1
|
Chen Y, Chen R, Li H, Shuai Z. Clinical management of autoimmune liver diseases: juncture, opportunities, and challenges ahead. Immunol Res 2025; 73:67. [PMID: 40195209 PMCID: PMC11976385 DOI: 10.1007/s12026-025-09622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
The three major autoimmune liver diseases are autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC).These conditions are assumed to result from a breakdown in immunological tolerance, which leads to an inflammatory process that causes liver damage.The self-attack is started by T-helper cell-mediated identification of liver autoantigens and B-cell production of autoantibodies,and it is maintained by a reduction in the number and activity of regulatory T-cells.Infections and environmental factors have been explored as triggering factors for these conditions, in addition to a genetic predisposition.Allelic mutations in the HLA locus have been linked to vulnerability, as have relationships with single nucleotide polymorphisms in non-HLA genes.Despite the advances in the management of these diseases, there is no curative treatment for these disorders, and a significant number of patients eventually progress to an end-stage liver disease requiring liver transplantation.In this line, tailored immune-therapeutics have emerged as possible treatments to control the disease.In addition, early diagnosis and treatment are pivotal for reducing the long-lasting effects of these conditions and their burden on quality of life.Herein we present a review of the etiology, clinical presentation, diagnosis, and challenges on ALDs and the feasible solutions for these complex diseases.
Collapse
MESH Headings
- Humans
- Hepatitis, Autoimmune/therapy
- Hepatitis, Autoimmune/diagnosis
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/etiology
- Cholangitis, Sclerosing/therapy
- Cholangitis, Sclerosing/diagnosis
- Cholangitis, Sclerosing/immunology
- Liver Cirrhosis, Biliary/therapy
- Liver Cirrhosis, Biliary/diagnosis
- Liver Cirrhosis, Biliary/immunology
- Animals
- Immunotherapy/methods
- Autoimmune Diseases/therapy
- Autoimmune Diseases/diagnosis
- Disease Management
- Genetic Predisposition to Disease
Collapse
Affiliation(s)
- Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ruofei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Haiyan Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
2
|
Li S, Pan M, Zhao H, Li Y. Role of CCL2/CCR2 axis in pulmonary fibrosis induced by respiratory viruses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00036-2. [PMID: 39955168 DOI: 10.1016/j.jmii.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Respiratory virus infection is an important cause of both community acquired pneumonia and hospital-acquired pneumonia. Various respiratory viruses, including influenza virus, avian influenza virus, respiratory syncytial virus (RSV), SARS-CoV, MERS-CoV, and SARS-CoV-2, result in severe fibrosis sequelae after the acute phase. Since the COVID-19 pandemic, respiratory virus infection, as an important cause of pulmonary fibrosis, has attracted increasing attention around the world. Respiratory virus infection usually triggers robust inflammation responses, leading to large amounts of proinflammatory mediator production, such as chemokine (C-C motif) ligand 2 (CCL2), a critical chemokine involved in the recruitment of various inflammatory cells. Moreover, CCL2 plays a pivotal role in the pathogenesis of fibrosis progression, through regulating recruitment of bone marrow-derived monocytes and increasing the expression of extracellular matrix proteins. This review provided a concise overview of the common fibrosis sequelae after virus infection. Then we discussed the elevated levels of CCL2 in various respiratory virus infection, underscoring its potent profibrotic role. Targeting the CCL2/CCR2 axis holds promise for alleviating fibrosis sequelae post-acute virus infection and warrants further investigation.
Collapse
Affiliation(s)
- Shuangyan Li
- Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| | - Mingming Pan
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| |
Collapse
|
3
|
Greenman R, Weston CJ. CCL24 and Fibrosis: A Narrative Review of Existing Evidence and Mechanisms. Cells 2025; 14:105. [PMID: 39851534 PMCID: PMC11763828 DOI: 10.3390/cells14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Tissue fibrosis results from a dysregulated and chronic wound healing response accompanied by chronic inflammation and angiogenesis. Regardless of the affected organ, fibrosis shares the following common hallmarks: the recruitment of immune cells, fibroblast activation/proliferation, and excessive extracellular matrix deposition. Chemokines play a pivotal role in initiating and advancing these fibrotic processes. CCL24 (eotaxin-2) is a chemokine secreted by immune cells and epithelial cells, which promotes the trafficking of immune cells and the activation of profibrotic cells through CCR3 receptor binding. Higher levels of CCL24 and CCR3 were found in the tissue and sera of patients with fibro-inflammatory diseases, including primary sclerosing cholangitis (PSC), systemic sclerosis (SSc), and metabolic dysfunction-associated steatohepatitis (MASH). This review delves into the intricate role of CCL24 in fibrotic diseases, highlighting its impact on fibrotic, immune, and vascular pathways. We focus on the preclinical and clinical evidence supporting the therapeutic potential of blocking CCL24 in diseases that involve excessive inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Chris J. Weston
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health and Care Research (NIHR), Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
5
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
6
|
De Lorenzis E, Mor A, Ross RL, Di Donato S, Aricha R, Vaknin I, Del Galdo F. Serum CCL24 as a Biomarker of Fibrotic and Vascular Disease Severity in Systemic Sclerosis. Arthritis Care Res (Hoboken) 2024; 76:1269-1277. [PMID: 38589291 DOI: 10.1002/acr.25344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a heterogeneous disease, characterized by variable tissue and vascular fibrosis in the context of autoimmune activation. CCL24 (or Eotaxin2) has been shown to promote microangiopathic, proinflammatory, and profibrotic processes in preclinical models of SSc. Here, we study serum CCL24 levels in a real-life cohort of patients with SSc, to determine its distribution across disease features and its value in predicting disease progression and related mortality. METHODS Serum CCL24 was assessed in an observational cohort of consecutively enrolled patients with SSc. A high CCL24 cutoff was defined based on its distribution in a matched cohort of healthy controls. Disease progression and mortality were analyzed from the date of serum assessment. RESULTS Two-hundred thirteen consecutively enrolled patients with SSc were included in this analysis. Median disease duration was six years (interquartile range 3-14), 28.6% of patients presented with interstitial lung disease (ILD), 46.9% had digital ulcers, and 25.3% showed high CCL24 serum concentration. High-CCL24 patients were more frequently male and positive for anti-scl-70, with a diagnosis of ILD and synovitis (P < 0.05 for all). Notably, high-CCL24 patients had lower diffusion of carbon monoxide and higher prevalence of digital ulcers, telangiectasias, and calcinosis (P < 0.05 for all). In a longitudinal setting, high CCL24 was associated with greater lung function decline and with higher disease-related mortality. CONCLUSION Serum CCL24 is a biomarker of disease severity across fibrotic and vascular disease manifestations. These data support the development of therapies targeting CCL24 as a novel comprehensive therapeutic target in SSc.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- University of Leeds, Leeds, United Kingdom, and Catholic University of the Sacred Heart - Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Adi Mor
- ChemomAb Ltd, Tel Aviv, Israel
| | | | | | | | | | - Francesco Del Galdo
- University of Leeds and NIHR Leeds Biomedical Research Centre - Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
7
|
Han G, Yan D, Sun Z, Fang J, Chang X, Wilson L, Liu Y. Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses. Hum Genomics 2024; 18:69. [PMID: 38902839 PMCID: PMC11575015 DOI: 10.1186/s40246-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive. RESULTS Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power and we showed in simulated scenario, the proposed BFH would be an optimal method when compared with other popular single cell differential expression methods if both FDR and power were considered. As an example, the method was applied to an idiopathic pulmonary fibrosis (IPF) case study. CONCLUSION In our IPF example, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.
Collapse
Affiliation(s)
- Gang Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Dongyan Yan
- Eli Lilly and Company, Lilly Corporate Center, 893 Delaware St, Indianapolis, IN, 46225, USA
| | - Zhe Sun
- Eli Lilly and Company, Lilly Corporate Center, 893 Delaware St, Indianapolis, IN, 46225, USA
| | - Jiyuan Fang
- Eli Lilly and Company, Lilly Corporate Center, 893 Delaware St, Indianapolis, IN, 46225, USA
| | - Xinyue Chang
- Eli Lilly and Company, Lilly Corporate Center, 893 Delaware St, Indianapolis, IN, 46225, USA
| | - Lucas Wilson
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Yushi Liu
- Eli Lilly and Company, Lilly Corporate Center, 893 Delaware St, Indianapolis, IN, 46225, USA.
| |
Collapse
|
8
|
Meizlish ML, Kimura Y, Pope SD, Matta R, Kim C, Philip NH, Meyaard L, Gonzalez A, Medzhitov R. Mechanosensing regulates tissue repair program in macrophages. SCIENCE ADVANCES 2024; 10:eadk6906. [PMID: 38478620 PMCID: PMC10936955 DOI: 10.1126/sciadv.adk6906] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024]
Abstract
Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.
Collapse
Affiliation(s)
- Matthew L. Meizlish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yoshitaka Kimura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Scott D. Pope
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rita Matta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Naomi H. Philip
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
He J, Cheng X, Fang B, Shan S, Li Q. Mechanical stiffness promotes skin fibrosis via Piezo1-Wnt2/Wnt11-CCL24 positive feedback loop. Cell Death Dis 2024; 15:84. [PMID: 38267432 PMCID: PMC10808102 DOI: 10.1038/s41419-024-06466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Skin fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) caused by fibrotic disorders of the skin. In recent years, ECM stiffness has emerged as a prominent mechanical cue that precedes skin fibrosis and drives its progression by promoting fibroblasts activation. However, how stiffness influences fibroblasts activation for skin fibrosis progression remains unknown. Here, we report a positive feedback loop mediated by the mechanosensitive ion channel Piezo1 and aberrant tissue mechanics in driving skin fibrosis. Piezo1 is upregulated in fibrotic skin in both humans and mice. Piezo1 knockdown dermal fibroblasts lose their fibroproliferative phenotypes despite being grown on a stiffer substrate. We show that Piezo1 acts through the Wnt2/Wnt11 pathway to mechanically induce secretion of C-C motif chemokine ligand 24 (CCL24, also known as eotaxin-2), a potent cytokine associated with fibrotic disorders. Importantly, adeno-associated virus (AAV)-mediated Piezo1 knockdown ameliorated the progression of skin fibrosis and skin stiffness in mice. Overall, increased matrix stiffness promotes skin fibrosis through the inflammatory Piezo1-Wnt2/Wnt11-CCL24 pathway. In turn, a stiffer skin microenvironment increases Piezo1 expression to exacerbate skin fibrosis aggression. Therefore, targeting Piezo1 represents a strategy to break the positive feedback loop between fibroblasts mechanotransduction and aberrant tissue mechanics in skin fibrosis.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
10
|
Greenman R, Snir T, Katav A, Aricha R, Mishalian I, Hay O, Frankel M, Lawler J, Saffioti F, Pinzani M, Thorburn D, Peled A, Mor A, Vaknin I. The Role of CCL24 in Primary Sclerosing Cholangitis: Bridging Patient Serum Proteomics to Preclinical Data. Cells 2024; 13:209. [PMID: 38334601 PMCID: PMC10854794 DOI: 10.3390/cells13030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) is an inflammatory and fibrotic biliary disease lacking approved treatment. We studied CCL24, a chemokine shown to be overexpressed in damaged bile ducts, and its involvement in key disease-related mechanisms. Serum proteomics of PSC patients and healthy controls (HC) were analyzed using the Olink® proximity extension assay and compared based on disease presence, fibrosis severity, and CCL24 levels. Disease-related canonical pathways, upstream regulators, and toxicity functions were elevated in PSC patients compared to HC and further elevated in patients with high CCL24 levels. In vitro, a protein signature in CCL24-treated hepatic stellate cells (HSCs) differentiated patients by disease severity. In mice, CCL24 intraperitoneal injection selectively recruited neutrophils and monocytes. Treatment with CM-101, a CCL24-neutralizing antibody, in an α-naphthylisothiocyanate (ANIT)-induced cholestasis mouse model effectively inhibited accumulation of peribiliary neutrophils and macrophages while reducing biliary hyperplasia and fibrosis. Furthermore, in PSC patients, CCL24 levels were correlated with upregulation of monocyte and neutrophil chemotaxis pathways. Collectively, these findings highlight the distinct role of CCL24 in PSC, influencing disease-related mechanisms, affecting immune cells trafficking and HSC activation. Its blockade with CM-101 reduces inflammation and fibrosis and positions CCL24 as a promising therapeutic target in PSC.
