1
|
Cui Q, Fu S, Yu D, Li M, Li Y. Impact of Non-SMC Condensin I Complex Subunit D2 Upregulation on Oral Squamous Cell Carcinoma Prognosis. Int Dent J 2025; 75:1818-1827. [PMID: 40245749 PMCID: PMC12022477 DOI: 10.1016/j.identj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE To explore the influence of non-SMC condensin I complex subunit D2 (NCAPD2) on the prognosis of oral squamous cell carcinoma (OSCC) and the correlation between NCAPD2 and OSCC. METHODS In this study, NCAPD2 gene expression profiles of OSCC and normal tissues were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The real-time quantitative polymerase chain reaction (RT-qPCR) was employed to preliminarily validate OSCC cell strains and normal epithelial cell strains. Besides EdU, cell scratch, and transwell assays were performed to assess the proliferation, migration, and invasion of OSCC cell strains with the silence of NCAPD2. Moreover, immunohistochemistry (IHC) staining was utilised to measure the expression of NCAPD2 and tumour-related markers in 74 OSCC specimens. Finally, the Kaplan-Meier analysis was performed to evaluate the influence of NCAPD2 in the prognosis of OSCC. RESULTS The expression of NCAPD2 in OSCC tissues was higher than that in normal tissues. Inhibiting NCAPD2 can reduce the proliferation and migration of OSCC cell lines and inhibit the invasion of these cells. The IHC staining results indicated that the high expression of NCAPD2 in OSCC tissues was positively correlated with T stages, Ki67 expression, and affected sites. The Kaplan-Meier analysis results validated that the up-regulated expression of NCAPD2 was significantly correlated with the poor overall survival (OS) of OSCC patients. CONCLUSION NCAPD2 is a potential molecular marker for the poor prognosis of OSCC, and it is expected to become a target for the treatment of this carcinoma.
Collapse
Affiliation(s)
- Qingying Cui
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shuai Fu
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Diping Yu
- Department of Pathology, Hospital of Pu'er, Kunming University of Science and Technology, Kunming, China
| | - Ming Li
- Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
2
|
Oh C, Kim MS, Shin U, Kang JW, Kim YH, Ko HS, Ra JS, Ahn S, Choi EY, Yu S, Nam U, Choi T, Myung K, Lee Y. SMC2 and Condensin II Subunits Are Essential for the Development of Hematopoietic Stem and Progenitor Cells in Zebrafish. J Cell Physiol 2025; 240:e70023. [PMID: 40134128 PMCID: PMC11937623 DOI: 10.1002/jcp.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) play a pivotal role in blood cell production, maintaining the health and homeostasis of individuals. Dysregulation of HSPC function can lead to blood-related diseases, including cancer. Despite its importance, our understanding of the genes and pathways underlying HSPC development and the associated pathological mechanisms remains limited. To elucidate these unknown mechanisms, we analyzed databases of patients with blood disorders and performed functional gene studies using zebrafish. We employed bioinformatics tools to explore three public databases focusing on patients with myelodysplastic syndrome (MDS) and related model studies. This analysis identified significant alterations in several genes, especially SMC2 and other condensin-related genes, in patients with MDS. To further investigate the role of Smc2 in hematopoiesis, we generated smc2 loss-of-function zebrafish mutants using CRISPR mutagenesis. Further analyses of the mutants revealed that smc2 depletion induced G2/M cell cycle arrest in HSPCs, leading to their maintenance and expansion failure. Notably, although the condensin II subunits (ncaph2, ncapg2, and ncapd3) were essential for HSPC maintenance, the condensin I subunits did not affect HSPC development. These findings emphasize the crucial role of condensin II in ensuring healthy hematopoiesis via promoting HSPC proliferation.
