1
|
Chen H, Zhang R, Qu X, Shan T, Wang Y, Zhou R, Zhao S. Optimizing Cu 2 + adsorption prediction in Undaria pinnatifida using machine learning and isotherm models. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138202. [PMID: 40220381 DOI: 10.1016/j.jhazmat.2025.138202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Algae are cost-effective bioadsorbents for heavy metal remediation, yet their potential is underutilized due to limitations in traditional adsorption models. This study integrates machine learning (ML) techniques with traditional models to predict the Cu2+ adsorption capacity by Undaria pinnatifida, enabling more efficient and targeted strategies for heavy metal removal. The study determined the relationship between bioactive compounds (mannitol, alginate, phlorotannins) content in different parts (blade, stipe, sporophyll) of algae and revealed a positive correlation between phlorotannins and Cu²⁺ adsorption capacity. The adsorption behavior of algal blades was best described by the Freundlich model (R2=0.9858), pseudo-second-order kinetic model (R2=0.9989), and thermodynamic model (R2=0.9912). These models suggest multilayer adsorption and confirm the spontaneous nature of the adsorption process. ML regression using factors such as temperature, initial concentration, time, and equilibrium concentration, with CatBoost providing the best predictions (R2=0.9883). Feature importance analysis (Shapley and Partial Dependence Plot) identified the initial concentration as the most influential factor affecting Cu2+ adsorption. This study presents a novel approach by combining traditional models and ML techniques to predict algal Cu2+ adsorption capacity. The findings highlight the potential of ML for accurate predictions and provide valuable insights for enhancing the utilization of algae in environmental pollution control.
Collapse
Affiliation(s)
- Haoran Chen
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rui Zhang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xiaohan Qu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Tifeng Shan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yuhe Wang
- School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rongbing Zhou
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shichao Zhao
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Rincón-Cervera MA, de Burgos-Navarro I, Chileh-Chelh T, Belarbi EH, Álvarez-Corral M, Carmona-Fernández M, Ezzaitouni M, Guil-Guerrero JL. The Agronomic Potential of the Invasive Brown Seaweed Rugulopteryx okamurae: Optimisation of Alginate, Mannitol, and Phlorotannin Extraction. PLANTS (BASEL, SWITZERLAND) 2024; 13:3539. [PMID: 39771237 PMCID: PMC11677978 DOI: 10.3390/plants13243539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Rugulopteryx okamurae is an invasive brown macroalga that has recently proliferated in the western Mediterranean Sea, causing significant environmental challenges. This alga, however, contains valuable bioactive compounds-alginate, mannitol, and phlorotannins-that can serve as biofertilizers to promote plant growth and aid in bioremediation of degraded or contaminated soils. This study focused on optimizing the extraction of these compounds from R. okamurae, transforming an ecological issue into a beneficial resource. Algae samples collected from the Spanish Mediterranean coast were processed through a randomized factorial response surface design. Extraction conditions varied by time, temperature, algae-to-solvent ratio, and ethanol-to-water ratio to determine optimal yields. The highest yields achieved were 29.4, 11.9, and 0.35 g/100 g for alginate, mannitol, and phlorotannin's under extraction conditions of 6, 6, and 3 h; 58.8, 60.0, and 60.0 °C; and an algae:solvent ratio of 1:50, 2:45, and 1.40 g/mL, respectively. Characterization of the extracted sodium alginate using 1H-NMR, FTIR, and high-resolution electron microscopy confirmed its high purity and typical morphological features. This study highlights a sustainable approach to mitigating the invasive spread of R. okamurae while supporting soil health and sustainable agriculture. Harnessing this invasive species' biofertilizer potential provides a dual solution, aiding marine ecosystem conservation and developing eco-friendly agricultural practices.
