1
|
Zhang L, Wang S, Fu X, Yang Y, Zhang Z, Ju J. Advances in the polysaccharide derivatives for the treatment of inflammatory bowel disease: A review. Int J Biol Macromol 2025:144192. [PMID: 40373931 DOI: 10.1016/j.ijbiomac.2025.144192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing worldwide and poses a huge economic burden. The disease is difficult to treat and prone to recurrence, which seriously affects the physical and mental health of patients. Several studies have shown that natural polysaccharides have significant advantages in IBD treatment. To improve the therapeutic efficacy and broaden the scope of its application, numerous studies on various polysaccharide derivatives for IBD treatment have been published, showing broad application prospects. This paper reviews studies on various chemically modified polysaccharides, including carboxymethylation, sulfation, acetylation, esterification, thiolation, glycosylation, and polysaccharide metal complexes, in IBD treatment. These studies revealed the mechanism of action of polysaccharide derivatives and contributed to the development of related drug delivery systems, providing new strategies for IBD treatment. The advantages and disadvantages of each type of polysaccharide derivatives are discussed in this paper, aiming to provide a scientific basis for optimizing future IBD therapeutic regimens and exploring the potential application of polysaccharide derivatives as IBD therapeutic agents.
Collapse
Affiliation(s)
- Lan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Engineering Research Center of Hospital Pharmaceutics of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Siqi Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Engineering Research Center of Hospital Pharmaceutics of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xuedan Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Engineering Research Center of Hospital Pharmaceutics of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Engineering Research Center of Hospital Pharmaceutics of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Engineering Research Center of Hospital Pharmaceutics of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
2
|
Zeng X, Chen B, Qian P, Jiang D, Wu X, Wei S, Xing Y, Chen Y, Zhang Q, Chen H. Preparation and evaluation of oral enteric sustained-release liquid formulations of aspirin. Nanomedicine (Lond) 2025:1-12. [PMID: 40351227 DOI: 10.1080/17435889.2025.2503699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
AIM To develop an enteric sustained-release nanoparticle formulations of aspirin for applicability to a broader population. METHODS Aspirin-loaded nanoparticles were prepared using poly(lactic-co-glycolic acid) (PLGA) and the enteric polymer Eudragit L100-55 through an optimized oil-in-water emulsification solvent evaporation method. The nanoparticles were subjected to comprehensive physicochemical characterization, including particle size, zeta potential, and morphological analysis. Additionally, their stability, in vitro drug release profile, cytotoxicity, intestinal absorption, and in vivo pharmacokinetics were systematically evaluated. RESULTS The nanoparticles exhibited well-defined spherical morphology, uniform particle size, and favorable surface charge, demonstrating excellent biocompatibility. In the in vitro drug release study, AS-PLGA@NPs exhibited pronounced enterolysis effect. The morphology of the nanoparticles was confirmed by scanning electron microscopy (SEM) at different release stages. In vivo intestinal absorption and pharmacokinetic studies in rats demonstrated that AS-PLGA-EL@NPs enhanced drug absorption, prolonged drug release, and showed higher bioavailability compared to conventional enteric-coated tablets. CONCLUSION The development and preparation of an oral enteric sustained-release nanoparticle delivery system for aspirin has the potential to serve a broader population, with promising applications in various therapeutic contexts.
Collapse
Affiliation(s)
- Xiaolin Zeng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Baoyan Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Peng Qian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Dongjun Jiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xianwei Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Shiqi Wei
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Yangchen Xing
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Yuxin Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Qianyu Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
3
|
Taha MS, Akram A, Abdelbary GA. Unlocking the potential of remdesivir: innovative approaches to drug delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01843-7. [PMID: 40244526 DOI: 10.1007/s13346-025-01843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Given the recurrent waves of COVID-19 and the emergence of new viral infections, optimizing the potential of remdesivir as an antiviral agent is critical. While several reviews have explored the efficacy of remdesivir, few have comprehensively addressed its challenges, such as the necessity for intravenous infusion, suboptimal lung accumulation, and safety concerns related to its formulation. This review critically examines these challenges while proposing innovative solutions and effective combinations with other antiviral agents and repurposed drugs. By highlighting the role of complex generics, we aim to enhance therapeutic efficacy in ways not previously discussed in existing literature. Furthermore, we address the development of novel drug delivery systems which specifically aim to improve remdesivir's pharmacological profile. By analyzing recent findings, we assess both the successes and limitations of current approaches, providing insights into ongoing challenges and strategies for further optimization. This review uniquely focuses on targeted drug delivery systems and innovative formulations, thereby maximizing remdesivir's therapeutic benefits and broadening its application in combating emerging viral threats. In doing so, we fill a critical gap in literature, offering a comprehensive overview that informs future research and clinical strategies.