Collapse
Affiliation(s)
| | - Tom Snir
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | - Avi Katav
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | | | - Inbal Mishalian
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital Jerusalem, Jerusalem 91120, Israel
| | - Ophir Hay
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital Jerusalem, Jerusalem 91120, Israel
| | | | - John Lawler
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | - Francesca Saffioti
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Douglas Thorburn
- UCL Institute for Liver and Digestive Health, University College of London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital Jerusalem, Jerusalem 91120, Israel
| | - Adi Mor
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| | - Ilan Vaknin
- Chemomab Therapeutics Ltd., Tel Aviv 6158002, Israel
| |
Collapse
|
11
|
Russo RC, Quesniaux VFJ, Ryffel B. Homeostatic chemokines as putative therapeutic targets in idiopathic pulmonary fibrosis. Trends Immunol 2023; 44:1014-1030. [PMID: 37951789 DOI: 10.1016/j.it.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease (ILD) that affects lung mechanical functions and gas exchange. IPF is caused by increased fibroblast activity and collagen deposition that compromise the alveolar-capillary barrier. Identifying an effective therapy for IPF remains a clinical challenge. Chemokines are key proteins in cell communication that have functions in immunity as well as in tissue homeostasis, damage, and repair. Chemokine receptor signaling induces the activation and proliferation of lung-resident cells, including alveolar macrophages (AMs) and fibroblasts. AMs are an important source of chemokines and cytokines during IPF. We highlight the complexity of this system and, based on insights from genetic and transcriptomic studies, propose a new role for homeostatic chemokine imbalance in IPF, with implications for putative therapeutic targets.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Valerie F J Quesniaux
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| |
Collapse
|
12
|
Han G, Yan D, Sun Z, Fang J, chang X, Wilson L, Liu Y. Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses. RESEARCH SQUARE 2023:rs.3.rs-3384541. [PMID: 37886581 PMCID: PMC10602069 DOI: 10.21203/rs.3.rs-3384541/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Single cell RNA sequencing technology (scRNA-seq) has been proven useful in understanding cell-specific disease mechanisms. However, identifying genes of interest remains a key challenge. Pseudo-bulk methods that pool scRNA-seq counts in the same biological replicates have been commonly used to identify differentially expressed genes. However, such methods may lack power due to the limited sample size of scRNA-seq datasets, which can be prohibitively expensive. Results Motivated by this, we proposed to use the Bayesian-frequentist hybrid (BFH) framework to increase the power. Conclusion In our idiopathic pulmonary fibrosis (IPF) case study, we demonstrated that with a proper informative prior, the BFH approach identified more genes of interest. Furthermore, these genes were reasonable based on the current knowledge of IPF. Thus, the BFH offers a unique and flexible framework for future scRNA-seq analyses.
Collapse
Affiliation(s)
- Gang Han
- Epidemiology & Biostatistics, 212 Adriance Lab Rd, 1266 TAMU College Station, TX 77843
| | - Dongyan Yan
- Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225
| | - Zhe Sun
- Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225
| | - Jiyuan Fang
- Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225
| | - Xinyue chang
- Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225
| | - Lucas Wilson
- Epidemiology & Biostatistics, 212 Adriance Lab Rd, 1266 TAMU College Station, TX 77843
| | - Yushi Liu
- Eli Lilly and Company Corporate Center, 893 Delaware St, Indianapolis, IN 46225
| |
Collapse
|
13
|
Abreu S, Alves L, Carvalho L, Xisto D, Blanco N, Castro L, Olsen P, Lapa E Silva JR, Morales MM, Lopes-Pacheco M, Weiss D, Rocco PRM. Serum from patients with asthma potentiates macrophage phagocytosis and human mesenchymal stromal cell therapy in experimental allergic asthma. Cytotherapy 2023; 25:967-976. [PMID: 37330732 DOI: 10.1016/j.jcyt.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND/AIMS Although several studies have demonstrated that mesenchymal stromal cells (MSCs) exhibit beneficial immunomodulatory properties in preclinical models of allergic asthma, effects on airway remodeling have been controversial. Recent evidence has shown that MSCs modify their in vivo immunomodulatory actions depending on the specific inflammatory environment encountered. Accordingly, we assessed whether the therapeutic properties of human mesenchymal stromal cells (hMSCs) could be potentiated by conditioning these cells with serum (hMSC-serum) obtained from patients with asthma and then transplanted in an experimental model of house dust mite (HDM)-induced allergic asthma. METHODS hMSC and hMSC-serum were administered intratracheally 24 h after the final HDM challenge. hMSC viability and inflammatory mediator production, lung mechanics and histology, bronchoalveolar lavage fluid (BALF) cellularity and biomarker levels, mitochondrial structure and function as well as macrophage polarization and phagocytic capacity were assessed. RESULTS Serum preconditioning led to: (i) increased hMSC apoptosis and expression of transforming growth factor-β, interleukin (IL)-10, tumor necrosis factor-α-stimulated gene 6 protein and indoleamine 2,3-dioxygenase-1; (ii) fission and reduction of the intrinsic respiratory capacity of mitochondria; and (iii) polarization of macrophages to M2 phenotype, which may be associated with a greater percentage of hMSCs phagocytosed by macrophages. Compared with mice receiving hMSCs, administration of hMSC-serum led to further reduction of collagen fiber content, eotaxin levels, total and differential cellularity and increased IL-10 levels in BALF, improving lung mechanics. hMSC-serum promoted greater M2 macrophage polarization as well as macrophage phagocytosis, mainly of apoptotic hMSCs. CONCLUSIONS Serum from patients with asthma led to a greater percentage of hMSCs phagocytosed by macrophages and triggered immunomodulatory responses, resulting in further reductions in both inflammation and remodeling compared with non-preconditioned hMSCs.
Collapse
Affiliation(s)
- Soraia Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Leonardo Alves
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Carvalho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lígia Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla Olsen
- Laboratory of Immunological Studies, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Roberto Lapa E Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Marcos Morales
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Daniel Weiss
- Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Wang Z, Xu H, Chen M, Lu Y, Zheng L, Ma L. CCL24/CCR3 axis plays a central role in angiotensin II-induced heart failure by stimulating M2 macrophage polarization and fibroblast activation. Cell Biol Toxicol 2023; 39:1413-1431. [PMID: 36131165 PMCID: PMC10425496 DOI: 10.1007/s10565-022-09767-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
AIMS We aimed to investigate the effect and mechanism of pleiotropic chemokine CCL24 in heart failure. METHODS AND RESULTS Compared with normal donators, the expression of CCL24 and number of cardiac M2 macrophages in heart were higher in heart failure patients, the same as plasma CCL24. Treatment with CCL24 antibody hindered Ang II (1500 ng/kg/min)-induced cardiac adverse remodeling through preventing cardiac hypertrophy and fibrosis. RNA-seq showed that CCL24/CCR3 axis was involved in immune and inflammatory responses. Single-cell analysis of cytometry by time of flight (CyTOF) revealed that CCL24 antibody decreased the M2 macrophage and monocyte polarization during Ang II stimulation. Immunofluorescence co-localization analysis confirmed the expression of CCR3 in macrophage and fibroblasts. Then, in vitro experiments confirmed that CCL24/CCR3 axis was also involved in cardiac primary fibroblast activation through its G protein-coupled receptor function. CONCLUSION CCL24/CCR3 axis plays a crucial part in cardiac remodeling by stimulating M2 macrophage polarization and cardiac fibroblast activation. Cardiac M2 macrophages, CCL24 and circulation CCL24 increased in heart failure patients. Treatment with CCL24 Ab hindered Ang II induced cardiac structural dysfunction and electrical remodeling. In CCL24 Ab group RNA-seq found that it was related to immune responses and hypertrophic cardiomyopathy, CytoF revealed M2 macrophages and monocytes decreased obviously. In vitro,CCL24 promoted activation and migration of cardiac fibroblast.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Miao Chen
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yunlong Lu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Liangrong Zheng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Liang Ma
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
15
|
Abstract
Systemic sclerosis (SSc) is a chronic immune-mediated disease characterized by microangiopathy, immune dysregulation, and progressive fibrosis of the skin and internal organs. Though not fully understood, the pathogenesis of SSc is dominated by microvascular injury, endothelial dysregulation, and immune response that are thought to be associated with fibroblast activation and related fibrogenesis. Among the main clinical subsets, diffuse SSc (dSSc) is a progressive form with rapid and disseminated skin thickening accompanied by internal organ fibrosis and dysfunction. Despite recent advances and multiple randomized clinical trials in early dSSc patients, an effective disease-modifying treatment for progressive skin fibrosis is still missing, and there is a crucial need to identify new targets for therapeutic intervention. Eotaxin-2 (CCL24) is a chemokine secreted by immune cells and epithelial cells, which promotes trafficking of immune cells and activation of pro-fibrotic cells through CCR3 receptor binding. Higher levels of CCL24 and CCR3 were found in the skin and sera of patients with SSc compared with healthy controls; elevated levels of CCL24 and CCR3 were associated with fibrosis and predictive of greater lung function deterioration. Growing evidence supports the potency of a CCL24-blocking antibody as an anti-inflammatory and anti-fibrotic modulating agent in multiple preclinical models that involve liver, skin, and lung inflammation and fibrosis. This review highlights the role of CCL24 in orchestrating immune, vascular, and fibrotic pathways, and the potential of CCL24 inhibition as a novel treatment for SSc.