Collapse
Affiliation(s)
- Miguel A. Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
- Institute of Nutrition and Food Technology, University of Chile, Macul, Santiago 7830490, Chile
| | - Irene de Burgos-Navarro
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - Tarik Chileh-Chelh
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - El-Hassan Belarbi
- Engineering Chemistry Department, University of Almeria, 04120 Almeria, Spain;
| | | | - Minerva Carmona-Fernández
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - Mohamed Ezzaitouni
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| | - José L. Guil-Guerrero
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain or (M.A.R.-C.); (I.d.B.-N.); (T.C.-C.); (M.C.-F.); (M.E.)
| |
Collapse
|
3
|
Xiao F, Zhang Y, Zhang L, Wang Y, Li C, Li S, Lu J, Chen W, Shi G, Li Y. Systematic review on marine carbon source-mannitol: Applications in synthetic biology. Microbiol Res 2024; 289:127881. [PMID: 39241502 DOI: 10.1016/j.micres.2024.127881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Mannitol, one of the most widespread sugar alcohols, has been integral to daily human life for two centuries. Global population growth and competition for freshwater, food, and land have prompted a shift in the fermentation industry from terrestrial to marine raw materials. Mannitol is a readily available carbohydrate in brown seaweed from the ocean and possess a higher reducing power than glucose, making it a promising substrate for biological manufacturing. This has spurred numerous explorations into converting mannitol into high-value chemicals. Researchers have engineered microorganisms to utilize mannitol in various synthetic biological applications, including: (1) employing mannitol as an inducer to control the activation and deactivation of genetic circuits; (2) using mannitol as a carbon source for synthesizing high-value chemicals through biomanufacturing. This review summarizes the latest advances in the application of mannitol in synthetic biology. AIM OF REVIEW: The aim is to present a thorough and in-depth knowledge of mannitol, a marine carbon source, and then use this carbon source in synthetic biology to improve the competitiveness of biosynthetic processes. We outlined the methods and difficulties of utilizing mannitol in synthetic biology with a variety of microbes serving as hosts. Furthermore, future research directions that could alleviate the carbon catabolite repression (CCR) relationship between glucose and mannitol are also covered. EXPECTED CONTRIBUTIONS OF REVIEW: Provide an overview of the current state, drawbacks, and directions for future study on mannitol as a carbon source or genetic circuit inducer in synthetic biology.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Lihuan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Yanling Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Chenxing Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Jiawei Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, PR China.
| |
Collapse
|
4
|
Anjana K, Arunkumar K. Brown algae biomass for fucoxanthin, fucoidan and alginate; update review on structure, biosynthesis, biological activities and extraction valorisation. Int J Biol Macromol 2024; 280:135632. [PMID: 39299435 DOI: 10.1016/j.ijbiomac.2024.135632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Natural compounds promoting human health are the main focus of research nowadays. Fucoxanthin, fucoidan and alginate are such bioactive compounds that are extracted from marine brown algae. Extracting these 3 compounds through successive extraction enhances the commercial value of the brown algae biomass. There are studies on successive extraction of fucoidan and alginate but not with fucoxanthin which displays various biological bioactivities. Alginate, a polysaccharide presents 45 % in the cell wall of brown algae. Fucoidan, a sulphated polysaccharide proved showing various bioactivities. These bioproducts yield are vary depending on the species. Dictyota species recorded high fucoxanthin content of 7 %. Ascophyllum nodosum was found with high fucoidan of 16.08 % by direct extraction. Maximum alginate of 45.79 % was recorded from the brown alga Sargassum cymosum and by successive extraction 44 % was recorded from Ecklonia radiata. Fucoxanthin exits in two isomers as trans and cis forms. Based on linkage, fucoidan structure is found in 3 forms as 1,3- or 1,4- or alternating 1,3- and 1,4-linked fucose in the polysaccharide residues. Fucoidan composition varys depending on the degree of sulphation, composition of monosaccharides and location of collection. In alginate, its property relies on the mannuronic acid and guluronic acid composition. Biosynthesis of these 3 compounds is not much explored. Keeping this view which signify sequential extraction towards biomass valorisation, fucoxanthin, fucoidan and alginate extracted from the brown algae species focusing yield, extraction, characterisation, biosynthesis and biological activities were compiled and critically analysed and discussed in this review.
