1
|
Pawar R, Sankapall A, Samal M, Sadaphal V, Mohiudin S, Sangale M. Recent developments in 3D printing pharmaceutical, bioprinting and implant for tissue engineering formulations. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-48. [PMID: 40402634 DOI: 10.1080/09205063.2025.2505350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 05/02/2025] [Indexed: 05/24/2025]
Abstract
This review article explores how 3D printing has the diversity in the drug development and the delivery of personalized medicine. The paradigm shift is from conventional methods to tailormade dosages and exploring the intricate interplay of drug selection, polymer compatibility alongwith technological advancements within the pharmaceutical arena. 3D printing is positioned as a crucial tool for catering to the specific requirements of patient-focused fields like pediatrics and geriatrics, ranging from addressing individual needs to improving dosage precision. By harnessing genetic profiles, physiological nuances, and disease conditions, this technology enables the creation of bespoke medications with unique drug loading and release profiles. In developing the newer implants the 3D printing has to be developed alongwith consideration of biological aspects as well as technical aspects. It has to be aligned with multifunctional aspects to cater one optimized product. Furthermore, this paper elucidates the regulatory considerations and industrial implications surrounding 3D printing in pharmaceuticals. Emphasizing compliance with current Good Manufacturing Practices (CGMP) and its potential for streamlined production in regulated markets, the paper underscores the transformative power of 3D printing in reshaping clinical practice and optimizing patient outcomes.
Collapse
Affiliation(s)
- Ranjitsinh Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Ankeeta Sankapall
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Mayur Samal
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Vaishnavi Sadaphal
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Sabeeha Mohiudin
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| | - Mangesh Sangale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India
| |
Collapse
|
2
|
Wang MF, Yan T, Gao MC, Han CW, Yan ZQ, Gao YZ, Zhang W, Yi Z. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomed Mater 2025; 20:032003. [PMID: 40199334 DOI: 10.1088/1748-605x/adca7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Collapse
Affiliation(s)
- Ming-Feng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Tao Yan
- Joint Orthopedics, Xiangyang Hospital Affiliated to Hubei University of Chinese Medicine, Xiangyang, Hubei 441000, People's Republic of China
| | - Ming-Cen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Cheng-Wei Han
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Zhuo-Qun Yan
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Yu-Zhong Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wei Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
3
|
Patadiya J, Kandasubramanian B, Sreeram S, Patil PD, Mujawar R, Indalkar A, Kchaou M, Aldawood FK. Strategic Implementation of Multimaterial Additive Manufacturing: Bridging Research and Real-World Applications. ACS OMEGA 2025; 10:13749-13762. [PMID: 40256510 PMCID: PMC12004142 DOI: 10.1021/acsomega.4c11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
The single-material additive manufacturing revolution has accelerated innovation in the manufacturing field, enabling the combination of multiple materials in one operation using additives of metals, ceramics, and polymers. Although still in its infancy, researchers are adopting this strategy, indicating a shift from research and development to practical applications. By aggregating numerous materials with different properties concurrently, the multimaterial additive manufacturing approach entitles the simplest fabrication of multifunctional systems and devices. A review focuses on the opportunities and challenges presented by the trend toward recent advancements in the multinozzle system. Multinozzle 3D printing has great applications in bioprinting and tissue engineering, electronics integration, and civil/structural engineering. This review highlights the exciting opportunities and challenges that come with it. Additionally, this review showcases the recent advancements in the multinozzle system that have made it a promising solution in this field.
Collapse
Affiliation(s)
- Jigar Patadiya
- Institute
for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Balasubramanian Kandasubramanian
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Sreenivasan Sreeram
- CIPET-Institute
of Petrochemicals Technology (IPT), HIL Colony, Kochi, 683501, Kerala India
| | - Priyanka Deelip Patil
- Department
of Mechanical Engineering, Pimpri Chinchwad
College of Engineering and Research, Ravet, Pune, 412101, Maharashtra India
| | - Rihan Mujawar
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Amol Indalkar
- Department
of Mechanical Engineering, Defence Institute of Advanced Technology
(DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Mohamed Kchaou
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O 001, Bisha 67714, Saudi Arabia
| | - Faisal Khaled Aldawood
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O 001, Bisha 67714, Saudi Arabia
| |
Collapse
|
4
|
Zhang H, Wang Y, Qiao W, Hu X, Qiang H, Xia K, Du L, Yang L, Bao Y, Gao J, Zhang T, Yu Z. An injectable multifunctional nanocomposite hydrogel promotes vascularized bone regeneration by regulating macrophages. J Nanobiotechnology 2025; 23:283. [PMID: 40197239 PMCID: PMC11978117 DOI: 10.1186/s12951-025-03358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
The local inflammatory microenvironment, insufficient vascularization, and inadequate bone repair materials are the three key factors that constrain the repair of bone defects. Here, we synthesized a composite nanoparticle, TPQ (TCP-PDA-QK), with a core‒shell structure. The core consists of nanotricalcium phosphate (TCP), and the shell is derived from polydopamine (PDA). The surface of the shell is modified with a vascular endothelial growth factor (VEGF) mimic peptide (QK peptide). TPQ was then embedded in porous methacrylate gelatin (GelMA) to form a TPQGel hydrogel. In the inflammatory environment, the TPQGel hydrogel can gradually release drugs through pH responsiveness, promoting M2 macrophage polarization, vascularization and bone regeneration in turn. In addition, reprogrammed M2 macrophages stimulate the generation of anti-inflammatory and pro-healing growth factors, which provide additional support for angiogenesis and bone regeneration. The TPQGel hydrogel can not only accurately fill irregular bone defects but also has excellent biocompatibility, making it highly suitable for the minimally invasive treatment of bone defects. Transcriptomic tests revealed that the TPQGel hydrogel achieved macrophage reprogramming by regulating the PI3K-AKT signalling pathway. Overall, the TPQGel hydrogel can be harnessed for safe and efficient therapeutics that accelerate the repair of bone defects.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xueneng Hu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Huifen Qiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kuo Xia
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Luling Yang
- Digestive Endoscopy Center, School of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yi Bao
- Biological Safety Protection 3-Level Laboratory, Guangxi Medical University, Nanning, Guangxi Zhuang, 530021, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
5
|
Díaz GY, da Silva VA, Kalantarnia F, Scheck K, Tschofen SA, Tuffs SW, Willerth SM. Using Three-Dimensional Bioprinting to Generate Realistic Models of Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40040420 DOI: 10.1089/wound.2024.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Significance: The skin serves as the primary defense against external stimuli, making it vulnerable to damage. Injuries can cause a dysregulated environment, resulting in chronic inflammation and inhibition of cell proliferation and migration, which delays recovery. Innovative approaches, such as three-dimensional (3D) bioprinting, can foster a controlled healing environment by promoting synergy between the skin microbiome and cells. Recent Advances: Traditional approaches to wound healing have focused on fostering an environment conducive to the interplay between cells, extracellular proteins, and growth factors. 3D bioprinting, a manufacturing technology with applications in tissue engineering, deposits biomaterial-based bioink containing living cells to fabricate custom-designed tissue scaffolds in a layer-by-layer fashion. This process controls the architecture and composition of a construct, producing multilayered and complex structures such as skin. Critical Issues: The selection of biomaterials for scaffolds has been a challenge when 3D skin tissue engineering. While prioritizing mechanical properties, current biomaterials often lack the ability to interact with environmental stimuli such as pH, temperature, or oxygen levels. Employing smart biomaterials that integrate bioactive molecules and adapt to external conditions could overcome these limitations. This innovation would enable scaffolds to create a sustainable wound-healing environment, fostering microbiome balance, reducing inflammation, and facilitating cellular recovery and tissue restoration, addressing critical gaps in existing wound care solutions. Future Directions: Novel bioink formulations for skin injury recovery are focused on improving long-term cell viability, proliferation, vascularization, and immune integration. Efficient recovery of the skin microbiome using bioactive molecules has the potential to create microenriched environments that support the recovery of the skin microbiome and restore immune regulation. This promising direction for future research aims to improve patient outcomes in wound care.
