocytes-mediated cytotoxicity. Intravenous immunoglobulins (IVIGs) administration could represent a suitable immunomodulator with this respect. Here we focus on mechanisms of action of immunoglobulins in muscular dystrophies and inflammatory myopathies highlighting results of IVIGs from pre-clinical and case reports evidences.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Dino Ferrari Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Dino Ferrari Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
33
|
Rabey KN, Satkunam L, Webber CA, Hocking JC. Isolated fatty infiltration of the gastrocnemius medial head, a cadaveric case study. HUMAN PATHOLOGY: CASE REPORTS 2021. [DOI: 10.1016/j.ehpc.2021.200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Blockade of Hemichannels Normalizes the Differentiation Fate of Myoblasts and Features of Skeletal Muscles from Dysferlin-Deficient Mice. Int J Mol Sci 2020; 21:ijms21176025. [PMID: 32825681 PMCID: PMC7503700 DOI: 10.3390/ijms21176025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Dysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown. In the present work, we found that numerous myoblasts bearing a mutated dysferlin when induced to acquire myogenic commitment express PPARγ, revealing adipogenic instead of myogenic commitment. These cell cultures presented many mononucleated cells with fat accumulation and within 48 h of differentiation formed fewer multinucleated cells. In contrast, dysferlin deficient myoblasts treated with boldine, a connexin hemichannels blocker, neither expressed PPARγ, nor accumulated fat and formed similar amount of multinucleated cells as wild type precursor cells. We recently demonstrated that myofibers of skeletal muscles from blAJ mice (an animal model of dysferlinopathies) express three connexins (Cx39, Cx43, and Cx45) that form functional hemichannels (HCs) in the sarcolemma. In symptomatic blAJ mice, we now show that eight-week treatment with a daily dose of boldine showed a progressive recovery of motor activity reaching normality. At the end of this treatment, skeletal muscles were comparable to those of wild type mice and presented normal CK activity in serum. Myofibers of boldine-treated blAJ mice also showed strong dysferlin-like immunoreactivity. These findings reveal that muscle dysfunction results from a pathophysiologic mechanism triggered by mutated dysferlin and downstream connexin hemichannels expressed de novo lead to a drastic reduction of myogenesis and favor muscle damage. Thus, boldine could represent a therapeutic opportunity to treat dysfernilopathies.
Collapse
|
35
|
Begam M, Roche R, Hass JJ, Basel CA, Blackmer JM, Konja JT, Samojedny AL, Collier AF, Galen SS, Roche JA. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle Nerve 2020; 62:393-403. [PMID: 32363622 DOI: 10.1002/mus.26906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Dysferlin-deficient murine muscle sustains severe damage after repeated eccentric contractions. METHODS With a robotic dynamometer, we studied the response of dysferlin-sufficient and dysferlin-deficient mice to 12 weeks of concentrically or eccentrically biased contractions. We also studied whether concentric contractions before or after eccentric contractions reduced muscle damage in dysferlin-deficient mice. RESULTS After 12 weeks of concentric training, there was no net gain in contractile force in dysferlin-sufficient or dysferlin-deficient mice, whereas eccentric training produced a net gain in force in both mouse strains. However, eccentric training induced more muscle damage in dysferlin-deficient vs dysferlin-sufficient mice. Although concentric training produced minimal muscle damage in dysferlin-deficient mice, it still led to a prominent increase in centrally nucleated fibers. Previous exposure to concentric contractions conferred slight protection on dysferlin-deficient muscle against damage from subsequent injurious eccentric contractions. DISCUSSION Concentric contractions may help dysferlin-deficient muscle derive the benefits of exercise without inducing damage.