Collapse
Affiliation(s)
- K Anjana
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India
| | - K Arunkumar
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
5
|
Liu C, Gao J, Jiang H, Sun J, Gao X, Mao X. Value-added utilization technologies for seaweed processing waste in a circular economy: Developing a sustainable modern seaweed industry. Compr Rev Food Sci Food Saf 2024; 23:e70027. [PMID: 39379297 DOI: 10.1111/1541-4337.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
The global seaweed industry annually consumes approximately 600,000 tons of dried algal biomass to produce algal hydrocolloids, yet only 15-30% of this biomass is utilized, with the remaining 70-85% discarded or released as scum or wastewater during the hydrocolloid extraction process. This residual biomass is often treated as waste and not considered for further commercial use, which contradicts the principles of sustainable development. In reality, the residual algal biomass could be employed to extract additional biochemical components, such as pigments, proteins, and cellulose, and these ingredients have important application prospects in the food sector. According to the biorefinery concept, recycling various products alongside the principal product enhances overall biomass utilization. Transitioning from traditional single-product processes to multi-product biorefineries, however, raises operating costs, presenting a significant challenge. Alternatively, developing value-added utilization technologies that target seaweed waste without altering existing processes is gaining traction among industry practitioners. Current advancements include methods such as separation and extraction of residual biomass, anaerobic digestion, thermochemical conversion, enzymatic treatment, functionalized modification of algal scum, and efficient utilization through metabolic engineering. These technologies hold promise for converting seaweed waste into alternative proteins, dietary supplements, and bioplastics for food packaging. Combining multiple technologies may offer the most effective strategy for future seaweed waste treatment. Nonetheless, most research on value-added waste utilization remains at the laboratory scale, necessitating further investigation at pilot and commercial scales.
Collapse
Affiliation(s)
- Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Jiale Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, PR China
| |
Collapse
|
6
|
Circuncisão AR, Ferreira SS, Silva AMS, Coimbra MA, Cardoso SM. Fucus vesiculosus-Rich Extracts as Potential Functional Food Ingredients: A Holistic Extraction Approach. Foods 2024; 13:540. [PMID: 38397517 PMCID: PMC10888237 DOI: 10.3390/foods13040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Brown macroalgae are rich sources of nutrients and health-promoting compounds. Nevertheless, their consumption is still limited by their strong organoleptic characteristics, thus requiring the development of extraction strategies to profit from their nutritional value. To fulfil this, two sequential extraction approaches were developed, differing in the solvent used in the first extraction step, water in approach 1 or food-grade ethanol in approach 2, to obtain economic and affordable extracts rich in specific compounds from Fucus vesiculosus. The use of water in the first step of extraction allowed us to recover water-soluble phlorotannins, laminarans and mannuronic-rich alginates, making the subsequent 70% ethanol extract richest in fucoxanthin (0.07% algae DW), and the hot water fractions purest in fucoidans and alginates with a lower mannuronic-to-guluronic (M/G) ratio (2.91). Conversely, when beginning extraction procedures with 96% ethanol, the recovered yields of phlorotannins increased (0.43 g PGE/100 g algae DW), but there was a concomitant seven-fold decrease in the recovery of fucoxanthin in the subsequent 70% ethanol extract. This approach also led to less pure hot water fractions containing fucoidans, laminarans and alginates with a higher M/G ratio (5.50). Overall, this work unveiled the potential of the first extraction steps in sustainable and holistic cascade strategies to modulate the composition of food-grade extracts, creating prospects of their application as tailored functional ingredients in food products.