Collapse
Affiliation(s)
- Giselle Y Díaz
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | | | | | - Silken A Tschofen
- Department of Biochemistry and Microbiology, University of Victoria Faculty of Science, Victoria, Canada
| | - Stephen W Tuffs
- Department of Biochemistry and Microbiology, University of Victoria Faculty of Science, Victoria, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Axolotl Biosciences, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
- Biomedical Engineering Program, University of Victoria, Victoria, Canada
- Centre for Advanced Materials and Technology, University of Victoria, Victoria, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Galvão Duarte J, Piedade AP, Sarmento B, Mascarenhas-Melo F. The Printed Path to Healing: Advancing Wound Dressings through Additive Manufacturing. Adv Healthc Mater 2025; 14:e2402711. [PMID: 39757445 DOI: 10.1002/adhm.202402711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/27/2024] [Indexed: 01/07/2025]
Abstract
Wound care challenges healthcare systems worldwide as traditional dressings often fall short in addressing the diverse and complex nature of wound healing. Given conventional treatments limitations, innovative alternatives are urgent. Additive manufacturing (AM) has emerged as a distinct and transformative approach for developing advanced wound dressings, offering unprecedented functionality and customization. Besides exploring the AM processes state-of-the-art, this review comprehensively examines the application of AM to produce cellular-compatible and bioactive, therapeutic agent delivery, patient-centric, and responsive dressings. This review distinguishes itself from the published literature by covering a variety of wound types and by summarizing important data, including used materials, process/technology, printing parameters, and findings from in vitro, ex vivo, and in vivo studies. The prospects of AM in enhancing wound healing outcomes are also analyzed in a translational and cost-effective manner.
Collapse
Affiliation(s)
- Joana Galvão Duarte
- Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, 4050-313, Portugal
- CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Coimbra, 3030-788, Portugal
| | - Ana Paula Piedade
- CEMMPRE, Department of Mechanical Engineering, University of Coimbra, Coimbra, 3030-788, Portugal
| | - Bruno Sarmento
- i3S, Institute for Research and Innovation in Health, University of Porto, Porto, 4200-135, Portugal
- CESPU, IUCS, University Institute of Health Sciences, Gandra, 4585-116, Portugal
| | - Filipa Mascarenhas-Melo
- Polytechnic Institute of Guarda, Higher School of Health, Guarda, 6300-559, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, University of Coimbra, Coimbra, 3000-548, Portugal
| |
Collapse
|
7
|
Sathiyaseelan A, Zhang X, Kumaran S, Wang MH. Chitosan fabricated silver nitroprusside nanocomposites prepared for enhanced antibacterial and cytocompatibility applications through controlled release of metal ions and nitric oxide. Int J Biol Macromol 2025; 296:139641. [PMID: 39788264 DOI: 10.1016/j.ijbiomac.2025.139641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Silver nitroprusside complex nanoparticles (AgN NPs) have garnered significant attention for their antimicrobial properties. However, challenges such as toxicity and limited biocompatibility often hinder their practical applications. Therefore, this study introduces a combined approach to fabricating AgN NPs with chitosan (CS), resulting in CS-AgN nanocomposites (CS-AgN NCs) with cytocompatibility. AgN NPs exhibited a distinct cubic morphology with a mean size of 52.88 ± 15.45 nm, while CS-AgN NCs showed a smaller, spherical, and elongated structure. The incorporation of CS led to significant changes in AgN NPs, including a reduction in the zeta potential from -46.63 ± 1.25 mV to -13.0 ± 2.12 mV and alterations in crystallinity. A key finding was that nitric oxide (NO) release was highly pH-dependent, which could offer targeted therapeutic potential. Both nano systems demonstrated potent antibacterial effects, with minimum inhibitory concentrations (MICs) as low as 6.25 μg/mL against E. coli, alongside strong biofilm inhibition (≥80 % at 12.5-25 μg/mL). The CS-AgN NCs also exhibited superior antioxidant activity compared to AgN NPs without compromising cell viability or causing hemolysis, and low toxicity to Artemia salina, making them promising candidates for biomedical applications. This work highlights the unique interplay between AgN NPs and CS, offering insights into their potential for next-generation antimicrobial therapies.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Subramani Kumaran
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
Lalonde JN, Pilania G, Marrone BL. Materials designed to degrade: structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym Chem 2025; 16:235-265. [PMID: 39464417 PMCID: PMC11498330 DOI: 10.1039/d4py00623b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Conventional plastics pose significant environmental and health risks across their life cycle, driving intense interest in sustainable alternatives. Among these, polyhydroxyalkanoates (PHAs) stand out for their biocompatibility, degradation characteristics, and diverse applications. Yet, challenges like production cost, scalability, and limited chemical variety hinder their widespread adoption, impacting material selection and design. This review examines PHA research through the lens of the classical materials tetrahedron, exploring property-structure-processing-performance (PSPP) relationships. By analyzing recent literature and addressing current limitations, we gain valuable insights into PHA development. Despite challenges, we remain optimistic about the role of PHAs in transitioning towards a circular plastic economy, emphasizing the need for further research to unlock their full potential.
