1
|
Xuan M, Gu X, Xing H. Multi-omic analysis identifies the molecular mechanism of hepatocellular carcinoma with cirrhosis. Sci Rep 2024; 14:23832. [PMID: 39394373 PMCID: PMC11470084 DOI: 10.1038/s41598-024-75609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Hepatocellular carcinoma with cirrhosis promotes the advancement of malignancy and the development of fibrosis in normal liver tissues. Understanding the pathological mechanisms underlying the development of HCC with cirrhosis is important for developing effective therapeutic strategies. Herein, the RNA-sequencing (RNA-seq) data and corresponding clinical features of patients with HCC were extracted from The Cancer Genome Atlas (TCGA) database using the University of California Santa Cruz (UCSC) Xena platform. The enrichment degree of hallmarkers for each TCGA-LIHC cohort was quantified by ssGSEA algorithm. Weighted gene co-expression network analysis (WGCNA) revealed two gene module eigengenes (MEs) associated with cirrhosis, namely, MEbrown and MEgreen. Analysis of these modules using AUCell showed that MEbrown had higher enrichment scores in all immune cells, whereas MEgreen had higher enrichment scores in malignant cells. The CellChat package revealed that both immune and malignant cells contributed to the fibrotic activity of myofibroblasts through diverse signaling pathways. Additionally, spatial transcriptomic data showed that hepatocytes, proliferating hepatocytes, macrophages, and myofibroblasts were located in closer proximity in HCC tissues. These cells may potentially participate in the process of stimulating myofibroblast fibrotic activity, which may be related to the development of liver fibrosis. In summary, we made full use of multi-omics data to explore gene networks and cell types that may be involved in the development and progression of cirrhosis in HCC.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Lehtimäki KK, Rytkönen J, Pussinen R, Shatillo A, Bragge T, Heikkinen T, Fischer DF, Kopanitsa MV, Sweeney P, Nurmi A, Puoliväli J. Physiological and behavioural implications of the portosystemic shunt in C57Bl/6J mice. J Physiol 2024; 602:5353-5373. [PMID: 39365978 DOI: 10.1113/jp287237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
A significant fraction of the popular inbred C57Bl/6J mice show structural and biochemical features of the congenital portosystemic shunt (PSS). How this hepatic abnormality affects physiological and behavioural parameters has not been explored in detail. Here, we confirmed the frequent occurrence of the PSS in C57Bl/6J mice by three different methods. We screened a cohort of 119 C57Bl/6J mice for total bile acids (TBA) in plasma, identified 11 animals (9.2%) with high TBA (>11 µm; 171.1 ± 76.8 µm), and confirmed PSS presence in that subset by magnetic resonance angiography and 1H-magnetic resonance spectroscopy of brain metabolites in the hippocampal area. In addition to the high glutamine and low myo-inositol levels, we detected lower levels of several neurotransmitters and metabolites in the hippocampus, higher brain weight and volume, as well as enhanced brain glucose utilisation in the PSS mice. We also observed differences in peripheral organ weights, haematological cell counts and clinical chemistry parameters in C57Bl/6J mice with and without PSS. Animals with PSS were slightly hyperlocomotive, had better balance on the rotarod, showed altered gait properties, and displayed attenuated fear memory in the fear conditioning test. Furthermore, we revealed a significant alteration of the pharmacokinetic profile of diazepam in C57Bl/6J mice with PSS. Our data support previous reports of hepatic disturbances and demonstrate an altered neurobiological phenotype in C57Bl/6J mice with PSS. Such congenital differences between inbred C57Bl/6J littermates may significantly distort experimental outcomes of pharmacological, behavioural and genetic studies. KEY POINTS: A significant proportion of C57Bl/6J mice, an inbred strain popular in preclinical research, have congenital portosystemic shunts (PSS) that allow venous blood to enter systemic circulation bypassing the liver. In this study, we extended existing knowledge of PSS consequences, particularly with respect to the effects on brain structure and function. We demonstrated that C57Bl/6J mice with PSS differ from their normal counterparts in brain size and contents of several neuroactive substances, as well as in peripheral organ weights, rate of glucose utilisation, blood cell counts and blood clinical chemistry parameters. C57Bl/6J mice with PSS showed altered locomotor behaviour, performed worse in a memory test and had abnormal blood pharmacokinetics of a benzodiazepine drug after a single administration. PSS presence may significantly complicate the interpretation of experiments in C57Bl/6J mice; therefore, we propose that before their use in biomedical studies, these mice should be screened with a simple blood test.