Collapse
Affiliation(s)
| | | | | | | | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.C.); (S.S.F.); (A.M.S.S.); (M.A.C.)
| |
Collapse
|
7
|
Mabate B, Pletschke BI. Sequential and enzyme-assisted extraction of algal bioproducts from Ecklonia maxima. Enzyme Microb Technol 2024; 173:110364. [PMID: 38039714 DOI: 10.1016/j.enzmictec.2023.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
Brown algae are gaining recognition as sources of bio-compounds with diverse properties and potential applications in the food, nutraceutical, and pharmaceutical industries. Compounds such as polyphenols, alginates and fucoidan possess multiple bioactivities, including antidiabetic, antioxidant, anticancer, anti-inflammatory, and antibacterial properties. Conventional extraction methods provide low yields, posing challenges for the industrial applications of biocompounds. However, innovations are rapidly emerging to address these challenges, and one such approach is enzyme-assisted extraction. Furthermore, extracting single compounds undervalues algal biomass as valuable compounds may remain in the waste. Therefore, the aim of our study was to develop a framework for the sequential and enzyme-assisted extraction of various bio-compounds using the same biomass in a biorefinery process. The Ecklonia maxima algal biomass was defatted, and polyphenols were extracted using solid-liquid extraction with aqueous ethanol. The remaining residue was treated with an enzyme combination (Cellic® Ctec 2 and Viscozyme L) to liberate carbohydrates into solution, where an alginate and fucoidan fraction were isolated. A second alginate fraction was harvested from the residue. The phenolic fraction yielded about 11% (dry weight of extract/dry weight of seaweed biomass), the alginate fraction 35% and the fucoidan fraction 18%. These were analysed using a variety of biochemical methods. Structural analyses, including FTIR, NMR and TGA, were performed to confirm the integrity of these compounds. This study demonstrated that a sequential extraction method for various algal bioproducts is possible, which can pave the way for a biorefinery approach. Furthermore, our study primarily employed environmentally and eco-friendly extraction technologies promoting an environmentally sustainable industrial approach. This approach enhances the feasibility and flexibility of biorefinery operations, contributing to the development of a circular bio-economy.
Collapse
Affiliation(s)
- Blessing Mabate
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Brett Ivan Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
8
|
Kai Y, Liu Y, Li H, Yang H. Wakame replacement alters the metabolic profile of wheat noodles after in vitro digestion. Food Res Int 2023; 164:112394. [PMID: 36737976 DOI: 10.1016/j.foodres.2022.112394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The development of nutritional noodles of high quality has become a new hotspot of research in the area of food science. Since wakame is edible seaweed rich in dietary fiber and proteins and rarely found in ordinary noodle, this study investigated the release of metabolites, the texture quality, and the rheological properties of wakame noodle, as well as the mechanism by which extruded wakame flours can influence noodle texture and viscoelasticity through digestion. Basically, nuclear magnetic resonance spectra were applied to identify the 46 metabolites including amino acids, saccharides, fatty acids, and other metabolites. Both PCA and OPLS-DA model showed fit goodness and good predictivity, which were assessed the increasing release of most metabolites. Structural studies discussed the effects on the enhancement of interlinkage with gluten matrix and protein matrix, which were validated via the decreasing instantaneous compliance J0 (1.64 × 10-5 to 0.16 × 10-5 Pa-1). Wakame addition best matched the physiochemical properties of noodle, in terms of chewiness (99.10 vs 122.66 g.mm), gumminess (281.98 vs. 323.44 g), and gel strength (132.65 vs 173.95 kPa•s-1). Beyond the functional characteristics it contributes benefits like reduction of diet-related diabetes. As a consequence, the creation of personalized nutritious, healthy noodles will be an innovative route from a scientific viewpoint and an application standpoint.