Collapse
Affiliation(s)
- Maie S Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Alaa Akram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ghada A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
4
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
5
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
6
|
Lin W, Yin L, Wang X, Li C, Zhang W, Pei Q, Qi H, Sun T, Xie Z, Gu J. Quantitatively analyzing the dissociation and release of disulfide-containing organic nanoparticles. J Mater Chem B 2024; 12:9289-9295. [PMID: 39192634 DOI: 10.1039/d4tb00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The disintegration of nanoparticles and drug release are important and imperative for nanoparticle formulations of therapeutic agents. However, quantitatively monitoring the drug release of nanomedicines is a major challenge. In this work, boron-dipyrromethene (BDP) was applied as a model drug to study the disassembly of nanoparticles and drug release. BDP dimers with disulfide and ester bonds were synthesized, and their nanoparticles were made. The accurate analysis of bond breaking in BDP nanoparticles could not be realized by using confocal laser scanning microscopy. Hence, the possible products after bond cleavage were quantified by using liquid chromatography tandem mass spectrometry (LC-MS/MS). BDP nanoparticles could be endocytosed into cancer cells, and the disulfide bonds and ester bonds were broken to promote the disassociation of nanoparticles and BDP release. Then, near-infrared BDP nanoparticles were investigated in live mice by near-infrared fluorescence imaging and LC-MS/MS. The release of BDP was low (<10%) and BDP maintained the original dimer structure in vivo, which showed that the bond breaking for BDP nanoparticles was difficult in vivo. These results could help us understand the breaking law of disulfide bonds and ester bonds in nanoparticles and are beneficial for developing practical new drug formulations.
Collapse
Affiliation(s)
- Wenhai Lin
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Lei Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China.
| | - Xin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- Department of Thyroid, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P. R. China
| | - Chaonan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Wei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Huixuan Qi
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Jingkai Gu
- Research Center for Drug Metabolism, College of Life Sciences, Jilin University, Changchun, Jilin 130012, P. R. China.
- Clinical Pharmacology Center, Research Institute of Translational Medicine, The First Hospital of Jilin University, Dongminzhu Street, Changchun, Jilin 130061, P. R. China
| |
Collapse
|
7
|
Yang J, Zeng H, Luo Y, Chen Y, Wang M, Wu C, Hu P. Recent Applications of PLGA in Drug Delivery Systems. Polymers (Basel) 2024; 16:2606. [PMID: 39339068 PMCID: PMC11435547 DOI: 10.3390/polym16182606] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable and biocompatible copolymer in drug delivery systems (DDSs). In this article, we highlight the critical physicochemical properties of PLGA, including its molecular weight, intrinsic viscosity, monomer ratio, blockiness, and end caps, that significantly influence drug release profiles and degradation times. This review also covers the extensive literature on the application of PLGA in delivering small-molecule drugs, proteins, peptides, antibiotics, and antiviral drugs. Furthermore, we discuss the role of PLGA-based DDSs in the treating various diseases, including cancer, neurological disorders, pain, and inflammation. The incorporation of drugs into PLGA nanoparticles and microspheres has been shown to enhance their therapeutic efficacy, reduce toxicity, and improve patient compliance. Overall, PLGA-based DDSs holds great promise for the advancement of the treatment and management of multiple chronic conditions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huiying Zeng
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yusheng Luo
- International School, Jinan University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Miao Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
8
|
Zhou J, Pan H, Gong W, Yu DG, Sun Y. Electrosprayed Eudragit RL100 nanoparticles with Janus polyvinylpyrrolidone patches for multiphase release of paracetamol. NANOSCALE 2024; 16:8573-8582. [PMID: 38602025 DOI: 10.1039/d4nr00893f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Advanced nanotechniques and the corresponding complex nanostructures they produce represent some of the most powerful tools for developing novel drug delivery systems (DDSs). In this study, a side-by-side electrospraying process was developed for creating double-chamber nanoparticles in which Janus soluble polyvinylpyrrolidone (PVP) patches were added to the sides of Eudragit RL100 (RL100) particles. Both sides were loaded with the poorly water-soluble drug paracetamol (PAR). Scanning electron microscope results demonstrated that the electrosprayed nanoparticles had an integrated Janus nanostructure. Combined with observations of the working processes, the microformation mechanism for creating the Janus PVP patches was proposed. XRD, DSC, and ATR-FTIR experiments verified that the PAR drug was present in the Janus particles in an amorphous state due to its fine compatibility with the polymeric matrices. In vitro dissolution tests verified that the Janus nanoparticles were able to provide a typical biphasic drug release profile, with the PVP patches providing 43.8 ± 5.4% drug release in the first phase in a pulsatile manner. In vivo animal experiments indicated that the Janus particles, on one hand, could provide a faster therapeutic effect than the electrosprayed sustained-release RL100 nanoparticles. On the other hand, they could maintain a therapeutic blood drug concentration for a longer period. The controlled release mechanism of the drug was proposed. The protocols reported here pioneer a new process-structure-performance relationship for developing Janus-structure-based advanced nano-DDSs.