Collapse
Affiliation(s)
| | | | - Alexandra Balbir-Gurman
- Rheumatology Institute, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Greenman R, Segal-Salto M, Barashi N, Hay O, Katav A, Levi O, Vaknin I, Aricha R, Aharoni S, Snir T, Mishalian I, Olam D, Amer J, Salhab A, Safadi R, Maor Y, Trivedi P, Weston CJ, Saffioti F, Hall A, Pinzani M, Thorburn D, Peled A, Mor A. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis. JCI Insight 2023; 8:e162270. [PMID: 37345655 PMCID: PMC10371243 DOI: 10.1172/jci.insight.162270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
ˆCCL24 is a pro-fibrotic, pro-inflammatory chemokine expressed in several chronic fibrotic diseases. In the liver, CCL24 plays a role in fibrosis and inflammation, and blocking CCL24 led to reduced liver injury in experimental models. We studied the role of CCL24 in primary sclerosing cholangitis (PSC) and evaluated the potential therapeutic effect of blocking CCL24 in this disease. Multidrug resistance gene 2-knockout (Mdr2-/-) mice demonstrated CCL24 expression in liver macrophages and were used as a relevant experimental PSC model. CCL24-neutralizing monoclonal antibody, CM-101, significantly improved inflammation, fibrosis, and cholestasis-related markers in the biliary area. Moreover, using spatial transcriptomics, we observed reduced proliferation and senescence of cholangiocytes following CCL24 neutralization. Next, we demonstrated that CCL24 expression was elevated under pro-fibrotic conditions in primary human cholangiocytes and macrophages, and it induced proliferation of primary human hepatic stellate cells and cholangiocytes, which was attenuated following CCL24 inhibition. Correspondingly, CCL24 was found to be highly expressed in liver biopsies of patients with PSC. CCL24 serum levels correlated with Enhanced Liver Fibrosis score, most notably in patients with high alkaline phosphatase levels. These results suggest that blocking CCL24 may have a therapeutic effect in patients with PSC by reducing liver inflammation, fibrosis, and cholestasis.
Collapse
Affiliation(s)
| | | | | | - Ophir Hay
- Gene Therapy Institute, Hadassah Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Katav
- Chemomab Therapeutics Ltd., Tel Aviv, Israel
| | - Omer Levi
- Chemomab Therapeutics Ltd., Tel Aviv, Israel
| | - Ilan Vaknin
- Chemomab Therapeutics Ltd., Tel Aviv, Israel
| | | | | | - Tom Snir
- Chemomab Therapeutics Ltd., Tel Aviv, Israel
| | - Inbal Mishalian
- Gene Therapy Institute, Hadassah Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Devorah Olam
- Gene Therapy Institute, Hadassah Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Johnny Amer
- Institute of Gastroenterology and Liver Diseases, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ahmad Salhab
- Institute of Gastroenterology and Liver Diseases, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Rifaat Safadi
- Institute of Gastroenterology and Liver Diseases, Department of Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yaakov Maor
- Institute of Gastroenterology and Hepatology, Kaplan Medical Center, Rehovot, Israel
| | - Palak Trivedi
- National Institute for Health and Care Research Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Christopher J Weston
- National Institute for Health and Care Research Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Saffioti
- University College London Institute for Liver and Digestive Health, London, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Andrew Hall
- University College London Institute for Liver and Digestive Health, London, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, London, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Douglas Thorburn
- University College London Institute for Liver and Digestive Health, London, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Amnon Peled
- Gene Therapy Institute, Hadassah Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mor
- Chemomab Therapeutics Ltd., Tel Aviv, Israel
| |
Collapse
|
17
|
Liu S, Liu C, Wang Q, Liu S, Min J. CC Chemokines in Idiopathic Pulmonary Fibrosis: Pathogenic Role and Therapeutic Potential. Biomolecules 2023; 13:biom13020333. [PMID: 36830702 PMCID: PMC9953349 DOI: 10.3390/biom13020333] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by progressive worsening of dyspnea and irreversible decline in lung function, is a chronic and progressive respiratory disease with a poor prognosis. Chronic or repeated lung injury results in inflammation and an excessive injury-repairing response that drives the development of IPF. A number of studies have shown that the development and progression of IPF are associated with dysregulated expression of several chemokines and chemokine receptors, several of which have been used as predictors of IPF outcome. Chemokines of the CC family play significant roles in exacerbating IPF progression by immune cell attraction or fibroblast activation. Modulating levels of detrimental CC chemokines and interrupting the corresponding transduction axis by neutralizing antibodies or antagonists are potential treatment options for IPF. Here, we review the roles of different CC chemokines in the pathogenesis of IPF, and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence:
| | - Chang Liu
- Drug Clinical Trial Institution, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
18
|
Montemari AL, Manco M, Fiocchi AG, Bartoli M, Facchiano F, Tabolacci C, Scatigna M, Ciciriello F, Alghisi F, Montemitro E, Carsetti R, Lucidi V, Fiscarelli EV. An inflammatory Signature of Glucose Impairment in Cystic Fibrosis. J Inflamm Res 2022; 15:5677-5685. [PMID: 36238762 PMCID: PMC9553277 DOI: 10.2147/jir.s365772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022] Open
Abstract
Objective and Design Cystic fibrosis-related diabetes (CFRD) is a severe complication associated with increased morbidity and mortality in cystic fibrosis (CF) patients. Extensive inflammatory state in CF leads to pancreas damage and insulin resistance with consequent altered glucose tolerance and CFRD development. The aim of the present study was to identify circulating levels of inflammatory markers specifically associated with impaired glucose tolerance (IGT) and overt CFRD in a sample of young adults with CF. Materials and Methods Sixty-four CF outpatients, without evident active pulmonary exacerbation, infectious and autoimmune diseases, were enrolled in the study and the levels of 45 inflammatory serum mediators were measured through x magnetic bead panel multiplex technology. Results Serum levels of PDGF-AA, CCL20/MIP3α, IFNα, CCL11/eotaxin, CXCL1/GROα, GMCSF, B7H1/PDL1, IL13, IL7, VEGF, and TGFα were all significantly (p<0.05) elevated in patients according to glycemic status and directly correlated with glycated hemoglobin and C-reactive protein levels. Conclusion Our findings suggest that increased levels of specific circulating inflammatory mediators are directly associated with impaired glucose tolerance in CF patients, thus, potentially implicating them in CFRD pathogenesis and warranting larger longitudinal studies to validate their monitoring as predictor of CFRD onset.
Collapse
Affiliation(s)
- Anna Lisa Montemari
- UOS Cystic Fibrosis Diagnostic, UOC Microbiology and Immunology Diagnostic, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Correspondence: Melania Manco, Bambino Gesù Children’s Hospital, IRCCS, piazza Sant’Onofrio 4, Rome, Italy, Tel +39 06 6859 2649, Fax +39 06 6859 2904, Email
| | | | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Maria Scatigna
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fabiana Ciciriello
- Cystic Fibrosis Unit, Department of Pediatrics Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Federico Alghisi
- Cystic Fibrosis Unit, Department of Pediatrics Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enza Montemitro
- Cystic Fibrosis Unit, Department of Pediatrics Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Unit, Department of Laboratories, B Cell Pathophysiology Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Unit, Department of Pediatrics Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- UOS Cystic Fibrosis Diagnostic, UOC Microbiology and Immunology Diagnostic, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Matsuda M, Terada T, Kitatani K, Kawata R, Nabe T. Roles of type 1 regulatory T (Tr1) cells in allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:981126. [PMID: 35991310 PMCID: PMC9381954 DOI: 10.3389/falgy.2022.981126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the only causative treatment for allergic diseases by modification of the immune response to allergens. A key feature of AIT is to induce immunotolerance to allergens by generating antigen-specific regulatory T (Treg) cells in allergic patients. Type 1 regulatory T (Tr1) cells and forkhead box protein 3 (Foxp3)-expressing Treg cells are well known among Treg cell subsets. Foxp3 was identified as a master transcription factor of Treg cells, and its expression is necessary for their suppressive activity. In contrast to Foxp3+ Treg cells, the master transcription factor of Tr1 cells has not been elucidated. Nevertheless, Tr1 cells are generally considered as a distinct subset of Treg cells induced in the periphery during antigen exposure in tolerogenic conditions and can produce large amounts of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor-β, followed by down-regulation of the function of effector immune cells independently of Foxp3 expression. Since the discovery of Tr1 cells more than 20 years ago, research on Tr1 cells has expanded our understanding of the mechanism of AIT. Although the direct precursors and true identity of these cells continues to be disputed, we and others have demonstrated that Tr1 cells are induced in the periphery by AIT, and the induced cells are re-activated by antigens, followed by suppression of allergic symptoms. In this review, we discuss the immune mechanisms for the induction of Tr1 cells by AIT and the immune-suppressive roles of Tr1 cells in AIT.
Collapse
Affiliation(s)
- Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Tetsuya Terada
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Ryo Kawata
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
- Correspondence: Takeshi Nabe
| |
Collapse
|
20
|
Ma H, Liu S, Li S, Xia Y. Targeting Growth Factor and Cytokine Pathways to Treat Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:918771. [PMID: 35721111 PMCID: PMC9204157 DOI: 10.3389/fphar.2022.918771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown origin that usually results in death from secondary respiratory failure within 2–5 years of diagnosis. Recent studies have identified key roles of cytokine and growth factor pathways in the pathogenesis of IPF. Although there have been numerous clinical trials of drugs investigating their efficacy in the treatment of IPF, only Pirfenidone and Nintedanib have been approved by the FDA. However, they have some major limitations, such as insufficient efficacy, undesired side effects and poor pharmacokinetic properties. To give more insights into the discovery of potential targets for the treatment of IPF, this review provides an overview of cytokines, growth factors and their signaling pathways in IPF, which have important implications for fully exploiting the therapeutic potential of targeting cytokine and growth factor pathways. Advances in the field of cytokine and growth factor pathways will help slow disease progression, prolong life, and improve the quality of life for IPF patients in the future.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shengming Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shanrui Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| |
Collapse
|
21
|
Development of an Individualized Immune Prognostic Signature for Clear Cell Renal Cell Carcinoma through the Identification of Differential Immune Genes. JOURNAL OF ONCOLOGY 2021; 2021:9587084. [PMID: 34422053 PMCID: PMC8376451 DOI: 10.1155/2021/9587084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Increasing evidence has shown that tumor microenvironments are an important feature in clear cell renal cell carcinoma (ccRCC) carcinogenesis and therapeutic efficacy. In this study, two subtypes of ccRCC, high- and low-immune groups, were identified based on the immune gene datasets, of which the differential immune genes were identified accordingly. Furthermore, we constructed a risk prognosis model using five immune genes, specifically, AQP9, KIAA1429, HAMP, CCL13, and CCL21. This model was highly predictive of ccRCC clinical characteristics and showed potential for use in immunotherapy. Furthermore, the five identified genes were highly correlated with the abundance of B cells, CD4 T cells, CD8 T cells, macrophages, neutrophils, and dendritic cells in the tumor microenvironments. Among them, AQP9, KIAA1429, and HAMP exhibited significant prognostic potential. These findings indicate that monitoring and operating tumor microenvironments are of great significance for ccRCC prognosis and precise immunotherapy.
Collapse
|
22
|
Lim SJ. CCL24 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:91-98. [PMID: 34286443 DOI: 10.1007/978-3-030-62658-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemokines with their network play an important role in cancer growth, metastasis, and host-tumor interactions. Of many chemokines, C-C motif chemokine ligand 24 (CCL24) has been shown to contribute to tumorigenesis as well as inflammatory diseases like asthma, allergies, and eosinophilic esophagitis. CCL24 is expressed in some tumor cells such as colon cancer, hepatocellular carcinoma, and cutaneous T cell lymphoma. CCL24 can be used as a potential biomarker in several cancers including colon cancer, non-small cell cancer, and nasopharyngeal carcinoma as the plasma level of CCL24 is increased. The various functions of CCL24 contribute to the biology of cancer by M2 macrophage polarization, angiogenesis, invasion and migration, and recruitment of eosinophils.
