1
|
Aziz K, Gilbert JA, Zaidi AH. Genomic and Phenotypic Insight into the Probiotic Potential of Lactic Acid Bacterial spp. Associated with the Human Gut Mucosa. Probiotics Antimicrob Proteins 2025; 17:1236-1264. [PMID: 38070037 DOI: 10.1007/s12602-023-10193-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 05/07/2025]
Abstract
Commensal microbiome-based health support is gaining respect in the medical community and new human gut-associated Lactic Acid Bacteria (LAB) strains must be evaluated for their probiotic potential. Here we characterized the phenotype and genomes of human ileocecal mucosa-associated LAB strains using metagenomic sequencing and in vitro testing. The strains characterized belonged to the genus Enterococcus (Enterococcus lactis NPL1366, NPL1371, and Enterococcus mundtii NPL1379) and Lactobacillus (Lactobacillus paragasseri, NPL1369, NPL1370, and Lactiplantibacillus plantarum NPL1378). Genome annotation suggested bacterial adaptation to both human physiological and industrial manufacturing-related stressors. Genes for histidine kinases in enterococci and Na + /K + antiporters and F0F1 ATP synthases in Lactobacillus strains may support their tolerance to acid seen in vitro. The bile salt hydrolase (BSH) gene in Lp. plantarum and L. paragasseri may help explain their reported bile salt deconjugation and cholesterol-lowering behavior. Thioredoxin is the principal antioxidant system, and several oxidases and general stress-related proteins are found in lactobacilli, most notably in L. plantarum NPL1378. Multiple adhesion and biofilm-related genes were predicted in the LAB genomes. Adhesion and biofilm-related genes figured prominently in the genomes of enterococcal strains, especially E. lactis, corresponding to its biofilm formation capacity in vitro. Bacteriocin and secondary metabolite biosynthetic gene clusters in the sequenced genomes of E. lactis NPL1366 and Lp. plantarum NPL1378 may explain their in vitro pathogenic antagonism. Moreover, folate producing Lp. plantarum strain holds potential to be used in therapeutics or biofortification of food. All the strains were deemed safe through in vitro and in silico analysis. This basic genetic and phenotypic information supports their contention as probiotic adjuncts to conventional medical therapy.
Collapse
Affiliation(s)
- Kanwal Aziz
- National Probiotic Lab-National Institute for Biotechnology & Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan
| | - Jack A Gilbert
- Department of Paediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, La Jolla, San Diego, CA, 92093, USA
| | - Arsalan Haseeb Zaidi
- National Probiotic Lab-National Institute for Biotechnology & Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan.
| |
Collapse
|
2
|
Tleuova KZ, Shingisov AU, Khamitova BM, Kanseitova ET, Tulekbaeva AK. Isolation and molecular characterization of Lactobacillus delbrueckii subsp based on bulgaricus strain 1 from kefir shows probiotic and antimicrobial properties: Linking probiotics to UNSDG (United Nations Sustainable Development Goals) agenda: 2030. BRAZ J BIOL 2025; 84:e286969. [PMID: 39936794 DOI: 10.1590/1519-6984.286969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/23/2024] [Indexed: 02/13/2025] Open
Abstract
The global population increase necessitates the dire need for ample food as medicine. Good health and well-being are stressed on probiotic functional foods. The present study characterizes biochemical and molecular identification of potential lactic acid bacteria. The potent antimicrobial properties also affirm Lactobacillus delbrueckii subsp. bulgaricus strain 3286. Biochemical analysis comprises carbohydrate fermentation, tolerance to acids and bile salts, production of bioactive compounds, lecithinase production, gelatinase production, and strain ripening ability. Antibiotic sensitivity to various antibiotics was assessed employing minimum inhibitory concentration (MIC) and E-test. Strain resistance to increased salt concentrations coherently concludes the positive impact of gut microbiome and gut-brain axis health management. The preliminary assessment requires further in vitro, in vivo, and in silico analysis for commercialization, market strategy and utility as functional food supplementation. The study can be rationalized for sustainable development goals regarding SDG 3: good health and well-being. Further, the UNSDG agenda 2030 also ascertains the role of probiotic foods in life longevity and public health management systems.
Collapse
Affiliation(s)
- K Z Tleuova
- South Kazakhstan University named after. M. Auezov, Department of Biotechnology, Shymkent, Republic of Kazakhstan
| | - A U Shingisov
- South Kazakhstan University named after. M. Auezov, Department of Technology and Safety of Food Products, Academy of Natural Sciences of the Russian Federation, Shymkent, Kazakhstan
| | - B M Khamitova
- M. Auezov South Kazakhstan State University, Shymkent, Kazakhstan
| | - E T Kanseitova
- Agrotechnical University named after S. Seifullina, Southwestern Scientific Research Institute of Animal Husbandry and Crop Production, Southwestern Scientific Research Institute of Animal Husbandry and Crop Production, RSE "Southwestern Scientific and Production Center of Agriculture" - RSE "YZNPTSKH", Astana, Kazakhstan
- M. Auezov South Kazakhstan State University, South Kazakhstan University named after M. Auezov, Shymkent, Kazakhstan
| | - A K Tulekbaeva
- SKSU named after. M. Auezova, Department of "Standardization and Certification", Shymkent, Kazakhstan
| |
Collapse
|
3
|
Mikołajczuk-Szczyrba A, Wojtczak A, Kieliszek M, Sokołowska B. Characteristics and in vitro properties of potential probiotic strain Fructobacillus tropaeoli KKP 3032 isolated from orange juice. Folia Microbiol (Praha) 2025; 70:177-194. [PMID: 39541067 PMCID: PMC11861141 DOI: 10.1007/s12223-024-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Fructobacillus, a Gram-positive, non-spore-forming, facultative anaerobic bacterium, belongs to the fructophilic lactic acid bacteria (FLAB) group. The group's name originates from fructose, the favored carbon source for its members. Fructobacillus spp. are noteworthy for their distinctive traits, captivating the interest of scientists. However, there have been relatively few publications regarding the isolation and potential utilization of these microorganisms in the industry. In recent years, F. tropaeoli has garnered interest for its promising role in the food and pharmaceutical sectors, although the availability of isolates is rather limited. A more comprehensive understanding of Fructobacillus is imperative to evaluate their functionality in the industry, given their unique and exceptional properties. Our in vitro study on Fructobacillus tropaeoli KKP 3032 confirmed its fructophilic nature and high osmotolerance. This strain thrives in a 30% sugar concentration, shows resistance to low pH and bile salts, and exhibits robust autoaggregation. Additionally, it displays significant antimicrobial activity against foodborne pathogens. Evaluating its probiotic potential, it aligns with EFSA recommendations in antibiotic resistance, except for kanamycin, to which it is resistant. Further research is necessary, but preliminary analyses confirm the high probiotic potential of F. tropaeoli KKP 3032 and its ability to thrive in the presence of high concentrations of fructose. The results indicate that the isolate F. tropaeoli KKP 3032 could potentially be used in the future as a fructophilic probiotic, protective culture, and/or active ingredient in fructose-rich food.
Collapse
Affiliation(s)
- Anna Mikołajczuk-Szczyrba
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, 02-532, Masovian Voivodeship, Poland.
| | - Adrian Wojtczak
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, 02-532, Masovian Voivodeship, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, 02-532, Masovian Voivodeship, Poland
| |
Collapse
|
4
|
Chen T, Zhao Y, Fan Y, Dong Y, Gai Z. Genome sequence and evaluation of safety and probiotic potential of Lacticaseibacillus paracasei LC86 and Lacticaseibacillus casei LC89. Front Microbiol 2025; 15:1501502. [PMID: 39931277 PMCID: PMC11808145 DOI: 10.3389/fmicb.2024.1501502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025] Open
Abstract
Aim A comprehensive safety assessment of potential probiotic strains was essential for their application in the food industry. This article systematically evaluated the probiotic characteristics, whole-genome sequence analysis and safety of Lacticaseibacillus paracasei LC86 and Lacticaseibacillus casei LC89. Methods Firstly, the two strains of lactic acid bacteria selected were identified. Secondly, whole-genome sequencing was performed on LC86 and LC89, and their antibiotic resistance, pathogenicity, and virulence genes were analyzed. We tested various properties of the two strains, included tolerance, cell adhesion, hemolytic activity, catalase activity, gelatin hydrolysis, arginine hydrolysis ability, bile salt hydrolysis capacity, mucin degradation, bioamine, D-/L-lactic acid production and antibiotic susceptibility, to confirm the safety of LC86 and LC89 both in vitro and in vivo. Additionally, we studied the acute toxicity of LC86 and LC89 in mice through a 14-day oral gavage experiment. Results The two strains selected were identified as Lacticaseibacillus paracasei and Lacticaseibacillus casei. The genomes of both LC86 and LC89 were devoid of virulence, antibiotic resistance and pathogenicity genes. LC86 and LC89 exhibited good tolerance to temperature, artificial gastric fluid and artificial intestinal fluid; they were non-hemolytic, their catalase activity, gelatin hydrolysis, arginine hydrolysis and bile salt hydrolysis were all negative. They exhibited the capability to break down proteins and demonstrated sensitivity to a range of antibiotics. The oral LD50 for both LC86 and LC89 in mice was >2 × 1010 CFU/kg. Conclusion The experimental results above demonstrated the probiotic characteristics and safety of LC86 and LC89, indicating their potential as candidates for probiotics for human and animal applications.