Collapse
Affiliation(s)
- Jianfeng Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036, China.
| | - Wenjian Gong
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Sun
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
9
|
Zhao J, Hao S, Chen Y, Ye X, Fang P, Hu H. Tauroursodeoxycholic acid liposome alleviates DSS-induced ulcerative colitis through restoring intestinal barrier and gut microbiota. Colloids Surf B Biointerfaces 2024; 236:113798. [PMID: 38377705 DOI: 10.1016/j.colsurfb.2024.113798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Ulcerative colitis (UC) is a chronic and progressive inflammatory disease that damages the colonic mucosa and disrupts the intestinal epithelial barrier. The current clinical treatment for UC is mainly chemotherapy, which has the limited effectiveness and severe side effects. It mainly focuses on the treatment of inflammation while neglecting the repair of the intestinal mucosa and the restoration of the microbiota balance. Here, we aimed to address these challenges by using an amphipathic bile acid -tauroursodeoxycholic acid (TUDCA) to replace cholesterol (CHL) in conventional liposomes. We prepared TUDCA/Emodin liposomes by incorporating the hydrophobic drug emodin. The experimental results indicated that TUDCA/Emodin Lip had uniform particle size distribution, good stability, low cytotoxicity, and exhibited good mucus permeability and anti-inflammatory activity in in vitro experiments, and was able to protect cells from oxidative stress. After oral administration, TUDCA/Emodin Lip significantly alleviated the severity of UC. This was evidenced by increased colon length, decreased inflammation and reduced colonic endoplasmic reticulum stress (ERS). Furthermore, TUDCA/Emodin Lip maintained the normal levels of the tight junction proteins Claudin-1 and ZO-1, thereby restoring the integrity of the intestinal barrier. Importantly, TUDCA/Emodin Lip also promoted the ecological restoration of the gut microbiota, increased overall abundance and diversity. Taken together, TUDCA/Emodin Lip can fundamentally restore intestinal homeostasis, this work provides a new, efficient and easily transformable treatment for UC.
Collapse
Affiliation(s)
- Junke Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suqi Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxing Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Ain QU, Zeeshan M, Mazhar D, Zeb A, Afzal I, Ullah H, Ali H, Rahdar A, Díez-Pascual AM. QbD-Based Fabrication of Biomimetic Hydroxyapatite Embedded Gelatin Nanoparticles for Localized Drug Delivery against Deteriorated Arthritic Joint Architecture. Macromol Biosci 2024; 24:e2300336. [PMID: 37815044 DOI: 10.1002/mabi.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Biomaterials such as nanohydroxyapatite and gelatin are widely explored to improve damaged joint architecture associated with rheumatoid arthritis (RA). Besides joint damage, RA is associated with inflammation of joints and cartilage, which potentiates the need for both bone nucleation and therapeutic intervention. For such purpose, a modified nanoprecipitation method is used herein to fabricate tofacitinib (Tofa)-loaded nanohydroxyapatite (nHA) embedded gelatin (GLT) nanoparticles (NPs) (Tofa-nHA-GLT NPs). The quality by design (QbD) approach is chosen to assess the key parameters that determine the efficiency of the NPs, and are further optimized via Box-Behnken design of experiment. The particle size, polydispersity, zeta potential, and encapsulation efficiency (EE) of the prepared NPs are found to be 269 nm, 0.18, -20.5 mV, and 90.7%, respectively. Furthermore, the NPs have improved stability, skin permeability, and a sustained drug release pattern at pH 6.5 (arthritic joint pH). Moreover, rhodamine-B loaded nHA-GLT NPs demonstrates considerably higher cellular uptake by the murine-derived macrophages than free rhodamine-B solution. In vitro, cell-based experiments confirm the good cell biocompatibility with insignificant toxicity. Thus, QbD-based approach has successfully led to the development of Tofa-nHA-GLT NPs with the potential to target inflamed arthritic joint.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | - Danish Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ahmed Zeb
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Iqra Afzal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hameed Ullah
- Department of Chemistry, Islamia College University, Peshawar, 25120, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|