Collapse
Affiliation(s)
- Morium Begam
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Renuka Roche
- Occupational Therapy Program, College of Health and Human Services, Eastern Michigan University, Ypsilanti, Michigan
| | - Joshua J Hass
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Chantel A Basel
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Jacob M Blackmer
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Jasmine T Konja
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Amber L Samojedny
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Alyssa F Collier
- Rehabilitation Department, Emory University Hospital, Atlanta, Georgia
| | - Sujay S Galen
- Department of Physical Therapy, Byrdine F. Lewis College of Nursing & Health Professions, Georgia State University, Atlanta, Georgia
| | - Joseph A Roche
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
36
|
Adipose invasion of muscle in Wagyu cattle: Monitoring by histology and melting temperature. Meat Sci 2020; 163:108063. [DOI: 10.1016/j.meatsci.2020.108063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
|
37
|
Myofibers deficient in connexins 43 and 45 expression protect mice from skeletal muscle and systemic dysfunction promoted by a dysferlin mutation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165800. [PMID: 32305450 DOI: 10.1016/j.bbadis.2020.165800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 11/23/2022]
Abstract
Dysferlinopathy is a genetic human disease caused by mutations in the gene that encodes the dysferlin protein (DYSF). Dysferlin is believed to play a relevant role in cell membrane repair. However, in dysferlin-deficient (blAJ) mice (a model of dysferlinopathies) the recovery of the membrane resealing function by means of the expression of a mini-dysferlin does not arrest progressive muscular damage, suggesting the participation of other unknown pathogenic mechanisms. Here, we show that proteins called connexins 39, 43 and 45 (Cx39, Cx43 and Cx45, respectively) are expressed by blAJ myofibers and form functional hemichannels (Cx HCs) in the sarcolemma. At rest, Cx HCs increased the sarcolemma permeability to small molecules and the intracellular Ca2+ signal. In addition, skeletal muscles of blAJ mice showed lipid accumulation and lack of dysferlin immunoreactivity. As sign of extensive damage and atrophy, muscles of blAJ mice presented elevated numbers of myofibers with internal nuclei, increased number of myofibers with reduced cross-sectional area and elevated creatine kinase activity in serum. In agreement with the extense muscle damage, mice also showed significantly low motor performance. We generated blAJ mice with myofibers deficient in Cx43 and Cx45 expression and found that all above muscle and systemic alterations were absent, indicating that these two Cxs play a critical role in a novel pathogenic mechanism of dysfernolophaties, which is discussed herein. Therefore, Cx HCs could constitute an attractive target for pharmacologic treatment of dyferlinopathies.
Collapse
|
38
|
Kravtsova VV, Bouzinova EV, Chibalin AV, Matchkov VV, Krivoi II. Isoform-specific Na,K-ATPase and membrane cholesterol remodeling in motor endplates in distinct mouse models of myodystrophy. Am J Physiol Cell Physiol 2020; 318:C1030-C1041. [PMID: 32293933 DOI: 10.1152/ajpcell.00453.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Na,K-ATPase is a membrane transporter that is critically important for skeletal muscle function. Mdx and Bla/J mice are the experimental models of Duchenne muscular dystrophy and dysferlinopathy that are known to differ in the molecular mechanism of the pathology. This study examines the function of α1- and α2-Na,K-ATPase isozymes in respiratory diaphragm and postural soleus muscles from mdx and Bla/J mice compared with control С57Bl/6 mice. In diaphragm muscles, the motor endplate structure was severely disturbed (manifested by defragmentation) in mdx mice only. The endplate membrane of both Bla/J and mdx mice was depolarized due to specific loss of the α2-Na,K-ATPase electrogenic activity and its decreased membrane abundance. Total FXYD1 subunit (modulates Na,K-ATPase activity) abundance was decreased in both mouse models. However, the α2-Na,K-ATPase protein content as well as mRNA expression were specifically and significantly reduced only in mdx mice. The endplate membrane cholesterol redistribution was most pronounced in mdx mice. Soleus muscles from Bla/J and mdx mice demonstrated reduction of the α2-Na,K-ATPase membrane abundance and mRNA expression similar to the diaphragm muscles. In contrast to diaphragm, the α2-Na,K-ATPase protein content was altered in both Bla/J and mdx mice; membrane cholesterol re-distribution was not observed. Thus, the α2-Na,K-ATPase is altered in both Bla/J and mdx mouse models of chronic muscle pathology. However, despite some similarities, the α2-Na,K-ATPase and cholesterol abnormalities are more pronounced in mdx mice.