Collapse
Affiliation(s)
| | | | | | | | - Timo Bragge
- Charles River Discovery Services, Kuopio, Finland
| | | | - David F Fischer
- Charles River Discovery Services, Chesterford Research Park, Saffron Walden, UK
| | | | | | - Antti Nurmi
- Charles River Discovery Services, Kuopio, Finland
| | | |
Collapse
|
3
|
Gao B, Zhou P, Wang L, Wang Z, Yi Y, Li X, Zhou J, Fan J, Qiu S, Xu Y. Effects of the subtypes of apolipoprotein E on immune inhibition and prognosis in patients with Hepatocellular Carcinoma. J Cancer Res Clin Oncol 2024; 150:341. [PMID: 38976030 PMCID: PMC11230970 DOI: 10.1007/s00432-024-05856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE To investigate whether prognosis of patients with hepatocellular carcinoma (HCC) is affected by the abundance and subgroups of myeloid-derived suppressor cells (MDSCs) as well as subtypes and expression of apolipoprotein E (apoE). METHODS 31 HCC patients were divided into three groups according to blood total apoE level for detecting the abundance of immunoregulatory cells by flow cytometry. Tumour tissue microarrays from 360 HCC patients were evaluated about the abundance and subgroups of MDSCs and the expression of apoE2, apoE3, apoE4 by immunofluorescence staining and immunohistochemistry staining. Survival analysis by means of univariate, multivariate COX regression and Kaplan-Meier methods of the 360 patients was performed based on clinical and pathological examinations along with 10 years' follow-up data. RESULTS The lower apoE group presented higher abundance of MDSCs in the peripheral blood of HCC patients than higher apoE group. The abundance of monocyte-like MDSCs (M-MDSCs) was higher in the apoE low level group than high level group (p = 0.0399). Lower H-score of apoE2 (HR = 6.140, p = 0.00005) and higher H-score of apoE4 (HR = 7.001, p = 0.009) in tumour tissue were significantly associated with shorter overall survival (OS). The higher infiltration of polymorphonuclear granulocyte-like MDSCs (PMN-MDSCs, HR = 3.762, p = 0.000009) and smaller proportion of M-MDSCs of total cells (HR = 0.454, p = 0.006) in tumour tissue were independent risk factors for shorter recurrence-free survival (RFS). CONCLUSION The abundance of MDSCs in HCC patients' plasma negatively correlates with the level of apoE. The expression of apoE4 in HCC tissue indicated a poor prognosis while apoE2 might be a potential protective factor.
Collapse
Affiliation(s)
- Bowen Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Peiyun Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Cancer Centre, Fudan University, Shanghai, 200032, China
| | - Li Wang
- Institutes of Biomedical Science, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhutao Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian Li
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
5
|
Koda Y, Nagasaki Y. Metabolic dysfunction-associated steatohepatitis treated by poly(ethylene glycol)-block-poly(cysteine) block copolymer-based self-assembling antioxidant nanoparticles. J Control Release 2024; 370:367-378. [PMID: 38692439 DOI: 10.1016/j.jconrel.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Non-alcoholic steatohepatitis (NASH), now known as metabolic dysfunction-associated steatohepatitis (MASH), involves oxidative stress caused by the overproduction of reactive oxygen species (ROS). Small-molecule antioxidants have not been approved for antioxidant chemotherapy because of severe adverse effects that collapse redox homeostasis, even in healthy tissues. To overcome these disadvantages, we have been developing poly(ethylene glycol)-block-poly(cysteine) (PEG-block-PCys)-based self-assembling polymer nanoparticles (NanoCyses), releasing Cys after in vivo degradation by endogenous enzymes, to obtain antioxidant effects without adverse effects. However, a comprehensive investigation of the effects of polymer design on therapeutic outcomes has not yet been conducted to develop our NanoCys system for antioxidant chemotherapy. In this study, we synthesized different poly(L-cysteine) (PCys) chains whose sulfanyl groups were protected by tert-butyl thiol (StBu) and butyryl (Bu) groups to change the reactivity of the side chains, affording NanoCys(SS) and NanoCys(Bu), respectively. To elucidate the importance of the polymer design, these NanoCyses were orally administered to MASH model mice as a model of oxidative stress-related diseases. Consequently, the acyl-protective NanoCys(Bu) significantly suppressed hepatic lipid accumulation and oxidative stress compared to NanoCys(SS). Furthermore, we substantiated that shorter PCys were much better than longer PCys for therapeutic outcomes and the effects related to the liberation properties of Cys from these nanoparticles. Owing to its antioxidant functions, NanoCyses also significantly attenuated hepatic inflammation and fibrosis in the MASH mouse model.