Collapse
Affiliation(s)
- Sung-Jig Lim
- Department of Pathology, School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.
| |
Collapse
|
23
|
Chen P, Wu B, Ji L, Zhan Y, Li F, Cheng L, Cao J, Chen H, Ke Y, Min Z, Sun L, Hua F, Chen H, Cheng Y. Cytokine Consistency Between Bone Marrow and Peripheral Blood in Patients With Philadelphia-Negative Myeloproliferative Neoplasms. Front Med (Lausanne) 2021; 8:598182. [PMID: 34249954 PMCID: PMC8264196 DOI: 10.3389/fmed.2021.598182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Inflammation might play a critical role in the pathogenesis and progression of Philadelphia-negative myeloproliferative neoplasms (Ph−MPNs) with elevated inflammatory cytokines in peripheral blood (PB). However, the inflammatory status inside the bone marrow (BM), which is the place of malignancy origin and important microenvironment of neoplasm evolution, has not yet been elucidated. Methods: Inflammatory cytokine profiles in PB and BM of 24 Ph-MPNs patients were measured by a multiplex quantitative inflammation array. Cytokines that correlated between PB and BM were selected and then validated by ELISA in a separate cohort of 52 MPN patients. Furthermore, a panel of cytokines was identified and examined for potential application as non-invasive markers for the diagnosis and prediction of fibrosis progress of MPN subtypes. Results: The levels of G-CSF, I-309, IL-1β, IL-1ra, IL-12p40, IL-15, IL-16, M-CSF, MIG, PDGF-BB, and TIMP-1 in BM supernatants were significantly higher than those in PB (all p < 0.05). Linear correlations between BM and PB levels were found in 13 cytokines, including BLC, Eotaxin-2, I-309, sICAM-1, IL-15, M-CSF, MIP-1α, MIP-1δ, RANTES, TIMP-1, TIMP-2, sTNFRI, and sTNFRII (all R > 0.4 and p < 0.05). Levels of BLC, Eotaxin-2, M-CSF, and TIMP-1 in PB were significantly different from those in health controls (all p < 0.05). In PB, levels of TIMP-1 and Eotaxin-2 in essential thrombocythemia (ET) group were significantly lower than those in groups of prefibrotic primary myelofibrosis (pre-PMF) [TIMP-1: 685.2 (322.2–1,229) ng/ml vs. 1,369 (1,175–1,497) ng/ml, p = 0.0221; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 942.4 (699.3–1,474) pg/ml, p = 0.0393] and primary myelofibrosis (PMF) [TIMP-1: 685.2 (322.2–1229) ng/ml vs. 1,365 (1,115–1,681) ng/ml, p = 0.0043; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 1,010 (818–1,556) pg/ml, p = 0.0030]. The level of TIMP-1 in myelofibrosis (MF) >1 group was significantly higher than that in MF ≤ 1 group. Conclusion: Abnormal inflammatory status is present in MPN, especially in its BM microenvironment. Consistency between PB and BM levels was found in multiple inflammatory cytokines. Circulating cytokine levels of BLC, M-CSF, Eotaxin-2, and TIMP-1 reflected inflammation inside BM niche, suggesting potential diagnostic value for MPN subtypes and prognostic value for fibrosis progression.
Collapse
Affiliation(s)
- Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Cao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hehui Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ke
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
CCL24 Protects Renal Function by Controlling Inflammation in Podocytes. DISEASE MARKERS 2021; 2021:8837825. [PMID: 34221188 PMCID: PMC8221868 DOI: 10.1155/2021/8837825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy (DN) is one of the most lethal complications of diabetes mellitus with chronic inflammation. We have examined the role of the inflammatory chemokine CCL24 in DN. We observed that serum levels of CCL24 were significantly elevated in patients with DN. Not only that, the expression of CCL24 was significantly increased in the kidneys of DN mice. The kidney of DN mice showed increased renal fibrosis and inflammation. We characterized an in vitro podocyte cell model with high glucose. Western blot analysis showed that expression of CCL24 was significantly increased under high-glucose conditions. Stimulation with high glucose (35 mmol/L) resulted in an increase in CCL24 expression in the first 48 hours but changed little after 72 hours. Moreover, with glucose stimulation, the level of podocyte fibrosis gradually increased, the expression of the proinflammatory cytokine IL-1β was upregulated, and the expression of the glucose transporter GLUT4, involved in the insulin signal regulation pathway, also increased. It is suggested that CCL24 is involved in the pathogenesis of DN. In order to study the specific role of CCL24 in this process, we used the CRISPR-Cas9 technique to knock out CCL24 expression in podocytes. Compared with the control group, the podocyte inflammatory response induced by high glucose after CCL24 knockout was significantly increased. These results suggest that CCL24 plays a role in the development of early DN by exerting an anti-inflammatory effect, at least, in podocytes.
Collapse
|
25
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
26
|
Chiang CC, Chen CM, Suen JL, Su HH, Hsieh CC, Cheng CM. Stimulatory effect of gastroesophageal reflux disease (GERD) on pulmonary fibroblast differentiation. Dig Liver Dis 2020; 52:988-994. [PMID: 32727693 DOI: 10.1016/j.dld.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Epidemiological studies indicate that prolonged micro-aspiration of gastric fluid is associated in gastroesophageal reflux disease with the development of chronic respiratory diseases, possibly caused by inflammation-related immunomodulation. Therefore, we sought to ascertain the effect of gastric fluid exposure on pulmonary residential cells. The expression of α-smooth muscle actin as a fibrotic marker was increased in both normal human pulmonary fibroblast cells and mouse macrophages. Gastric fluid enhanced the proliferation and migration of HFL-1 cells and stimulated the expression of inflammatory cytokines in an antibody assay. Elevated expression of the Rho signaling pathway was noted in fibroblast cells stimulated with gastric fluid or conditioned media. These results indicate that gastric fluid alone, or the mixture of proinflammatory mediators induced by gastric fluid in the pulmonary context, can stimulate pulmonary fibroblast cell inflammation, migration, and differentiation, suggesting that a wound healing process is initiated. Subsequent aberrant repair in pulmonary residential cells may lead to pulmonary fibroblast differentiation and fibrotic progression. The results point to a stimulatory effect of chronic GERD on pulmonary fibroblast differentiation, and this may promote the development of chronic pulmonary diseases in the long term.
Collapse
Affiliation(s)
- Cheng Che Chiang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Ming Chen
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, Chun Shan Medicine University, Taichung Taiwan
| | - Jau Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chong Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
27
|
Meguro A, Ishihara M, Petrek M, Yamamoto K, Takeuchi M, Mrazek F, Kolek V, Benicka A, Yamane T, Shibuya E, Yoshino A, Isomoto A, Ota M, Yatsu K, Shijubo N, Nagai S, Yamaguchi E, Yamaguchi T, Namba K, Kaburaki T, Takase H, Morimoto SI, Hori J, Kono K, Goto H, Suda T, Ikushima S, Ando Y, Takenaka S, Takeuchi M, Yuasa T, Sugisaki K, Ohguro N, Hiraoka M, Kitaichi N, Sugiyama Y, Horita N, Asukata Y, Kawagoe T, Kimura I, Ishido M, Inoko H, Mochizuki M, Ohno S, Bahram S, Remmers EF, Kastner DL, Mizuki N. Genetic control of CCL24, POR, and IL23R contributes to the pathogenesis of sarcoidosis. Commun Biol 2020; 3:465. [PMID: 32826979 PMCID: PMC7442816 DOI: 10.1038/s42003-020-01185-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoidosis is a genetically complex systemic inflammatory disease that affects multiple organs. We present a GWAS of a Japanese cohort (700 sarcoidosis cases and 886 controls) with replication in independent samples from Japan (931 cases and 1,042 controls) and the Czech Republic (265 cases and 264 controls). We identified three loci outside the HLA complex, CCL24, STYXL1-SRRM3, and C1orf141-IL23R, which showed genome-wide significant associations (P < 5.0 × 10−8) with sarcoidosis; CCL24 and STYXL1-SRRM3 were novel. The disease-risk alleles in CCL24 and IL23R were associated with reduced CCL24 and IL23R expression, respectively. The disease-risk allele in STYXL1-SRRM3 was associated with elevated POR expression. These results suggest that genetic control of CCL24, POR, and IL23R expression contribute to the pathogenesis of sarcoidosis. We speculate that the CCL24 risk allele might be involved in a polarized Th1 response in sarcoidosis, and that POR and IL23R risk alleles may lead to diminished host defense against sarcoidosis pathogens. Akira Meguro et al. report a genome-wide association study for sarcoidosis—a systemic inflammatory disease—in the Japanese population. They identify 3 non-HLA loci with genome-wide significance, 2 of which have not been previously associated with sarcoidosis in any population.