Collapse
Affiliation(s)
- Ting Chen
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Yunjiao Zhao
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixuan Fan
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou, China
| |
Collapse
|
5
|
Layadi I, Laiche AT, Tlili ML, Messaoudi M, Ghemam Amara D, Mezghani‐Khemakhem M, Naccache C, Sawicka B, Atanassova M, Zahnit W, Ahmad SF. Effect of Juniperus communis extract on probiotic properties of Bacillus safensis isolated from camel milk in the region of El Oued (Algeria). Food Sci Nutr 2024; 12:6509-6520. [PMID: 39554354 PMCID: PMC11561853 DOI: 10.1002/fsn3.4262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 11/19/2024] Open
Abstract
The current study focuses on the effect of Juniperus communis extract on the probiotic properties of lactic acid bacteria isolated from camel milk in the region of El Oued (Algeria). Chromatographic analysis by HPLC was carried out to detect the most important compounds extracted from the plant. The total phenolic and flavonoid contents were determined using the colorimetric procedures Folin-Ciocalteu and aluminum chloride. The probiotic properties were studied and evaluated in vivo with Juniperus communis extracts after isolating strains from camel's milk and identifying them using 16S rRNA gene sequencing. Chromatographic profiles of the phenolic compounds revealed that Juniperus communis extract is rich in quercetin. After conducting chemical analyses of polyphenols and flavonoids, the results demonstrated a high content of phenolic compounds in Juniperus communis extracts (polyphenols: 103.80 ± 0.30 mg GAE/g E. flavonoids: 15.85 ± 0.80 mg QE/g E). Sequencing and phylogenetic analysis showed that the isolates belong to Bacillus pumilus and Bacillus safensis strains. The combination of Juniperus communis and Bacillus safensis restored the healthy intestine wall structure and returned the blood biochemical parameters to normal values. It was found that the mixture enhanced anti-inflammatory effectiveness by reducing erythrocyte sedimentation rate and C-reactive protein values. Juniperus communis has a high polyphenol and flavonoid content which can have a considerable impact on Bacillus safensis probiotic properties.
Collapse
Affiliation(s)
- Ikram Layadi
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Ammar Touhami Laiche
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Mohammed Laid Tlili
- Laboratory of Biogeochemistry of Desert Environments LaboratoryUniversity of OuarglaOuarglaAlgeria
- Department of Cellular and Molecular Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | | | - Djilani Ghemam Amara
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
- Laboratory of Biology, Environment and Health, Department of Biology, Faculty of Life and Natural SciencesUniversity of El OuedEl OuedAlgeria
| | - Maha Mezghani‐Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Chahnez Naccache
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities ScienceUniversity of Life Sciences in LublinLublinPoland
| | - Maria Atanassova
- Scientific Consulting, Chemical EngineeringUniversity of Chemical Technology and MetallurgySofiaBulgaria
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter SciencesUniversity of OuarglaOuarglaAlgeria
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
6
|
Kang SO, Kwak MK. Antimicrobial Cyclic Dipeptides from Japanese Quail ( Coturnix japonica) Eggs Supplemented with Probiotic Lactobacillus plantarum. J Microbiol Biotechnol 2024; 34:314-329. [PMID: 38111307 PMCID: PMC10940788 DOI: 10.4014/jmb.2311.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl DL-3-phenyllactic acid were previously identified in the culture filtrates of Lactobacillus plantarum LBP-K10, an isolate from kimchi. In this study, we used Japanese quail (Coturnix japonica) eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails. The first group (K10N) comprised eggs from unsupplemented quails. The second group (K10S) comprised eggs from quails supplemented with Lb. plantarum LBP-K10. The QE samples were extracted using methylene chloride through a liquid-liquid extraction process. The resulting extract was fractionated into 16 parts using semi-preparative high-performance liquid chromatography. Two fractions, Q6 and Q9, were isolated from K10S and identified as cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro). The Q9 fraction, containing cis-cyclo(L-Leu-L-Pro), has shown significant inhibitory properties against the proliferation of highly pathogenic multidrug-resistant bacteria, as well as human-specific and phytopathogenic fungi. Some of the ten combinations between the remaining fourteen unidentified fractions and two fractions, Q6 and Q9, containing cis-cyclo(L-Ser-L-Pro) and cis-cyclo(L-Leu-L-Pro) respectively, demonstrated a significant increase in activity against multidrug-resistant bacteria only when combined with Q9. The activity was 7.17 times higher compared to a single cis-cyclo(L-Leu-L-Pro). This study presents new findings on the efficacy of proline-containing CDPs in avian eggs. These CDPs provide antimicrobial properties when specific probiotics are supplemented.
Collapse
Affiliation(s)
- Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Microbial Physiology and Biotechnology, Department of Food and Nutrition, College of Bio-Convergence, and Institute of Food and Nutrition Science, Eulji University, Seongnam 13135, Republic of Korea
| |
Collapse
|
7
|
Mazhar S, Simon A, Khokhlova E, Colom J, Leeuwendaal N, Deaton J, Rea K. In vitro safety and functional characterization of the novel Bacillus coagulans strain CGI314. Front Microbiol 2024; 14:1302480. [PMID: 38274758 PMCID: PMC10809412 DOI: 10.3389/fmicb.2023.1302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Bacillus coagulans species have garnered much interest in health-related functional food research owing to their desirable probiotic properties, including pathogen exclusion, antioxidant, antimicrobial, immunomodulatory and food fermentation capabilities coupled with their tolerance of extreme environments (pH, temperature, gastric and bile acid resistance) and stability due to their endosporulation ability. Methods In this study, the novel strain Bacillus coagulans CGI314 was assessed for safety, and functional probiotic attributes including resistance to heat, gastric acid and bile salts, the ability to adhere to intestinal cells, aggregation properties, the ability to suppress the growth of human pathogens, enzymatic profile, antioxidant capacity using biochemical and cell-based methods, cholesterol assimilation, anti-inflammatory activity, and attenuation of hydrogen peroxide (H2O2)-induced disruption of the intestinal-epithelial barrier. Results B. coagulans CGI314 spores display resistance to high temperatures (40°C, 70°C, and 90°C), and gastric and bile acids [pH 3.0 and bile salt (0.3%)], demonstrating its ability to survive and remain viable under gastrointestinal conditions. Spores and the vegetative form of this strain were able to adhere to a mucous-producing intestinal cell line, demonstrated moderate auto-aggregation properties, and could co-aggregate with potentially pathogenic bacteria. Vegetative cells attenuated LPS-induced pro-inflammatory cytokine gene expression in HT-29 intestinal cell lines and demonstrated broad antagonistic activity toward numerous urinary tract, intestinal, oral, and skin pathogens. Metabolomic profiling demonstrated its ability to synthesize several amino acids, vitamins and short-chain fatty acids from the breakdown of complex molecules or by de novo synthesis. Additionally, B. coagulans CGI314's strong antioxidant capacity was demonstrated using enzyme-based methods and was further supported by its cytoprotective and antioxidant effects in HepG2 and HT-29 cell lines. Furthermore, B. coagulans CGI314 significantly increased the expression of tight junction proteins and partially ameliorated the detrimental effects of H2O2 induced intestinal-epithelial barrier integrity. Discussion Taken together these beneficial functional properties provide strong evidence for B. coagulans CGI314 as a promising potential probiotic candidate in food products.
Collapse
Affiliation(s)
- Shahneela Mazhar
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Annie Simon
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Ekaterina Khokhlova
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Joan Colom
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - Natasha Leeuwendaal
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| | - John Deaton
- ADM Deerland Probiotics and Enzymes, Kennesaw, GA, United States
| | - Kieran Rea
- ADM Cork H&W Limited, Bio-Innovation Unit, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Zhang G, Yang N, Liu Z, Chen X, Li M, Fu T, Zhang D, Zhao C. Genome-Assisted Probiotic Characterization and Application of Lactiplantibacillus plantarum 18 as a Candidate Probiotic for Laying Hen Production. Microorganisms 2023; 11:2373. [PMID: 37894031 PMCID: PMC10609342 DOI: 10.3390/microorganisms11102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Probiotics gained significant attention for their potential to improve gut health and enhance productivity in animals, including poultry. This comprehensive study focused on the genetic analysis of Lactiplantibacillus plantarum 18 (LP18) to understand its survival and colonization characteristics in the gastrointestinal tract. LP18 was supplemented in the late-stage diet of laying hens to investigate its impact on growth performance, egg quality, and lipid metabolism. The complete genome sequence of LP18 was determined, consisting of 3,275,044 base pairs with a GC content of 44.42% and two circular plasmids. Genomic analysis revealed genes associated with adaptability, adhesion, and gastrointestinal safety. LP18 supplementation significantly improved the daily laying rate (p < 0.05) during the late-production phase and showed noteworthy advancements in egg quality, including egg shape index (p < 0.05), egg albumen height (p < 0.01), Haugh unit (p < 0.01), and eggshell strength (p < 0.05), with notable improvements in eggshell ultrastructure. Additionally, LP18 supplementation resulted in a significant reduction in serum lipid content, including LDL (p < 0.01), FFA (p < 0.05), and Gly (p < 0.05). These findings provide valuable insights into the genomic characteristics of LP18 and the genes that support its survival and colonization in the gastrointestinal tract. Importantly, this study highlights the potential of LP18 as a probiotic candidate to enhance productivity, optimize egg quality, and modulate lipid metabolism in poultry production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (G.Z.)
| |
Collapse
|
9
|
Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023; 11:4948-4963. [PMID: 37701240 PMCID: PMC10494659 DOI: 10.1002/fsn3.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Shahnai Basharat
- The University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
| |
Collapse
|
10
|
Park SK, Jin H, Song NE, Baik SH. Probiotic Properties of Pediococcus pentosaceus JBCC 106 and Its Lactic Acid Fermentation on Broccoli Juice. Microorganisms 2023; 11:1920. [PMID: 37630480 PMCID: PMC10456906 DOI: 10.3390/microorganisms11081920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
To understand the biological roles of Pediococcus pentosaceus strains as probiotics isolated from the traditional Korean fermented food, Jangajji, Pediococcus pentosaceus was selected based on its high cinnamoyl esterase (CE) and antioxidant activities. The acid and bile stability, intestinal adhesion, antagonistic activity against human pathogens, cholesterol-lowering effects, and immune system stimulation without inflammatory effects were evaluated. Nitric oxide (NO) levels were measured in co-culture with various bacterial stimulants. Fermentation ability was measured by using a broccoli matrix and the sulforaphane levels were measured. Resistance to acidic and bilious conditions and 8% adherence to Caco-2 cells were observed. Cholesterol levels were lowered by 51% by assimilation. Moreover, these strains exhibited immunomodulatory properties with induction of macrophage TNF-α and IL-6 and had microstatic effects on various pathogens. Co-culture with various bacterial stimulants resulted in increased NO production. Fermentation activity was increased with the strains, and higher sulforaphane levels were observed. Therefore, in the future, the applicability of the selected strain to broccoli matrix-based fermented functional foods should be confirmed.