Collapse
Affiliation(s)
- Jessica N Lalonde
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | | | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
9
|
Liu W, Yao C, Wang D, Du G, Ji Y, Li Q. Dynamic Double-Networked Hydrogels by Hybridizing PVA and Herbal Polysaccharides: Improved Mechanical Properties and Selective Antibacterial Activity. Gels 2024; 10:821. [PMID: 39727579 DOI: 10.3390/gels10120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine Dendrobium was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the Dendrobium polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed. Eventually, highly dynamic and double-networked hydrogels were successfully prepared by the integration of Dendrobium polysaccharides and PVA. Interestingly, the introduction of polysaccharides has given rise to more robust and dynamic hydrogel networks, leading to enhanced thermal stability, mechanical strength, and tensile capacity (>1000%) as well as the rapid self-healing ability (<5 s) of the "hybrid" hydrogels compared with the PVA/borax single networked hydrogel. Moreover, the polysaccharides/PVA double network hydrogel showed selective antibacterial activity towards S. aureus. The reported polysaccharides/PVA double networked hydrogel would provide a scaffold to hybridize bioactive natural polysaccharides and synthetic polymers for developing robust but dynamic multiple networked hydrogels that are tailorable for biomedical applications.
Collapse
Affiliation(s)
- Weidong Liu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuying Yao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daohang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guangyan Du
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yutian Ji
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
10
|
Yu H, Luo X, Li Y, Shao L, Yang F, Pang Q, Zhu Y, Hou R. Advanced Hybrid Strategies of GelMA Composite Hydrogels in Bone Defect Repair. Polymers (Basel) 2024; 16:3039. [PMID: 39518248 PMCID: PMC11548276 DOI: 10.3390/polym16213039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
To date, severe bone defects remain a significant challenge to the quality of life. All clinically used bone grafts have their limitations. Bone tissue engineering offers the promise of novel bone graft substitutes. Various biomaterial scaffolds are fabricated by mimicking the natural bone structure, mechanical properties, and biological properties. Among them, gelatin methacryloyl (GelMA), as a modified natural biomaterial, possesses a controllable chemical network, high cellular stability and viability, good biocompatibility and degradability, and holds the prospect of a wide range of applications. However, because they are hindered by their mechanical properties, degradation rate, and lack of osteogenic activity, GelMA hydrogels need to be combined with other materials to improve the properties of the composites and endow them with the ability for osteogenesis, vascularization, and neurogenesis. In this paper, we systematically review and summarize the research progress of GelMA composite hydrogel scaffolds in the field of bone defect repair, and discuss ways to improve the properties, which will provide ideas for the design and application of bionic bone substitutes.
Collapse
Affiliation(s)
- Han Yu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Xi Luo
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yanling Li
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, China;
| | - Fang Yang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Qian Pang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yabin Zhu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Ruixia Hou
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| |
Collapse
|
11
|
Nizam M, Purohit R, Taufik M. Materials for 3D printing in healthcare sector: A review. Proc Inst Mech Eng H 2024; 238:939-963. [PMID: 39397720 DOI: 10.1177/09544119241289731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Additive Manufacturing (AM) encompasses various techniques creating intricate components from digital models. The aim of incorporating 3D printing (3DP) in the healthcare sector is to transform patient care by providing personalized solutions, improving medical procedures, fostering research and development, and ultimately optimizing the efficiency and effectiveness of healthcare delivery. This review delves into the historical beginnings of AM's 9 integration into medical contexts exploring various categories of AM methodologies and their roles within the medical sector. This survey also dives into the issue of material requirements and challenges specific to AM's medical applications. Emphasis is placed on how AM processes directly enhance human well-being. The primary focus of this paper is to highlight the evolution and incentives for cross-disciplinary AM applications, particularly in the realm of healthcare by considering their principle, materials and applications. It is designed for a diverse audience, including manufacturing professionals and researchers, seeking insights into this transformative technology's medical dimensions.
Collapse
Affiliation(s)
- Maruf Nizam
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rajesh Purohit
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Mohammad Taufik
- Centre of Excellence in Product Design and Smart Manufacturing, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
12
|
Maitra J, Bhardwaj N. Development of bio-based polymeric blends - a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-35. [PMID: 39250518 DOI: 10.1080/09205063.2024.2394300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024]
Abstract
The current impetus to develop bio-based polymers for greater sustainability and lower carbon footprint is necessitated due to the alarming depletion of fossil resources, concurrent global warming, and related environmental issues. This article reviews the development of polymeric blends based on bio-based polymers. The focus on bio-based polymers is due to their greater 'Sustainability factor' as they are derived from renewable resources. The article delves into the synthesis of both conventional and highly biodegradable bio-based polymers, each crafted from feedstocks derived from nature's bounty. What sets this work apart is the exploration of blending existing bio-based polymers, culminating in the birth of entirely new materials. This review provides a comprehensive overview of the recent advancements in the development of bio-based polymeric blends, covering their synthesis, properties, applications, and potential contributions to a more sustainable future. Despite their potential benefits, bio-based materials face obstacles such as miscibility, processability issues and disparities in physical properties compared to conventional counterparts. The paper also discusses significance of compatibilizers, additives and future directions for the further advancement of these bio-based blends. While bio-based polymer blends hold promise for environmentally benign applications, many are still in the research phase. Ongoing research and technological innovations are driving the evolution of these blends as viable alternatives, but continued efforts are needed to ensure their successful integration into mainstream industrial practices. Concerted efforts from both researchers and industry stakeholders are essential to realize the full potential of bio-based polymers and accelerate their adoption on a global scale.
Collapse
Affiliation(s)
- Jaya Maitra
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Nikita Bhardwaj
- Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Habiba R, Amaro A, Trindade D, Moura C, Silva R, Antão A, Martins RF, Malça C, Branco R. Comparative Analysis of Impact Strength among Various Polymeric Materials for Orthotic Production. Polymers (Basel) 2024; 16:1843. [PMID: 39000698 PMCID: PMC11243978 DOI: 10.3390/polym16131843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Orthotic devices play an important role in medical treatment, addressing various pathologies and promoting patient recovery. Customization of orthoses to fit individual patient morphologies and needs is essential for optimal functionality and patient comfort. The advent of additive manufacturing has revolutionized the biomedical field, offering advantages such as cost reduction, increased personalization, and enhanced dimensional adaptability for orthotics manufacturing. This research focuses on the impact strength of nine polymeric materials printed by additive manufacturing, including an evaluation of the materials' performance under varying conditions comprising different printing directions (vertical and horizontal) and exposure to artificial sweat for different durations (0 days, 24 days, and 189 days). The results showed that Nylon 12 is good for short-term (24 days) immersion, with absorbed energies of 78 J and 64 J for the vertical and horizontal directions, whereas Polycarbonate (PC) is good for long-term immersion (189 days), with absorbed energies of 66 J and 78 J for the vertical and horizontal directions. Overall, the findings contribute to a better understanding of the suitability of these materials for biomedical applications, considering both short-term and long-term exposure to physiological and environmental conditions.
Collapse
Affiliation(s)
- Rachel Habiba
- Department of Mechanical Engineering, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
| | - Ana Amaro
- CEMMPRE-ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal;
| | - Daniela Trindade
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Carla Moura
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Research Center for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Rui Silva
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, 1495 Cruz Quebrada Dafundo, 1649-004 Lisbon, Portugal
| | - André Antão
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
| | - Rui F. Martins
- UNIDEMI, Department of Mechanical and Industrial Engineering, Nova School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Cândida Malça
- Center for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (C.M.); (R.S.); (A.A.); (C.M.)