Collapse
Affiliation(s)
- Yuta Koda
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation, Isotope and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku Tokyo 113-0033, Japan; High-value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
6
|
Peloso A, Lacotte S, Gex Q, Slits F, Moeckli B, Oldani G, Tihy M, Hautefort A, Kwak B, Rubbia-Brandt L, Toso C. Portosystemic shunting prevents hepatocellular carcinoma in non-alcoholic fatty liver disease mouse models. PLoS One 2023; 18:e0296265. [PMID: 38157359 PMCID: PMC10756526 DOI: 10.1371/journal.pone.0296265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is one of the leading cause of hepatocellular carcinoma (HCC). This association is supported by the translocation of bacteria products into the portal system, which acts on the liver through the gut-liver axis. We hypothesize that portosystemic shunting can disrupt this relationship, and prevent NAFLD-associated HCC. METHODS HCC carcinogenesis was tested in C57BL/6 mice fed a high-fat high-sucrose diet (HFD) and injected with diethylnitrosamine (DEN) at two weeks of age, and in double transgenic LAP-tTA and TRE-MYC (LAP-Myc) mice fed a methionine-choline-deficient diet. Portosystemic shunts were established by transposing the spleen to the sub-cutaneous tissue at eight weeks of age. RESULTS Spleen transposition led to a consistent deviation of part of the portal flow and a significant decrease in portal pressure. It was associated with a decrease in the number of HCC in both models. This effect was supported by the presence of less severe liver steatosis after 40 weeks, and lower expression levels of liver fatty acid synthase. Also, shunted mice exhibited lower liver oxygen levels, a key factor in preventing HCC as confirmed by the development of less HCCs in mice with hepatic artery ligation. CONCLUSIONS The present data show that portosystemic shunting prevents NAFLD-associated HCC, utilizing two independent mouse models. This effect is supported by the development of less steatosis, and a restored liver oxygen level. Portal pressure modulation and shunting deserve further exploration as potential prevention/treatment options for NAFLD and HCC.
Collapse
Affiliation(s)
- Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Stéphanie Lacotte
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Florence Slits
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Beat Moeckli
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| | - Matthieu Tihy
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Brenda Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Transplantation and Hepatology Laboratory, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Yeoh BS, Golonka RM, Saha P, Kandalgaonkar MR, Tian Y, Osman I, Patterson AD, Gewirtz AT, Joe B, Vijay-Kumar M. Urine-based Detection of Congenital Portosystemic Shunt in C57BL/6 Mice. FUNCTION 2023; 4:zqad040. [PMID: 37575479 PMCID: PMC10413929 DOI: 10.1093/function/zqad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Sporadic occurrence of congenital portosystemic shunt (PSS) at a rate of ∼1 out of 10 among C57BL/6 J mice, which are widely used in biomedical research, results in aberrancies in serologic, metabolic, and physiologic parameters. Therefore, mice with PSS should be identified as outliers in research. Accordingly, we sought methods to, reliably and efficiently, identify PSS mice. Serum total bile acids ≥ 40 µm is a bona fide biomarker of PSS in mice but utility of this biomarker is limited by its cost and invasiveness, particularly if large numbers of mice are to be screened. This led us to investigate if assay of urine might serve as a simple, inexpensive, noninvasive means of PSS diagnosis. Metabolome profiling uncovered that Krebs cycle intermediates, that is, citrate, α-ketoglutarate, and fumarate, were strikingly and distinctly elevated in the urine of PSS mice. We leveraged the iron-chelating and pH-lowering properties of such metabolites as the basis for 3 urine-based PSS screening tests: urinary iron-chelation assay, pH strip test, and phenol red assay. Our findings demonstrate the feasibility of using these colorimetric assays, whereby their readout can be assessed by direct observation, to diagnose PSS in an inexpensive, rapid, and noninvasive manner. Application of our urinary PSS screening protocols can aid biomedical research by enabling stratification of PSS mice, which, at present, likely confound numerous ongoing studies.
