1
|
Zhang Z, Kong APS, Wong VWS, Hui HX. Intermittent fasting and metabolic dysfunction-associated steatotic liver disease: the potential role of the gut-liver axis. Cell Biosci 2025; 15:64. [PMID: 40410852 PMCID: PMC12102857 DOI: 10.1186/s13578-025-01406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing public health concern linked to the increasing prevalence of metabolic syndrome, including obesity and type 2 diabetes (T2D). MASLD remains a significant clinical challenge due to the absence of effective therapeutic interventions. Intermittent fasting (IF) has emerged as a promising non-pharmacological strategy for managing MASLD. Although the exact mechanisms underpinning the possible beneficial effects of IF on MASLD are not yet fully elucidated, the gut microbiota and its metabolic byproducts are increasingly recognized as potential mediators of these effects. The gut-liver axis may act as an important conduit through which IF exerts its beneficial influence on hepatic function. This review comprehensively examines the impact of various IF protocols on gut microbiota composition, investigating the resultant alterations in microbial diversity and metabolomic profiles, and their potential implications for liver health and the improvement of MASLD.
Collapse
Affiliation(s)
- Zhaoxi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Liu H, Wang Q, Zeng L, Liu Y, Zhang Y, Sun Z, Guo Q, Cui SW. Structural Dynamics, Gut Microbiota Modulation, and Immunological Impacts of Shiitake Mushroom β-Glucan during In Vitro Intestinal Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12049-12060. [PMID: 40312144 DOI: 10.1021/acs.jafc.5c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
This study investigated the structure-function relationship of shiitake β-glucan (SBG) through simulated digestion and colonic fermentation. SBG, composed of β-(1 → 3)-linked glucan backbones with β-(1 → 6)-linked side chains, exhibited notable resistance to enzymatic and acidic degradation in the upper gastrointestinal tract. During in vitro colonic fermentation, 59% of carbohydrates were consumed within 48 h, with a significant pH reduction and a 1.5-fold increase in short-chain fatty acid production. Microbiome analysis demonstrated that SBG enhanced Bacteroides and Lactobacillus populations, while suppressing Escherichia-Shigella. Within the first 12 h, SBG maintained a rigid triple-helix structure, with a slight decrease in branching from 48.02 to 44.26%. After 24 h, the triple helix unwound, and extensive depolymerization of the backbone occurred by 48 h. Immunomodulatory activity was preserved early in fermentation but decreased as the triple-helix structure broke down. These findings emphasize the critical role of molecular rigidity and conformational integrity in β-glucan's functionality for food and therapeutic applications.
Collapse
Affiliation(s)
- Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiannan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Zeng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yongshuai Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yiheng Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenou Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
3
|
Pan H, Bi J, Hu H, Huang Y, Li A, Zhang H, Wan Y, Zhan K, Wang K, Zhao Z, Bai X. Chinese herbal medicine improves antioxidant capacity of chicken liver at high stocking density involved gut-liver microbiota axis based on multi-omics technologies. Poult Sci 2025; 104:105015. [PMID: 40106906 PMCID: PMC11964641 DOI: 10.1016/j.psj.2025.105015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Traditional Chinese Medicine (TCM), such as artemisinin, berberine and proanthocyanidin, has been considered an effective additive for broiler production. High density farming (HDF), which is the primary modern mode of chicken production, is associated with animal health problems. This work aimed to evaluate the effects of dietary TCMs (dihydroartemisinin, hydrochloride, and oligomeric proanthocyanidins) on improving the antioxidant capacity of chickens under HDF and their underlying mechanisms. A total of 360 Wuding chickens (134-day-old) were divided into five experimental groups: one normal stocking density (8 birds/m2, control group) and four high stocking density (16 birds/m2), with six replicates for each group. For four HDF groups, one group was fed the basal diet, and the other three groups were fed the basal diet supplemented with 80 mg/kg dihydroartemisinin, 600 mg/kg berberine hydrochloride, and 250 mg/kg grape oligomeric proanthocyanidins, respectively. HDF increased malondialadehyde level, but decreased superoxide dismutase, glutathione and glutathione peroxidase levels in the liver of broiler; however, dietary TCMs apparently alleviated this attenuation. Dietary TCMs significantly decreased the expression of genes involved in cholesterol synthesis in the liver and the levels of tripepides in the intestine of the HDF chickens. Meanwhile, dietary TCMs significantly altered the composition of the liver microbiome in the HDF chickens, expressing by reduced Pseudomonas but enriched Bradyrhizobium. The gut microbiota of the HDF chickens was also altered following dietary TCM administration, with a decreased abundance of Microbacter margulisiae and an increased abundance of acetate synthesis genes. Association analysis of the multi-omics results revealed negative correlations between liver cholesterol synthesis and antioxidant factors that could be regulated by gut microbiota-produced short-chain fatty acids. Furthermore, alleviating of oxidative stress by dietary TCMs also showed significant correlations with the liver microbiome, which could be mediated by tripeptides produced by the gut microbiota. These results indicated that dietary TCM is beneficial in improving antioxidant defenses in HDF chickens and interpreted the mechanisms of action of TCM from the perspective of modern science.