- Coimbra Institute of Engineering (ISEC), Polytechnic Institute of Coimbra, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal
| | - Ricardo Branco
- CEMMPRE-ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal;
| |
Collapse
|
14
|
Kortman VG, de Vries E, Jovanova J, Sakes A. Magnetic Stimulation for Programmed Shape Morphing: Review of Four-Dimensional Printing, Challenges and Opportunities. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:977-993. [PMID: 39359596 PMCID: PMC11442361 DOI: 10.1089/3dp.2023.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In the field of Additive Manufacturing, four-dimensional (4D) printing has emerged as a promising technique to fabricate smart structures capable of undergoing shape morphing in response to specific stimuli. Magnetic stimulation offers a safe, remote, and rapid actuation mechanism for magnetically responsive structures. This review provides a comprehensive overview of the various strategies and manufacturing approaches employed in the development of magnetically stimulated shape morphing 4D-printed structures, based on an extensive literature search. The review explores the use of magnetic stimulation either individually or in combination with other stimuli. While most of the literature focuses on single-stimulus responsive structures, a few examples of multi-stimuli responsive structures are also presented. We investigate the influence of the orientation of magnetic particles in smart material composites, which can be either random or programmed during or after printing. Finally, the similarities and differences among the different strategies and their impact on the resulting shape-morphing behavior are analyzed. This systematic overview functions as a guide for readers in selecting a manufacturing approach to achieve a specific magnetically actuated shape-morphing effect.
Collapse
Affiliation(s)
- Vera G Kortman
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Ellen de Vries
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Jovana Jovanova
- Department of Marine and Transport Technology, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| | - Aimée Sakes
- Department of BioMechanical Engineering, Faculty of 3mE, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
15
|
Ochieng BO, Zhao L, Ye Z. Three-Dimensional Bioprinting in Vascular Tissue Engineering and Tissue Vascularization of Cardiovascular Diseases. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:340-358. [PMID: 37885200 DOI: 10.1089/ten.teb.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In the 21st century, significant progress has been made in repairing damaged materials through material engineering. However, the creation of large-scale artificial materials still faces a major challenge in achieving proper vascularization. To address this issue, researchers have turned to biomaterials and three-dimensional (3D) bioprinting techniques, which allow for the combination of multiple biomaterials with improved mechanical and biological properties that mimic natural materials. Hydrogels, known for their ability to support living cells and biological components, have played a crucial role in this research. Among the recent developments, 3D bioprinting has emerged as a promising tool for constructing hybrid scaffolds. However, there are several challenges in the field of bioprinting, including the need for nanoscale biomimicry, the formulation of hydrogel blends, and the ongoing complexity of vascularizing biomaterials, which requires further research. On a positive note, 3D bioprinting offers a solution to the vascularization problem due to its precise spatial control, scalability, and reproducibility compared with traditional fabrication methods. This paper aims at examining the recent advancements in 3D bioprinting technology for creating blood vessels, vasculature, and vascularized materials. It provides a comprehensive overview of the progress made and discusses the limitations and challenges faced in current 3D bioprinting of vascularized tissues. In addition, the paper highlights the future research directions focusing on the development of 3D bioprinting techniques and bioinks for creating functional materials.
Collapse
Affiliation(s)
- Ben Omondi Ochieng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Leqian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
- Department of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Khorsandi D, Rezayat D, Sezen S, Ferrao R, Khosravi A, Zarepour A, Khorsandi M, Hashemian M, Iravani S, Zarrabi A. Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like? J Mater Chem B 2024; 12:4584-4612. [PMID: 38686396 DOI: 10.1039/d4tb00310a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The application of three- and four-dimensional (3D/4D) printing in cancer research represents a significant advancement in understanding and addressing the complexities of cancer biology. 3D/4D materials provide more physiologically relevant environments compared to traditional two-dimensional models, allowing for a more accurate representation of the tumor microenvironment that enables researchers to study tumor progression, drug responses, and interactions with surrounding tissues under conditions similar to in vivo conditions. The dynamic nature of 4D materials introduces the element of time, allowing for the observation of temporal changes in cancer behavior and response to therapeutic interventions. The use of 3D/4D printing in cancer research holds great promise for advancing our understanding of the disease and improving the translation of preclinical findings to clinical applications. Accordingly, this review aims to briefly discuss 3D and 4D printing and their advantages and limitations in the field of cancer. Moreover, new techniques such as 5D/6D printing and artificial intelligence (AI) are also introduced as methods that could be used to overcome the limitations of 3D/4D printing and opened promising ways for the fast and precise diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Dorsa Rezayat
- Center for Global Design and Manufacturing, College of Engineering and Applied Science, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221, USA
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Türkiye
- Nanotechnology Research and Application Center, Sabanci University, Tuzla 34956 Istanbul, Türkiye
| | - Rafaela Ferrao
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Melika Khorsandi
- Department of Cellular and Molecular Biology, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Hashemian
- Department of Cellular and Molecular Biology, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
17
|
Brychka S, Brychka A, Hedin N, Mondeshki M. Sustainable Composite Materials Based on Carnauba Wax and Montmorillonite Nanoclay for Energy Storage. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1978. [PMID: 38730787 PMCID: PMC11084883 DOI: 10.3390/ma17091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Sustainable composite materials, including carnauba wax, can store energy in the form of latent heat, and containing the wax may allow form-stable melting and crystallization cycles to be performed. Here, it is shown that carnauba wax in the molten state and the abundant nanoclay montmorillonite form stable composites with mass ratios of 50-70% (w/w). Transmission electron microscopy analysis reveals the inhomogeneous distribution of the nanoclay in the wax matrix. Analyses with infrared and multinuclear solid-state nuclear magnetic resonance (NMR) spectroscopy prove the chemical inertness of the composite materials during preparation. No new phases are formed according to studies with powder X-ray diffraction. The addition of the nanoclay increases the thermal conductivity and prevents the leakage of the phase change material, as well as reducing the time intervals of the cycle of accumulation and the return of heat. The latent heat increases in the row 69.5 ± 3.7 J/g, 95.0 ± 2.5 J/g, and 107.9 ± 1.7 J/g for the composite materials containing resp. 50%, 60% and 70% carnauba wax. Analysis of temperature-dependent 13C cross-polarization solid-state NMR spectra reveal the enhanced amorphization and altered molecular dynamics of the carnauba wax constituents in the composite materials. The amorphization also defines changes in the thermal transport mechanism in the composites compared to pure wax at elevated temperatures.