Collapse
Affiliation(s)
- Violetta V Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | | | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
39
|
van Putten M, Lloyd EM, de Greef JC, Raz V, Willmann R, Grounds MD. Mouse models for muscular dystrophies: an overview. Dis Model Mech 2020; 13:dmm043562. [PMID: 32224495 PMCID: PMC7044454 DOI: 10.1242/dmm.043562] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscular dystrophies (MDs) encompass a wide variety of inherited disorders that are characterized by loss of muscle tissue associated with a progressive reduction in muscle function. With a cure lacking for MDs, preclinical developments of therapeutic approaches depend on well-characterized animal models that recapitulate the specific pathology in patients. The mouse is the most widely and extensively used model for MDs, and it has played a key role in our understanding of the molecular mechanisms underlying MD pathogenesis. This has enabled the development of therapeutic strategies. Owing to advancements in genetic engineering, a wide variety of mouse models are available for the majority of MDs. Here, we summarize the characteristics of the most commonly used mouse models for a subset of highly studied MDs, collated into a table. Together with references to key publications describing these models, this brief but detailed overview would be useful for those interested in, or working with, mouse models of MD.
Collapse
Affiliation(s)
- Maaike van Putten
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Erin M Lloyd
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| | - Jessica C de Greef
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | - Vered Raz
- Leiden University Medical Center, Department of Human Genetics, Leiden, 2333 ZA, The Netherlands
| | | | - Miranda D Grounds
- The University of Western Australia, School of Human Sciences, Perth 6009, Australia
| |
Collapse
|
40
|
Agarwal AK, Tunison K, Mitsche MA, McDonald JG, Garg A. Insights into lipid accumulation in skeletal muscle in dysferlin-deficient mice. J Lipid Res 2019; 60:2057-2073. [PMID: 31653658 PMCID: PMC6889719 DOI: 10.1194/jlr.ra119000399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Loss of dysferlin (DYSF) protein in humans results in limb-girdle muscular dystrophy 2B, characterized by progressive loss of muscles in the distal limbs with impaired locomotion. The DYSF-null (Bla/J) mouse develops severe steatotic muscles upon aging. Here, we report a marked increase in adipocytes, especially in the psoas and gluteus muscles but not in the soleus and tibialis anterior muscles in aged Bla/J mice compared with WT mice. There was a robust upregulation in the mRNA expression of enzymes involved in lipogenesis and triacylglycerol (TAG) synthesis pathways in the steatotic skeletal muscles. Lipidomic analysis of the steatotic skeletal muscles revealed an increase in several molecular species of TAG, although it is unclear whether it was at the expense of phosphatidylcholine and phosphatidylserine. The adipocytes in steatotic muscles were extramyocellular, as determined by the increased expression of caveolin 1 (a cellular marker for adipocytes) and lipid-droplet protein, perilipin 1. This increase in adipocytes occured as a consequence of the loss of myocytes.
Collapse
Affiliation(s)
- Anil K Agarwal
- Division of Nutrition and Metabolic Diseases Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Katie Tunison
- Division of Nutrition and Metabolic Diseases Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Matthew A Mitsche
- Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jeffrey G McDonald
- Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
41
|
White Z, Milad N, Tehrani AY, Chen WWH, Donen G, Sellers SL, Bernatchez P. Angiotensin II receptor blocker losartan exacerbates muscle damage and exhibits weak blood pressure-lowering activity in a dysferlin-null model of Limb-Girdle muscular dystrophy type 2B. PLoS One 2019; 14:e0220903. [PMID: 31404091 PMCID: PMC6690544 DOI: 10.1371/journal.pone.0220903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
There is no cure or beneficial management option for Limb-Girdle muscular dystrophy (MD) type 2B (LGMD2B). Losartan, a blood pressure (BP) lowering angiotensin II (AngII) receptor type 1 (ATR1) blocker (ARB) with unique anti-transforming growth factor-β (TGF-β) properties, can protect muscles in various types of MD such as Duchenne MD, suggesting a potential benefit for LGMD2B patients. Herein, we show in a mild, dysferlin-null mouse model of LGMD2B that losartan increased quadriceps muscle fibrosis (142%; P<0.0001). In a severe, atherogenic diet-fed model of LGMD2B recently described by our group, losartan further exacerbated dysferlin-null mouse muscle wasting in quadriceps and triceps brachii, two muscles typically affected by LGMD2B, by 40% and 51%, respectively (P<0.05). Lower TGF-β signalling was not observed with losartan, therefore plasma levels of atherogenic lipids known to aggravate LGMD2B severity were investigated. We report that losartan increased both plasma triglycerides and cholesterol concentrations in dysferlin-null mice. Other protective properties of losartan, such as increased nitric oxide release and BP lowering, were also reduced in the absence of dysferlin expression. Our data suggest that LGMD2B patients may show some resistance to the primary BP-lowering effects of losartan along with accelerated muscle wasting and dyslipidemia. Hence, we urge caution on the use of ARBs in this population as their ATR1 pathway may be dysfunctional.