Collapse
Affiliation(s)
- Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Junlong Bi
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, PR China
| | - Yi Wan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, PR China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, PR China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, PR China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, 201800, PR China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233000, PR China.
| |
Collapse
|
4
|
Yang H, Lei C, Li D, Ma L, Zhang N, Lang Y, Wu L, Wang M, Tian H, Li C. An integrated fecal microbiome and metabolomics in type 2 diabetes mellitus rats reveal mechanism of action of Moringa oleifera Lamarck seeds polysaccharides to alleviate diabetes. Int J Biol Macromol 2025; 310:143437. [PMID: 40274155 DOI: 10.1016/j.ijbiomac.2025.143437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Moringa oleifera Lamarck seeds (MOS) have been traditionally used in folk medicine and documented for their potential to alleviate type 2 diabetes symptoms, but the potential mechanisms are still unknown. The purpose of this article is to investigate the effects of MSAP (alkali-extracted polysaccharide from MOS) on diabetic rats by assessing its impact on the gut microbiome, diabetes-related biochemical markers, and fecal metabolomics. The results demonstrated that the fasting blood glucose, glucose tolerance, insulin resistance, insulin level and lipopolysaccharides (LPS) level in the rats treated with MSAP were all improved. Specifically, MSAP was found to modulate the composition and diversity of the gut microbiota, increasing the ratio of Firmicutes/Bacteroidetes, which enhanced the quantity of probiotic Lactobacillus and butyrate-producing bacteria, such as Roseburia, thereby reinforcing the intestinal epithelial barrier. Furthermore, fecal metabolomics indicates that MSAP actively regulates pathways closely associated with diabetes, including sphingolipid metabolism, amino acid synthesis and catabolism, retrograde endogenous cannabinoid signaling, and the modulation of TRP channels by inflammatory mediators. By integrating microbiome and metabolomics data, this study elucidated the mechanisms through which MSAP alleviates diabetes. In conclusion, the findings suggest that polysaccharides from MOS hold potential as a medicinal and edible homologous food for diabetes management.
Collapse
Affiliation(s)
- Hongru Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Public Health, Hebei University, Baoding, Hebei 071000, China
| | - Chongbin Lei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Lei Ma
- College of Public Health, Hebei University, Baoding, Hebei 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Yumiao Lang
- College of Public Health, Hebei University, Baoding, Hebei 071000, China
| | - Liping Wu
- College of Nursing, Hebei University, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co. Ltd., Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei 071000, China.