Collapse
Affiliation(s)
- Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Mami Ishihara
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska Str., 77515, Olomouc, Czech Republic
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan.,Division of Genome Analysis, Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.,Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, 10 CRC East/B2-5235, Bethesda, MD, 20892-1849, USA
| | - Frantisek Mrazek
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, I.P.Pavlova Str. 6, 77520, Olomouc, Czech Republic
| | - Vitezslav Kolek
- Department of Respiratory Medicine, Faculty of Medicine and Dentistry, Palacky University, I. P. Pavlova Str. 6, 77900, Olomouc, Czech Republic
| | - Alzbeta Benicka
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska Str., 77515, Olomouc, Czech Republic
| | - Takahiro Yamane
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Etsuko Shibuya
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Atsushi Yoshino
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Akiko Isomoto
- Division of Genome Analysis, Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masao Ota
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.,Division of Hepatology and Gastroenterology, Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,INSERM Franco-Japanese "Laboratoire International Associé" (LIA) Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese "Laboratoire International Associé" (LIA) Nextgen HLA Laboratory, Nagano, Japan
| | - Keisuke Yatsu
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Noriharu Shijubo
- Department of Respiratory Medicine, Japan Railway Sapporo Hospital, Higashi-1, Kita-3, Chuo-ku, Sapporo, 060-0033, Japan
| | - Sonoko Nagai
- Kyoto Central Clinic/Clinical Research Center, 56-58 Masuyacho Sanjo-Takakura, Nakagyo-ku, Kyoto, 604-8111, Japan
| | - Etsuro Yamaguchi
- Division of Respiratory Medicine and Allergology, Aichi Medical University, 21 Karimata, Yazako, Nagakute-cho, Aichi-gun, Aichi, 480-1195, Japan
| | - Tetsuo Yamaguchi
- Department of Respiratory Medicine, Japan Railway Tokyo General Hospital, 2-1-3 Yoyogi, Shibuya-ku, Tokyo, 151-0053, Japan
| | - Kenichi Namba
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Takase
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University Graduate School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shin-Ichiro Morimoto
- Division of Cardiology, Department of Internal Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, 470-1192, Japan
| | - Junko Hori
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Keiko Kono
- Department of Ophthalmology, Kono Medical Clinic, 3-30-28 Soshigaya, Setagaya-ku, Tokyo, 157-0072, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Soichiro Ikushima
- Department of Respiratory Medicine, Japanese Red Cross Medical Centre, 4-1-22 Hiroo, Shibuya-ku, Tokyo, 150-8953, Japan
| | - Yasutaka Ando
- Department of Ophthalmology, Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan.,Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Shinobu Takenaka
- Department of Respiratory Diseases, Kumamoto City Hospital, 1-1-60 Kotoh, Kumamoto, Kumamoto, 862-8505, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takenosuke Yuasa
- Yuasa Eye Clinic, 3-1-1 Nishimoto-cho, Nishi-ku, Osaka, 550-0005, Japan
| | - Katsunori Sugisaki
- Department of Internal Medicine, National Hospital Organization Nishibeppu National Hospital, 4548 Oaza-Tsurumi, Beppu, Oita, 874-0840, Japan
| | - Nobuyuki Ohguro
- Department of Ophthalmology, Japan Community Health care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima-ku, Osaka, 553-0003, Japan
| | - Miki Hiraoka
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1 W16 Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Nobuyoshi Kitaichi
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Ophthalmology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo, Hokkaido, 002-8072, Japan
| | - Yukihiko Sugiyama
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Nobuyuki Horita
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, 10 CRC East/B2-5235, Bethesda, MD, 20892-1849, USA.,Department of Pulmonology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yuri Asukata
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Ikuko Kimura
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Mizuho Ishido
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidetoshi Inoko
- INSERM Franco-Japanese "Laboratoire International Associé" (LIA) Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese "Laboratoire International Associé" (LIA) Nextgen HLA Laboratory, Nagano, Japan.,Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Manabu Mochizuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University Graduate School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shigeaki Ohno
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Ophthalmology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo, Hokkaido, 002-8072, Japan
| | - Seiamak Bahram
- INSERM Franco-Japanese "Laboratoire International Associé" (LIA) Nextgen HLA Laboratory, Strasbourg, France.,INSERM Franco-Japanese "Laboratoire International Associé" (LIA) Nextgen HLA Laboratory, Nagano, Japan.,Plateforme GENOMAX, Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie. Faculté de Médecine, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Elaine F Remmers
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, 10 CRC East/B2-5235, Bethesda, MD, 20892-1849, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, 10 CRC East/B2-5235, Bethesda, MD, 20892-1849, USA
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
28
|
The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine Growth Factor Rev 2020; 53:53-62. [PMID: 32345516 PMCID: PMC7177079 DOI: 10.1016/j.cytogfr.2020.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
C-X-C motif chemokine 17 (CXCL17), plays a functional role in maintaining homeostasis at mucosal barriers. CXCL17 expression is associated with both disease progression and protection in various diseases. The multifactorial mechanistic properties of CXCL17 could be exploited as a therapeutic target
C-X-C motif chemokine 17 (CXCL-17) is a novel chemokine that plays a functional role maintaining homeostasis at distinct mucosal barriers, including regulation of myeloid-cell recruitment, angiogenesis, and control of microorganisms. Particularly, CXCL17 is produced along the epithelium of the airways both at steady state and under inflammatory conditions. While increased CXCL17 expression is associated with disease progression in pulmonary fibrosis, asthma, and lung/hepatic cancer, it is thought to play a protective role in pancreatic cancer, autoimmune encephalomyelitis and viral infections. Thus, there is emerging evidence pointing to both a harmful and protective role for CXCL17 in human health and disease, with therapeutic potential for translational applications. In this review, we provide an overview of the discovery, characteristics and functions of CXCL17 emphasizing its clinical potential in respiratory disorders.
Collapse
|
29
|
Segal-Salto M, Barashi N, Katav A, Edelshtein V, Aharon A, Hashmueli S, George J, Maor Y, Pinzani M, Haberman D, Hall A, Friedman S, Mor A. A blocking monoclonal antibody to CCL24 alleviates liver fibrosis and inflammation in experimental models of liver damage. JHEP Rep 2020; 2:100064. [PMID: 32039405 PMCID: PMC7005554 DOI: 10.1016/j.jhepr.2019.100064] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background & Aims C-C motif chemokine ligand 24 (CCL24) is a chemokine that regulates inflammatory and fibrotic activities through its receptor, C-C motif chemokine receptor (CCR3). The aim of the study was to evaluate the involvement of the CCL24-CCR3 axis in liver fibrosis and inflammation and to assess the potential of its blockade, by a monoclonal anti-CCL24 antibody, as a therapeutic strategy for non-alcoholic steatohepatitis (NASH) and liver fibrosis. Methods Expression of CCL24 and CCR3 was evaluated in liver biopsies and blood samples. CCL24 involvement in NAFLD/NASH pathogenesis was assessed in Ccl24 knockout mouse using the methionine-choline deficient (MCD) diet experimental model. Antifibrotic and anti-inflammatory effects of CM-101 were tested in the MCD and STAM mouse models and in the thioacetamide (TAA) model in rats. Liver enzymes, liver morphology, histology and collagen deposition, as well as fibrosis- and inflammation-related protein expression were assessed. Activation of hepatic stellate cells (HSCs) was evaluated in the human LX2 cell line. Results Patients with NASH and advanced NAFLD exhibited significant expression of both CCL24 and CCR3 in liver and blood samples. In the experimental MCD-diet model, Ccl24 knockout mice showed an attenuated liver damage response compared to wild-type mice, exhibiting reduced histological NAFLD activity scores and fibrosis, as well as lower levels of liver enzymes. Blocking CCL24 using CM-101 robustly reduced liver damage in 3 experimental animal models (MCD, STAM and TAA), as demonstrated by attenuation of liver fibrosis and NAFLD activity score. Furthermore, blocking CCL24 by CM-101 significantly inhibited CCL24-induced HSC motility, α-SMA expression and pro-collagen I secretion. Conclusion Our results reveal that blocking CCL24 significantly attenuates liver fibrosis and inflammation and may have a potential therapeutic effect in patients with NASH and/or liver fibrosis. Lay summary CCL24 is a chemokine that regulates inflammation and fibrosis. It was found to be significantly expressed in patients with non-alcoholic steatohepatitis, in whom it regulates profibrotic processes in the liver. Herein, we show that blockade of CCL24 using a monoclonal antibody robustly attenuated liver fibrosis and inflammation in animal models, thus suggesting a potential therapeutic role for an anti-CCL24 agent. CCL24 is a chemokine that regulates inflammatory and fibrotic activities through its receptor, CCR3. Significant expression of CCL24 and CCR3 were found in liver biopsies and blood samples from patients with NAFLD/NASH. CM-101, a monoclonal antibody that selectively targets CCL24, significantly attenuates fibrotic and inflammatory processes. Blocking CCL24 may have a potential therapeutic effect in NASH and liver fibrosis.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Antibody
- C-C motif chemokine ligand 24
- CCL24
- CCL24, C-C motif chemokine ligand 24
- CCR3, C-C motif chemokine receptor 3
- CM-101
- Fibrosis
- HSCs, hepatic stellate cells
- IL-6, interleukin-6
- MCD, methionine-choline deficient
- MFI, median fluorescence intensity
- MMP, matrix metallopeptidase
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic fatty liver disease
- Non-alcoholic steatohepatitis
- PBMC, peripheral blood mononuclear cells
- TAA, thioacetamide
- WT, wild-type
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacob George
- Heart Center, Kaplan Medical Center, Rehovot, Affiliated to the Hebrew University, Jerusalem, Israel
| | - Yaakov Maor
- Institute of Gastroenterology and Hepatology, Kaplan Medical Center, Rehovot, Israel
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, University College of London, London, UK.,Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK
| | - Dan Haberman
- Heart Center, Kaplan Medical Center, Rehovot, Affiliated to the Hebrew University, Jerusalem, Israel
| | - Andrew Hall
- UCL Institute for Liver and Digestive Health, University College of London, London, UK.,Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK
| | - Scott Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | | |
Collapse
|
30
|
Mor A, Segal Salto M, Katav A, Barashi N, Edelshtein V, Manetti M, Levi Y, George J, Matucci-Cerinic M. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann Rheum Dis 2019; 78:1260-1268. [PMID: 31129606 PMCID: PMC6788878 DOI: 10.1136/annrheumdis-2019-215119] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES We aimed to assess the expression of the CCL24 chemokine in systemic sclerosis (SSc) and to evaluate the possible pathogenic implications of the CCL24/CCR3 axis using both in vitro and in vivo models. We further investigated the efficacy of an anti-CCL24 monoclonal antibody (mAb), CM-101, in inhibiting cell activation as well as dermal and pulmonary inflammation and fibrosis in experimental animal models. METHODS We used ELISA and fluorescence immunohistochemistry to determine CCL24 levels in serum and CCL24/CCR3 expression in skin biopsies of SSc patients. Skin fibroblasts and endothelial cells treated with CCL24 or SSc serum with or without CM-101 were used to follow cell activation and differentiation. Prevention and treatment in vivo bleomycin (BLM)-induced models were used to evaluate experimental dermal and pulmonary fibrosis progression following treatment with the CM-101 mAb. RESULTS CCL24 circulating levels were significantly elevated in SSc patients. CCL24/CCR3 expression was strongly increased in SSc skin. Blockade of CCL24 with CM-101 significantly reduced the activation of dermal fibroblasts and their transition to myofibroblasts induced by SSc serum. CM-101 was also able to significantly inhibit endothelial cell activation induced by CCL24. In BLM-induced experimental animal models, CM-101 profoundly inhibited both dermal and pulmonary fibrosis and inflammation. CONCLUSIONS CCL24 plays an important role in pathological processes of skin and lung inflammation and fibrosis. Inhibition of CCL24 by CM-101 mAb can be potentially beneficial for therapeutic use in SSc patients.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Cell Differentiation
- Cells, Cultured
- Chemokine CCL24/antagonists & inhibitors
- Chemokine CCL24/biosynthesis
- Disease Models, Animal
- Female
- Fibroblasts/metabolism
- Fibrosis/drug therapy
- Fibrosis/metabolism
- Fibrosis/pathology
- Humans
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Polysaccharides, Bacterial/immunology
- Pulmonary Fibrosis/drug therapy
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/pathology
- Skin/drug effects
- Skin/metabolism
- Skin/pathology
Collapse
Affiliation(s)
- Adi Mor
- R&D, ChemomAb Ltd, Tel Aviv, Israel
| | | | | | | | | | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Yair Levi
- Department of Internal Medicine E, Meir Medical Center, Kfar-Saba, Israel
| | - Jacob George
- Heart Center, Kaplan Medical Center, Rehovot, Israel
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Department of Geriatric Medicine, Division of Rheumatology and Scleroderma Unit, AOUC, Florence, Italy
| |
Collapse
|
31
|
Kuo CHS, Pavlidis S, Zhu J, Loza M, Baribaud F, Rowe A, Pandis I, Gibeon D, Hoda U, Sousa A, Wilson SJ, Howarth P, Shaw D, Fowler S, Dahlen B, Chanez P, Krug N, Sandstrom T, Fleming L, Corfield J, Auffray C, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF. Contribution of airway eosinophils in airway wall remodeling in asthma: Role of MMP-10 and MET. Allergy 2019; 74:1102-1112. [PMID: 30667542 DOI: 10.1111/all.13727] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Eosinophils play an important role in the pathophysiology of asthma being implicated in airway epithelial damage and airway wall remodeling. We determined the genes associated with airway remodeling and eosinophilic inflammation in patients with asthma. METHODS We analyzed the transcriptomic data from bronchial biopsies of 81 patients with moderate-to-severe asthma of the U-BIOPRED cohort. Expression profiling was performed using Affymetrix arrays on total RNA. Transcription binding site analysis used the PRIMA algorithm. Localization of proteins was by immunohistochemistry. RESULTS Using stringent false discovery rate analysis, MMP-10 and MET were significantly overexpressed in biopsies with high mucosal eosinophils (HE) compared to low mucosal eosinophil (LE) numbers. Immunohistochemical analysis confirmed increased expression of MMP-10 and MET in bronchial epithelial cells and in subepithelial inflammatory and resident cells in asthmatic biopsies. Using less-stringent conditions (raw P-value < 0.05, log2 fold change > 0.5), we defined a 73-gene set characteristic of the HE compared to the LE group. Thirty-three of 73 genes drove the pathway annotation that included extracellular matrix (ECM) organization, mast cell activation, CC-chemokine receptor binding, circulating immunoglobulin complex, serine protease inhibitors, and microtubule bundle formation pathways. Genes including MET and MMP10 involved in ECM organization correlated positively with submucosal thickness. Transcription factor binding site analysis identified two transcription factors, ETS-1 and SOX family proteins, that showed positive correlation with MMP10 and MET expression. CONCLUSION Pathways of airway remodeling and cellular inflammation are associated with submucosal eosinophilia. MET and MMP-10 likely play an important role in these processes.