Collapse
Affiliation(s)
| | | | | | - Sang-Ho Baik
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.-K.P.); (H.J.); (N.-E.S.)
| |
Collapse
|
11
|
Haghshenas B, Kiani A, Mansoori S, Mohammadi-Noori E, Nami Y. Probiotic properties and antimicrobial evaluation of silymarin-enriched Lactobacillus bacteria isolated from traditional curd. Sci Rep 2023; 13:10916. [PMID: 37407617 DOI: 10.1038/s41598-023-37350-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Nowadays, the increasing use of medicinal plants in the treatment and prevention of diseases has attracted the attention of researchers. The aim of this work was to investigate the probiotic properties and antibacterial and antifungal activity of silymarin-enriched Lactobacillus bacteria against several important pathogenic bacteria and also Aspergillus flavus as one of the harmful molds in the food and health industries. For this purpose, 52 g-positive and catalase-negative bacteria were isolated from 60 traditional curd samples from Ilam province. Five of the 52 bacterial strains had more than 90% viability in high bile salt and acidic conditions and were selected for further investigation. The five strains with positive results showed good hydrophobicity (≥ 50.30%), auto-aggregation (≥ 53.70%), coaggregation (≥ 28.20%), and high cholesterol removal ability (from 09.20 to 67.20%) and therefore can be considered potential probiotics. The tested strains displayed acceptable antibacterial and antifungal activity against all 12 pathogenic bacteria and A. flavus. Also, the results of the simultaneous antifungal activity of probiotic strains and silymarin showed that the combination of silymarin and probiotics has a significantly better (P < 0.05) antifungal effect than the control group or the probiotic groups alone. Interestingly, in addition to the Limosilactobacillus fermentum C3 strain, the Limosilactobacillus fermentum C18 and Lactiplantibacillus pentosus C20 strains also had significant inhibitory effects against A. flavus when used with silymarin extract in methanol. Meanwhile, silymarin extract in DMSO and PEG increased the antagonistic activity of all five potential probiotic strains.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Saeideh Mansoori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
12
|
Sun W, Zhu J, Qin G, Huang Y, Cheng S, Chen Z, Zhang Y, Shu Y, Zeng X, Guo R. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in ICR mice. Int J Biol Macromol 2023:125517. [PMID: 37353132 DOI: 10.1016/j.ijbiomac.2023.125517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Lonicera japonica polysaccharides (LJPs) exhibit anti-aging effect in nematodes. Here, we further studied the function of LJPs on aging-related disorders in D-galactose (D-gal)-induced ICR mice. Four groups of mice including the control group, the D-gal-treated group, the intervening groups with low and high dose of LJPs (50 and 100 mg/kg/day) were raised for 8 weeks. The results showed that intragastric administration with LJPs improved the organ indexes of D-gal-treated mice. Moreover, LJPs improved the activity of superoxide dismutase (SOD), catalase (CAT) as well as glutathione peroxidase (GSH-Px) and decreasing the malondialdehyde (MDA) level in serum, liver and brain. Meanwhile, LJPs restored the content of acetylcholinesterase (AChE) in the brain. Further, LJPs reversed the liver tissue damages in aging mice. Mechanistically, LJPs alleviate oxidative stress at least partially through regulating Nrf2 signaling. Additionally, LJPs restored the gut microbiota composition of D-gal-treated mice by adjusting the Firmicutes/Bacteroidetes ratio at the phylum level and upregulating the relative abundances of Lactobacillaceae and Bifidobacteriacesa. Notably, the KEGG pathways involved in hazardous substances degradation and flavone and flavonol biosynthesis were significantly enhanced by LJPs treatment. Overall, our study uncovers the role of LJPs in modulating oxidative stress and gut microbiota in the D-gal-induced aging mice.
Collapse
Affiliation(s)
- Wenwen Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Siying Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yeyang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
13
|
Li L, Hao J, Jiang Y, Hao P, Gao Y, Chen J, Zhang G, Jin N, Wang M, Li C. A micro-sized vaccine based on recombinant Lactiplantibacillus plantarum fights against SARS-CoV-2 infection via intranasal immunization. Acta Pharm Sin B 2023; 13:S2211-3835(23)00005-9. [PMID: 36852097 PMCID: PMC9946889 DOI: 10.1016/j.apsb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/25/2023] Open
Abstract
COVID-19 has globally spread to burden the medical system. Even with a massive vaccination, a mucosal vaccine offering more comprehensive and convenient protection is imminent. Here, a micro-sized vaccine based on recombinant Lactiplantibacillus plantarum (rLP) displaying spike or receptor-binding domain (RBD) was characterized as microparticles, and its safety and protective effects against SARS-CoV-2 were evaluated. We found a 66.7% mortality reduction and 100% protection with rLP against SARS-CoV-2 in a mouse model. The histological analysis showed decreased hemorrhage symptoms and increased leukocyte infiltration in the lung. Especially, rLP:RBD significantly decreased pulmonary viral loads. For the first time, our study provides a Lactiplantibacillus plantarum-vectored vaccine to prevent COVID-19 progress and transmission via intranasal vaccination.
Collapse
Affiliation(s)
- Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jiayi Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yuwei Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jing Chen
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Guoqing Zhang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Maopeng Wang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| |
Collapse
|
14
|
Cerutti Martellet M, Majolo F, Cima L, Goettert MI, Volken de Souza CF. Microencapsulation of Kluyveromyces marxianus and Plantago ovata in cheese whey particles: Protection of sensitive cells to simulated gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
SWE ZM, CHUMPHON T, PANGJIT K, PROMSAI S. Use of pigmented rice as carrier and stingless bee honey as prebiotic to formulate novel synbiotic products mixed with three strains of probiotic bacteria. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Saran PROMSAI
- Kasetsart University, Thailand; Kasetsart University, Thailand
| |
Collapse
|
16
|
Cai T, Zhao QH, Xiang WL, Zhu L, Rao Y, Tang J. HigBA toxin-antitoxin system of Weissella cibaria is involved in response to the bile salt stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6749-6756. [PMID: 35633128 DOI: 10.1002/jsfa.12042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Toxin-antitoxin (TA) systems are prevalent adaptive genetic elements in bacterial genomes, which can respond to environmental stress. While, few studies have addressed TA systems in probiotics and their roles in the adaptation to gastrointestinal transit (GIT) environments. RESULTS The Weissella cibaria 018 could survive in pH 3.0-5.0 and 0.5-3.0 g L-1 bile salt, and its HigBA system responded to the bile salt stress, but not to acid stress. The toxin protein HigB and its cognate antitoxin protein HigA had 85.1% and 100% similarity with those of Lactobacillus plantarum, respectively, and they formed the stable tetramer HigB-(HigA)2 -HigB structure in W. cibaria 018. When exposed to 1.5-3.0 g L-1 bile salt, the transcriptions of higB and higA were up-regulated with 4.39-19.29 and 5.94-30.91 folds, respectively. Meanwhile, W. cibaria 018 gathered into a mass with 48.07% survival rate and its persister cells were found to increase 8.21% under 3.0 g L-1 bile salt. CONCLUSION The HigBA TA system of W. cibaria 018 responded to the bile salt stress, but not to acid stress, which might offer novel perspectives to understand the tolerant mechanism of probiotics to GIT environment. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qiu-Huan Zhao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Wen-Liang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Biotechnology of Sichuan, Xihua University, Chengdu, China
| | - Lin Zhu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yu Rao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu, China
- Key Laboratory of Food Biotechnology of Sichuan, Xihua University, Chengdu, China
| |
Collapse
|
17
|
Skrzydło-Radomańska B, Cukrowska B. How to Recognize and Treat Small Intestinal Bacterial Overgrowth? J Clin Med 2022; 11:6017. [PMID: 36294338 PMCID: PMC9604644 DOI: 10.3390/jcm11206017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Small Intestinal Bacterial Overgrowth (SIBO) is a form of dysbiosis that involves increased bacterial colonization of the small intestine with some of the bacteria more characteristic of the colon microbiota. The prevalence of SIBO over recent decades has been estimated to range from 2.5 to 22% (depending on the source) and to increase with age and among individuals with comorbidities. Recently, an increase in the number of diagnosed SIBO cases has been observed, which is primarily due to the availability of noninvasive breath tests that facilitate the diagnostic process. However, SIBO is still both a diagnostic and a therapeutic problem. This review presents the pathophysiology, manifestations, diagnostics, and recommended management of SIBO.
Collapse
Affiliation(s)
| | - Bożena Cukrowska
- Department of Pathomorphology, The Children Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
18
|
In vivo monitoring of Lactiplantibacillus plantarum in the nasal and vaginal mucosa using infrared fluorescence. Appl Microbiol Biotechnol 2022; 106:6239-6251. [PMID: 35999391 PMCID: PMC9398905 DOI: 10.1007/s00253-022-12121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Lactic acid bacteria (LAB) of the genus Lactiplantibacillus have been explored as potential mucosal vaccine vectors due to their ability to elicit an immune response against expressed foreign antigens and to their safety. However, tools for monitoring LAB distribution and persistence at the mucosal surfaces are needed. Here, we characterize Lactiplantibacillus plantarum bacteria expressing the infrared fluorescent protein IRFP713 for exploring their in vivo distribution in the mucosa and potential use as a mucosal vaccine vector. This bacterial species is commonly used as a vaginal probiotic and was recently found to have a niche in the human nose. Three different fluorescent L. plantarum strains were obtained using the nisin-inducible pNZRK-IRFP713 plasmid which contains the nisRK genes, showing stable and constitutive expression of IRFP713 in vitro. One of these strains was further monitored in BALB/c mice using near-infrared fluorescence, indicating successful colonization of the nasal and vaginal mucosae for up to 72 h. This study thus provides a tool for the in vivo spatiotemporal monitoring of lactiplantibacilli, allowing non-invasive bacterial detection in these mucosal sites. KEY POINTS: • Stable and constitutive expression of the IRFP713 protein was obtained in different L. plantarum strains. • IRFP713+ L. plantarum 3.12.1 was monitored in vivo using near-infrared fluorescence. • Residence times observed after intranasal and vaginal inoculation were 24-72 h.