Collapse
Affiliation(s)
- Zoe White
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
- * E-mail: (ZW); (PB)
| | - Nadia Milad
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Arash Y. Tehrani
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - William Wei-Han Chen
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Graham Donen
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Stephanie L. Sellers
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
| | - Pascal Bernatchez
- University of British Columbia (UBC) Department of Anesthesiology, Pharmacology & Therapeutics, Vancouver, Canada
- UBC Centre for Heart Lung Innovation & St. Paul’s Hospital, Vancouver, Canada
- * E-mail: (ZW); (PB)
| |
Collapse
|
42
|
Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019; 221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keith Vandusen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
43
|
Ishiba R, Santos ALF, Almeida CF, Caires LC, Ribeiro AF, Ayub-Guerrieri D, Fernandes SA, Souza LS, Vainzof M. Faster regeneration associated to high expression of Fam65b and Hdac6 in dysferlin-deficient mouse. J Mol Histol 2019; 50:375-387. [DOI: 10.1007/s10735-019-09834-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
|
44
|
Haynes VR, Keenan SN, Bayliss J, Lloyd EM, Meikle PJ, Grounds MD, Watt MJ. Dysferlin deficiency alters lipid metabolism and remodels the skeletal muscle lipidome in mice. J Lipid Res 2019; 60:1350-1364. [PMID: 31203232 DOI: 10.1194/jlr.m090845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Defects in the gene coding for dysferlin, a membrane-associated protein, affect many tissues, including skeletal muscles, with a resultant myopathy called dysferlinopathy. Dysferlinopathy manifests postgrowth with a progressive loss of skeletal muscle function, early intramyocellular lipid accumulation, and a striking later replacement of selective muscles by adipocytes. To better understand the changes underpinning this disease, we assessed whole-body energy homeostasis, skeletal muscle fatty acid metabolism, lipolysis in adipose tissue, and the skeletal muscle lipidome using young adult dysferlin-deficient male BLAJ mice and age-matched C57Bl/6J WT mice. BLAJ mice had increased lean mass and reduced fat mass associated with increased physical activity and increased adipose tissue lipolysis. Skeletal muscle fatty acid metabolism was remodeled in BLAJ mice, characterized by a partitioning of fatty acids toward storage rather than oxidation. Lipidomic analysis identified marked changes in almost all lipid classes examined in the skeletal muscle of BLAJ mice, including sphingolipids, phospholipids, cholesterol, and most glycerolipids but, surprisingly, not triacylglycerol. These observations indicate that an early manifestation of dysferlin deficiency is the reprogramming of skeletal muscle and adipose tissue lipid metabolism, which is likely to contribute to the progressive adverse histopathology in dysferlinopathies.