Collapse
Affiliation(s)
- Chih-Hsi S. Kuo
- Airways Disease; National Heart & Lung Institute; Imperial College; London UK
- Biomedical Research Unit; Royal Brompton & Harefield NHS Trust; London UK
- Department of Computing & Data Science Institute; Imperial College; London UK
| | - Stelios Pavlidis
- Department of Computing & Data Science Institute; Imperial College; London UK
- Janssen Research and Development; High Wycombe UK
| | - Jie Zhu
- Airways Disease; National Heart & Lung Institute; Imperial College; London UK
| | - Matthew Loza
- Janssen Research and Development; High Wycombe UK
| | | | - Anthony Rowe
- Janssen Research and Development; High Wycombe UK
| | - Ioannis Pandis
- Airways Disease; National Heart & Lung Institute; Imperial College; London UK
- Biomedical Research Unit; Royal Brompton & Harefield NHS Trust; London UK
| | - David Gibeon
- Airways Disease; National Heart & Lung Institute; Imperial College; London UK
- Biomedical Research Unit; Royal Brompton & Harefield NHS Trust; London UK
| | - Uruj Hoda
- Department of Computing & Data Science Institute; Imperial College; London UK
| | - Ana Sousa
- Respiratory Therapeutic Unit; GlaxoSmithKline; Stockley Park UK
| | - Susan J. Wilson
- Faculty of Medicine; Southampton University; Southampton UK
- NIHR Southampton Respiratory Biomedical Research Unit; University Hospital Southampton; Southampton UK
| | - Peter Howarth
- Faculty of Medicine; Southampton University; Southampton UK
- NIHR Southampton Respiratory Biomedical Research Unit; University Hospital Southampton; Southampton UK
| | - Dominick Shaw
- Respiratory Research Unit; University of Nottingham; Nottingham UK
| | - Stephen Fowler
- Centre for Respiratory Medicine and Allergy; The University of Manchester; Manchester UK
| | - Barbro Dahlen
- The Centre for Allergy Research; The Institute of Environmental Medicine; Karolinska Institute; Stockholm Sweden
| | - Pascal Chanez
- Laboratoire d'immunologie; Département des Maladies Respiratoires; Aix Marseille Université Marseille; Marseille France
| | - Norbert Krug
- Immunology, Allergology and Clinical Inhalation; Fraunhofer Institute for Toxicology and Experimental Medicine; Hannover Germany
| | - Thomas Sandstrom
- Department of Medicine, Respiratory and Allergy unit; University Hospital; Umeå Sweden
| | - Louise Fleming
- Department of Computing & Data Science Institute; Imperial College; London UK
| | - Julie Corfield
- AstraZeneca R & D; Molndal Sweden
- Areteva R & D; Nottingham UK
| | - Charles Auffray
- European Institute for Systems Biology and Medicine; CNRS-ENS-UCBL; Université de Lyon; Lyon France
| | - Ratko Djukanovic
- Faculty of Medicine; Southampton University; Southampton UK
- NIHR Southampton Respiratory Biomedical Research Unit; University Hospital Southampton; Southampton UK
| | - Peter J. Sterk
- Faculty of Medicine; University of Amsterdam; Amsterdam The Netherland
| | - Yike Guo
- Department of Computing & Data Science Institute; Imperial College; London UK
| | - Ian M. Adcock
- Airways Disease; National Heart & Lung Institute; Imperial College; London UK
- Biomedical Research Unit; Royal Brompton & Harefield NHS Trust; London UK
| | - Kian Fan Chung
- Airways Disease; National Heart & Lung Institute; Imperial College; London UK
- Biomedical Research Unit; Royal Brompton & Harefield NHS Trust; London UK
| | | |
Collapse
|
32
|
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-3961. [PMID: 30101406 PMCID: PMC6182337 DOI: 10.1007/s00018-018-2899-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
33
|
IL-13 induces periostin and eotaxin expression in human primary alveolar epithelial cells: Comparison with paired airway epithelial cells. PLoS One 2018; 13:e0196256. [PMID: 29672593 PMCID: PMC5908159 DOI: 10.1371/journal.pone.0196256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 01/01/2023] Open
Abstract
Alveolar epithelial cells are critical to the pathogenesis of pulmonary inflammation and fibrosis, which are associated with overexpression of type 2 cytokine IL-13. IL-13 is known to induce the production of profibrotic (e.g., periostin) and pro-inflammatory (e.g., eotaxin-3) mediators in human airway epithelial cells, but it remains unclear if human primary alveolar epithelial cells increase periostin and eotaxin expression following IL-13 stimulation. The goals of this study are to determine if alveolar epithelial cells increase periostin and eotaxin expression upon IL-13 stimulation, and if alveolar and airway epithelial cells from the same subjects have similar responses to IL-13. Paired alveolar and airway epithelial cells were isolated from donors without any lung disease, and cultured under submerged or air-liquid interface conditions with or without IL-13. Up-regulation of periostin protein and mRNA was observed in IL-13-stimulated alveolar epithelial cells, which was comparable to that in IL-13-stimulated paired airway epithelial cells. IL-13 also increased eotaxin-3 expression in alveolar epithelial cells, but the level of eotaxin mRNA was lower in alveolar epithelial cells than in airway epithelial cells. Our findings demonstrate that human alveolar epithelial cells are able to produce periostin and eotaxin in responses to IL-13 stimulation. This study suggests the need to further determine the contribution of alveolar epithelial cell-derived mediators to pulmonary fibrosis.
Collapse
|
34
|
Rodrigues Oliveira JL, Teixeira MM, Lambertucci JR, Antunes CMF, Carneiro M, Negrão-Corrêa D. Plasma levels of innate immune mediators are associated with liver fibrosis in low parasite burden Schistosoma mansoni-infected individuals. Scand J Immunol 2018; 87. [PMID: 29363152 DOI: 10.1111/sji.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/15/2018] [Indexed: 12/01/2022]
Abstract
In the murine model, it was demonstrated that pro-inflammatory cytokines and chemokines are essential to the formation and modulation of Schistosoma-induced granulomatous inflammation. However, the relationship of these immune mediators and disease severity is hard to be established in naturally infected individuals. The current study evaluates the association between plasma concentrations of MIF, sTNF-R1, CCL3, CCL7 and CCL24 and schistosomiasis morbidity in Schistosoma mansoni-infected patients with a low parasite burden. For this propose, 97 S. mansoni-infected individuals were subjected to abdominal ultrasound analysis and clinical examination. Among them, 88 had plasma concentration of immune mediators estimated by ELISA assay. Multivariate linear regression models were used to evaluate the relationship between the plasma concentration of immune mediators and the variables investigated. Although most individuals presented low parasite burden, over 30% of them showed signs of fibrosis defined by ultrasound measurements and 2 patients had a severe form of schistosomiasis. No association between parasite burden and the plasma levels of chemokine/cytokines or disease severity was observed. There was a positive association between plasma concentration of CCL4, sTNF-R1, CCL3 and MIF with gall bladder thickness and/or with portal vein thickness that are liver fibrosis markers. In contrast, no association was found between CCL7 plasma concentrations with any of the schistosomiasis morbidity parameters evaluated. The data showed that CCL24, sTNFR1, MIF and CCL3 can be detected in plasma of S. mansoni-infected individuals and their concentration would be used as prognostic makers of Schistosoma-induced liver fibrosis, even in individuals with low parasite burden.
Collapse
Affiliation(s)
- J L Rodrigues Oliveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - J R Lambertucci
- Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - C M F Antunes
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - M Carneiro
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D Negrão-Corrêa
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
35
|
McCubbrey AL, Barthel L, Mohning MP, Redente EF, Mould KJ, Thomas SM, Leach SM, Danhorn T, Gibbings SL, Jakubzick CV, Henson PM, Janssen WJ. Deletion of c-FLIP from CD11b hi Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2018; 58:66-78. [PMID: 28850249 DOI: 10.1165/rcmb.2017-0154oc] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with complex pathophysiology and fatal prognosis. Macrophages (MΦ) contribute to the development of lung fibrosis; however, the underlying mechanisms and specific MΦ subsets involved remain unclear. During lung injury, two subsets of lung MΦ coexist: Siglec-Fhi resident alveolar MΦ and a mixed population of CD11bhi MΦ that primarily mature from immigrating monocytes. Using a novel inducible transgenic system driven by a fragment of the human CD68 promoter, we targeted deletion of the antiapoptotic protein cellular FADD-like IL-1β-converting enzyme-inhibitory protein (c-FLIP) to CD11bhi MΦ. Upon loss of c-FLIP, CD11bhi MΦ became susceptible to cell death. Using this system, we were able to show that eliminating CD11bhi MΦ present 7-14 days after bleomycin injury was sufficient to protect mice from fibrosis. RNA-seq analysis of lung MΦ present during this time showed that CD11bhi MΦ, but not Siglec-Fhi MΦ, expressed high levels of profibrotic chemokines and growth factors. Human MΦ from patients with idiopathic pulmonary fibrosis expressed many of the same profibrotic chemokines identified in murine CD11bhi MΦ. Elimination of monocyte-derived MΦ may help in the treatment of fibrosis. We identify c-FLIP and the associated extrinsic cell death program as a potential pathway through which these profibrotic MΦ may be pharmacologically targeted.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Lea Barthel
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Michael P Mohning
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Elizabeth F Redente
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado.,4 Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado
| | - Kara J Mould
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado
| | - Stacey M Thomas
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Sonia M Leach
- 5 Center for Genes, Environment, and Health, and.,6 Department of Biomedical Research, National Jewish Health, Denver, Colorado; and
| | - Thomas Danhorn
- 5 Center for Genes, Environment, and Health, and.,6 Department of Biomedical Research, National Jewish Health, Denver, Colorado; and
| | - Sophie L Gibbings
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Claudia V Jakubzick
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado.,7 Integrated Department of Immunology, National Jewish Health and University of Colorado Denver Anshutz Campus, Denver, Colorado
| | - Peter M Henson
- 3 Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - William J Janssen
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado.,2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| |
Collapse
|
36
|
Angiostatic and Angiogenic Chemokines in Systemic Sclerosis: An Overview. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2016. [DOI: 10.5301/jsrd.5000226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In systemic sclerosis (SSc), the dysregulation of several molecular pathways seem to have a role in the disease pathogenesis. Either angiogenesis and vasculogenesis are disturbed and impaired, and an imbalance between angiogenic and angiostatic factors may be involved in the genesis and maintenance of vasculopathy. Aberrant immune system activation and function involves both B and T cells, as well as many different chemokines and cytokines. Particularly, chemokines are central to the initiation and maintenance of inflammatory responses as well as angiogenesis and fibrosis. Increased expression of several chemokines as CXCL4 (platelet factor 4), CXCL8 (IL8), CXCL5 (ENA-78), CCL5 (RANTS), CXCL9 (MIG), CCL24, CXCL10 IP-10), CXCL12, CXCL16 (SRPSDX), CCL2 (MCP-1), CCL19 (MIP-3β/ELC), CCL24 (Eotaxin 2), suggests a complex mechanism by which many immune cell types, including T cells, macrophages and neutrophils are recruited to the skin in SSc patients. Many of these chemokines have redundant roles, possibly to ensure recruitment of specific cell types. Several studies have shown a synergistic effect of combinations of these chemokines in cell recruitment, emphasizing the importance of understanding global chemokine expressions. urthermore, chemokines can be detected in peripheral blood compared with cytokines or growth factors. The utility of cytokines as biomarkers has been investigated but longitudinal studies are necessary to clarify their clinical utility for the evaluation of disease activity, therapeutic effects on skin sclerosis or interstitial lung disease and risk stratification of SSc patients. An effective therapeutic agent, able to interfere with complex chemokine networks, is warranted to attenuate perivascular inflammation, dysregulated angiogenesis and the evolution of skin and internal organ fibrosis, is the most ambitious goal for the scientific research of the future.