Collapse
|
19
|
Yang Y, Song X, Xiong Z, Xia Y, Wang G, Ai L. Complete Genome Sequence of Lactobacillus salivarius AR809, a Probiotic Strain with Oropharyngeal Tract Resistance and Adhesion to the Oral Epithelial Cells. Curr Microbiol 2022; 79:280. [PMID: 35934757 DOI: 10.1007/s00284-022-02963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Lactobacillus salivarius AR809 was isolated from a healthy adult oral cavity with multiple probiotic properties, such as high antimicrobial activity, adhesion to the oral epithelium, resistance to acidic pH, bile, lysozyme, and H2O2. In this study, to investigate the genetic basis on probiotic potential and identify the functional genes in the strain, the complete genome of strain AR809 was sequenced by Illumina and PacBio platforms. Then comparative genome analysis on 11 strains of Lactobacillus salivarius was performed. The complete genome of AR809 consisted of a circular 1,747,224 bp chromosome with 33.00% GC content and four circular plasmids [pA (247,948 bp), pB (27,292 bp), pC (3349 bp), and pD (2898 bp), respectively]. From among the 1866 protein-coding genes, 130 carbohydrate metabolism-related genes, 18 bacteriocin biosynthesis-related genes, 74 environmental stress-related genes, and a series of adhesion-related genes were identified via clusters of orthologous genes, Koyto Encyclopedia of Genes and Genomes, and carbohydrate-active enzymes annotation. The comparative genome analysis indicated that genomic homology between AR809 and CICC23174 was the highest. In conclusion, the present work provided valuable insights into the gene's function prediction and understanding the genetic basis on adapting to host oropharyngeal-gastrointestinal tract in strain AR809.
Collapse
Affiliation(s)
- Yong Yang
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Xin Song
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Zhiqiang Xiong
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Yongjun Xia
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Guangqiang Wang
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China
| | - Lianzhong Ai
- University of Shanghai for Science and Technology, Shanghai Engineering Research Center of Food Microbiology, Shanghai, 200093, China.
| |
Collapse
|
20
|
Wu C, Dai C, Tong L, Lv H, Zhou X. Evaluation of the Probiotic Potential of Lactobacillus delbrueckii ssp. indicus WDS-7 Isolated from Chinese Traditional Fermented Buffalo Milk In Vitro. Pol J Microbiol 2022; 71:91-105. [PMID: 35635173 PMCID: PMC9152907 DOI: 10.33073/pjm-2022-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/19/2022] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from Chinese traditional fermented buffalo milk. Out of 22 isolates, 11 were putatively identified as LAB preliminarily. A total of six LAB strains displayed strong adhesion to HT-29 cells and all these strains showed preferable tolerance to artificially simulated gastrointestinal juices. WDS-4, WDS-7, and WDS-18 exhibited excellent antioxidant capacities, including DPPH radical, ABTS+ radical, and superoxide anion scavenging activities. Compared with the other two LAB strains, WDS-7 had a stronger inhibition effect on four pathogens. Based on the 16S rRNA gene sequencing and phylogenetic analysis, WDS-7 was identified as Lactobacillus delbrueckii ssp. indicus and selected to assess the potential and safety of probiotics further. The results revealed that WDS-7 strain had a strong capacity for acid production and good thermal stability. WDS-7 strain also possessed bile salt hydrolase (BSH) activity. Compared to LGG, WDS-7 was a greater biofilm producer on the plastic surface and exhibited a better EPS production ability (1.94 mg/ml as a glucose equivalent). WDS-7 was proved to be sensitive in the majority of tested antibiotics and absence of hemolytic activity. Moreover, no production of biogenic amines and β-glucuronidase was observed in WDS-7. The findings of this work indicated that L. delbrueckii ssp. indicus WDS-7 fulfilled the probiotic criteria in vitro and could be exploited for further evaluation in vivo.
Collapse
Affiliation(s)
- Changjun Wu
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Lin Tong
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Han Lv
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| |
Collapse
|
21
|
Aziz G, Zaidi A, Tariq M. Compositional Quality and Possible Gastrointestinal Performance of Marketed Probiotic Supplements. Probiotics Antimicrob Proteins 2022; 14:288-312. [PMID: 35199309 DOI: 10.1007/s12602-022-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
The local pharmacies and shops are brimming with various probiotic products that herald a range of health benefits. The poor quality of probiotic products in both dosage and species is symptomatic of this multi-billion-dollar market making it difficult for consumers to single out reliable ones. This study aims to fill the potential gap in the labeling accuracy of probiotic products intended for human consumption. We describe a combinatorial approach using classical culture-dependent technique to quantify and molecular techniques (16 s rRNA gene sequencing, multilocus sequence, and ribotyping) for strain recognition of the microbial contents. The full gamut of probiotic characteristics including acid, bile and lysozyme tolerances, adhesiveness, anti-pathogenicity, and degree of safeness were performed. Their capacity to endure gastro-intestinal (GIT) stresses and select drugs was assessed in vitro. Our results forced us to declare that the local probiotic market is essentially unregulated. Almost none of the probiotic products tested met the label claim. Some (11%) have no viable cells, and a quarter (27%) showing significant inter-batch variation. A lower microbial count was typical with undesirables constituting a quarter of the total (~ 27%). Half of the products contained antibiotic-resistant strains; the unregulated use of these probiotics carries the risk of spreading antibiotic resistance to gut pathobionts. Poor tolerance to gut conditions and mediocre functionalism make the case worse. The current regulatory systems do not take this discrepancy into account. We recommend an evidence-based regular market surveillance of marketed probiotics to ensure the authenticity of the claims and product effectiveness.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan.
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| |
Collapse
|
22
|
DEMIROK NT, DURAK MZ, ARICI M. Probiotic lactobacilli in faeces of breastfed babies. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.24821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Advancements in the Use of Fermented Fruit Juices by Lactic Acid Bacteria as Functional Foods: Prospects and Challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum Application. FERMENTATION 2021. [DOI: 10.3390/fermentation8010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lactic acid fermentation of fresh fruit juices is a low-cost and sustainable process, that aims to preserve and even enhance the organoleptic and nutritional features of the raw matrices and extend their shelf life. Selected Lactic Acid Bacteria (LAB) were evaluated in the fermentation of various fruit juices, leading in some cases to fruit beverages, with enhanced nutritional and sensorial characteristics. Among LAB, Lactiplantibacillus (Lpb.) plantarum subsp. plantarum strains are quite interesting, regarding their application in the fermentation of a broad range of plant-derived substrates, such as vegetables and fruit juices, since they have genome plasticity and high versatility and flexibility. L. plantarum exhibits a remarkable portfolio of enzymes that make it very important and multi-functional in fruit juice fermentations. Therefore, L. plantarum has the potential for the production of various bioactive compounds, which enhance the nutritional value and the shelf life of the final product. In addition, L. plantarum can positively modify the flavor of fruit juices, leading to higher content of desirable volatile compounds. All these features are sought in the frame of this review, aiming at the potential and challenges of L. plantarum applications in the fermentation of fruit juices.
Collapse
|
24
|
Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon? MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacterial populations inhabiting a variety of natural and human-associated niches have the ability to grow in the form of biofilms. A large part of pathological chronic conditions, and essentially all the bacterial infections associated with implanted medical devices or prosthetics, are caused by microorganisms embedded in a matrix made of polysaccharides, proteins, and nucleic acids. Biofilm infections are generally characterized by a slow onset, mild symptoms, tendency to chronicity, and refractory response to antibiotic therapy. Even though the molecular mechanisms responsible for resistance to antimicrobial agents and host defenses have been deeply clarified, effective means to fight biofilms are still required. Lactic acid bacteria (LAB), used as probiotics, are emerging as powerful weapons to prevent adhesion, biofilm formation, and control overgrowth of pathogens. Hence, using probiotics or their metabolites to quench and interrupt bacterial communication and aggregation, and to interfere with biofilm formation and stability, might represent a new frontier in clinical microbiology and a valid alternative to antibiotic therapies. This review summarizes the current knowledge on the experimental and therapeutic applications of LAB to interfere with biofilm formation or disrupt the stability of pathogenic biofilms.
Collapse
|
25
|
Abdullah D, Poddar S, Rai RP, Purwati E, Dewi NP, Pratama YE. Molecular Identification of Lactic Acid Bacteria Approach to Sustainable food Security. J Public Health Res 2021; 10. [PMID: 34818881 PMCID: PMC9131486 DOI: 10.4081/jphr.2021.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dadiah is a traditional dish from West Sumatra made from buffalo milk, which is fermented in bamboo tubes and left at room temperature for ±2 days. Dadiah is included in the staple food category because it contains Lactic Acid Bacteria (LAB) which has the potential to be a probiotic. This study aims to determine the identification and characterization of LAB from Dadiah from Halaban, Kab. Fifty Cities, West Sumatra. DESIGN AND METHODS A survey method was used in this research with a descriptive analysis, Antimicrobial activity testing was done with bacteria Escherichia coli O157, Staphylococcus aureus, Listeria monocytogenes, and Listeria innocua. Molecular identification was done using the 16S rRNA gene. RESULTS Probiotic candidate test with the best results in testing for resistance to stomach acid at pH3 with the viability of 65.98%, bile salt resistance 0.3%, viability of 54.90% from 2DA isolates. Antimicrobial activity with the best clear zone area results was obtained in 2DA isolates with Escherichia coli O157 test bacteria of 21.16 mm, Staphylococcus aureus with a clear zone area of 23.17 mm, Listeria innocua of 19.24 mm and Listeria monocytogenes with a clear zone area 18.23 mm in 4DA isolate, LAB identification using 16S sRNA gene, results of running PCR base length 1419bp. CONCLUSIONS Phylogenetic analysis shows that Dadiah of Limapuluh Kota Regency is a kin to Lactobacillus plantarum. The superiority of identification technology by using 16S rRNA gene only can be conducted if the nucleotide sequence information of the targeted bacteria is known beforehand.