Collapse
Affiliation(s)
- Chang‐Kyu Oh
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Man S. Kim
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| | - Unbeom Shin
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Ji Wan Kang
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Hwa Soo Ko
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Soyul Ahn
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Eun Young Choi
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Sanghyeon Yu
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Uijeong Nam
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Taesoo Choi
- Department of Urology, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biomedical EngineeringUlsan National Institute for Science and TechnologyUlsanRepublic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Cao Z, Zhao S, Wu T, Ding H, Tian Z, Sun F, Feng Z, Hu S, Shi L. The causal nexus between diverse smoking statuses, potential therapeutic targets, and NSCLC: insights from Mendelian randomization and mediation analysis. Front Oncol 2024; 14:1438851. [PMID: 39558952 PMCID: PMC11570405 DOI: 10.3389/fonc.2024.1438851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Objective Lung cancer, the most prevalent malignancy, is typically diagnosed at an advanced stage. Smoking is a pivotal risk factor for NSCLC, yet the impact of various smoking statuses on NSCLC remains unclear. Thus, this study aims to explore whether different smoking statuses can causally influence NSCLC through effects on predictive targets, offering a novel perspective for NSCLC treatment. Methods Employing dual-sample MR, MVMR, and TSMR approaches, we assessed the causal relationships between 13 distinct smoking statuses and NSCLC, using predicted potential therapeutic targets as mediators to further elucidate the causal interplay among them. Results Among the 13 smoking statuses, current tobacco smoking, exposure to tobacco smoke outside the home, past tobacco smoking, and never smoked demonstrated causal relationships with NSCLC. MVMR analysis reveals that Current tobacco smoking is an independent risk factor for NSCLC. Utilizing NCAPD2, IL11RA, and MLC1 as mediators, IL11RA (22.2%) was found to potentially mediate the relationship between past tobacco smoking and NSCLC. Conclusion This study, integrating bioinformatics and MR analysis, identified three potential predictive targets as mediators to investigate the causal relationships between different smoking statuses and NSCLC through potential therapeutic targets, providing new insights for the treatment and prevention of NSCLC.
Collapse
Affiliation(s)
- Zhenghua Cao
- Graduate School, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shengkun Zhao
- Graduate School, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tong Wu
- Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Huan Ding
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhiyu Tian
- Graduate School, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Feng Sun
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhuo Feng
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shaodan Hu
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Li Shi
- Respiratory Disease Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Yang F, Zheng Y, Luo Q, Zhang S, Yang S, Chen X. Knockdown of NCAPD3 inhibits the tumorigenesis of non-small cell lung cancer by regulation of the PI3K/Akt pathway. BMC Cancer 2024; 24:408. [PMID: 38566039 PMCID: PMC10986035 DOI: 10.1186/s12885-024-12131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Accumulating evidence indicates that aberrant non-SMC condensin II complex subunit D3 (NCAPD3) is associated with carcinogenesis of various cancers. Nevertheless, the biological role of NCAPD3 in the pathogenesis of non-small cell lung cancer (NSCLC) remains unclear. METHODS Immunohistochemistry and Western blot were performed to assess NCAPD3 expression in NSCLC tissues and cell lines. The ability of cell proliferation, invasion, and migration was evaluated by CCK-8 assays, EdU assays, Transwell assays, and scratch wound healing assays. Flow cytometry was performed to verify the cell cycle and apoptosis. RNA-sequence and rescue experiment were performed to reveal the underlying mechanisms. RESULTS The results showed that the expression of NCAPD3 was significantly elevated in NSCLC tissues. High NCAPD3 expression in NSCLC patients was substantially associated with a worse prognosis. Functionally, knockdown of NCAPD3 resulted in cell apoptosis and cell cycle arrest in NSCLC cells as well as a significant inhibition of proliferation, invasion, and migration. Furthermore, RNA-sequencing analysis suggested that NCAPD3 contributes to NSCLC carcinogenesis by regulating PI3K/Akt/FOXO4 pathway. Insulin-like growth factors-1 (IGF-1), an activator of PI3K/Akt signaling pathway, could reverse NCAPD3 silence-mediated proliferation inhibition and apoptosis in NSCLC cells. CONCLUSION NCAPD3 suppresses apoptosis and promotes cell proliferation via the PI3K/Akt/FOXO4 signaling pathway, suggesting a potential use for NCAPD3 inhibitors as NSCLC therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Yunfeng Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Qiong Luo
- Department of Oncology, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Suyun Zhang
- Department of Internal Medicine, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China.
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China.