Collapse
Affiliation(s)
- Serhii Brychka
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany;
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
- The Gas Institute of the National Academy of Sciences of Ukraine, 39, Dehtyarivska Str., 03113 Kyiv, Ukraine
| | - Alla Brychka
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany;
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
- Chuiko Institute of Surface Chemistry, National Academy of Sciences, 17 General Naumov Street, 03164 Kyiv, Ukraine
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Mihail Mondeshki
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany;
| |
Collapse
|
18
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
19
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
20
|
Akram N, Shahbaz M, Zia KM, Usman M, Ali A, Al-Salahi R, Abuelizz HA, Delattre C. Investigation of the in vitro biological activities of polyethylene glycol-based thermally stable polyurethane elastomers. RSC Adv 2024; 14:779-793. [PMID: 38174249 PMCID: PMC10759036 DOI: 10.1039/d3ra06997d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The intense urge to replace conventional polymers with ecofriendly monomers is a step towards green products. The novelty of this study is the extraction of starch from the biowaste of wheat bran (WB) and banana peel (BP) for use as a monomer in the form of chain extenders. For the synthesis of polyurethane (PU) elastomers, polyethylene glycol (PEG) bearing an average molecular weight Mn = 1000 g mol-1 was used as a macrodiol, which was reacted with isophorone diisocyanate (IPDI) to develop NCO-terminated prepolymer chains. These prepolymer chains were terminated with chain extenders. Two series of linear PU elastomers were prepared by varying the concentration of chain extenders (0.5-2.5 mol%), inducing a variation of 40 to 70 wt% in the hard segment (HS). Fourier-transform infrared (FTIR) spectroscopy confirmed the formation of urethane linkages. Thermal gravimetric analysis (TGA) showed a thermal stability of up to 250 °C. Dynamic mechanical analysis (DMA) revealed a storage modulus (E') of up to 140 MPa. Furthermore, the hemolytic activities of up to 8.97 ± 0.1% were recorded. The inhibition of biofilm formation was investigated against E. coli and S. aureus (%), which was supported by phase contrast microscopy.
Collapse
Affiliation(s)
- Nadia Akram
- Department of Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Shahbaz
- Department of Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Usman
- Department of Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad Faisalabad-38000 Pakistan
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal F-63000 Clermont-Ferrand France
- Institut Universitaire de France (IUF) 1 Rue Descartes 75005 Paris France
| |
Collapse
|
21
|
Bontempi M, Marchiori G, Petretta M, Capozza R, Grigolo B, Giavaresi G, Gambardella A. Nanomechanical Mapping of Three Dimensionally Printed Poly-ε-Caprolactone Single Microfibers at the Cell Scale for Bone Tissue Engineering Applications. Biomimetics (Basel) 2023; 8:617. [PMID: 38132556 PMCID: PMC10742115 DOI: 10.3390/biomimetics8080617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Poly-ε-caprolactone (PCL) has been widely used in additive manufacturing for the construction of scaffolds for bone tissue engineering. However, its use is limited by its lack of bioactivity and inability to induce cell adhesion, hence limiting bone tissue regeneration. Biomimicry is strongly influenced by the dynamics of cell-substrate interaction. Thus, characterizing scaffolds at the cell scale could help to better understand the relationship between surface mechanics and biological response. We conducted atomic force microscopy-based nanoindentation on 3D-printed PCL fibers of ~300 µm thickness and mapped the near-surface Young's modulus at loading forces below 50 nN. In this non-disruptive regime, force mapping did not show clear patterns in the spatial distribution of moduli or a relationship with the topographic asperities within a given region. Remarkably, we found that the average modulus increased linearly with the logarithm of the strain rate. Finally, a dependence of the moduli on the history of nanoindentation was demonstrated on locations of repeated nanoindentations, likely due to creep phenomena capable of hindering viscoelasticity. Our findings can contribute to the rational design of scaffolds for bone regeneration that are capable of inducing cell adhesion and proliferation. The methodologies described are potentially applicable to various tissue-engineered biopolymers.
Collapse
Affiliation(s)
- Marco Bontempi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (G.M.); (G.G.)
| | - Gregorio Marchiori
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (G.M.); (G.G.)
| | - Mauro Petretta
- REGENHU SA, Z.I Du Vivier 22, CH-1690 Villaz-St-Pierre, Switzerland;
| | - Rosario Capozza
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3DW, UK;
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (G.M.); (G.G.)
| | - Alessandro Gambardella
- Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (M.B.); (G.M.); (G.G.)
| |
Collapse
|
22
|
Ling J, He C, Zhang S, Zhao Y, Zhu M, Tang X, Li Q, Xu L, Yang Y. Progress in methods for evaluating Schwann cell myelination and axonal growth in peripheral nerve regeneration via scaffolds. Front Bioeng Biotechnol 2023; 11:1308761. [PMID: 38162183 PMCID: PMC10755477 DOI: 10.3389/fbioe.2023.1308761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Peripheral nerve injury (PNI) is a neurological disorder caused by trauma that is frequently induced by accidents, war, and surgical complications, which is of global significance. The severity of the injury determines the potential for lifelong disability in patients. Artificial nerve scaffolds have been investigated as a powerful tool for promoting optimal regeneration of nerve defects. Over the past few decades, bionic scaffolds have been successfully developed to provide guidance and biological cues to facilitate Schwann cell myelination and orientated axonal growth. Numerous assessment techniques have been employed to investigate the therapeutic efficacy of nerve scaffolds in promoting the growth of Schwann cells and axons upon the bioactivities of distinct scaffolds, which have encouraged a greater understanding of the biological mechanisms involved in peripheral nerve development and regeneration. However, it is still difficult to compare the results from different labs due to the diversity of protocols and the availability of innovative technologies when evaluating the effectiveness of novel artificial scaffolds. Meanwhile, due to the complicated process of peripheral nerve regeneration, several evaluation methods are usually combined in studies on peripheral nerve repair. Herein, we have provided an overview of the evaluation methods used to study the outcomes of scaffold-based therapies for PNI in experimental animal models and especially focus on Schwann cell functions and axonal growth within the regenerated nerve.