Collapse
Affiliation(s)
- Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongliang Li
- Guangzhou Welbon Biological Technology Co., Ltd, Guangzhou, Guangdong 523660, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
9
|
Relevance of drying treatment on the extraction of high valuable compounds from invasive brown seaweed Rugulopteryx okamurae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Karishma S, Saravanan A, Senthil Kumar P, Rangasamy G. Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges. BIORESOURCE TECHNOLOGY 2022; 366:128187. [PMID: 36309177 DOI: 10.1016/j.biortech.2022.128187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The production of chemicals and energy from sustainable biomass with an important objective decreasing carbon impressions has recently become one of the key areas of attention. Algae biomass have been recognized and researched as a potential renewable biomass of biohydrogen production attributed to their limited multiplying time, fast growing qualities and ability of lipid accumulation. This review additionally envelops various key perspectives such as composition and properties of algae biomass and pretreatment strategies such as physical, chemical and biological methods adopted for the algae biomass. This review is mainly focused on pretreatment strategies which have been developed to enhance biohydrogen production. The present review deals with methods and mechanism, enzymes involved and factors influencing on biohydrogen production which help to grasp various bottlenecks, challenges and constraints. Finally, the significant progressions and economical perspective on improving biohydrogen yield because of the expansion of co-substrates and the current trends are examined.
Collapse
Affiliation(s)
- S Karishma
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
11
|
Lisha VS, Kothale RS, Sidharth S, Kandasubramanian B. A critical review on employing algae as a feed for polycarbohydrate synthesis. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Cikoš AM, Aladić K, Velić D, Tomas S, Lončarić P, Jerković I. Evaluation of ultrasound-assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Bojorges H, Fabra MJ, López-Rubio A, Martínez-Abad A. Alginate industrial waste streams as a promising source of value-added compounds valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156394. [PMID: 35660439 DOI: 10.1016/j.scitotenv.2022.156394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The alginate industry processes more than hundred thousand tons per year of algae in Europe, discarding around 80% of the algae biomass as different solid/liquid residual streams. In this work, Saccharina latissima and Ascophyllum nodosum, their generated alginates and all residual fractions generated in the process were characterized in terms of lipid, ash, protein content, and the carbohydrate composition and antioxidant capacities analyzed. The first fraction after acid treatment (ca. 50% of the initial dry biomass) was rich in phlorotannins (15 mg GAE/g) and bioactive fucoidans (15-70%), with a high sulfation degree in A. nodosum. Two fractions generated from the solid residue, one soluble and another insoluble (Ra and Rb, respectively), constituted 9% and 5-8% of the initial biomass and showed great potential as a source of soluble protein (30% for S. latissima), and cellulose (70%) or fucoidan, respectively. Valorization strategies are suggested for these waste streams, evidencing their high potential as bioactive, texturizing or nutritional added-value ingredients for cosmetic, food, feed or pharmaceutical applications.
Collapse
Affiliation(s)
- Hylenne Bojorges
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain
| | - Maria José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
14
|
Zhang R, Richardson JJ, Masters AF, Maschmeyer T. Removal of Pb 2+ from Water Using Sustainable Brown Seaweed Phlorotannins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8324-8333. [PMID: 35758845 DOI: 10.1021/acs.langmuir.2c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioadsorption is a promising technology to sequester heavy metal ions from water, and brown seaweed has been identified as one of the most appropriate adsorbents as it is abundant, low cost, and efficient at removing various metal ion contaminations. The ability to remove heavy metals from water arises from the high concentration of polysaccharides and phlorotannins in brown seaweed; however, remediation can be hampered by the salinity, location, and coexistence of pollutants in the contaminated water. Maintaining the adsorbent properties of brown seaweed while avoiding the fragility of living organisms could allow for the development of better adsorbents. Herein, we demonstrate that polymerized phlorotannin particles, synthesized from phlorotannins extracted from a species of brown seaweed (Carpophyllum flexuosum), were able to remove 460 mg of Pb2+ from water per gram of adsorbent. Scanning electron microscopy (SEM), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA) were used to characterize the polymerization process and the polymerized phlorotannin particles. Importantly, there was no direct correlation between the Pb2+ removal capacity and the phlorotannin content of various algal derivatives of three species of brown seaweed, C. flexuosum, Carpophyllum plumosum, and Ecklonia radiata, as all three had similar adsorption capacities despite differences in phlorotannin content. This work shows that naturally abundant, "green" materials can be used to help remediate the environment.