Collapse
Affiliation(s)
- Dessy Abdullah
- Research Scholar, Lincoln University College, Wisma Lincoln, No, 12-18, SS 6/12, Off Jalan Perbandaran,, 47301 Petaling Jaya, Selangor D. E, Malaysia Lecturer, Medical Faculty, Baiturrahmah University Padang, West Sumatera, Indonesia.
| | - Sandeep Poddar
- Deputy Vice Chancellor of Research, Lincoln University College.
| | - Ramesh Prasath Rai
- Lincoln University College, Wisma Lincoln, No, 12-18, SS 6/12, Off Jalan Perbandaran, 47301 Petaling Jaya, Selangor, Malaysia.
| | - Endang Purwati
- Faculty of Animal Science, University of Andalas, Padang, West Sumatera, Indonesia.
| | - Nadia Purnama Dewi
- Research Scholar, Lincoln University College, Wisma Lincoln, No, 12-18, SS 6/12, Off Jalan Perbandaran,, 47301 Petaling Jaya, Selangor, Malaysia Lecturer, Medical Faculty, Baiturrahmah University Padang, West Sumatera, Indonesia.
| | - Yudha Endra Pratama
- Doctoral Program, Faculty of Animal Science, University of Andalas, Padang, Indonesia.
| |
Collapse
|
26
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Wang M, Zhou W, Yang Y, Xing J, Xu X, Lin Y. Potential prebiotic properties of exopolysaccharides produced by a novel Lactobacillus strain, Lactobacillus pentosus YY-112. Food Funct 2021; 12:9456-9465. [PMID: 34606528 DOI: 10.1039/d1fo01261d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exopolysaccharides (EPSs) derived from Lactobacilli have important physiological effects and are commonly used as new prebiotics. We identified and studied a new Lactobacillus strain, YY-112, isolated from waxberry (Myrica rubra). This strain, identified as Lactobacillus pentosus, tolerates acids, bile salts, and artificial digestive fluids. The EPS derived from this strain weighed 5.9 × 104 Da and contained glucose, mannose, glucosamine, galactose, and rhamnose at 62.69 : 85.85 : 2.46 : 2.92 : 1.00 molar ratios. We found that the EPS from this strain increased the ratio of Bacteroidetes to Firmicutes and decreased the relative abundance of Proteobacteria, especially Escherichia-Shigella, when added to a simulated gastrointestinal system in vitro. After analysing the short-chain fatty acids, we found that this EPS promoted the production of acetic acid, propionic acid, and butyric acid, and reduced the ratio of acetic acid to propionic acid. We conclude that Lactobacillus pentosus YY-112 is a potential probiotic strain with EPS that is beneficial for the intestinal microbiota and short-chain fatty acid production.
Collapse
Affiliation(s)
- Mingzhe Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaodan Xu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuqing Lin
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
28
|
Ahmed S, Ashraf F, Tariq M, Zaidi A. Aggrandizement of fermented cucumber through the action of autochthonous probiotic cum starter strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus. ANN MICROBIOL 2021; 71:33. [PMID: 34483789 PMCID: PMC8406656 DOI: 10.1186/s13213-021-01645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Cucumber fermentation is traditionally done using lactic acid bacteria. The involvement of probiotic cultures in food fermentation guarantees enhanced organoleptic properties and protects food from spoilage. Methods Autochthonous lactic acid bacteria were isolated from spontaneously fermented cucumber and identified to species level. Only strains adjudged as safe for human consumption were examined for their technological and functional characteristics. Strain efficiency was based on maintaining high numbers of viable cells during simulated GIT conditions and fermentation, significant antioxidant activity, EPS production, nitrite degradation, and antimicrobial ability against Gram-positive and Gram-negative foodborne pathogens. Result Two strains, Lactiplantibacillus plantarum NPL 1258 and Pediococcus pentosaceus NPL 1264, showing a suite of promising functional and technological attributes, were selected as a mixed-species starter for carrying out a controlled lactic acid fermentations of a native cucumber variety. This consortium showed a faster lactic acid-based acidification with more viable cells, at 4% NaCl and 0.2% inulin (w/v) relative to its constituent strains when tested individually. Sensory evaluation rated the lactofermented cucumber acceptable based on texture, taste, aroma, and aftertaste. Conclusion The results suggest that the autochthonous LAB starter cultures can shorten the fermentation cycle and reduce pathogenic organism’ population, thus improving the shelf life and quality of fermented cucumber. The development of these new industrial starters would increase the competitiveness of production and open the country’s frontiers in the fermented vegetable market.
Collapse
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Fatima Ashraf
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| |
Collapse
|
29
|
Vijayasarathy S, Gayathri P, Suneetha V. Fermented Foods and Their Abating Role in Gastric Ulcers. J Am Coll Nutr 2021; 41:826-830. [PMID: 34402418 DOI: 10.1080/07315724.2021.1962768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Helicobacter pylori plays a consequential role in gastric inflammations and ulceration. The cure for the same was researched and identified to be the triple therapy regime. Intensive research in the field also proved that altering the food habits during ulcers will be a major factor in the time period that is required for cure. Fermented foods usage dates back to ancient civilizations, but their role in maintaining gastric health are slowly being uncovered. One such major role reported will be the bacterial check that the probiotics in fermented food do in human gastrointestinal tract. Various species of bacteria present in the fermented products will lead to reduction of the H. Pylori infection in the GI tract.Key teaching pointsMicrobes that are active in fermented foods reduce inflammation and improve histological conditions of ulcers caused due to H. pylori.Microbes such as Lactobacillus that were in fermented products when tested showed inhibitory effects, decreasing infection density and reducing mucus depletion.Lactic fermented products showed a decrease in urease activity and reduces H. pylori adhesion through various organic acid secretions.Organisms in fermented products involve various mechanisms like lowering gut pH, improving immunological responses, scavenging free radicals and so on.Fermented foods have many modulatory effects that help fighting and curing gastric ulcers.
Collapse
Affiliation(s)
- S Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - P Gayathri
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - V Suneetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| |
Collapse
|
30
|
Xu Y, Zhu Y. Complete Replacement of Nitrite With a Lactobacillus fermentum on the Quality and Safety of Chinese Fermented Sausages. Front Microbiol 2021; 12:704302. [PMID: 34421863 PMCID: PMC8371913 DOI: 10.3389/fmicb.2021.704302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
This study investigated the positive effects of complete replacement of nitrite with a Lactobacillus fermentum on the quality and safety of Chinese fermented sausages, and evaluated the risk of this strain. The effects of the strain on pH, color, nitrite, thiobarbituric acid reactive substances (TBARS), total volatile basenitrogen (TVB-N), metmyoglobin (Met-Mb), biological amines, free amino acid content, and sensory index have been studied. The results revealed that the strain reduced the pH of the sausages, which reduced the risk of food-borne pathogens, and accelerated the acidification and gelation process. The inoculation of the strain produced pink color similar to 50 mg/kg nitrite, significantly reducing the residual risk of nitrite in the sausages. In addition, the strain effectively improved quality and nutrition of the sausages through preventing fat oxidation, protein decomposition, and myoglobin oxidation and increasing free amino acid content. The harmful biogenic amines species of the treated sample were reduced, although the tyramine contents were higher than the control, and the contents of the two groups were all far below the specified limit (800 mg/kg). The sensory analysis showed that the strain enhanced the taste, flavor, sourness, and overall acceptability of the sample sausages. Therefore, replacing nitrite completely with the strain L. fermentum could be a potential strategy to produce healthier and safer acceptable sausages through decreasing the risk of nitrite and improving nutrition and quality of the sausages.
Collapse
Affiliation(s)
- Yuning Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
31
|
Palaniyandi SA, Damodharan K, Suh JW, Yang SH. Probiotic Characterization of Cholesterol-Lowering Lactobacillus fermentum MJM60397. Probiotics Antimicrob Proteins 2021; 12:1161-1172. [PMID: 31432401 DOI: 10.1007/s12602-019-09585-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lactobacillus fermentum MJM60397 was subjected to in vitro safety tests and in vivo probiotic characterization. The MJM60397 strain was susceptible to antibiotics and was found to be non-mucinolytic and non-hemolytic, and does not produce bioamines. In addition, MJM60397 tolerated simulated oro-gastrointestinal conditions and adhered to Caco-2 cells. MJM60397 also exhibited bile salt hydrolase activity and could deconjugate bile acids. The hypocholesterolemic effects of strain MJM60397 were studied in high-fat diet-induced hypercholesterolemic male ICR mice. The mice were fed a high-cholesterol diet (HCD) and were divided into the following three experimental groups: HCD-control (HCD-Con), mice fed with HCD + L. fermentum MJM60397 (HCD-MJM60397), and mice fed with HCD + L. acidophilus ATCC 43121 (HCD-L.ac) as the positive control. Simultaneously, a normal control diet (NCD) group was maintained. After 7 weeks, the total cholesterol and low-density lipoprotein (LDL) cholesterol levels were significantly reduced in the livers of the HCD-MJM60397 mice when compared to those in the HCD-Con and HCD-L.ac mice. Fecal total bile acid content was significantly (P < 0.05) higher in the HCD-MJM60397 group than in the NCD, HCD-Con, and HCD-L.ac groups. Analysis of gene expression revealed higher expression of LDLR gene in the livers of the HCD-MJM60397 and HCD-L.ac mice than in the livers of the HCD-Con mice. These findings show that the hypocholesterolemic effects of the MJM60397 strain were attributable to its bile salt deconjugating activity, which resulted in decreased bile acid absorption and increased excretion of bile acids in the feces. These results indicate that L. fermentum MJM60397 could be developed into a potential probiotic for reducing the serum cholesterol levels.