| |
Collapse
|
5
|
Kamath S, Bryant RV, Costello SP, Day AS, Forbes B, Haifer C, Hold G, Kelly CR, Li A, Pakuwal E, Stringer A, Tucker EC, Wardill HR, Joyce P. Translational strategies for oral delivery of faecal microbiota transplantation. Gut 2025:gutjnl-2025-335077. [PMID: 40301116 DOI: 10.1136/gutjnl-2025-335077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy for Clostridioides difficile infections and shows promise for various GI and systemic diseases. However, the poor patient acceptability and accessibility of 'conventional' FMT, typically administered via colonoscopies or enemas, hinders its widespread clinical adoption, particularly for chronic conditions. Oral administration of FMT (OralFMT) overcomes these limitations, yet faces distinct challenges, including a significant capsule burden, palatability concerns and poor microbial viability during gastric transit. This review provides a comprehensive analysis of emerging strategies that aim to advance OralFMT by: (1) refining processing technologies (eg, lyophilisation) that enable manufacturing of low-volume FMT formulations for reducing capsule burden and (2) developing delivery technologies that improve organoleptic acceptability and safeguard the microbiota for targeted colonic release. These advancements present opportunities for OralFMT to expand its therapeutic scope, beyond C. difficile infections, towards chronic GI conditions requiring frequent dosing regimens. While this review primarily focuses on optimising OralFMT delivery, it is important to contextualise these advancements within the broader shift towards defined microbial consortia. Live biotherapeutic products (LBPs) offer an alternative approach, yet the interplay between OralFMT and LBPs in clinical practice remains unresolved. We postulate that continued innovation in OralFMT and LBPs via a multidisciplinary approach can further increase therapeutic efficacy and scalability by enabling disease site targeting, co-delivery of therapeutic compounds and overcoming colonisation resistance. Realising these goals positions OralFMT as a cornerstone of personalised care across a range of diseases rooted in microbiome health.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert V Bryant
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel P Costello
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- The University of Adelaide, Adelaide, South Australia, Australia
| | - Alice S Day
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | | | - Craig Haifer
- Department of Gastroenterology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Georgina Hold
- Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Colleen R Kelly
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anna Li
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Evance Pakuwal
- Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea Stringer
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Emily C Tucker
- Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Infectious Diseases Unit, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Hannah Rose Wardill
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Paul Joyce
- University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Abdu SMN, Abdalla IM, Zhen Y, Zhang C, Xi Z, Ma J, Zhong Y, Lin J, Ali R, Wang M. Gastric Infusion of Short-Chain Fatty Acids Improves Health via Enhance Liver and Intestinal Immune Response and Antioxidant Capacity in Goats. Vet Sci 2025; 12:395. [PMID: 40431488 PMCID: PMC12115894 DOI: 10.3390/vetsci12050395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 05/29/2025] Open
Abstract
In the present study, we comprehensively investigated the impacts of the infusion of three short-chain fatty acids (SCFAs), sodium acetate (SA), propionate (SP), and butyrate (SB), to examine their respective roles in the gastrointestinal tract (GIT) health and innate immunity of twenty adult Guanzhong milk goats of 1.5 years of age. Infusion of SCFAs resulted in upregulating the activity of certain antioxidant enzymes in comparison with the control group. The SA group significantly (p < 0.05) increased the activity of the catalase (CAT) in the liver, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in the colon, and maleic dialdehyde (MDA) in the jejunum. SP significantly (p < 0.05) upregulated the activity of the total antioxidant capacity (T-AOC) in the ileum, CAT and MDA in the jejunum, CAT in the colon, and SOD in the liver. SB was significantly (p < 0.05) upregulated the activity of the T-AOC in the ileum, CAT in the jejunum, and T-AOC, CAT, SOD, and GSH-Px in the colon. Infusion of SCFAs resulted in significant (p < 0.05) increases in pro-inflammatory and anti-inflammatory cytokines in the intestine compared to the control group. We found that the SA group significantly (p < 0.05) upregulated the level of interleukin-1 beta (IL-1β) in the ileum and jejunum, as well as the levels of IL-6 and TNF-α in the colon, while the SP group significantly (p < 0.05) increased the level of IL-1β in the jejunum and the level of interleukin-10 (IL-10) in the colon. Furthermore, the SB group significantly (p < 0.05) upregulated levels of IL-1β in the jejunum, interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) in the colon, and IL-10 in the cecum. Furthermore, some intestinal tight-junction proteins were significantly increased by SCFA infusion. SA significantly (p < 0.05) increased the claudin level in the ileum and occludin in the colon, while the SP group significantly (p < 0.05) upregulated the level of occludin in the jejunum and the claudin level in the ileum. Moreover, SB significantly (p < 0.05) increased the occludin level in the jejunum, claudin level in the ileum, and zonula occludens-1 (ZO-1) level in the colon and cecum. There are many positive associations among antioxidant, inflammatory cytokine, and tight-junction protein indexes in the liver and intestine. In conclusion, our results suggest that the gastric infusion of SA, SP, and SB might improve goat intestinal health through the positive influence on the antioxidant capacity, pro-inflammatory and anti-inflammatory cytokines, and tight-junction proteins.