Collapse
Affiliation(s)
- Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chang He
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shuxuan Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meifeng Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Liming Xu
- Institute of Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
23
|
Rakhmetova A, Yi Z, Sarmout M, Koole LH. Sustained Release of Voriconazole Using 3D-Crosslinked Hydrogel Rings and Rods for Use in Corneal Drug Delivery. Gels 2023; 9:933. [PMID: 38131919 PMCID: PMC10742393 DOI: 10.3390/gels9120933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Corneal disorders and diseases are prevalent in the field of clinical ophthalmology. Fungal keratitis, one of the major factors leading to visual impairment and blindness worldwide, presents significant challenges for traditional topical eye drop treatments. The objective of this study was to create biocompatible 3D-crosslinked hydrogels for drug delivery to the cornea, intending to enhance the bioavailability of ophthalmic drugs. Firstly, a series of flexible and porous hydrogels were synthesized (free-radical polymerization), characterized, and evaluated. The materials were prepared by the free-radical polymerization reaction of 1-vinyl-2-pyrrolidinone (also known as N-vinylpyrrolidone or NVP) and 1,6-hexanediol dimethacrylate (crosslinker) in the presence of polyethylene glycol 1000 (PEG-1000) as the porogen. After the physicochemical characterization of these materials, the chosen hydrogel demonstrated outstanding cytocompatibility in vitro. Subsequently, the selected porous hydrogels could be loaded with voriconazole, an antifungal medication. The procedure was adapted to realize a loading of 175 mg voriconazole per ring, which slightly exceeds the amount of voriconazole that is instilled into the eye via drop therapy (a single eye drop corresponds with approximately 100 mg voriconazole). The voriconazole-loaded rings exhibited a stable zero-order release pattern over the first two hours, which points to a significantly improved bioavailability of the drug. Ex vivo experiments using the established porcine eye model provided confirmation of a 10-fold increase in drug penetration into the cornea (after 2 h of application of the hydrogel ring, 35.8 ± 3.2% of the original dose is retrieved from the cornea, which compares with 3.9 ± 1% of the original dose in the case of eye drop therapy). These innovative hydrogel rods and rings show great potential for improving the bioavailability of ophthalmic drugs, which could potentially lead to reduced hospitalization durations and treatment expenses.
Collapse
Affiliation(s)
| | | | | | - Leo H. Koole
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (A.R.); (Z.Y.); (M.S.)
| |
Collapse
|
24
|
Khalid MY, Arif ZU, Noroozi R, Hossain M, Ramakrishna S, Umer R. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications. Int J Biol Macromol 2023; 251:126287. [PMID: 37573913 DOI: 10.1016/j.ijbiomac.2023.126287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Cellulose nanocrystals (CNCs) have gained significant attraction from both industrial and academic sectors, thanks to their biodegradability, non-toxicity, and renewability with remarkable mechanical characteristics. Desirable mechanical characteristics of CNCs include high stiffness, high strength, excellent flexibility, and large surface-to-volume ratio. Additionally, the mechanical properties of CNCs can be tailored through chemical modifications for high-end applications including tissue engineering, actuating, and biomedical. Modern manufacturing methods including 3D/4D printing are highly advantageous for developing sophisticated and intricate geometries. This review highlights the major developments of additive manufactured CNCs, which promote sustainable solutions across a wide range of applications. Additionally, this contribution also presents current challenges and future research directions of CNC-based composites developed through 3D/4D printing techniques for myriad engineering sectors including tissue engineering, wound healing, wearable electronics, robotics, and anti-counterfeiting applications. Overall, this review will greatly help research scientists from chemistry, materials, biomedicine, and other disciplines to comprehend the underlying principles, mechanical properties, and applications of additively manufactured CNC-based structures.
Collapse
Affiliation(s)
- Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, 51041, Pakistan.
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, UK.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Yang Y, Qiu B, Zhou Z, Hu C, Li J, Zhou C. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells. Ann Transplant 2023; 28:e940365. [PMID: 37904328 PMCID: PMC10625337 DOI: 10.12659/aot.940365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Many patients have bone defects that exceed the healing size. This study aimed to construct polycaprolactone/nano-hydroxyapatite (PCL/nHA) composite scaffolds with different pore sizes and investigate the osteogenesis and histocompatibility of cortical bone mesenchymal stem cells (BMSCs-C) seeded on it after inoculation. MATERIAL AND METHODS After mixing PCL and nHA proportionally, three-dimensional (3D) printing was used to print scaffolds. Porosity, compressive strength, and elastic modulus of PCL/nHA scaffolds were tested. The proliferation of BMSCs-C cells was examined and osteogenesis, chondrogenesis, and adipogenesis were evaluated. BMSCs-C cells were inoculated into 3D printing scaffolds, and histocompatibility between BMSCs-C cells and scaffolds was observed by the cell count kit (CCK-8) assay and LIVE/DEAD staining. After inoculating BMSCs-C cells into scaffolds, alkaline phosphatase (ALP) activity and calcium content were measured. RESULTS There was no obvious difference in characteristics between the 3 PCL/nHA composite scaffolds. The porosity, compressive strength, and elastic modulus of the 300/500-μm scaffold were between those of the 300-μm and 500-μm scaffolds. With increasing pore size, the mechanical properties of the scaffold decrease. BMSCs-C cells demonstrated faster growth and better osteogenic, adipogenic, and chondrogenic differentiation; therefore, BMSCs-C cells were selected as seed cells. PCL/nHA composite scaffolds with different pore sizes had no obvious toxicity and demonstrated good biocompatibility. All scaffolds showed higher ALP activity and calcium content. CONCLUSIONS The 300/500 μm mixed pore size scaffold took into account the mechanical properties of the 300 μm scaffold and the cell culture area of the 500 μm scaffold, therefore, 300/500 μm scaffold is a better model for the construction of tissue engineering scaffolds.
Collapse
|
26
|
Akram N, Shahzadi I, Zia KM, Saeed M, Ali A, Al-Salahi R, Abuelizz HA, Verpoort F. Fabrication and In Vitro Biological Assay of Thermo-Mechanically Tuned Chitosan Reinforced Polyurethane Composites. Molecules 2023; 28:7218. [PMID: 37894696 PMCID: PMC10608899 DOI: 10.3390/molecules28207218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The progressive trend of utilizing bioactive materials constitutes diverse materials exhibiting biocompatibility. The innovative aspect of this research is the tuning of the thermo-mechanical behavior of polyurethane (PU) composites with improved biocompatibility for vibrant applications. Polycaprolactone (CAPA) Mn = 2000 g-mol-1 was used as a macrodiol, along with toluene diisocyanate (TDI) and hexamethylene diisocyanate (HMDI), to develop prepolymer chains, which were terminated with 1,4 butane diol (BD). The matrix was reinforced with various concentrations of chitosan (1-5 wt %). Two series of PU composites (PUT/PUH) based on aromatic and aliphatic diisocyanate were prepared by varying the hard segment (HS) ratio from 5 to 30 (wt %). The Fourier-transformed infrared (FTIR) spectroscopy showed the absence of an NCO peak at 1730 cm-1 in order to confirm polymer chain termination. Thermal gravimetric analysis (TGA) showed optimum weight loss up to 500 °C. Dynamic mechanical analysis (DMA) showed the complex modulus (E*) ≥ 200 MPa. The scanning electron microscope (SEM) proved the ordered structure and uniform distribution of chain extender in PU. The hemolytic activities were recorded up to 15.8 ± 1.5% for the PUH series. The optimum values for the inhibition of biofilm formation were recorded as 46.3 ± 1.8% against E. coli and S. aureus (%), which was supported by phase contrast microscopy.
Collapse
Affiliation(s)
- Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.S.); (K.M.Z.); (M.S.); (A.A.)
| | - Iram Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.S.); (K.M.Z.); (M.S.); (A.A.)