Collapse
Affiliation(s)
- Rui Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang Province, China
| | - Joseph J Richardson
- Department of Materials Engineering, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Anthony F Masters
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry F11, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry F11, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Cikoš AM, Šubarić D, Roje M, Babić J, Jerković I, Jokić S. Recent advances on macroalgal pigments and their biological activities (2016–2021). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
16
|
Raja K, Kadirvel V, Subramaniyan T. Seaweeds, an aquatic plant-based protein for sustainable nutrition- a review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Sustainability Challenges and Future Perspectives of Biopolymer. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Queffelec J, Flórez-Fernández N, Domínguez H, Torres MD. Microwave hydrothermal processing of Undaria pinnatifida for bioactive peptides. BIORESOURCE TECHNOLOGY 2021; 342:125882. [PMID: 34560434 DOI: 10.1016/j.biortech.2021.125882] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Microwave hydrothermal processing was employed to obtain valuable gelling or bioactive fractions from U. pinnatifida, assessing the processing conditions following a biorefinery concept. It was identified a relevant impact on the antioxidant properties, sulfate, protein and oligosaccharides content, with the highest values above 200 °C, although the maximum in fucose was obtained at 160 °C. The lowest temperature involved the highest minerals and sulfate content of the solid phases. Rheology indicated that hydrothermal treatment at 160 °C is adequate to extract alginates with structural and viscoelastic properties similar to those commercially available. The incorporation of the hydrothermal residual solids in the proposed alginate matrices favored the development of systems with potential non-food applications applications. Selected extracts, after an intensification stage using ultrasound, featured interesting biological activities for two human cancer cell lines (A2780; HeLa 229) with percentage of cellular inhibition > 83 and 57%, without positive effects on A549 and HCT-116.
Collapse
Affiliation(s)
- J Queffelec
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain; IMT Mines Albi, Allée des Sciences, 81000 Albi, France
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain
| | - H Domínguez
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain
| | - M D Torres
- CINBIO, Universidade de Vigo, Deparment of Chemical Engineering, Campus Ourense, Edificio Politécnico, As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
19
|
Techno-economic aspects of different process approaches based on brown macroalgae feedstock: A step toward commercialization of seaweed-based biorefineries. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Kartik A, Akhil D, Lakshmi D, Panchamoorthy Gopinath K, Arun J, Sivaramakrishnan R, Pugazhendhi A. A critical review on production of biopolymers from algae biomass and their applications. BIORESOURCE TECHNOLOGY 2021; 329:124868. [PMID: 33707076 DOI: 10.1016/j.biortech.2021.124868] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Algae is abundantly present in our ecosystems and can be easily extracted and used for production of biopolymers. Algae does not produce any anthropogenic, harmful effects, has a good growth rate, and cultivable in wastewater. This literature elucidates the potential of algae biomass by comparing various seaweed and microalgae strains. The routes for biopolymer production were portrayed and their novel methods of isolation such as microwave assisted, ultrasound assisted, and subcritical water assisted extraction are discussed in detail. These novel methods are observed to be highly efficient compared to conventional solvent extraction, with the microwave assisted and ultrasound assisted processes yielding 33% and 5% more biopolymer respectively than the conventional method. Biopolymers are used in variety of applications such as environmental remediation, adsorbent and antioxidant. Biopolymer is shown to be highly effective in the removal of potentially toxic elements and is seen to extract more than 40 mg PTE/g biopolymer.