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China.
| |
Collapse
|
5
|
Ma P, Yu H, Zhu M, Liu L, Cheng L, Han Z, Jin W. NCAPD2 promotes the malignant progression of oral squamous cell carcinoma via the Wnt/β-catenin pathway. Cell Cycle 2024; 23:588-601. [PMID: 38743408 PMCID: PMC11135826 DOI: 10.1080/15384101.2024.2348918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with a poor prognosis, yet the underlying mechanism needs further exploration. Non-SMC condensin I complex subunit D2 (NCAPD2) is a widely expressed protein in OSCC, but its role in tumor development is unclear. This study aimed to explore NCAPD2 expression and its biological function in OSCC. NCAPD2 expression in OSCC cell lines and tissue specimens was analyzed using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. Cancer cell growth was evaluated using cell proliferation, 5-Ethynyl-2'-deoxyuridine (EdU) staining, and colony formation assays. Cell migration was evaluated using wound healing and Transwell assays. Apoptosis was detected using flow cytometry. The influence of NCAPD2 on tumor growth in vivo was evaluated in a mouse xenograft model. NCAPD2 expression was significantly higher in OSCC than that in normal oral tissue. In vitro, the knockdown of NCAPD2 inhibited OSCC cell proliferation and promoted apoptosis. NCAPD2 depletion also significantly inhibited the migration of OSCC cells. Moreover, NCAPD2 overexpression induced inverse effects on OSCC cell phenotypes. In vivo, we demonstrated that downregulating NCAPD2 could inhibit the tumorigenicity of OSCC cells. Mechanically, OSCC regulation by NCAPD2 involved the Wnt/β-catenin signaling pathway. These results suggest NCAPD2 as a novel oncogene with an important role in OSCC development and a candidate therapeutic target for OSCC.
Collapse
Affiliation(s)
- Ping Ma
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Huajiao Yu
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Mingda Zhu
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Liu
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Luyao Cheng
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Zhengxue Han
- Department of Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wulong Jin
- Department of Stomatology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| |
Collapse
|
6
|
Pastena P, Perera H, Martinino A, Kartsonis W, Giovinazzo F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. Int J Mol Sci 2024; 25:2559. [PMID: 38473804 PMCID: PMC10931553 DOI: 10.3390/ijms25052559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, marked by poor outcomes and dismal prognosis. Due to the absence of targetable receptors, chemotherapy still represents the main therapeutic option. Therefore, current research is now focusing on understanding the specific molecular pathways implicated in TNBC, in order to identify novel biomarker signatures and develop targeted therapies able to improve its clinical management. With the aim of identifying novel molecular features characterizing TNBC, elucidating the mechanisms by which these molecular biomarkers are implicated in the tumor development and progression, and assessing the impact on cancerous cells following their inhibition or modulation, we conducted a literature search from the earliest works to December 2023 on PubMed, Scopus, and Web Of Science. A total of 146 studies were selected. The results obtained demonstrated that TNBC is characterized by a heterogeneous molecular profile. Several biomarkers have proven not only to be characteristic of TNBC but also to serve as potential effective therapeutic targets, holding the promise of a new era of personalized treatments able to improve its prognosis. The pre-clinical findings that have emerged from our systematic review set the stage for further investigation in forthcoming clinical trials.
Collapse
Affiliation(s)
- Paola Pastena
- Department of Medicine, Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Hiran Perera
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | | | - William Kartsonis
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Francesco Giovinazzo
- Department of Surgery, Saint Camillus Hospital, 31100 Treviso, Italy
- Department of Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Feng L, Yang Y, Lin Z, Cui M, Jin A, Cui A. NCPAD2 is a favorable predictor of prognostic and immunotherapeutic biomarker for multiple cancer types including lung cancer. Genes Environ 2024; 46:2. [PMID: 38172945 PMCID: PMC10763337 DOI: 10.1186/s41021-023-00291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Non-SMC condensin I complex subunit D2 (NCAPD2) belongs to the chromosomal structural maintenance family. While the different contribution of NCAPD2 to chromosome in mitosis have been thoroughly investigated, much less is known about the expression of NCAPD2 in pan-cancer. Thus, we used a bioinformatics dataset to conduct a pan-cancer analysis of NCAPD2 to determine its regulatory role in tumors. METHODS Multiple online databases were analyzed NCAPD2 gene expression, protein level, patient survival and functional enrichment in pan-cancer. Genetic alteration and tumor stemness of NCAPD2 were analyzed using cBioPortal and SangerBox. The GSCA and CellMiner were used to explore the relationship between NCAPD2 and drug sensitivity. The diagnostic value of prognosis was evaluated by ROC curve. Subsequently, the immune infiltration level and immune subtype of NCAPD2 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were analyzed using TIMER1 and TISIDB. RESULTS NCAPD2 gene expression was significantly higher in most cancers and associated with clinical stage and poor prognosis. Genomic heterogeneity of NCAPD2 promoted the occurrence and development of tumors. GO enrichment analysis suggested NCAPD2 might be involved in DNA repair and immune response. NCAPD2 was involved in immune infiltration of LUAD and LUSC. ROC curves showed that NCAPD2 has important prognosis diagnostic value in LUAD and LUSC. Moreover, NCAPD2 was drug sensitive to topotecan, which may be an optimize immunotherapy. CONCLUSIONS It was found that NCAPD2 was overexpressed in pan-cancers, which was associated with poor outcomes. Importantly, NCAPD2 could be a diagnostic marker and an immune related biomarker for LUAD and LUSC.