Collapse
Affiliation(s)
- Vanessa R Haynes
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Stacey N Keenan
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Jackie Bayliss
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Erin M Lloyd
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart Institute, Melbourne, Australia
| | - Miranda D Grounds
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
45
|
Fibroadipogenic progenitors are responsible for muscle loss in limb girdle muscular dystrophy 2B. Nat Commun 2019; 10:2430. [PMID: 31160583 PMCID: PMC6547715 DOI: 10.1038/s41467-019-10438-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Muscle loss due to fibrotic or adipogenic replacement of myofibers is common in muscle diseases and muscle-resident fibro/adipogenic precursors (FAPs) are implicated in this process. While FAP-mediated muscle fibrosis is widely studied in muscle diseases, the role of FAPs in adipogenic muscle loss is not well understood. Adipogenic muscle loss is a feature of limb girdle muscular dystrophy 2B (LGMD2B) - a disease caused by mutations in dysferlin. Here we show that FAPs cause the adipogenic loss of dysferlin deficient muscle. Progressive accumulation of Annexin A2 (AnxA2) in the myofiber matrix causes FAP differentiation into adipocytes. Lack of AnxA2 prevents FAP adipogenesis, protecting against adipogenic loss of dysferlinopathic muscle while exogenous AnxA2 enhances muscle loss. Pharmacological inhibition of FAP adipogenesis arrests adipogenic replacement and degeneration of dysferlin-deficient muscle. These results demonstrate the pathogenic role of FAPs in LGMD2B and establish these cells as therapeutic targets to ameliorate muscle loss in patients.
Collapse
|
46
|
Dysferlin-deficiency has greater impact on function of slow muscles, compared with fast, in aged BLAJ mice. PLoS One 2019; 14:e0214908. [PMID: 30970035 PMCID: PMC6457631 DOI: 10.1371/journal.pone.0214908] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/24/2019] [Indexed: 12/26/2022] Open
Abstract
Dysferlinopathies are a form of muscular dystrophy caused by gene mutations resulting in deficiency of the protein dysferlin. Symptoms manifest later in life in a muscle specific manner, although the pathomechanism is not well understood. This study compared the impact of dysferlin-deficiency on in vivo and ex vivo muscle function, and myofibre type composition in slow (soleus) and fast type (extensor digitorum longus; EDL) muscles using male dysferlin-deficient (dysf-/-) BLAJ mice aged 10 months, compared with wild type (WT) C57Bl/6J mice. There was a striking increase in muscle mass of BLAJ soleus (+25%) (p<0.001), with no strain differences in EDL mass, compared with WT. In vivo measures of forelimb grip strength and wheel running capacity showed no strain differences. Ex vivo measures showed the BLAJ soleus had faster twitch contraction (-21%) and relaxation (-20%) times, and delayed post fatigue recovery (ps<0.05); whereas the BLAJ EDL had a slower relaxation time (+11%) and higher maximum rate of force production (+25%) (ps<0.05). Similar proportions of MHC isoforms were evident in the soleus muscles of both strains (ps>0.05); however, for the BLAJ EDL, there was an increased proportion of type IIx MHC isoform (+5.5%) and decreased type IIb isoform (-5.5%) (ps<0.01). This identification of novel differences in the impact of dysferlin-deficiency on slow and fast twitch muscles emphasises the importance of evaluating myofibre type specific effects to provide crucial insight into the mechanisms responsible for loss of function in dysferlinopathies; this is critical for the development of targeted future clinical therapies.
Collapse
|
47
|
Zheng W, Li Q, Sun H, Ali MW, Zhang H. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9-mediated mutagenesis of the multiple edematous wings gene induces muscle weakness and flightlessness in Bactrocera dorsalis (Diptera: Tephritidae). INSECT MOLECULAR BIOLOGY 2019; 28:222-234. [PMID: 30260055 DOI: 10.1111/imb.12540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system is a versatile, efficient and heritable gene editing tool that can be useful for genome engineering. Bactrocera dorsalis (Hendel) is a major pest of agriculture that causes great economic losses. We used the B. dorsalis multiple edematous wings (Bdmew) gene as the target gene to explore the effectiveness of CRISPR/Cas9 for B. dorsalis genome manipulation. We studied the physiological functions of the Bdmew gene, particularly those related to muscle development. Site-specific genome editing was feasible using direct microinjection of specific guide RNA and the Cas9-plasmid into B. dorsalis embryos. Mutation frequencies ranged from 12.1 to 30.2% in the injected generation. Mosaic G0, with the mew mutation, was heritable to the next generation. The G1 displayed a series of defective phenotypes including muscle weakness, flightlessness, failure to eclose, wing folds and unbalanced movement. These results demonstrated that CRISPR/Cas9 can act as a highly specific, efficient, heritable tool for genome manipulation in B. dorsalis and this has significance for gene function research and genetic control of pests. The Bdmew gene possesses key functions in muscle development of B. dorsalis. Bdmew mutations cause a series of serious defects by interfering with muscle development and may provide a means for controlling B. dorsalis via a gene-based method such as gene drive.