Collapse
Affiliation(s)
- Shaima Mohmed Nasr Abdu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | | | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Zanna Xi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.M.N.A.); (Y.Z.); (C.Z.); (Z.X.); (J.M.); (Y.Z.); (J.L.); (R.A.)
| |
Collapse
|
7
|
Li Y, Li S, Lin L, Li D, Zhao J, Liu S, Ma Y, Ren D, Zhou H, Wang Q, He Y. In vitro simulated digestion and fermentation characteristics of polyphenol-polysaccharide complex from Hizikia fusiforme and its effects on the human gut microbiota. Int J Biol Macromol 2025; 302:140619. [PMID: 39904444 DOI: 10.1016/j.ijbiomac.2025.140619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
This study investigated the effects of the polyphenol-polysaccharide complex (HPC) and its purified components (PC1 and PC4), obtained from Hizikia fusiforme, on the human gut microbiota during in vitro simulated digestion and fecal fermentation. Results showed a gradual increase in reducing sugar content for HPC, PC1, and PC4 during simulated digestion, accompanied by a slight decrease in molecular weight, indicating that these complexes were not completely digested during oral-gastrointestinal digestion. However, following fermentation, the molecular weights of HPC, PC1, and PC4 decreased significantly, and the molar ratios of monosaccharide compositions changed considerably compared with prefermentation values. Thus, these complexes were degraded and used by the intestinal microbiota to produce short-chain fatty acids, which decreased the pH. In addition, after fecal fermentation, beneficial bacteria such as Bacteroides, Parabacteroides, and Bifidobacterium became more abundant, whereas the amount of harmful bacteria such as Fusobacterium and Escherichia/Shigella decreased, revealing the regulation by the complex on the intestinal microbiota. In conclusion, the polyphenol-polysaccharide complex improves the composition and abundance of the human gastrointestinal microbiota, thereby supporting gut health.
Collapse
Affiliation(s)
- Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Lidong Lin
- Dongtou District Marine Economic Science and Technology Innovation Center, Wenzhou 325700, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Jin Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
8
|
Ye Z, Kini A, Tan Q, Woltemate S, Vital M, Nikolovska K, Seidler U. Oral tributyrin treatment affects short-chain fatty acid transport, mucosal health, and microbiome in a mouse model of inflammatory diarrhea. J Nutr Biochem 2025; 138:109847. [PMID: 39870330 DOI: 10.1016/j.jnutbio.2025.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/05/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3-/- mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3+/+ and slc26a3-/- mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3+/+ and slc26a3-/- colon by NaB. Age-matched slc26a3+/+ and slc26a3-/- mice were either fed chow containing 5% NaB or gavaged twice daily with TB for 21 d. Food and water intake, weight, and stool water content were assessed daily. Stool and tissues were collected for further analysis of SCFA production, barrier integrity, mucosal inflammation, and microbiome analysis by 16S rRNA gene sequencing. 5% NaB diet did not exert a significant impact on SCFA levels, mucus barrier, or inflammatory markers, but significantly increased oral water intake. TB gavage treatment increased the expression of SCFA transporters Mct1 and Smct1, mucus content and microbial diversity, and decreased the neutrophil marker Lipocalin 2, Phospholipase A2, and the antimicrobial peptide Reg3b in the slc26a3-/- cecum. However, TB treatment also resulted in an increase in inflammatory markers such as TNFα, Il-1β and CD3e in the wildtype mucosa. While there are some benefits with TB ingestion for barrier properties and microbial composition in the diseased cecum, potentially detrimental effects were noted in the healthy colon.
Collapse
Affiliation(s)
- Zhenghao Ye
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Archana Kini
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Qinghai Tan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Zhang B, Yang L, Wu Z, Wang X, Zhao X, Zhang W, Li D, Fu H, Lin J, Xu F, Ai X, Shu G. Effect of oral Mn-based nanozymes Mn 3O 4 NPs on morphological, antioxidation, mucosa, and fecal microbial community in mice colons. Food Chem Toxicol 2025; 197:115313. [PMID: 39923832 DOI: 10.1016/j.fct.2025.115313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/09/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Mn3O4 NPs, manganese-based nanoparticles with multienzyme-like antioxidative activity, have been widely used in anti-inflammatory, anti-tumor, and other related studies, especially those related to Inflammatory Bowel Disease (IBD). However, before formalizing these studies, it is important to assess their oral safety (especially intestinal) to understand its potential adverse effects on biological systems and intestinal health. In this study, we synthesized Mn3O4 NP which has been reported to have proven multienzyme-like antioxidative activity based on previous studies. The fixed-dose method was used to evaluate the oral acute toxicity of Mn3O4 NPs in mice, followed by 14 days of observation. Then, relative parameters were explored for mice undergoing continuous gavage of 125 mg/kg and 250 mg/kg BW Mn3O4 NPs for 20 days. The continuous oral administration of low-dose Mn3O4 NPs for 20 days resulted in an increased expression of mRNA of antioxidant genes in mice colon. These changes led to an improvement in the antioxidant capacity of the colon. In contrast, the administration of a high dose of Mn3O4 NPs resulted in colonic oxidative damage, and mucosal damage in mice colons, as well as an increase in the ratio of Firmicutes to Bacteroidota of the fecal microbial communities.