Collapse
Affiliation(s)
- Linyuan Feng
- Yanbian University Hospital, Yanji, China
- Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Yang Yang
- Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Zhenhua Lin
- Yanbian University Hospital, Yanji, China
- Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Minghua Cui
- Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Aihua Jin
- Yanbian University Hospital, Yanji, China
| | - Aili Cui
- Yanbian University Hospital, Yanji, China.
| |
Collapse
|
8
|
Dong X, Liu T, Li Z, Zhai Y. Non-SMC condensin I complex subunit D2 (NCAPD2) reveals its prognostic and immunologic features in human cancers. Aging (Albany NY) 2023; 15:7237-7257. [PMID: 37498296 PMCID: PMC10415567 DOI: 10.18632/aging.204904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Non-SMC condensin I complex subunit D2 (NCAPD2) is overexpressed in some malignant tumors. However, there are few studies on the function of NCAPD2 in pan-cancer. We used the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA), and UALCAN to analyze NCAPD2 expression and promoter methylation levels in 33 tumors and normal samples. We performed immunohistochemistry (IHC) on liver cancer and corresponding normal tissues to examine NCAPD2 protein expression in LIHC. Kaplan-Meier survival and univariate regression analyses were performed to explore the pan-cancer clinical significance of NCAPD2. Moreover, correlative analysis between NCAPD2 expression and clinical characteristics, immune cell infiltration, immune checkpoints, immune regulators, tumor mutation burden (TMB), microsatellite instability (MSI), ribonucleic acid (RNA) methylation regulators, and drug sensitivity was conducted using data from TCGA. We also investigated the effects of NCAPD2 expression on immunotherapy efficacy and prognosis. Gene set enrichment analysis (GSEA) was conducted using NCAPD2. Bioinformatic analysis showed that NCAPD2 was overexpressed in most tumors and correlated with the clinical characteristics of some cancers. IHC results demonstrated that NCAPD2 protein expression was higher in LIHC than in normal liver. NCAPD2 expression was linked with T stage, clinical stage, and histologic grade in LIHC. Overexpression of NCAPD2 resulted in poor overall survival, and disease-specific survival in adrenocortical carcinoma, kidney renal papillary cell carcinoma, brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma, mesothelioma, pancreatic adenocarcinoma, sarcoma, skin cutaneous melanoma, and uterine corpus endometrial carcinoma. NCAPD2 was considered an independent biomarker by Cox regression in LIHC. The time ROC curve demonstrated that the survival rate of 1-, 3-, and 5-year OS and DSS in LIHC was above 0.6. The expression of NCAPD2 was significantly correlated with immune cell infiltration, immune checkpoints, TMB, MSI, and RNA methylation regulators in several tumors. NCAPD2 had a high predictive value for immunotherapy efficiency in certain tumors. In our study, drugs sensitive to NCAPD2 protein were screened by sensitivity analysis. GSEA analysis showed that NCAPD2 mainly participated in the G2M checkpoint, mitotic spindle, and KRAS-signaling. NCAPD2 may act as a prognostic molecular marker in most cancers.