Collapse
|
37
|
Kannan Y, Li Y, Coomes SM, Okoye IS, Pelly VS, Sriskantharajah S, Gückel E, Webb L, Czieso S, Nikolov N, MacDonald AS, Ley SC, Wilson MS. Tumor progression locus 2 reduces severe allergic airway inflammation by inhibiting Ccl24 production in dendritic cells. J Allergy Clin Immunol 2016; 139:655-666.e7. [PMID: 27484038 PMCID: PMC5292997 DOI: 10.1016/j.jaci.2016.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
Background The molecular and cellular pathways driving the pathogenesis of severe asthma are poorly defined. Tumor progression locus 2 (TPL-2) (COT, MAP3K8) kinase activates the MEK1/2-extracellular-signal regulated kinase 1/2 MAP kinase signaling pathway following Toll-like receptor, TNFR1, and IL-1R stimulation. Objective TPL-2 has been widely described as a critical regulator of inflammation, and we sought to investigate the role of TPL-2 in house dust mite (HDM)-mediated allergic airway inflammation. Methods A comparative analysis of wild-type and Map3k8−/− mice was conducted. Mixed bone marrow chimeras, conditional knockout mice, and adoptive transfer models were also used. Differential cell counts were performed on the bronchoalveolar lavage fluid, followed by histological analysis of lung sections. Flow cytometry and quantitative PCR was used to measure type 2 cytokines. ELISA was used to assess the production of IgE, type 2 cytokines, and Ccl24. RNA sequencing was used to characterize dendritic cell (DC) transcripts. Results TPL-2 deficiency led to exacerbated HDM-induced airway allergy, with increased airway and tissue eosinophilia, lung inflammation, and IL-4, IL-5, IL-13, and IgE production. Increased airway allergic responses in Map3k8−/− mice were not due to a cell-intrinsic role for TPL-2 in T cells, B cells, or LysM+ cells but due to a regulatory role for TPL-2 in DCs. TPL-2 inhibited Ccl24 expression in lung DCs, and blockade of Ccl24 prevented the exaggerated airway eosinophilia and lung inflammation in mice given HDM-pulsed Map3k8−/− DCs. Conclusions TPL-2 regulates DC-derived Ccl24 production to prevent severe type 2 airway allergy in mice.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | - Yanda Li
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | - Stephanie M Coomes
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | - Isobel S Okoye
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | - Victoria S Pelly
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | | | - Eva Gückel
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | - Lauren Webb
- Faculty of Life Sciences, Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Stephanie Czieso
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | - Nikolay Nikolov
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom
| | - Andrew S MacDonald
- Faculty of Life Sciences, Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, United Kingdom
| | - Steven C Ley
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom.
| | - Mark S Wilson
- Francis Crick Institute, Mill Hill Laboratory, the Ridgeway, London, United Kingdom.
| |
Collapse
|
38
|
Simon D, Cianferoni A, Spergel JM, Aceves S, Holbreich M, Venter C, Rothenberg ME, Terreehorst I, Muraro A, Lucendo AJ, Schoepfer A, Straumann A, Simon HU. Eosinophilic esophagitis is characterized by a non-IgE-mediated food hypersensitivity. Allergy 2016; 71:611-20. [PMID: 26799684 DOI: 10.1111/all.12846] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic disease characterized clinically by symptoms of esophageal dysfunction and histologically by eosinophil-predominant inflammation. EoE is frequently associated with concomitant atopic diseases and immunoglobulin E (IgE) sensitization to food allergens in children as well as to aeroallergens and cross-reactive plant allergen components in adults. Patients with EoE respond well to elemental and empirical food elimination diets. Recent research has, however, indicated that the pathogenesis of EoE is distinct from IgE-mediated food allergy. In this review, we discuss the individual roles of epithelial barrier defects, dysregulated innate and adaptive immune responses, and of microbiota in the pathogenesis of EoE. Although food has been recognized as a trigger factor of EoE, the mechanism by which it initiates or facilitates eosinophilic inflammation appears to be largely independent of IgE and needs to be further investigated. Understanding the pathogenic role of food in EoE is a prerequisite for the development of specific diagnostic tools and targeted therapeutic procedures.
Collapse
Affiliation(s)
- D. Simon
- Department of Dermatology, Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| | - A. Cianferoni
- Division of Allergy and Immunology; Children's Hospital Philadelphia; University of Pennsylvania; Philadelphia PA USA
- Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - J. M. Spergel
- Division of Allergy and Immunology; Children's Hospital Philadelphia; University of Pennsylvania; Philadelphia PA USA
- Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - S. Aceves
- Division of Allergy and Immunology; Department of Pediatrics and Medicine; Center for Infection, Inflammation, and Immunology; La Jolla CA USA
| | - M. Holbreich
- Allergy and Asthma Consultants; Indianapolis IN USA
| | - C. Venter
- Division of Allergy and Immunology; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
- School of Health Sciences and Social Work; University of Portsmouth; Portsmouth UK
| | - M. E. Rothenberg
- Division of Allergy and Immunology; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
| | - I. Terreehorst
- Department of ENT and Pediatrics; AMC; Amsterdam The Netherlands
| | - A. Muraro
- Food Allergy Referral Centre Veneto Region; Padua General University Hospital; Padua Italy
| | - A. J. Lucendo
- Department of Gastroenterology; Hospital General de Tomelloso; Tomelloso Spain
| | - A. Schoepfer
- Division of Gastroenterology and Hepatology; Centre Hospitalier Universitaire Vaudois/CHUV; Lausanne Switzerland
| | | | - H.-U. Simon
- Institute of Pharmacology; University of Bern; Bern Switzerland
| |
Collapse
|
39
|
Pinto AR, Godwin JW, Chandran A, Hersey L, Ilinykh A, Debuque R, Wang L, Rosenthal NA. Age-related changes in tissue macrophages precede cardiac functional impairment. Aging (Albany NY) 2015; 6:399-413. [PMID: 24861132 PMCID: PMC4069267 DOI: 10.18632/aging.100669] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiac tissue macrophages (cTMs) are abundant in the murine heart but the extent to which the cTM phenotype changes with age is unknown. This study characterizes aging-dependent phenotypic changes in cTM subsets. Using the Cx3cr1GFP/+ mouse reporter line where GFP marks cTMs, and the tissue macrophage marker Mrc1, we show that two major cardiac tissue macrophage subsets, Mrc1−GFPhi and Mrc1+GFPhi cTMs, are present in the young (<10 week old) mouse heart, and a third subset, Mrc1+GFPlo, comprises ~50% of total Mrc1+ cTMs from 30 weeks of age. Immunostaining and functional assays show that Mrc1+ cTMs are the principal myeloid sentinels in the mouse heart and that they retain proliferative capacity throughout life. Gene expression profiles of the two Mrc1+ subsets also reveal that Mrc1+GFPlo cTMs have a decreased number of immune response genes (Cx3cr1, Lpar6, CD9, Cxcr4, Itga6 and Tgfβr1), and an increased number of fibrogenic genes (Ltc4s, Retnla, Fgfr1, Mmp9 and Ccl24), consistent with a potential role for cTMs in cardiac fibrosis. These findings identify early age-dependent gene expression changes in cTMs, with significant implications for cardiac tissue injury responses and aging-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Alexander R Pinto
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Association between inflammatory biomarkers in plasma, radiological severity, and duration of exposure in patients with silicosis. J Occup Environ Med 2015; 56:493-7. [PMID: 24806562 DOI: 10.1097/jom.0000000000000164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the plasma levels of CCL2, CCL3, CCL11, CCL24, tumor necrosis factor alpha, sTNFR1, and sTNFR2 in subjects exposed to silica (SES) with and without silicosis compared with unexposed reference control group, and their associations with the radiological severity and duration of exposure to silica. METHODS Fifty-seven SES; 36 with silicosis and 22 subjects in control group, were included in the study. RESULTS CCL3, CCL24, sTNFR1, and sTNFR2 were increased in SES and in SES with silicosis than in controls. There were no differences in the levels of CCL2, CCL11, or tumor necrosis factor alpha. The sTNFR2 level was greater in SES with silicosis than in SES without silicosis. There was a positive correlation between sTNFR1 and sTNFR2 and the radiological severity and time of exposure to silica. sTNFR2 was associated with all categories of radiological severity. CONCLUSION sTNFR2 is associated with silicosis severity and early exposure to silica.