Collapse
Affiliation(s)
- Beng San Yeoh
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M Golonka
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Mrunmayee R Kandalgaonkar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Islam Osman
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bina Joe
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
8
|
Peleman C, De Vos WH, Pintelon I, Driessen A, Van Eyck A, Van Steenkiste C, Vonghia L, De Man J, De Winter BY, Vanden Berghe T, Francque SM, Kwanten WJ. Zonated quantification of immunohistochemistry in normal and steatotic livers. Virchows Arch 2023; 482:1035-1045. [PMID: 36702937 DOI: 10.1007/s00428-023-03496-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Immunohistochemical stains (IHC) reveal differences between liver lobule zones in health and disease, including nonalcoholic fatty liver disease (NAFLD). However, such differences are difficult to accurately quantify. In NAFLD, the presence of lipid vacuoles from macrovesicular steatosis further hampers interpretation by pathologists. To resolve this, we applied a zonal image analysis method to measure the distribution of hypoxia markers in the liver lobule of steatotic livers.The hypoxia marker pimonidazole was assessed with IHC in the livers of male C57BL/6 J mice on standard diet or choline-deficient L-amino acid-defined high-fat diet mimicking NAFLD. Another hypoxia marker, carbonic anhydrase IX, was evaluated by IHC in human liver tissue. Liver lobules were reconstructed in whole slide images, and staining positivity was quantified in different zones in hundreds of liver lobules. This method was able to quantify the physiological oxygen gradient along hepatic sinusoids in normal livers and panlobular spread of the hypoxia in NAFLD and to overcome the pronounced impact of macrovesicular steatosis on IHC. In a proof-of-concept study with an assessment of the parenchyma between centrilobular veins in human liver biopsies, carbonic anhydrase IX could be quantified correctly as well.The method of zonated quantification of IHC objectively quantifies the difference in zonal distribution of hypoxia markers (used as an example) between normal and NAFLD livers both in whole liver as well as in liver biopsy specimens. It constitutes a tool for liver pathologists to support visual interpretation and estimate the impact of steatosis on IHC results.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium.
| | - Winnok H De Vos
- Laboratory of Cell Biology & Histology, Department Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology, Department Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- µNEURO Research Excellence Consortium On Multimodal Neuromics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Ann Driessen
- Department of Pathology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Annelies Van Eyck
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Christophe Van Steenkiste
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Luisa Vonghia
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Joris De Man
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Tom Vanden Berghe
- Laboratory of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Wilhelmus J Kwanten
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Centre of Excellence, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
9
|
Ait-Ahmed Y, Lafdil F. Novel insights into the impact of liver inflammatory responses on primary liver cancer development. LIVER RESEARCH 2023; 7:26-34. [PMID: 39959704 PMCID: PMC11791919 DOI: 10.1016/j.livres.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
Primary liver cancers rank among the deadliest cancers worldwide and often develop in patients with chronic liver diseases in an inflammatory context. This review highlights recent reports on the mechanisms of inflammatory-mediated hepatic cell transformation that trigger the tumorigenic process (initiation steps) and the impact of the immune response favoring tumor cell expansion (progression steps). Several cytokines, namely interleukin (IL)-6, IL-17, IL-1beta, and tumor necrosis factor-alpha, have been described to play a prominent role in the initiation of liver cancers. Additionally, inflammation contributes to cancer progression by favoring tumor escape from anti-tumor immune response, angiogenesis, and metastasis through tumor growth factor-beta and matrix metalloprotease upregulation. These recent studies allowed the development of novel therapeutic strategies aiming at regulating liver inflammation. These strategies are based on the use of anti-inflammatory agents, antibodies targeting immune checkpoint molecules such as programmed death ligand 1 and molecules targeting angiogenic factors, metastasis key factors, and microRNAs involved in tumor development. This review aims at summarizing the recent studies reporting different mechanisms by which the liver inflammatory responses could contribute to liver cancer development.