Collapse
Affiliation(s)
- Xiaoying Dong
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| | - Ting Liu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Chaoyang 100015, Beijing, People’s Republic of China
| | - Zhizhao Li
- Department of Cardiovascular, Beijing Ditan Hospital, Capital Medical University, Chaoyang 100015, Beijing, People’s Republic of China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| |
Collapse
|
9
|
He J, Gao R, Yang J, Li F, Fu Y, Cui J, Liu X, Huang K, Guo Q, Zhou Z, Wei W. NCAPD2 promotes breast cancer progression through E2F1 transcriptional regulation of CDK1. Cancer Sci 2023; 114:896-907. [PMID: 35348268 PMCID: PMC9986070 DOI: 10.1111/cas.15347] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) is a serious threat to women's health worldwide. Non-SMC condensin I complex subunit D2 (NCAPD2) is a regulatory subunit of the coagulin I complex, which is mainly involved in chromosome coagulation and separation. The clinical significance, biological behavior, and potential molecular mechanism of NCAPD2 in BC were investigated in this study. We found that NCAPD2 was frequently overexpressed in BC, and it had clinical significance in predicting the prognosis of BC patients. Moreover, loss-of-function assays demonstrated that NCAPD2 knockdown restrained the progression of BC by inhibiting proliferation and migration and enhancing apoptosis in vitro. It was further confirmed that the downregulation of NCAPD2 inhibited tumor growth in vivo. NCAPD2 promoted the progression of BC through the extracellular signal-regulated kinase 5 (ERK5) signaling pathway. Additionally, NCAPD2 could transcriptionally activate CDK1 by interacting with E2F transcription factor 1 (E2F1) in MDA-MB-231 cells. Overexpression of CDK1 alleviated the inhibitory effects of NCAPD2 knockdown in BC cells. In summary, the NCAPD2/E2F1/CDK1 axis may play a role in promoting the progression of BC, which may provide a blueprint for molecular therapy.
Collapse
Affiliation(s)
- Jinsong He
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Rui Gao
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianbo Yang
- Department of The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Department of Otolaryngology, The Immunotherapy Research Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
| | - Feng Li
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yang Fu
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Junwei Cui
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoling Liu
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kanghua Huang
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiuyi Guo
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zihan Zhou
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Wei
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
11
|
Siddiqui R, Muhammad JS, Maciver SK, Khan NA. Crocodylus porosus Sera a Potential Source to Identify Novel Epigenetic Targets: In Silico Analysis. Vet Sci 2022; 9:210. [PMID: 35622738 PMCID: PMC9144183 DOI: 10.3390/vetsci9050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
We have previously found that sera from Crocodylus porosus contain anticancer agents and the treatment of MCF7 cells with this serum resulted in the differential expression of 51 genes. The purpose of this study was to use in silico analysis to identify genes that might be epigenetically modulated in cells treated with crocodile serum and to understand the role of potential genes as novel candidates with epigenetic therapeutic potential. The findings report five proto-oncogenes (TUBA1B, SLC2A1, PGK1, CCND1, and NCAPD2) and two tumor suppressor genes (RPLP2, RPL37) as novel therapeutic targets. Furthermore, we present a comprehensive overview of relevant studies on epigenetic regulation of these genes along with an insight into their clinical implications. Therefore, elucidating the molecules present in the serum and gut bacteria of reptiles such as crocodiles may offer insights into the role of these genes on longevity, health, disease, and life expectancy.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates;
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sutherland K. Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK;
| | - Naveed Ahmed Khan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
12
|
Li B, Xiao Q, Shan L, Song Y. NCAPH promotes cell proliferation and inhibits cell apoptosis of bladder cancer cells through MEK/ERK signaling pathway. Cell Cycle 2022; 21:427-438. [PMID: 34974790 PMCID: PMC8855866 DOI: 10.1080/15384101.2021.2021050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bladder cancer (BC) is one of the most common cancers world-wide with a poor prognosis. Non-SMC (Structural Maintenance of Chromosomes)-condensin I complex subunit H (NCAPH) is a regulatory subunit of the condensin I complex and plays an important role in tumorigenesis and progression in several types of cancers. However, the role of NCAPH in BC remains unknown. In this study, we tried to reveal the biological functions of NCAPH in BC. We detected the expressions of NCAPH in BC and adjacent tissues, and BC cells lines. Subsequently, the gain- and loss-of-function experiments were performed to determine the effects of NCAPH on BC cell proliferation, apoptosis, and activation of the MEK/ERK signaling pathway in vitro. Moreover, we used BALB/c nude mice and established a xenograft model to investigate whether silence NCAPH using shRNA targeting NCAPH (shNCAPH) can inhibit BC tumor growth in vivo. The results showed NCAPH was overexpressed in BC tissues compared to adjacent tissues and highly expressed in BC cell lines. Additionally, overexpression of NCAPH promoted cell proliferation and inhibited apoptosis in SW780 cells. Conversely, knockdown of NCAPH reduced cell proliferation and enhanced apoptosis in UMUC3 cells. Furthermore, we found that the NCAPH activated the MEK/ERK signaling pathway in BC cells. MEK1/2 inhibitor U0126 blocked the increase of cell proliferation regulated by NCAPH overexpression. Knockdown of NCAPH significantly inhibited tumor growth in mice. Our results suggest that NCAPH might play an important role in BC progression and provide the potential marker in the diagnosis of BC.