Collapse
|
41
|
Foster MW, Morrison LD, Todd JL, Snyder LD, Thompson JW, Soderblom EJ, Plonk K, Weinhold KJ, Townsend R, Minnich A, Moseley MA. Quantitative proteomics of bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. J Proteome Res 2015; 14:1238-49. [PMID: 25541672 DOI: 10.1021/pr501149m] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteomic analysis of bronchoalveolar lavage fluid (BALF) can give insight into pulmonary disease pathology and response to therapy. Here, we describe the first gel-free quantitative analysis of BALF in idiopathic pulmonary fibrosis (IPF), a chronic and fatal scarring lung disease. We utilized two-dimensional reversed-phase liquid chromatography and ion-mobility-assisted data-independent acquisition (HDMSE) for quantitation of >1000 proteins in immunodepleted BALF from the right middle and lower lobes of normal controls and patients with IPF. Among the analytes that were increased in IPF were well-described mediators of pulmonary fibrosis (osteopontin, MMP7, CXCL7, CCL18), eosinophil- and neutrophil-derived proteins, and proteins associated with fibroblast foci. For additional discovery and targeted validation, BALF was also screened by multiple reaction monitoring (MRM), using the JPT Cytokine SpikeMix library of >400 stable isotope-labeled peptides. A refined MRM assay confirmed the robust expression of osteopontin, and demonstrated, for the first time, upregulation of the pro-fibrotic cytokine, CCL24, in BALF in IPF. These results show the utility of BALF proteomics for the molecular profiling of fibrotic lung diseases and the targeted quantitation of soluble markers of IPF. More generally, this study addresses critical quality control measures that should be widely applicable to BALF profiling in pulmonary disease.
Collapse
Affiliation(s)
- Matthew W Foster
- Pulmonary, Allergy and Critical Care Medicine, ‡Duke Proteomics and Metabolomics Shared Resource, §Department of Surgery, Duke University Medical Center , Durham, North Carolina 27710, United States , and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Landolina N, Gangwar RS, Levi-Schaffer F. Mast cells' integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol 2015; 125:41-85. [PMID: 25591464 DOI: 10.1016/bs.ai.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) and eosinophils (Eos) are the key players in the development of allergic inflammation (AI). Their cross-talk, named the Allergic Effector Unit (AEU), takes place through an array of soluble mediators and ligands/receptors interactions that enhance the functions of both the cells. One of the salient features of the AEU is the CD48/2B4 receptor/ligand binding complex. Furthermore, MCs and Eos have been demonstrated to play a role not only in AI but also in the modulation of its consequence, i.e., fibrosis/tissue remodeling, by directly influencing fibroblasts (FBs), the main target cells of these processes. In turn, FBs can regulate the survival, activity, and phenotype of both MCs and Eos. Therefore, a complex three players, MCs/Eos/FBs interaction, can take place in various stages of AI. The characterization of the soluble and physical mediated cross talk among these three cells might lead to the identification of both better and novel targets for the treatment of allergy and its tissue remodeling consequences.
Collapse
Affiliation(s)
- Nadine Landolina
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roopesh Singh Gangwar
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
43
|
Osuka K, Watanabe Y, Usuda N, Aoyama M, Takeuchi M, Takayasu M. Eotaxin-3 Activates the Smad Pathway through the Transforming Growth Factor Beta 1 in Chronic Subdural Hematoma Outer Membranes. J Neurotrauma 2014; 31:1451-6. [DOI: 10.1089/neu.2013.3195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Yasuo Watanabe
- High Technology Research Center, Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Aichi, Japan
| | - Masahiro Aoyama
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Mikinobu Takeuchi
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Masakazu Takayasu
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| |
Collapse
|
44
|
Mendez-Enriquez E, García-Zepeda EA. The multiple faces of CCL13 in immunity and inflammation. Inflammopharmacology 2013; 21:397-406. [PMID: 23846739 DOI: 10.1007/s10787-013-0177-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/20/2013] [Indexed: 01/19/2023]
Abstract
CCL13/MCP-4, is a CC family chemokine that is chemoattractant for eosinophils, basophils, monocytes, macrophages, immature dendritic cells, and T cells, and its capable of inducing crucial immuno-modulatory responses through its effects on epithelial, muscular and endothelial cells. Similar to other CC chemokines, CCL13 binds to several chemokine receptors (CCR1, CCR2 and CCR3), allowing it to elicit different effects on its target cells. A number of studies have shown that CCL13 is involved in many chronic inflammatory diseases, in which it functions as a pivotal molecule involved in the selective recruitment of cell lineages to the inflamed tissues and their subsequent activation. Based on these studies, we suggest that blocking the actions of CCL13 can serve as a novel strategy for the generation of agents with anti-inflammatory activity. The main goal of this review is to present the current information about CCL13, its gene and protein structure and the roles of this chemokine during innate/adaptive immune responses in inflammatory diseases.
Collapse
Affiliation(s)
- E Mendez-Enriquez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, 04510, México, DF, México
| | | |
Collapse
|
45
|
Gaspar K, Kukova G, Bunemann E, Buhren BA, Sonkoly E, Szollosi AG, Muller A, Savinko T, Lauerma AI, Alenius H, Kemeny L, Dieu-Nosjean MC, Stander S, Fischer JW, Ruzicka T, Zlotnik A, Szegedi A, Homey B. The chemokine receptor CCR3 participates in tissue remodeling during atopic skin inflammation. J Dermatol Sci 2013; 71:12-21. [PMID: 23702389 DOI: 10.1016/j.jdermsci.2013.04.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies provided insights into the recruitment and activation pathways of leukocytes in atopic dermatitis, however, the underlying mechanisms of tissue remodeling in atopic skin inflammation remain elusive. OBJECTIVE To identify chemokine-mediated communication pathways regulating tissue remodeling during atopic skin inflammation. METHODS Analysis of the chemokine receptor repertoire of human dermal fibroblasts using flow cytometry and immunofluorescence. Quantitative real-time polymerase chain reaction and immunohistochemical analyses of chemokine expression in atopic vs. non-atopic skin inflammation. Investigation of the function of chemokine receptor CCR3 on human dermal fibroblasts through determining intracellular Ca(2+) mobilization, cell proliferation, migration, and repair capacity. RESULTS Analyses on human dermal fibroblasts showed abundant expression of the chemokine receptor CCR3 in vitro and in vivo. Among its corresponding ligands (CCL5, CCL8, CCL11, CCL24 and CCL26) CCL26 demonstrated a significant and specific up-regulation in atopic when compared to psoriatic skin inflammation. In vivo, epidermal keratinocytes showed most abundant CCL26 protein expression in lesional atopic skin. In structural cells of the skin, TH2-cytokines such as IL-4 and IL-13 were dominant inducers of CCL26 expression. In dermal fibroblasts, CCL26 induced CCR3 signaling resulting in intracellular Ca(2+) mobilization, as well as enhanced fibroblast migration and repair capacity, but no proliferation. CONCLUSION Taken together, findings of the present study suggest that chemokine-driven communication pathways from the epidermis to the dermis may modulate tissue remodeling in atopic skin inflammation.
Collapse
Affiliation(s)
- Krisztian Gaspar
- Department of Dermatology, University Hospital, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Oka S, Furukawa H, Shimada K, Hayakawa H, Fukui N, Tsuchiya N, Tohma S. Serum biomarker analysis of collagen disease patients with acute-onset diffuse interstitial lung disease. BMC Immunol 2013; 14:9. [PMID: 23405989 PMCID: PMC3598392 DOI: 10.1186/1471-2172-14-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023] Open
Abstract
Background Interstitial lung disease (ILD) is frequently associated with collagen
diseases. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in
collagen disease patients is very poor. Here, we investigated serum
biomarker profiles of AoDILD to find markers predicting outcome in patients
with collagen diseases. Methods A solid-phase antibody array was used for screening 274 biomarkers in pooled
sera from collagen disease patients in the AoDILD state and in the stable
state. Biomarkers in individual sera were detected without pooling by
bead-based immunoassay. Results The serum levels of matrix metalloproteinase (MMP)-1, tissue inhibitor of
metalloproteinase (TIMP)-1, osteopontin, interleukin (IL)-2 receptor α
(IL-2Rα), and IL-1 receptor antagonist were significantly increased in
AoDILD, but TIMP-2, MMP-3, and eotaxin 2 levels were decreased. The MMP-3 to
MMP-1 ratio was reduced in AoDILD state. This tendency was also observed in
RA patients with AoDILD. Moreover, serum IL-6 level was significantly
increased in the AoDILD state in patients with acute exacerbation of ILD
(AE-ILD). Serum TIMP-1 and IL-2Rα levels were significantly increased
in the AoDILD state in patients with drug-induced ILD (DI-ILD), whereas
TIMP-2, MMP-3, and eotaxin 2 levels were decreased. The MMP-3 to MMP-1 ratio
was reduced in AoDILD state in patients with DI-ILD. The serum TIMP-3,
MMP-9, osteopontin, IL-2Rα, MMP-1, and MMP-8 levels were significantly
increased in the AoDILD state in patients who subsequently died, whereas
TIMP-2 and MMP-3 levels were decreased in those who survived. The MMP-3 to
MMP-1 ratio was reduced in AoDILD state in patients who died, but not in
those who survived. Conclusions Serum biomarker profiles could represent prognosis markers for AoDILD in
collagen diseases.
Collapse
Affiliation(s)
- Shomi Oka
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara, Kanagawa, 252-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Roth N, Städler S, Lemann M, Hösli S, Simon HU, Simon D. Distinct eosinophil cytokine expression patterns in skin diseases - the possible existence of functionally different eosinophil subpopulations. Allergy 2011; 66:1477-86. [PMID: 21884530 DOI: 10.1111/j.1398-9995.2011.02694.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The function of eosinophils has been attributed to host defense, immunomodulation, and fibrosis. Although eosinophils are found among infiltrating cells in a broad spectrum of skin diseases, their pathogenic role remains uncertain. This study aimed to analyze the cytokine expression by eosinophils in different skin diseases. METHODS Skin specimens from different skin diseases [allergic/reactive, infectious, autoimmune, and tumors/lymphomas (LY)] were stained by antibodies directed to eosinophil cationic protein, cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-5, IL-6, IL-10, IL-11, IL-13, IL-17, IL-25, IL-33, interferon-γ, transforming growth factor (TGF)-β, and thymic stromal lymphopoietin], eotaxins (CCL11, CCL24, and CCL26), metalloproteinase (MMP)-9 as well as extracellular matrix proteins (tenascin-C and procollagen-3) and then analyzed by laser scanning microscopy. RESULTS The number of eosinophils varied considerably in and between disease groups and did not correlate with the numbers of accompanying inflammatory cells. The expression of IL-5, IL-6, IL-11, TGF-β, CCL24, and MMP-9 by eosinophils significantly differed between disease groups. Eosinophils in tumors/LY predominantly expressed IL-6, TGF-β, and CCL24, but not IL-11. On the other hand, in autoimmune diseases, eosinophils largely contributed to MMP-9 production. IL-5-generating eosinophils were particularly obvious in allergic and infectious diseases. CONCLUSION In skin diseases, eosinophil expresses a broad spectrum of cytokines. The different cytokine expression patterns suggest distinct functional roles of eosinophils in these diseases that might be related to host defense, immunomodulation, fibrosis, and/or tumor development.
Collapse
Affiliation(s)
- N Roth
- Department of Dermatology, Inselspital, Bern University Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Chou DL, Gerriets JE, Schelegle ES, Hyde DM, Miller LA. Increased CCL24/eotaxin-2 with postnatal ozone exposure in allergen-sensitized infant monkeys is not associated with recruitment of eosinophils to airway mucosa. Toxicol Appl Pharmacol 2011; 257:309-18. [PMID: 21945493 DOI: 10.1016/j.taap.2011.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/27/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022]
Abstract
Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone+HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone+HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone+HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa.
Collapse
Affiliation(s)
- Debbie L Chou
- California National Primate Research Center, UC Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|