Collapse
Affiliation(s)
- Baoyue Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lei Yang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhengkun Wu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Danqin Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoyang Ai
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
10
|
Li D, Lan X, Xu L, Zhou S, Luo H, Zhang X, Yu W, Yang Y, Fang X. Influence of gut microbial metabolites on tumor immunotherapy: mechanisms and potential natural products. Front Immunol 2025; 16:1552010. [PMID: 40066456 PMCID: PMC11891355 DOI: 10.3389/fimmu.2025.1552010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, tumor immunotherapy has made significant breakthroughs in the treatment of malignant tumors. However, individual differences in efficacy have been observed in clinical practice. There is increasing evidence that gut microbial metabolites influence the efficacy of distal tumor immunotherapy via the gut-liver axis, the gut-brain axis and the gut-breast axis, a process that may involve modulating the expression of immune cells and cytokines in the tumor microenvironment (TME). In this review, we systematically explore the relationship between gut microbial metabolites and tumor immunotherapy, and examine the corresponding natural products and their mechanisms of action. The in-depth exploration of this research area will provide new ideas and strategies to enhance the efficacy of tumor immunotherapy and mitigate adverse effects.
Collapse
Affiliation(s)
- Dongyang Li
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Linyi Xu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuo Zhou
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoying Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Yu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yonggang Yang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
11
|
Diep TN, Liu H, Yan LJ. Beneficial Effects of Butyrate on Kidney Disease. Nutrients 2025; 17:772. [PMID: 40077642 PMCID: PMC11901450 DOI: 10.3390/nu17050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The gut microbiota influences and contributes to kidney health and disease. Butyrate, a short-chain fatty acid molecule generated via the fermentation of gut bacterial catabolism of nondigestible dietary fiber, has been shown to exert numerous beneficial effects on kidney disorders. The objective of this review was to discuss the latest findings on the protective effects of butyrate on a variety of animal models of kidney injury. We conducted a PubMed search using the title word "butyrate" and keyword "kidney" to generate our literature review sources. The animal models covered in this review include ischemia-reperfusion renal injury, cisplatin- and folic acid-induced kidney injury, septic kidney injury, diabetic kidney disease (DKD), high-fat diet (HFD)-induced glomerulopathy, adenine-induced chronic kidney disease (CKD), high-salt-induced renal injury, and T-2 toxin-induced kidney injury in birds. The protective mechanisms of butyrate that are most shared among these animal model studies include antioxidative stress, anti-fibrosis, anti-inflammation, and anti-cell death. This review ends with suggestions for future studies on potential approaches that may modulate gut microbiota butyrate production for the well-being of kidneys with the kidney disorders covered in this review.
Collapse
Affiliation(s)
| | | | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (T.N.D.); (H.L.)
