1
|
Nguyen TH, Schausberger P. Parental and personal experience drive personality formation and individual niche diversification in group-living mites. iScience 2025; 28:112424. [PMID: 40343280 PMCID: PMC12059715 DOI: 10.1016/j.isci.2025.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/13/2025] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
The idea of individual niche specialization suggests that individuals should diversify in their realized niches to mitigate inter-individual conflict. We tested the hypothesis that parental and early-life diet experiences drive individual foraging specialization and animal personality formation in plant-inhabiting predatory mites Phytoseiulus persimilis and Phytoseiulus macropilis. Both species are specialized predators of herbivorous spider mites. Adult females and males, whose parents had been exposed to either prey eggs or mobile prey, and/or who themselves had experienced either eggs or mobile prey during juvenile development, were tested for their prey life stage preference, and exploration and activity patterns. Parental and/or personal experience of a given prey life stage exerted species- and sex-dependent effects on the adult predators' mean and individual foraging phenotypes, with parental plus early-life effects being the strongest. Repeatability in activity and exploration was linked to prey life stage preference, pointing at co-variation of personality formation and individualized foraging niches.
Collapse
Affiliation(s)
- Thi Hanh Nguyen
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Peter Schausberger
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Arias-Montecino A, Sykes A, Álvarez-Hernán G, de Mera-Rodríguez JA, Calle-Guisado V, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Histological and scanning electron microscope observations on the developing retina of the cuttlefish (Sepia officinalis Linnaeus, 1758). Tissue Cell 2024; 88:102417. [PMID: 38820948 DOI: 10.1016/j.tice.2024.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
In this work we present a detailed study of the major events during retinal histogenesis of the cuttlefish Sepia officinalis from early embryos to newly hatched animals and juveniles. For this purpose, we carried out morphometric and histological analyses using light and scanning electron microscopy. From St19, the first embryonic stage analysed, to St23/24 the embryonic retina is composed of a pseudostratified epithelium showing abundant mitotic figures in the more internal surface. At St24 the first photoreceptor nuclei appear in the presumptive inner segment layer, while an incipient layer of apical processes of the future rhabdomeric layer become visible at St25. From this stage onwards, both the rhabdomeric layer and the inner segment layer increase in size until postnatal ages. In contrast, the width of the supporting cell layer progressively decreases from St25/26 until postnatal ages. S. officinalis embryos hatched in a morphologically advanced state, showing a differentiated retina even in the last stages of the embryonic period. However, features of immaturity are still observable in the retinal tissue during the first postnatal weeks of life, such as the existence of mitotic figures in the apical region of the supporting cell layer and migrating nuclei of differentiating photoreceptors crossing the basal membrane to reach their final location in the inner segment layer. Therefore, postnatal retinal neurogenesis is present in juvenile specimens of S. officinalis.
Collapse
Affiliation(s)
- Alejandro Arias-Montecino
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06006, Spain
| | - Antonio Sykes
- Center of Marine Sciences, Universidade do Algarve Campus de Gambelas, Faro 8005-139, Portugal
| | - Guadalupe Álvarez-Hernán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz 06006, Spain.
| | - José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06006, Spain
| | - Violeta Calle-Guisado
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz 06006, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06006, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz 06006, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06006, Spain
| |
Collapse
|
4
|
Kuo TH, Sneddon LU, Spencer JW, Chiao CC. Impact of Lidocaine on Pain-Related Grooming in Cuttlefish. BIOLOGY 2022; 11:1560. [PMID: 36358261 PMCID: PMC9687578 DOI: 10.3390/biology11111560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2024]
Abstract
Nociception is the neural process of encoding noxious stimuli and is typically accompanied by a reflex withdrawal response away from the potentially injurious stimulus. Studies on nociception in cephalopods have so far focused on octopus and squid, with no investigations to our knowledge on cuttlefish. Yet, these are an important species both in scientific and commercial use. Therefore, the present study demonstrated that a standard pain stimulus, acetic acid, induced grooming behaviour directed towards the injection site in cuttlefish and that the injection of lidocaine reduces grooming behaviours in acetic-acid-injected cuttlefish. Wound-directed behaviour demonstrates that the animal is aware of the damage; thus, when subjecting these animals to any painful treatments in the laboratory, researchers should consider alleviating pain by the administration of pain-relieving drugs.