Collapse
Affiliation(s)
- Sasikumar Arunachalam Palaniyandi
- Department of Biotechnology, Mepco Schlenk Engineering College, Mepco Nagar, Mepco Engineering College Post, Sivakasi, Tamilnadu, 626005, India
| | - Karthiyaini Damodharan
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea.
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
32
|
Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, Ben Salah R, Chihib NE, Saalaoui E, Asehraou A. Characterization of Probiotic Properties of Antifungal Lactobacillus Strains Isolated from Traditional Fermenting Green Olives. Probiotics Antimicrob Proteins 2021; 12:683-696. [PMID: 30929140 DOI: 10.1007/s12602-019-09543-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this work is to characterize the potential probiotic properties of 14 antifungal Lactobacillus strains isolated from traditional fermenting Moroccan green olives. The molecular identification of strains indicated that they are composed of five Lactobacillus brevis, two Lactobacillus pentosus, and seven Lactobacillus plantarum. In combination with bile (0.3%), all the strains showed survival rates (SRs) of 83.19-56.51% at pH 3, while 10 strains showed SRs of 31.67-64.44% at pH 2.5. All the strains demonstrated high tolerance to phenol (0.6%) and produced exopolysaccharides. The autoaggregation, hydrophobicity, antioxidant activities, and surface tension value ranges of the strains were 10.29-41.34%, 15.07-34.67%, 43.11-52.99%, and 36.23-40.27 mN/m, respectively. Bacterial cultures exhibited high antifungal activity against Penicillium sp. The cell-free supernatant (CFS) of the cultures showed important inhibition zones against Candida pelliculosa (18.2-24.85 mm), as well as an antibacterial effect against some gram-positive and gram-negative bacteria (10.1-14.1 mm). The neutralized cell-free supernatant of the cultures displayed considerable inhibitory activity against C. pelliculosa (11.2-16.4 mm). None of the strains showed acquired or horizontally transferable antibiotic resistance or mucin degradation or DNase, hemolytic, or gelatinase activities. Lactobacillus brevis S82, Lactobacillus pentosus S75, and Lactobacillus plantarum S62 showed aminopeptidase, β-galactosidase, and β-glucosidase activities, while the other enzymes of API-ZYM were not detected. The results obtained revealed that the selected antifungal Lactobacillus strains are considered suitable candidates for use both as probiotic cultures for human consumption and for starters and as biopreservative cultures in agriculture, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Houssam Abouloifa
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco.
| | - Yahya Rokni
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Montreal, Quebec, H9X 3V9, Canada
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council, Via Celoria 2, 20133, Milan, Italy
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Nour Eddine Chihib
- INRA-UMR UMET 8207- PIHM team, CNRS-INRA, University of Lille, 369 rue Jules Guesde, BP20039, 59651, Villeneuve d'Ascq Cedex, France
| | - Ennouamane Saalaoui
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, 60000, Oujda, Morocco
| |
Collapse
|
33
|
Mirzaei R, Attar A, Papizadeh S, Jeda AS, Hosseini-Fard SR, Jamasbi E, Kazemi S, Amerkani S, Talei GR, Moradi P, Jalalifar S, Yousefimashouf R, Hossain MA, Keyvani H, Karampoor S. The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Arch Virol 2021; 166:1819-1840. [PMID: 33745067 PMCID: PMC7980799 DOI: 10.1007/s00705-021-05036-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 is an acute respiratory infection accompanied by pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has affected millions of people globally. To date, there are no highly efficient therapies for this infection. Probiotic bacteria can interact with the gut microbiome to strengthen the immune system, enhance immune responses, and induce appropriate immune signaling pathways. Several probiotics have been confirmed to reduce the duration of bacterial or viral infections. Immune fitness may be one of the approaches by which protection against viral infections can be reinforced. In general, prevention is more efficient than therapy in fighting viral infections. Thus, probiotics have emerged as suitable candidates for controlling these infections. During the COVID-19 pandemic, any approach with the capacity to induce mucosal and systemic reactions could potentially be useful. Here, we summarize findings regarding the effectiveness of various probiotics for preventing virus-induced respiratory infectious diseases, especially those that could be employed for COVID-19 patients. However, the benefits of probiotics are strain-specific, and it is necessary to identify the bacterial strains that are scientifically established to be beneficial.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adeleh Attar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saher Papizadeh
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Jamasbi
- Department of Anatomical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saman Amerkani
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholam Reza Talei
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Pouya Moradi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Akhter Hossain
- The Florey University of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Özkan ER, Demirci T, Öztürk Hİ, Akın N. Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2799-2808. [PMID: 33135796 DOI: 10.1002/jsfa.10909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Eleven Lactobacillus (L.) strains were newly isolated from traditional Turkish Tulum cheeses and were characterized regarding their potential probiotic characteristics (bile and acid tolerance, gastric and pancreatic juice tolerance, lysozyme tolerance, adhesion ability), virulence determinants (hemolytic activity, antibiotic resistance, biogenic amine production), and functional properties (antibacterial activity, β-galactosidase activity, production of exopolysaccharides, cholesterol removal). RESULTS These isolates were identified as L. brevis, L. plantarum, L. paracasei, L. coryniformis, L. rhamnosus and L. helveticus by 16S rRNA sequencing. With regard to safety aspects, none of the tested Lactobacillus isolates showed hemolytic activity or biogenic amine production. All the Lactobacillus isolates except isolate 24 were found to be sensitive or intermediate sensitive to penicillin, which is a frequently used antibiotic. Nine Lactobacillus isolates showed antibacterial activity against Staphylococcus aureus ATCC 25923, while only isolates 15 and 449 exhibited inhibitory activity against Listeria monocytogenes ATCC 7644. All isolated strains survived, even in the presence of 10.00 g L-1 bile after 48 h, and exhibited good survival at pH 3, but only two isolates survived at pH 2. Among the strains, isolate 15 exhibited satisfactory auto-aggregative, cell-surface hydrophobicity features, cholesterol-lowering activity and good acid tolerance. Isolate 15 also showed the strongest bile and simulated pancreatic juice resistance and moderate lysozyme tolerance. CONCLUSION These outcomes suggest that isolate 15, identified as a L. plantarum strain from Tulum cheese, may be a promising probiotic candidate and could be suitable for use in several fermented foods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Talha Demirci
- Department of Food Engineering, University of Selcuk, Konya, Turkey
| | - Hale İnci Öztürk
- Department of Food Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - Nihat Akın
- Department of Food Engineering, University of Selcuk, Konya, Turkey
| |
Collapse
|
35
|
Villena J, Li C, Vizoso-Pinto MG, Sacur J, Ren L, Kitazawa H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021; 9:683. [PMID: 33810287 PMCID: PMC8067309 DOI: 10.3390/microorganisms9040683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.
Collapse
Affiliation(s)
- Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Laboratory of Immunobiotechnology, Tucuman CP4000, Argentina
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China;
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Livestock Immunology Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
36
|
Hu Y, Zhao M, Lu Z, Lv F, Zhao H, Bie X. L. johnsonii, L. plantarum, and L. rhamnosus alleviated Enterohaemorrhagic Escherichia coli-induced diarrhoea in mice by regulating gut microbiota. Microb Pathog 2021; 154:104856. [PMID: 33766633 DOI: 10.1016/j.micpath.2021.104856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a prominent foodborne pathogen that causes infectious intestinal diarrhoea. Lactobacillus is a recognized probiotic that inhibits intestinal pathogens and maintains the balance of the intestinal flora. The purpose of this study was to investigate the regulatory effects of three Lactobacillus strains, L. johnsonii, L. plantarum, and L. rhamnosus, on the intestinal flora of EHEC-infected mice. The initial weight and diarrhoea index of the mice were recorded. After 21 days, the faeces of the mice were subjected to 16S rDNA high-throughput sequencing. The diarrhoea index of mice treated with Lactobacillus improved, their body weight continued to rise, and their liver index gradually decreased. The α diversity analysis showed that the intestinal flora diversity and abundance were lower in mice infected with EHEC than in healthy mice. L. plantarum, L. johnsonii, and L. rhamnosus significantly improved the diversity of the flora species. In terms of flora composition, the three main phyla present were Bacteroidetes, Firmicutes, and Proteobacteria. The abundance of these three phyla was reduced to 93.81% after infection and restored to over 96.30% after treatment. At the genus level, Lactobacillus reduced the abundance of Bacteroides, Helicobacter pylori, and Shigella, while increasing the abundance of butyric acid-producing bacteria and Lactobacillus. Finally, a heat map and non-metric multidimensional scaling analysis showed that the intestinal flora structures in the L. johnsonii, L. plantarum, and L. rhamnosus treatment groups were closest to those of healthy mice. In conclusion, L. johnsonii, L. plantarum, and L. rhamnosus regulated and improved the structure of intestinal flora and relieved diarrhoea caused by EHEC infection.