Collapse
Affiliation(s)
- Ashokkumar Kartik
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Dilipkumar Akhil
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Divya Lakshmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
21
|
Ferreira CAM, Félix R, Félix C, Januário AP, Alves N, Novais SC, Dias JR, Lemos MFL. A Biorefinery Approach to the Biomass of the Seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining Phlorotannins-Enriched Extracts for Wound Healing. Biomolecules 2021; 11:461. [PMID: 33808694 PMCID: PMC8003497 DOI: 10.3390/biom11030461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Brown seaweeds are recognized sources of compounds with a wide range of properties and applications. Within these compounds, phlorotannins are known to possess several bioactivities (e.g., antioxidant, anti-inflammatory, and antimicrobial) with potential to improve wound healing. To obtain phlorotannins enriched extracts from Undaria pinnatifida, a biorefinery was set using low-cost industry-friendly methodologies, such as sequential solid-liquid extraction and liquid-liquid extraction. The obtained extracts were screened for their antioxidant and antimicrobial activity against five common wound pathogens and for their anti-inflammatory potential. The ethanolic wash fraction (wE100) had the highest antioxidant activity (114.61 ± 10.04 mmol·mg-1 extract by Diphenyl-1-picrylhydrazyl (DPPH) and 6.56 ± 1.13 mM eq. Fe II·mg-1 extract by and Ferric Reducing Antioxidant Power (FRAP)), acting efficiently against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria, and showing a nitric oxide production inhibition over 47% when used at 0.01 µg·mL-1. NMR and FTIR chemical characterization suggested that phlorotannins are present. Obtained fraction wE100 proved to be a promising candidate for further inclusion as wound healing agents, while the remaining fractions analyzed are potential sources for other biotechnological applications, giving emphasis to a biorefinery and circular economy framework to add value to this seaweed and the industry.
Collapse
Affiliation(s)
- Carolina A. M. Ferreira
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
- CDRSP—Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, 2030-028 Marinha Grande, Portugal; (N.A.); (J.R.D.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Nuno Alves
- CDRSP—Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, 2030-028 Marinha Grande, Portugal; (N.A.); (J.R.D.)
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| | - Juliana R. Dias
- CDRSP—Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, 2030-028 Marinha Grande, Portugal; (N.A.); (J.R.D.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2050-641 Peniche, Portugal; (C.A.M.F.); (R.F.); (C.F.); (A.P.J.); (S.C.N.)
| |
Collapse
|
22
|
Matos GS, Pereira SG, Genisheva ZA, Gomes AM, Teixeira JA, Rocha CMR. Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods 2021; 10:foods10030516. [PMID: 33801287 PMCID: PMC7998159 DOI: 10.3390/foods10030516] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023] Open
Abstract
Seaweeds are a renewable natural source of valuable macro and micronutrients that have attracted the attention of the scientists in the last years. Their medicinal properties were already recognized in the ancient traditional Chinese medicine, but only recently there has been a considerable increase in the study of these organisms in attempts to demonstrate their health benefits. The extraction process and conditions to be used for the obtention of value-added compounds from seaweeds depends mainly on the desired final product. Thermochemical conversion of seaweeds, using high temperatures and solvents (including water), to obtain high-value products with more potential applications continues to be an industrial practice, frequently with adverse impact on the environment and products’ functionality. However more recently, alternative methods and approaches have been suggested, searching not only to improve the process performance, but also to be less harmful for the environment. A biorefinery approach display a valuable idea of solving economic and environmental drawbacks, enabling less residues production close to the much recommended zero waste system. The aim of this work is to report about the new developed methods of seaweeds extractions and the potential application of the components extracted.
Collapse
Affiliation(s)
- Gabriela S. Matos
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Sara G. Pereira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Zlatina A. Genisheva
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Ana Maria Gomes
- Centro de Biotecnologia e Química Fina—Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, 4169-005 Porto, Portugal;
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
- Correspondence: ; Tel.: +315-253-604-400
| |
Collapse
|