Collapse
Affiliation(s)
- W Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Q Li
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - H Sun
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - M Waqar Ali
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - H Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 2019; 20:ijms20051046. [PMID: 30823359 PMCID: PMC6429197 DOI: 10.3390/ijms20051046] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
A present review is devoted to the analysis of literature data and results of own research. Skeletal muscle neuromuscular junction is specialized to trigger the striated muscle fiber contraction in response to motor neuron activity. The safety factor at the neuromuscular junction strongly depends on a variety of pre- and postsynaptic factors. The review focuses on the crucial role of membrane cholesterol to maintain a high efficiency of neuromuscular transmission. Cholesterol metabolism in the neuromuscular junction, its role in the synaptic vesicle cycle and neurotransmitter release, endplate electrogenesis, as well as contribution of cholesterol to the synaptogenesis, synaptic integrity, and motor disorders are discussed.
Collapse
|
49
|
Kravtsova VV, Timonina NA, Zakir’yanova GF, Sokolova AV, Mikhailov VM, Zefirov AL, Krivoi II. The Structural and Functional Characteristics of the Motor End Plates of Dysferlin-Deficient Mice. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418040049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Sreetama SC, Chandra G, Van der Meulen JH, Ahmad MM, Suzuki P, Bhuvanendran S, Nagaraju K, Hoffman EP, Jaiswal JK. Membrane Stabilization by Modified Steroid Offers a Potential Therapy for Muscular Dystrophy Due to Dysferlin Deficit. Mol Ther 2018; 26:2231-2242. [PMID: 30166241 PMCID: PMC6127637 DOI: 10.1016/j.ymthe.2018.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/15/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022] Open
Abstract
Mutations of the DYSF gene leading to reduced dysferlin protein level causes limb girdle muscular dystrophy type 2B (LGMD2B). Dysferlin facilitates sarcolemmal membrane repair in healthy myofibers, thus its deficit compromises myofiber repair and leads to chronic muscle inflammation. An experimental therapeutic approach for LGMD2B is to protect damage or improve repair of myofiber sarcolemma. Here, we compared the effects of prednisolone and vamorolone (a dissociative steroid; VBP15) on dysferlin-deficient myofiber repair. Vamorolone, but not prednisolone, stabilized dysferlin-deficient muscle cell membrane and improved repair of dysferlin-deficient mouse (B6A/J) myofibers injured by focal sarcolemmal damage, eccentric contraction-induced injury or injury due to spontaneous in vivo activity. Vamorolone decreased sarcolemmal lipid mobility, increased muscle strength, and decreased late-stage myofiber loss due to adipogenic infiltration. In contrast, the conventional glucocorticoid prednisolone failed to stabilize dysferlin deficient muscle cell membrane or improve repair of dysferlinopathic patient myoblasts and mouse myofibers. Instead, prednisolone treatment increased muscle weakness and myofiber atrophy in B6A/J mice—findings that correlate with reports of prednisolone worsening symptoms of LGMD2B patients. Our findings showing improved cellular and pre-clinical efficacy of vamorolone compared to prednisolone and better safety profile of vamorolone indicates the suitability of vamorolone for clinical trials in LGMD2B.
Collapse
Affiliation(s)
- Sen Chandra Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Goutam Chandra
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Mohammad Mahad Ahmad
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Peter Suzuki
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Shivaprasad Bhuvanendran
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|