Collapse
Affiliation(s)
- Yafan Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mengna Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
37
|
Ait Chait Y, Gunenc A, Hosseinian F, Bendali F. Antipathogenic and probiotic potential of Lactobacillus brevis strains newly isolated from Algerian artisanal cheeses. Folia Microbiol (Praha) 2021; 66:429-440. [PMID: 33709378 DOI: 10.1007/s12223-021-00857-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/09/2021] [Indexed: 11/28/2022]
Abstract
From 98 Lactobacillus strains, isolated from Algerian homemade cheeses, 14 (B1-B14) were selected based on their anti-Escherichia coli and anti-Staphylococcus aureus activities. These strains were also tested towards Listeria monocytogenes 161 and Salmonella Typhimurium LT2 and further investigated for their resistance to simulated gastrointestinal digestion, cell surface properties, ability to adhere to HT-29 cells, cholesterol lowering, antioxidant activity, and technological traits. Five isolates (B9, B13, B18, B19, and B38) were active against L. monocytogenes and Salmonella. From them, three isolates, identified as Lactobacillus brevis (B9, B13, and B38) by MALDI-TOF spectrometry and 16S rDNA sequencing, exhibited high tolerance to pancreatic juice, bile salts and acidic juices, high percentages of hydrophobicity (87, 92, and 81%, respectively), auto-aggregation (61, 68, and 72%, respectively), and adherence to HT-29 cells (79, 84, and 74%, respectively), which testify on their potential of colonization of the human intestine. On the other way, the strains B9 and B13 manifested the most relevant antioxidant activity and cholesterol-lowering ability, respectively. L. brevis strains showed low acidifying and good proteolytic activities with noticeable heat tolerance. The results gathered in this study highlighted the richness of Algerian artisanal cheeses on new lactobacilli strains with an excellent probiotic potential and demonstrated that L. brevis, largely used as nonstarter in cheese manufacture, could be exploited also as a probiotic for human use.
Collapse
Affiliation(s)
- Yasmina Ait Chait
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria.,Food Science and Nutrition, Chemistry Department, Carleton University, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada
| | - Aynur Gunenc
- Food Science and Nutrition, Chemistry Department, Carleton University, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada
| | - Farah Hosseinian
- Food Science and Nutrition, Chemistry Department, Carleton University, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada.,Institute of Biochemistry of Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria.
| |
Collapse
|
38
|
Afrin S, Akter S, Begum S, Hossain MN. The Prospects of Lactobacillus oris as a Potential Probiotic With Cholesterol-Reducing Property From Mother's Milk. Front Nutr 2021; 8:619506. [PMID: 33748173 PMCID: PMC7969506 DOI: 10.3389/fnut.2021.619506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
This experiment was conducted to characterize potential Lactobacillus spp. isolated from mother's milk and infant feces to obtain new and specific probiotic strains. In this study, seven ascendant strains were identified as Lactobacillus spp. based on their morphological characteristics and biochemical properties. Among them, only one (C-1) isolate was identified as Lactobacillus oris through BioLogTM identification. The study further investigated the isolate through probiotic potentiality tests such as pH and bile tolerance, NaCl tolerance test, gastric juice tolerance, antioxidant activity, resistance to hydrogen, reduction of sodium nitrate, antimicrobial activity, and antibiotic susceptibility test. The result showed that the strain is a potential probiotic based on probiotic capability. The identified strain was most acid-tolerant and retained around 80% viability for up to 4 h at pH 1.0 and 2.0. The isolate showed tolerance against up to 1.50% bile concentration and gastric juice and was able to grow 1-6% NaCl concentrations. Lactobacillus oris showed resistance to most antibiotics as well as antagonistic activity against the tested pathogen, good antioxidant properties, reduction of sodium nitrate and H2O2. The isolate exhibited good intestinal epithelial adhesion properties, and SDS page was performed for secreted protein analysis. Moreover, the strain showed promising cholesterol-lowering properties based on the cholesterol level. This present result indicates that L. oris has superior probiotic properties and can be regarded as a potential probiotic candidate.
Collapse
Affiliation(s)
- Sadia Afrin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Suraiya Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Nur Hossain
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| |
Collapse
|
39
|
Aziz G, Tariq M, Zaidi AH. Mining indigenous honeybee gut microbiota for Lactobacillus with probiotic potential. MICROBIOLOGY-SGM 2021; 167. [PMID: 33587693 DOI: 10.1099/mic.0.001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was done to explore the diversity of lactic acid bacteria (LAB) associated with the gastrointestinal tract (GIT) of honeybee species endemic to northeastern Pakistan. Healthy worker bees belonging to Apis mellifera, A. dorsata, A. cerana and A. florea were collected from hives and the surroundings of a major apiary in the region. The 16S rRNA amplicon sequencing revealed a microbial community in A. florea that was distinct from the others in having an abundance of Lactobacillus and Bifidobacteria. However, this was not reflected in the culturable bacteria obtained from these species. The isolates were characterized for safety parameters, and 20 LAB strains deemed safe were evaluated for resistance to human GIT stresses like acid and bile, adhesion and adhesiveness, and anti-pathogenicity. The five most robust strains, Enterococcus saigonensis NPL780a, Lactobacillus rapi NPL782a, Lactobacillus kunkeei NPL783a, and NPL784, and Lactobacillus paracasei NPL783b, were identified through normalized Pearson (n) principal components analysis (PCA). These strains were checked for inhibition of human pathogens, antibiotic resistance, osmotic tolerance, metabolic and enzymatic functions, and carbohydrate utilization, along with antioxidative and cholesterol-removing potential. The findings suggest at least three strains (NPL 783a, 784 and 782a) as candidates for further in vitro and in vivo investigations of their potential health benefits and application as novel probiotic adjuncts.
Collapse
Affiliation(s)
- Ghazal Aziz
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Muhammad Tariq
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Arsalan Haseeb Zaidi
- National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
40
|
Metataxonomic analysis of microbiota from Pakistani dromedary camelids milk and characterization of a newly isolated Lactobacillus fermentum strain with probiotic and bio-yogurt starter traits. Folia Microbiol (Praha) 2021; 66:411-428. [PMID: 33566278 DOI: 10.1007/s12223-021-00855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
This study was undertaken to investigate the starter and probiotic potential of lactic acid bacteria isolated from dromedarian camel's milk using both culture-dependent and -independent approaches and metataxonomic analysis. Strains of lactic acid bacteria recovered were examined in vitro for tolerance to gastric acidity, bile, and lysozyme. Bile salt hydrolysis, serum cholesterol-lowering, oxalate degradation, proteolytic activity, exopolysaccharide production, and cell surface characteristics necessary for colonizing intestinal mucosa were also evaluated. A single strain of the species, Lactobacillus fermentum named NPL280, was selected through multivariate analysis as it harbored potential probiotic advantages and fulfilled safety criteria. The strain assimilated cholesterol, degraded oxalate, produced exopolysaccharides, and proved to be a proficient alternate yogurt starter with good viability in stored bio-yogurt. A sensorial analysis of the prepared bio-yogurt was also found to be exemplary. We conclude that the indigenous L. fermentum strain NPL280 has the desired traits of a starter and adjunct probiotic culture for dairy products.
Collapse
|
41
|
In vitro evaluation of the hypoglycemic properties of lactic acid bacteria and its fermentation adaptability in apple juice. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Gao Y, Liu Y, Ma F, Sun M, Song Y, Xu D, Mu G, Tuo Y. Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous d-galactose injection. Food Funct 2020; 12:373-386. [PMID: 33325942 DOI: 10.1039/d0fo02794d] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Probiotics have been proved to ameliorate the symptoms of the host induced by oxidative stress. In this study, the protective effects of Lactobacillus plantarum Y44 on Balb/C mice injured by d-galactose (d-gal)-injection were examined. Six weeks of continuous subcutaneous d-gal injection caused liver and colon injury of the Balb/C mice. L. plantarum Y44 administration significantly reversed the injury by modulating hepatic protein expressions related to the Nrf-2/Keap-1 pathway, and enhancing expressions of colonic tight junction proteins. L. plantarum Y44 administration restored the d-gal injection-induced gut microbiota imbalance by manipulating the ratio of Firmicutes/Bacteroidetes (F/B) and Proteobacteria relative abundance at the phylum level, and manipulating relative abundances of Lactobacillaceae, Muribaculaceae, Ruminococcaceae, Desulfovibrionaceae, and Prevotellaceae at the family level. Moreover, the d-gal injection-induced glycerophospholipid metabolism disorder was ameliorated, evidenced by the decline of phosphatidyl ethanolamine (PE), phosphatidylcholine (PC), phosphatidyl serine (PS), and lysophosphatidyl choline (LysoPC) levels in the serum of the mice after the L. plantarum Y44 administration. Spearman correlation analysis revealed a significant correlation between changes in gut microbiota composition, glycerophospholipid levels, and oxidative stress-related indicators. In summary, L. plantarum Y44 administration ameliorated d-gal injection-induced oxidative stress in Balb/C mice by manipulating gut microbiota and intestinal barrier function, and further influenced the glycerophospholipid metabolism and hepatic Nrf-2/Keap-1 pathway-related protein expressions.
Collapse
Affiliation(s)
- Yuan Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yujun Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Dongxue Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
43
|
Pires BDA, Cristina de Almeida Bianchini Campos R, Canuto JW, de Melo Carlos Dias T, Furtado Martins EM, Licursi L, Ricardo de Castro Leite Júnior B, Martins ML. Lactobacillus rhamnosus GG in a mixed pineapple (Ananas comosus L. Merril) and jussara (Euterpe edulis Martius) beverage and its survival in the human gastrointestinal tract. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Vergalito F, Testa B, Cozzolino A, Letizia F, Succi M, Lombardi SJ, Tremonte P, Pannella G, Di Marco R, Sorrentino E, Coppola R, Iorizzo M. Potential Application of Apilactobacillus kunkeei for Human Use: Evaluation of Probiotic and Functional Properties. Foods 2020; 9:E1535. [PMID: 33113800 PMCID: PMC7693146 DOI: 10.3390/foods9111535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Apilactobacillus kunkeei is an insect symbiont with documented beneficial effects on the health of honeybees. It belongs to fructophilic lactic acid bacteria (FLAB), a subgroup of lactic acid bacteria (LAB) notably recognized for their safe status. This fact, together with its recurrent isolation from hive products that are traditionally part of the human diet, suggests its possible safe use as human probiotic. Our data concerning three strains of A. kunkeei isolated from bee bread and honeybee gut highlighted several interesting features, such as the presence of beneficial enzymes (β-glucosidase, β-galactosidase and leucine arylamidase), the low antibiotic resistance, the ability to inhibit P. aeruginosa and, for one tested strain, E. faecalis, and an excellent viability in presence of high sugar concentrations, especially for one strain tested in sugar syrup stored at 4 °C for 30 d. This datum is particularly stimulating, since it demonstrates that selected strains of A. kunkeei can be used for the probiotication of fruit preparations, which are often used in the diet of hospitalized and immunocompromised patients. Finally, we tested for the first time the survival of strains belonging to the species A. kunkeei during simulated gastrointestinal transit, detecting a similar if not a better performance than that showed by Lacticaseibacillus rhamnosus GG, used as probiotic control in each trial.