| |
Collapse
|
12
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Xu Y, Le J, Qin J, Zhang Y, Yang J, Chen Z, Li C, Qian X, Zhang A. Decoding the microbiota metabolome in hepatobiliary and pancreatic cancers: Pathways to precision diagnostics and targeted therapeutics. Pharmacol Res 2024; 208:107364. [PMID: 39181345 DOI: 10.1016/j.phrs.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yuemiao Xu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiahan Le
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaying Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhuo Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Changyu Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| | - Aiqin Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| |
Collapse
|
14
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
15
|
Vegda HS, Patel B, Girdhar GA, Pathan MSH, Ahmad R, Haque M, Sinha S, Kumar S. Role of Nonalcoholic Fatty Liver Disease in Periodontitis: A Bidirectional Relationship. Cureus 2024; 16:e63775. [PMID: 39100036 PMCID: PMC11297857 DOI: 10.7759/cureus.63775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and periodontitis share common risk factors such as obesity, insulin resistance (IR), and dyslipidemia, which contribute to systemic inflammation. It has been suggested that a bidirectional relationship exists between NAFLD and periodontitis, indicating that one condition may exacerbate the other. NAFLD is characterized by excessive fat deposition in the liver and is associated with low-grade chronic inflammation. There are several risk factors for the development of NAFLD, including gender, geriatric community, race, ethnicity, poor sleep quality and sleep deprivation, physical activity, nutritional status, dysbiosis gut microbiota, increased oxidative stress, overweight, obesity, higher body mass index (BMI), IR, type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), dyslipidemia (hypercholesterolemia), and sarcopenia (decreased skeletal muscle mass). This systemic inflammation can contribute to the progression of periodontitis by impairing immune responses and exacerbating the inflammatory processes in the periodontal tissues. Furthermore, individuals with NAFLD often exhibit altered lipid metabolism, which may affect oral microbiota composition, leading to dysbiosis and increased susceptibility to periodontal disease. Conversely, periodontitis has been linked to the progression of NAFLD through mechanisms involving systemic inflammation and oxidative stress. Chronic periodontal inflammation can release pro-inflammatory cytokines and bacterial toxins into the bloodstream, contributing to liver inflammation and exacerbating hepatic steatosis. Moreover, periodontitis-induced oxidative stress may promote hepatic lipid accumulation and IR, further aggravating NAFLD. The interplay between NAFLD and periodontitis underscores the importance of comprehensive management strategies targeting both conditions. Lifestyle modifications such as regular exercise, a healthy diet, and proper oral hygiene practices are crucial for preventing and managing these interconnected diseases. Additionally, interdisciplinary collaboration between hepatologists and periodontists is essential for optimizing patient care and improving outcomes in individuals with NAFLD and periodontitis.
Collapse
Affiliation(s)
- Hardika S Vegda
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Gaurav A Girdhar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Research, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Susmita Sinha
- Department of Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
16
|
Lee MC, Hsu YJ, Chen MT, Kuo YW, Lin JH, Hsu YC, Huang YY, Li CM, Tsai SY, Hsia KC, Ho HH, Huang CC. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients 2024; 16:1921. [PMID: 38931275 PMCID: PMC11206817 DOI: 10.3390/nu16121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Mu-Tsung Chen
- Committee on General Studies, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Yen-Yu Huang
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Ching-Min Li
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
17
|
Xing L, Zhang Q, Liu J, Yu N, Jia Y. Determination of six short-chain fatty acids in rat feces using headspace solid-phase dynamic extraction coupled with GC-MS. J Sep Sci 2024; 47:e2400032. [PMID: 38937913 DOI: 10.1002/jssc.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
Short-chain fatty acids (SCFAs) are organic acids with carbon atoms less than six, released through fermentation products by intestinal microbiome, having multiple physiological activities. Considering weak acidity and high volatility, derivatization or liquid-liquid extraction is essential, which is time consuming. Headspace-solid-phase dynamic extraction (HS-SPDE) coupled with gas chromatography-mass spectrometry is automated and effortless to determine SCFAs in rat feces. The extraction procedure is performed by aspirating and discharging the headspace cyclically through a steel needle, coated with an inner polyethylene glycol sorbent. The key parameters of SPDE were optimized including coating type, incubation time and temperature, and number of extraction strokes. Besides, salting-out was conducted. Then, a method by HS-SPDE-GC-MS was established and validated. It only took 3-min incubation time, 4.5 min extraction time, and 13 min chromatographic separation in a run. The recovery, linearity, limit of quantification, and stability were evaluated. Then, the proposed method was applied to analyze rat feces including 18 rats with liver injury and 23 normal controls. Mann-Whitney U test indicated that the concentrations of six SCFAs in normal rat feces were higher than those with liver injury. This method provides a choice for fast, solvent-free, automated, and high-throughput analysis of SCFAs.