Collapse
Affiliation(s)
- Bo Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian Xiao
- Department of President’s Office, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,CONTACT Yongsheng Song Department of Urology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning110004, China, +86-24-96615-34211
| |
Collapse
|
13
|
Jing Z, He X, Jia Z, Sa Y, Yang B, Liu P. NCAPD2 inhibits autophagy by regulating Ca 2+/CAMKK2/AMPK/mTORC1 pathway and PARP-1/SIRT1 axis to promote colorectal cancer. Cancer Lett 2021; 520:26-37. [PMID: 34229059 DOI: 10.1016/j.canlet.2021.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023]
Abstract
Non-SMC condensin I complex subunit D2 (NCAPD2) is one of the three non-SMC subunits in condensin I. Previous studies have shown that NCAPD2 plays an important role in the chromosome condensation and segregation. However, its role in the development of colorectal cancer (CRC) and specific molecular mechanisms still need to be further studied. Here we show that NCAPD2 inhibits autophagy and blocks autophagic flux via Ca2+/CAMKK/AMPK/mTORC1 pathway and PARP-1/SIRT1 axis. NCAPD2 acts as a tumor promoter both in vitro and in vivo. NCAPD2 knockout suppresses colorectal cancer development in AOM/DSS induced mice model. Therefore, our findings support a role for NCAPD2 in autophagy to promote CRC development and highlight NCAPD2 as a potential target for CRC therapy.
Collapse
Affiliation(s)
- Zuolei Jing
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| | - Xinyuan He
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Zhirong Jia
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Yunli Sa
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Bolin Yang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Wang H, Chen Y, Yang D, Ma L. Perspective of Human Condensins Involved in Colorectal Cancer. Front Pharmacol 2021; 12:664982. [PMID: 34557090 PMCID: PMC8453263 DOI: 10.3389/fphar.2021.664982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Although many important roles are played by human condesins in condensation and segregation of mitotic chromosomes, what roles of human condensins play in colorectal cancer are still unclear at present. Recently, abnormal expressions of all eight subunits of human condensins have been found in colorectal cancer and they are expected to become potential biomarkers and therapeutic targets for colorectal cancer in the future. However, there are still no reviews on the significance of abnormal expression of human condensin subunits and colorectal cancer until now. Based on a brief introduction to the discovery and composition of human condensins, the review summarized all abnormally expressed human subunits found in colorectal cancer based on publicly published papers. Moreover, Perspective of application on abnormally expressed human subunits in colorectal cancer is further reviewed.
Collapse
Affiliation(s)
- Hongzhen Wang
- School of Life Sciences, Jilin Normal University, Siping, China
| | - Yao Chen
- School of Life Sciences, Jilin Normal University, Siping, China
| | - Dawei Yang
- The Department of General Surgery, The Central People's Hospital of Siping City, Siping, China
| | - Liang Ma
- The Department of General Surgery, The Central People's Hospital of Siping City, Siping, China
| |
Collapse
|
15
|
Zhang C, Li Y, Qin J, Yu C, Ma G, Chen H, Xu X. TMT-Based Quantitative Proteomic Analysis Reveals the Effect of Bone Marrow Derived Mesenchymal Stem Cell on Hair Follicle Regeneration. Front Pharmacol 2021; 12:658040. [PMID: 34194323 PMCID: PMC8237093 DOI: 10.3389/fphar.2021.658040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Hair loss (HL) is a common chronic problem of poorly defined etiology. Herein, we explored the functionality of bone marrow-derived mesenchymal stem cell (BMSC) and conditioned medium (MSC-CM) as regulators of hair follicle proliferation and regeneration, and the mechanistic basis for such activity. BMSC were cultured and identified in vitro through the induction of multilineage differentiation and the use of a CCK-8 kit. The dorsal skin of mice was then injected with BMSC and MSC-CM, and the impact of these injections on hair cycle transition and hair follicle stem cell (HFSC) proliferation was then evaluated via hematoxylin and eosin (H&E) staining and immunofluorescent (IF) staining. We then conducted a tandem mass tags (TMT)-based quantitative proteomic analysis of control mice and mice treated with BMSC or MSC-CM to identify differentially expressed proteins (DEPs) associated with these treatments. Parallel reaction monitoring (PRM) was utilized as a means of verifying our proteomic analysis results. Herein, we found that BMSC and