Collapse
Affiliation(s)
- Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Autilia Cozzolino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, via De Sanctis snc, 86100 Campobasso, Italy;
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (F.V.); (B.T.); (A.C.); (F.L.); (S.J.L.); (P.T.); (G.P.); (E.S.); (R.C.); (M.I.)
| |
Collapse
|
45
|
Zhang X, Ali Esmail G, Fahad Alzeer A, Valan Arasu M, Vijayaraghavan P, Choon Choi K, Abdullah Al-Dhabi N. Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens. Saudi J Biol Sci 2020; 27:3505-3513. [PMID: 33304162 PMCID: PMC7715019 DOI: 10.1016/j.sjbs.2020.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023] Open
Abstract
In the present study, four Lactobacillus strains from the cheese were analyzed for its probiotic potential against enteropathogenic bacteria. The probiotic properties of the selected strains were also analyzed and the selected bacterial strains showed high tolerance in bile salts and organic acid. The strain L. plantarum LP049 showed maximum survival rate (92 ± 4.2% and 93.3 ± 2%) after 3 h of treatment at 0.25% (w/v) bile salts and 0.25% (w/v) organic acid concentrations. The ability of the Lactobacillus strains to adhere to human epithelial cells (HT-29 cell lines) was evaluated and L. plantarum LP049 showed maximum adhesion property (19.2 ± 1.1%) than other tested strains. The Lactobacillus strains produced lactic acid at various concentrations. Compared with other strains, maximum level of lactic acid (3.1 g/L), hydrogen peroxide (4.31 mM) and bacteriocin (31 AU/mg) was detected in LB049. The inhibitory activity of culture supernatant against various bacterial pathogens was observed. The zone of inhibition ranged between 6 ± 2 mm and 23 ± 2 mm. The cell free extract showed activity against, Escherichia coli (ATCC 10536), Salmonella enteritidis (ATCC 13076), Shigella flexneri (ATCC 29903), and Enterococcus faecium (ATCC 8459). Consequently, L. plantarum LP049 may be considered as a potential candidate for the production of novel bioactive metabolites for therapeutic and bio-protective applications.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Medical Cosmetology, Linyi Central Hospital, Linyi, Shandong 276400, China
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Fahad Alzeer
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ponnuswamy Vijayaraghavan
- Bioprocess Engineering Division, Smykon Biotech Pvt Ltd, Nagercoil, Kanyakumari District 629 001, Tamil Nadu, India
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
46
|
Zhai Q, Shen X, Cen S, Zhang C, Tian F, Zhao J, Zhang H, Xue Y, Chen W. Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice. Food Funct 2020; 11:221-235. [PMID: 31915776 DOI: 10.1039/c9fo02116g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactobacillus salivarius is a species of lactic acid bacteria with probiotic potency. Compared to such well-known probiotics as L. rhamnosus and L. casei, the genomic characteristics and health-beneficial effects of L. salivarius are inadequately researched. For this study, a medium with enhanced selectivity for the isolation of L. salivarius was developed by optimizing the carbon source and antibiotics in the medium. Seventy-three L. salivarius strains were isolated from 472 fecal samples from Chinese populations, and their pan-genomic and phylogenetic characterizations were analyzed. Three strains (L. salivarius HN26-4, NT4-8, and FXJCJ7-2) that were clearly categorized in different sub-phylotypes of the phylogenetic tree were randomly selected for further studies. Compared to the other two tested strains, L. salivarius FXJCJ7-2 showed higher tolerance to simulated gastrointestinal tract conditions and more significant anti-inflammatory effects in lipopolysaccharides (LPS)-treated RAW264.7 murine macrophages. This strain was also more effective in reversing LPS-induced alterations in gut barrier function, colonic histopathology, Treg/Th-17 balance, immunomodulatory indicators, nuclear factor kappa B pathway activation, and the intestinal microenvironment of the mice than the other two tested strains. Comparative genomic analysis indicated that these protective effects may be related to the specific genes of L. salivarius FXJCJ7-2 that were involved in the tolerance to the gastrointestinal environment, short-chain fatty acid production, and host-bacterium interaction.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang M, Fu T, Hao J, Li L, Tian M, Jin N, Ren L, Li C. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. Int J Biol Macromol 2020; 160:736-740. [PMID: 32485251 PMCID: PMC7260514 DOI: 10.1016/j.ijbiomac.2020.05.239] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic in the past four months and causes respiratory disease in humans of almost all ages. Although several drugs have been announced to be partially effective treatments for this disease, no approved vaccine is available. Here, we described the construction of a recombinant Lactobacillus plantarum strain expressing the SARS-CoV-2 spike protein. The results showed that the spike gene with optimized codons could be efficiently expressed on the surface of recombinant L. plantarum and exhibited high antigenicity. The highest protein yield was obtained under the following conditions: cells were induced with 50 ng/mL SppIP at 37 °C for 6-10 h. The recombinant spike (S) protein was stable under normal conditions and at 50 °C, pH = 1.5, or a high salt concentration. Recombinant L. plantarum may provide a promising food-grade oral vaccine candidate against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maopeng Wang
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, 325035, China; Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Tingting Fu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jiayi Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China.
| |
Collapse
|
48
|
Multi fragment melting analysis system (MFMAS) for one-step identification of lactobacilli. J Microbiol Methods 2020; 177:106045. [PMID: 32890569 DOI: 10.1016/j.mimet.2020.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/23/2022]
Abstract
The accurate identification of lactobacilli is essential for the effective management of industrial practices associated with lactobacilli strains, such as the production of fermented foods or probiotic supplements. For this reason, in this study, we proposed the Multi Fragment Melting Analysis System (MFMAS)-lactobacilli based on high resolution melting (HRM) analysis of multiple DNA regions that have high interspecies heterogeneity for fast and reliable identification and characterization of lactobacilli. The MFMAS-lactobacilli is a new and customized version of the MFMAS, which was developed by our research group. MFMAS-lactobacilli is a combined system that consists of i) a ready-to-use plate, which is designed for multiple HRM analysis, and ii) a data analysis software, which is used to characterize lactobacilli species via incorporating machine learning techniques. Simultaneous HRM analysis of multiple DNA fragments yields a fingerprint for each tested strain and the identification is performed by comparing the fingerprints of unknown strains with those of known lactobacilli species registered in the MFMAS. In this study, a total of 254 isolates, which were recovered from fermented foods and probiotic supplements, were subjected to MFMAS analysis, and the results were confirmed by a combination of different molecular techniques. All of the analyzed isolates were exactly differentiated and accurately identified by applying the single-step procedure of MFMAS, and it was determined that all of the tested isolates belonged to 18 different lactobacilli species. The individual analysis of each target DNA region provided identification with an accuracy range from 59% to 90% for all tested isolates. However, when each target DNA region was analyzed simultaneously, perfect discrimination and 100% accurate identification were obtained even in closely related species. As a result, it was concluded that MFMAS-lactobacilli is a multi-purpose method that can be used to differentiate, classify, and identify lactobacilli species. Hence, our proposed system could be a potential alternative to overcome the inconsistencies and difficulties of the current methods.
Collapse
|
49
|
Zheng ZY, Cao FW, Wang WJ, Yu J, Chen C, Chen B, Liu JX, Firrman J, Renye J, Ren DX. Probiotic characteristics of Lactobacillus plantarum E680 and its effect on Hypercholesterolemic mice. BMC Microbiol 2020; 20:239. [PMID: 32753060 PMCID: PMC7401229 DOI: 10.1186/s12866-020-01922-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Probiotics have been reported to reduce total cholesterol levels in vitro, but more evidence is needed to determine the clinical relevance of this activity. Chinese traditional fermented pickles are a good source of lactic acid bacteria. Therefore, pickle samples were collected for screening lactic acid bacteria based on their ability to survive stresses encountered during gastrointestinal passage and cholesterol reducing potency. RESULTS Seventy five lactic acid bacteria strains were isolated from 22 fermented pickles. From these bacteria, Lactobacillus plantarum E680, showed the highest acid (85.25%) and bile tolerance (80.79%). It was sensitive to five of the eight antibiotics tested, inhibited the growth of four pathogenic bacteria, and reduced the total cholesterol level by 66.84% in broth culture. In vivo testing using hypercholesterolemic mice fed high-fat emulsion, independent of food intake, found that L. plantarum E680 suppressed body weight gain and reduced total cholesterol and low-density lipoprotein cholesterol levels, with no effect on high-density lipoprotein cholesterol. CONCLUSIONS Chinese traditional fermented pickles are a good source for probiotics. L. plantarum E680, isolated from pickles, was acid and bile tolerant, sensitive to antibiotics, and reduced cholesterol levels both in vitro and in vivo. Based on these results, L. plantarum E680 may have potential as a novel probiotic for the development of cholesterol-lowering functional food.
Collapse
Affiliation(s)
- Zhi-Yao Zheng
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Fei-Wei Cao
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Jun Wang
- Zhejiang YIMING food CO. LTD, Wenzhou, 325000, Zhejiang, China
| | - Jing Yu
- Zhejiang YIMING food CO. LTD, Wenzhou, 325000, Zhejiang, China
| | - Chen Chen
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Bo Chen
- Zhejiang YIMING food CO. LTD, Wenzhou, 325000, Zhejiang, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, 19038, USA
| | - John Renye
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, 19038, USA
| | - Da-Xi Ren
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
50
|
|