Collapse
Affiliation(s)
- Lihua Xing
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Qiang Zhang
- Department of Criminal Science and Technology, Henan Police College, Zhengzhou, P. R. China
| | - Juan Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yiqun Jia
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
18
|
Ai Z, Liu S, Zhang J, Hu Y, Tang P, Cui L, Wang X, Zou H, Li X, Liu J, Nan B, Wang Y. Ginseng Glucosyl Oleanolate from Ginsenoside Ro, Exhibited Anti-Liver Cancer Activities via MAPKs and Gut Microbiota In Vitro/Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7845-7860. [PMID: 38501913 DOI: 10.1021/acs.jafc.3c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Ginseng is widely recognized for its diverse health benefits and serves as a functional food ingredient with global popularity. Ginsenosides with a broad range of pharmacological effects are the most crucial active ingredients in ginseng. This study aimed to derive ginseng glucosyl oleanolate (GGO) from ginsenoside Ro through enzymatic conversion and evaluate its impact on liver cancer in vitro and in vivo. GGO exhibited concentration-dependent HepG2 cell death and markedly inhibited cell proliferation via the MAPK signaling pathway. It also attenuated tumor growth in immunocompromised mice undergoing heterograft transplantation. Furthermore, GGO intervention caused a modulation of gut microbiota composition by specific bacterial populations, including Lactobacillus, Bacteroides, Clostridium, Enterococcus, etc., and ameliorated SCFA metabolism and colonic inflammation. These findings offer promising evidence for the potential use of GGO as a natural functional food ingredient in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Ping Tang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Linlin Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xinzhu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Hongyang Zou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
19
|
Zhang Z, Wang L, Zheng B, Zhang Y, Pan L. In vitro digestive properties of Dictyophora indusiata polysaccharide by steam explosion pretreatment methods. Int J Biol Macromol 2024; 265:131116. [PMID: 38522704 DOI: 10.1016/j.ijbiomac.2024.131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Dictyophora indusiata is medicinal and edible fungi containing various nutrients. The aim of this study was to investigate the efficient extraction and structural evolution of Dictyophora indusiata polysaccharide during the vitro digestion based on steam explosion pretreatment methods. In this study, the extraction rate of Dictyophora indusiata polysaccharide was optimized by steam explosion pretreatment methods, which was 2.46 folds that of the water extraction method. In addition, the digestion and fermentation properties of Dictyophora indusiata polysaccharide before and after steam explosion were evaluated in vitro by the changes of molecular weights, total and reducing sugars levels, surface morphology and functional groups, which showed that the structure of Dictyophora indusiata polysaccharide remained stable after salivary-gastric digestion, and partially entered the large intestine, where it could be utilized by gut microbiota. Dictyophora indusiata polysaccharide promoted the increase of beneficial bacteria Megamonas and increased the content of acetic acid, propionic acid and butyric acid, which was 2.17, 2.81, 2.43 folds that of the CON group after fermentation for 24 h, and 1.87, 2.77, 1.90 folds that of the CON group after fermentation for 48 h, respectively. This study will provide theoretical basis for the high value utilization of Dictyophora indusiata polysaccharide.
Collapse
Affiliation(s)
- Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
20
|
Meng YF, Fan ZY, Zhou B, Zhan HX. Role of the intratumoral microbiome in tumor progression and therapeutics implications. Biochim Biophys Acta Rev Cancer 2023; 1878:189014. [PMID: 37918451 DOI: 10.1016/j.bbcan.2023.189014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microbes are widely present in various organs of the human body and play important roles in numerous physiological and pathological processes. Nevertheless, owing to multiple limiting factors, such as contamination and low biomass, the current understanding of the intratumoral microbiome is limited. The intratumoral microbiome exerts tumor-promoting or tumor-suppressive effects by engaging in metabolic reactions within the body, regulating signaling cancer-related pathways, and impacting both host cells function and immune system. It is important to emphasize that intratumoral microbes exhibit substantial heterogeneity in terms of composition and abundance across various tumor types, thereby potentially influencing diverse aspects of tumorigenesis, progression, and metastasis. These findings suggest that intratumoral microbiome have great potential as diagnostic and prognostic biomarkers. By manipulating the intratumoral microbes to employ cancer therapy, the efficacy of chemotherapy or immunotherapy can be enhanced while minimizing adverse effects. In this review, we comprehensively describe the composition and function of the intratumoral microbiome in various human solid tumors. Combining recent advancements in research, we discuss the origins, mechanisms, and prospects of the clinical applications of intratumoral microbiome.
Collapse
Affiliation(s)
- Yu-Fan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Yao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Han-Xiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
21
|
Maiers JL, Chakraborty S. The Cellular, Molecular, and Pathologic Consequences of Stress on the Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1353-1354. [PMID: 37544504 PMCID: PMC10548265 DOI: 10.1016/j.ajpath.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Jessica L Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|