Collapse
Affiliation(s)
- Yeni Ait-Ahmed
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
10
|
Yeoh BS, Saha P, Golonka RM, Zou J, Petrick JL, Abokor AA, Xiao X, Bovilla VR, Bretin ACA, Rivera-Esteban J, Parisi D, Florio AA, Weinstein SJ, Albanes D, Freeman GJ, Gohara AF, Ciudin A, Pericàs JM, Joe B, Schwabe RF, McGlynn KA, Gewirtz AT, Vijay-Kumar M. Enterohepatic Shunt-Driven Cholemia Predisposes to Liver Cancer. Gastroenterology 2022; 163:1658-1671.e16. [PMID: 35988658 PMCID: PMC9691575 DOI: 10.1053/j.gastro.2022.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Pathogenesis of hepatocellular carcinoma (HCC), which kills millions annually, is poorly understood. Identification of risk factors and modifiable determinants and mechanistic understanding of how they impact HCC are urgently needed. METHODS We sought early prognostic indicators of HCC in C57BL/6 mice, which we found were prone to developing this disease when fed a fermentable fiber-enriched diet. Such markers were used to phenotype and interrogate stages of HCC development. Their human relevance was tested using serum collected prospectively from an HCC/case-control cohort. RESULTS HCC proneness in mice was dictated by the presence of congenitally present portosystemic shunt (PSS), which resulted in markedly elevated serum bile acids (BAs). Approximately 10% of mice from various sources exhibited PSS/cholemia, but lacked an overt phenotype when fed standard chow. However, PSS/cholemic mice fed compositionally defined diets, developed BA- and cyclooxygenase-dependent liver injury, which was exacerbated and uniformly progressed to HCC when diets were enriched with the fermentable fiber inulin. Such progression to cholestatic HCC associated with exacerbated cholemia and an immunosuppressive milieu, both of which were required in that HCC was prevented by impeding BA biosynthesis or neutralizing interleukin-10 or programmed death protein 1. Analysis of human sera revealed that elevated BA was associated with future development of HCC. CONCLUSIONS PSS is relatively common in C57BL/6 mice and causes silent cholemia, which predisposes to liver injury and HCC, particularly when fed a fermentable fiber-enriched diet. Incidence of silent PSS/cholemia in humans awaits investigation. Regardless, measuring serum BA may aid HCC risk assessment, potentially alerting select individuals to consider dietary or BA interventions.
Collapse
Affiliation(s)
- Beng San Yeoh
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Rachel M Golonka
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | | | - Ahmed A Abokor
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xia Xiao
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Venugopal R Bovilla
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Alexis C A Bretin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jesús Rivera-Esteban
- Liver Unit, Department of Internal Medicine, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Andrea A Florio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gordon J Freeman
- Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Amira F Gohara
- Department of Pathology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan M Pericàs
- Liver Unit, Department of Internal Medicine, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Bina Joe
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Robert F Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.
| |
Collapse
|
11
|
Takiyama T, Sera T, Nakamura M, Hoshino M, Uesugi K, Horike SI, Meguro-Horike M, Bessho R, Takiyama Y, Kitsunai H, Takeda Y, Sawamoto K, Yagi N, Nishikawa Y, Takiyama Y. A maternal high-fat diet induces fetal origins of NASH-HCC in mice. Sci Rep 2022; 12:13136. [PMID: 35907977 PMCID: PMC9338981 DOI: 10.1038/s41598-022-17501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal overnutrition affects offspring susceptibility to nonalcoholic steatohepatitis (NASH). Male offspring from high-fat diet (HFD)-fed dams developed a severe form of NASH, leading to highly vascular tumor formation. The cancer/testis antigen HORMA domain containing protein 1 (HORMAD1), one of 146 upregulated differentially expressed genes in fetal livers from HFD-fed dams, was overexpressed with hypoxia-inducible factor 1 alpha (HIF-1alpha) in hepatoblasts and in NASH-based hepatocellular carcinoma (HCC) in offspring from HFD-fed dams at 15 weeks old. Hypoxia substantially increased Hormad1 expression in primary mouse hepatocytes. Despite the presence of three putative hypoxia response elements within the mouse Hormad1 gene, the Hif-1alpha siRNA only slightly decreased hypoxia-induced Hormad1 mRNA expression. In contrast, N-acetylcysteine, but not rotenone, inhibited hypoxia-induced Hormad1 expression, indicating its dependency on nonmitochondrial reactive oxygen species production. Synchrotron-based phase-contrast micro-CT of the fetuses from HFD-fed dams showed significant enlargement of the liver accompanied by a consistent size of the umbilical vein, which may cause hypoxia in the fetal liver. Based on these findings, a maternal HFD induces fetal origins of NASH/HCC via hypoxia, and HORMAD1 is a potential therapeutic target for NASH/HCC.
Collapse
Affiliation(s)
- Takao Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Sera
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Ryoichi Bessho
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuri Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kitsunai
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasutaka Takeda
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuki Sawamoto
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yumi Takiyama
- Division of Diabetes, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|