MSC-CM injection resulted in the transition of telogen hair follicles to anagen hair follicles, and we observed the enhanced proliferation of HFSCs positive for Krt15 and Sox9. Our TMT analyses identified 1,060 and 770 DEPs (fold change>1.2 or<0.83 and p < 0.05) when comparing the BMSC vs. control and MSC-CM vs. control groups, respectively. Subsequent PRM validation of 14 selected DEPs confirmed these findings, and led to the identification of Stmn1, Ncapd2, Krt25, and Ctps1 as hub DEPs in a protein-protein interaction network. Together, these data suggest that BMSC and MSC-CM treatment can promote the proliferation of HFSCs, thereby facilitating hair follicle regeneration. Our proteomics analyses further indicate that Krt25, Cpm, Stmn1, and Mb may play central roles in hair follicle transition in this context and may represent viable clinical targets for the treatment of HL.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - YuanHong Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Jie Qin
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - ChengQian Yu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Gang Ma
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - HongDuo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - XueGang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| |
Collapse
|
16
|
Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062078. [PMID: 32245065 PMCID: PMC7143295 DOI: 10.3390/ijerph17062078] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) cells are deficient in estrogen, progesterone and ERBB2 receptor expression, presenting a particularly challenging therapeutic target due to their highly invasive nature and relatively low response to therapeutics. There is an absence of specific treatment strategies for this tumor subgroup, and hence TNBC is managed with conventional therapeutics, often leading to systemic relapse. In terms of histology and transcription profile these cancers have similarities to BRCA-1-linked breast cancers, and it is hypothesized that BRCA1 pathway is non-functional in this type of breast cancer. In this review article, we discuss the different receptors expressed by TNBC as well as the diversity of different signaling pathways targeted by TNBC therapeutics, for example, Notch, Hedgehog, Wnt/b-Catenin as well as TGF-beta signaling pathways. Additionally, many epidermal growth factor receptor (EGFR), poly (ADP-ribose) polymerase (PARP) and mammalian target of rapamycin (mTOR) inhibitors effectively inhibit the TNBCs, but they face challenges of either resistance to drugs or relapse. The resistance of TNBC to conventional therapeutic agents has helped in the advancement of advanced TNBC therapeutic approaches including hyperthermia, photodynamic therapy, as well as nanomedicine-based targeted therapeutics of drugs, miRNA, siRNA, and aptamers, which will also be discussed. Artificial intelligence is another tool that is presented to enhance the diagnosis of TNBC.
Collapse
|
17
|
Zhou X, Zhi Y, Yu J, Xu D. The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis. Int J Mol Sci 2020; 21:ijms21051691. [PMID: 32121580 PMCID: PMC7084222 DOI: 10.3390/ijms21051691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
Collapse
Affiliation(s)
- Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Correspondence: ; Tel.: +86-17085937559
| |
Collapse
|
18
|
NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility. Int J Mol Sci 2020; 21:ijms21041248. [PMID: 32070024 PMCID: PMC7072915 DOI: 10.3390/ijms21041248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
NCAPG is a subunit of condensin I that plays a crucial role in chromatin condensation during mitosis. NCAPG has been demonstrated to be associated with farm animal growth traits. However, its role in regulating myoblast differentiation is still unclear. We used myoblasts derived from fetal bovine tissue as an in vitro model and found that NCAPG was expressed during myogenic differentiation in the cytoplasm and nucleus. Silencing NCAPG prolonged the mitosis and impaired the differentiation due to increased myoblast apoptosis. After 1.5 days of differentiation, silencing NCAPG enhanced muscle-specific gene expression. An assay for transposase-accessible chromatin- high throughput sequencing (ATAC-seq) revealed that silencing NCAPG altered chromatin accessibility to activating protein 1 (AP-1) and its subunits. Knocking down the expression of the AP-1 subunits fos-related antigen 2 (FOSL2) or junB proto-oncogene (JUNB) enhanced part of the muscle-specific gene expression. In conclusion, our data provide valuable evidence about NCAPG’s function in myogenesis, as well as its potential role in gene expression.
Collapse
|