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.S.); (K.M.Z.); (M.S.); (A.A.)
| | - Muhammad Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.S.); (K.M.Z.); (M.S.); (A.A.)
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (I.S.); (K.M.Z.); (M.S.); (A.A.)
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.-S.); (H.A.A.)
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.-S.); (H.A.A.)
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|
27
|
Zabihzadeh Khajavi M, Nikiforov A, Nilkar M, Devlieghere F, Ragaert P, De Geyter N. Degradable Plasma-Polymerized Poly(Ethylene Glycol)-Like Coating as a Matrix for Food-Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2774. [PMID: 37887925 PMCID: PMC10609115 DOI: 10.3390/nano13202774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of polymer films. In this study, an atmospheric-pressure aerosol-assisted plasma deposition method was employed to develop a poly(ethylene glycol) (PEG)-like coating, which can act as a potential matrix for antimicrobial agents, by envisioning controlled-release food-packaging applications. Different plasma operating parameters, including the input power, monomer flow rate, and gap between the edge of the plasma head and substrate, were optimized to produce a PEG-like coating with a desirable water stability level and that can be biodegradable. The findings revealed that increased distance between the plasma head and substrate intensified gas-phase nucleation and diluted the active plasma species, which in turn led to the formation of a non-conformal rough coating. Conversely, at short plasma-substrate distances, smooth conformal coatings were obtained. Furthermore, at low input powers (<250 W), the chemical structure of the precursor was mostly preserved with a high retention of C-O functional groups due to limited monomer fragmentation. At the same time, these coatings exhibit low stability in water, which could be attributed to their low cross-linking degree. Increasing the power to 350 W resulted in the loss of the PEG-like chemical structure, which is due to the enhanced monomer fragmentation at high power. Nevertheless, owing to the enhanced cross-linking degree, these coatings were more stable in water. Finally, it could be concluded that a moderate input power (250-300 W) should be applied to obtain an acceptable tradeoff between the coating stability and PEG resemblance.
Collapse
Affiliation(s)
- Maryam Zabihzadeh Khajavi
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (F.D.); (P.R.)
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| | - Anton Nikiforov
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| | - Maryam Nilkar
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (F.D.); (P.R.)
| | - Peter Ragaert
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (F.D.); (P.R.)
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium; (A.N.); (M.N.); (N.D.G.)
| |
Collapse
|
28
|
Navasingh RJH, Gurunathan MK, Nikolova MP, Królczyk JB. Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers (Basel) 2023; 15:3760. [PMID: 37765615 PMCID: PMC10534797 DOI: 10.3390/polym15183760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
It is crucial to find an effective, environmentally acceptable solution, such as bioplastics or biodegradable plastics, to the world's rising plastics demand and the resulting ecological destruction. This study has focused on the environmentally friendly production of bioplastic samples derived from corn starch, rice starch, and tapioca starch, with various calcium carbonate filler concentrations as binders. Two different plasticizers, glycerol and sorbitol, were employed singly and in a rich blend. To test the differences in the physical and chemical properties (water content, absorption of moisture, water solubility, dissolution rate in alcohol, biodegradation in soil, tensile strength, elastic modulus, and FT-IR) of the produced samples, nine samples from each of the three types of bioplastics were produced using various ratios and blends of the fillers and plasticizers. The produced bioplastic samples have a multitude of features that make them appropriate for a variety of applications. The test results show that the starch-based bioplastics that have been suggested would be a better alternative material to be used in the packaging sectors.
Collapse
Affiliation(s)
- Rajesh Jesudoss Hynes Navasingh
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India;
- Faculty of Mechanical Engineering, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland;
| | - Manoj Kumar Gurunathan
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India;
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “Angel Kanchev”, 8 Studentska Street, 7017 Ruse, Bulgaria;
| | - Jolanta B. Królczyk
- Faculty of Mechanical Engineering, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland;
| |
Collapse
|
29
|
Embirsh HSA, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM. Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. Polymers (Basel) 2023; 15:3756. [PMID: 37765610 PMCID: PMC10536958 DOI: 10.3390/polym15183756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol (PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained from rice husk. The structural and morphological properties of the obtained particles, b-UPR, as well as composites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanical properties of composites was supported by hardness modeling. Improvement of the tensile strength of the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named "b-UPR/SiO2-V" composite, has been achieved with 88% increase. The thermal aging process applied to the b-UPR/SiO2-V composite, which simulates use over the product's lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR). The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of a table top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, as well as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainable composites that are chemically synthesized from renewable sources is important from the aspect of preserving the environment and existing resources as well as the extending their life cycle.
Collapse
Affiliation(s)
| | - Ivana Stajčić
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | | | - Ivana O Mladenović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Boban Anđelković
- Faculty of Chemistry, University of Belgrade, Studentski Trg, 12-16, 11158 Belgrade, Serbia
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, 11120 Belgrade, Serbia
| | - Marija M Vuksanović
- Department of Chemical Dynamics and Permanent Education, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| |
Collapse
|
30
|
Shu J, Wang J, Li Z, Tong KYR. Effects of Slit Edge Notches on Mechanical Properties of 3D-Printed PA12 Nylon Kirigami Specimens. Polymers (Basel) 2023; 15:3082. [PMID: 37514471 PMCID: PMC10383772 DOI: 10.3390/polym15143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Kirigami structures, a Japanese paper-cutting art form, has been widely adopted in engineering design, including robotics, biomedicine, energy harvesting, and sensing. This study investigated the effects of slit edge notches on the mechanical properties, particularly the tensile stiffness, of 3D-printed PA12 nylon kirigami specimens. Thirty-five samples were designed with various notch sizes and shapes and printed using a commercial 3D printer with multi-jet fusion (MJF) technique. Finite element analysis (FEA) was employed to determine the mechanical properties of the samples computationally. The results showed that the stiffness of the kirigami samples is positively correlated with the number of edges in the notch shape and quadratically negatively correlated with the notch area of the samples. The mathematical relationship between the stretching tensile stiffness of the samples and their notch area was established and explained from an energy perspective. The relationship established in this study can help fine-tune the stiffness of kirigami-inspired structures without altering the primary parameters of kirigami samples. With the rapid fabrication method (e.g., 3D printing technique), the kirigami samples with suitable mechanical properties can be potentially applied to planar springs for hinge structures or energy-absorbing/harvesting structures. These findings will provide valuable insights into the development and optimization of kirigami-inspired structures for various applications in the future.
Collapse
Affiliation(s)
- Jing Shu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Junming Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zheng Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kai-Yu Raymond Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
31
|
Andronov V, Beránek L, Krůta V, Hlavůňková L, Jeníková Z. Overview and Comparison of PLA Filaments Commercially Available in Europe for FFF Technology. Polymers (Basel) 2023; 15:3065. [PMID: 37514454 PMCID: PMC10386515 DOI: 10.3390/polym15143065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
This study presents a comprehensive techno-economic analysis of PLA materials for fused filament fabrication (FFF) from eight European manufacturers. The comparison involved rigorous experimental assessments of the mechanical properties, dimensional accuracy, and print quality using standardized methods and equipment such as tensile and CT testing. What makes this study unique is the consistent methodology applied, considering factors such as material color, printing temperature, printing orientation, filament diameter, and printer selection, to ensure meaningful and reliable results. Contrary to the common belief that a higher price implies better quality, the study revealed that the second cheapest PLA material achieved the best overall performance within the methodology employed. The study also confirmed certain observations, such as the influence of printing orientation and geometry on dimensional accuracy and mechanical properties, as well as the significant disparities between manufacturer-provided values and actual measured mechanical properties, highlighting the importance of experimental verification. Hence, the findings of this study hold value not only for the scientific community but also for hobbyist printers and beginners in the 3D printing realm seeking guidance in material selection for their projects. Furthermore, the methodology employed in this research can be adapted for evaluating a broad range of other 3D printing materials.
Collapse
Affiliation(s)
- Vladislav Andronov
- Department of Machining, Process Planning and Metrology, Faculty of Mechanical Engineering, The Czech Technical University in Prague, 160 00 Prague, Czech Republic
| | - Libor Beránek
- Department of Machining, Process Planning and Metrology, Faculty of Mechanical Engineering, The Czech Technical University in Prague, 160 00 Prague, Czech Republic
| | - Vojtěch Krůta
- Department of Machining, Process Planning and Metrology, Faculty of Mechanical Engineering, The Czech Technical University in Prague, 160 00 Prague, Czech Republic
| | - Lucie Hlavůňková
- Department of Machining, Process Planning and Metrology, Faculty of Mechanical Engineering, The Czech Technical University in Prague, 160 00 Prague, Czech Republic
| | - Zdeňka Jeníková
- Department of Materials Engineering, Faculty of Mechanical Engineering, The Czech Technical University in Prague, 160 00 Prague, Czech Republic
| |
Collapse
|
32
|
Hevilla V, Sonseca Á, Fernández-García M. Straightforward Enzymatic Methacrylation of Poly(Glycerol Adipate) for Potential Applications as UV Curing Systems. Polymers (Basel) 2023; 15:3050. [PMID: 37514438 PMCID: PMC10383392 DOI: 10.3390/polym15143050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enzymatic one-pot synthesis procedures in a one-step and two-step monomers addition were developed to obtain poly(glycerol adipate) macromers with methacrylate end-functional groups under the presence of 1 and 3 wt% of Candida antarctica lipase B (CALB). Glycerol, divinyl adipate, and vinyl methacrylate were enzymatically reacted (vinyl methacrylate was either present from the beginning in the monomers solution or slowly dropped after 6 h of reaction) in tetrahydrofuran (THF) at 40 °C over 48 h. Macromers with a methacrylate end groups fraction of ≈52% in a simple one-pot one-step procedure were obtained with molecular weights (Mn) of ≈7500-7900 g/mol. The obtained products under the one-pot one-step and two steps synthesis procedures carried out using 1 and 3 wt% of a CALB enzymatic catalyst were profusely characterized by NMR (1H and 13C), MALDI-TOF MS, and SEC. The methacrylate functional macromers obtained with the different procedures and 1 wt% of CALB were combined with an Irgacure® 369 initiator to undergo homopolymerization under UV irradiation for 10 and 30 min, in order to test their potential to obtain amorphous networks within minutes with similar properties to those typically obtained by complex acrylation/methacrylation procedures, which need multiple purification steps and harsh reagents such as acyl chlorides. To the best of our knowledge, this is the first time that it has been demonstrated that the obtention of methacrylate-functional predominantly linear macromers based on poly(glycerol adipate) is able to be UV crosslinked in a simple one-step procedure.
Collapse
Affiliation(s)
- Víctor Hevilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Águeda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
- Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), 28006 Madrid, Spain
| |
Collapse
|
33
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
34
|
Ye R, Liu S, Zhu W, Li Y, Huang L, Zhang G, Zhang Y. Synthesis, Characterization, Properties, and Biomedical Application of Chitosan-Based Hydrogels. Polymers (Basel) 2023; 15:2482. [PMID: 37299281 PMCID: PMC10255636 DOI: 10.3390/polym15112482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The prospective applications of chitosan-based hydrogels (CBHs), a category of biocompatible and biodegradable materials, in biomedical disciplines such as tissue engineering, wound healing, drug delivery, and biosensing have garnered great interest. The synthesis and characterization processes used to create CBHs play a significant role in determining their characteristics and effectiveness. The qualities of CBHs might be greatly influenced by tailoring the manufacturing method to get certain traits, including porosity, swelling, mechanical strength, and bioactivity. Additionally, characterization methods aid in gaining access to the microstructures and properties of CBHs. Herein, this review provides a comprehensive assessment of the state-of-the-art with a focus on the affiliation between particular properties and domains in biomedicine. Moreover, this review highlights the beneficial properties and wide application of stimuli-responsive CBHs. The main obstacles and prospects for the future of CBH development for biomedical applications are also covered in this review.
Collapse
Affiliation(s)
- Ruixi Ye
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Siyu Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Wenkai Zhu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
| | - Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Long Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, China;
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.Y.); (S.L.); (W.Z.); (Y.L.); (G.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
35
|
Cai H, Xu X, Lu X, Zhao M, Jia Q, Jiang HB, Kwon JS. Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers (Basel) 2023; 15:2405. [PMID: 37242980 PMCID: PMC10224282 DOI: 10.3390/polym15102405] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
As computer-aided design and computer-aided manufacturing (CAD/CAM) technologies have matured, three-dimensional (3D) printing materials suitable for dentistry have attracted considerable research interest, owing to their high efficiency and low cost for clinical treatment. Three-dimensional printing technology, also known as additive manufacturing, has developed rapidly over the last forty years, with gradual application in various fields from industry to dental sciences. Four-dimensional (4D) printing, defined as the fabrication of complex spontaneous structures that change over time in response to external stimuli in expected ways, includes the increasingly popular bioprinting. Existing 3D printing materials have varied characteristics and scopes of application; therefore, categorization is required. This review aims to classify, summarize, and discuss dental materials for 3D printing and 4D printing from a clinical perspective. Based on these, this review describes four major materials, i.e., polymers, metals, ceramics, and biomaterials. The manufacturing process of 3D printing and 4D printing materials, their characteristics, applicable printing technologies, and clinical application scope are described in detail. Furthermore, the development of composite materials for 3D printing is the main focus of future research, as combining multiple materials can improve the materials' properties. Updates in material sciences play important roles in dentistry; hence, the emergence of newer materials are expected to promote further innovations in dentistry.
Collapse
Affiliation(s)
- HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| | - Xiaotong Xu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Xinyue Lu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Menghua Zhao
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Qi Jia
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Heng-Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| |
Collapse
|