Collapse
Affiliation(s)
- Tzu-Hsin Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Lynne U. Sneddon
- Department of Biological & Environmental Sciences, University of Gothenburg, P.O. Box 463, SE-405 30 Gothenburg, Sweden
| | - Joseph W. Spencer
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Mather J. The Case for Octopus Consciousness: Temporality. NEUROSCI 2022; 3:245-261. [PMID: 39483366 PMCID: PMC11523685 DOI: 10.3390/neurosci3020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2024] Open
Abstract
Temporality is one of the criteria that Birch has advanced for areas of cognitive ability that may underlie animal sentience. An ability to integrate and use information across time must be more than simply learning pieces of information and retrieving them. This paper looks at such wider use of information by octopuses across time. It evaluates accumulation of information about one's place in space, as used across immediate egocentric localization by cuttlefish and medium distance navigation in octopuses. Information about useful items in the environment can be incorporated for future use by octopuses, including for shelter in antipredator situations. Finding prey is not random but can be predicted by environmental cues, especially by cuttlefish about future contingencies. Finally, the paper examines unlimited associative learning and constraints on learning, and the ability of cephalopods to explore and seek out information, even by play, for future use.
Collapse
Affiliation(s)
- Jennifer Mather
- Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
6
|
Allometry for Eyes and Optic Lobes in Oval Squid (Sepioteuthis lessoniana) with Special Reference to Their Ontogenetic Asymmetry. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Eyes develop in relation to body size and brain area for visual processing in some vertebrates. Meanwhile, it is well known that many animals exhibit left–right asymmetry in both morphology and behavior, namely, lateralization. However, it remains unclear whether the eyes and visual processing brain areas synchronously develop for their asymmetry. Oval squid (Sepioteuthis lessoniana) exhibits lateralization of optic lobe volume and left or right eye usage toward specific targets during their ontogeny. We address the question of how left–right asymmetry of the eyes and optic lobes exhibit an allometric pattern. To examine this question, we estimated the left and right volumes of eyes and optic lobes using microcomputed tomography. We found that, for the optic lobe volume, the right enlargement that appeared at ages 45 and 80 days then shifted to the left at age 120 days. In contrast, the volume of eyes did not show any left–right asymmetries from hatching to age 120 days. We also found that the volume of the eyes and optic lobes showed a slower increase than that of the whole-body size. Within these two visually related organs, the eyes grew faster than the optic lobes until age 120 days. These results are discussed in the context of the survival strategy of oval squid that form schools, two months post-hatching.
Collapse
|
7
|
Mezrai N, Houdelier C, Bertin A, Calandreau L, Arnould C, Darmaillacq AS, Dickel L, Lumineau S. Impact of natural and artificial prenatal stimulations on the behavioural profile of Japanese quail. J Exp Biol 2022; 225:274521. [PMID: 35213895 DOI: 10.1242/jeb.243175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
As the sensory systems of vertebrates develop prenatally, embryos perceive many environmental stimuli that can influence the ontogeny of their behaviour. Whether the nature and intensity of prenatal stimuli affect differently this ontogeny remains to be investigated. In this context, this study aimed to analyse the effects of prenatal auditory stimulations (natural stimulations "NS": predator vocalisations, or artificial stimulations "AS": metallic sounds) on the subsequent behaviour of young Japanese quail (Coturnix coturnix japonica). For that, behavioural variables recorded during ethological tests evaluating emotional and social reactivity were analysed using a principal component analysis. This analysis revealed significant differences between the behavioural profile of stimulated chicks and that of non-exposed chicks. Indeed, chicks exposed to NS expressed more intense emotional responses in fearful situations, but less neophobia in the presence of a novel environment or object, whereas chicks exposed to AS appeared more sensitive to social isolation. Our original results show that the acoustic environment of embryos can influence the way young birds subsequently interact with their social and physical environment after hatching, and face challenges in changing living conditions.
Collapse
Affiliation(s)
- Nawel Mezrai
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Cécilia Houdelier
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Aline Bertin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, CNRS, UMR 7247, IFCE, Université F. Rabelais, Nouzilly, France
| | - Ludovic Calandreau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, CNRS, UMR 7247, IFCE, Université F. Rabelais, Nouzilly, France
| | - Cécile Arnould
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, CNRS, UMR 7247, IFCE, Université F. Rabelais, Nouzilly, France
| | - Anne-Sophie Darmaillacq
- Normandie Univ, Unicaen, CNRS, EthoS, 14000 Caen, France.,Univ Rennes, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Ludovic Dickel
- Normandie Univ, Unicaen, CNRS, EthoS, 14000 Caen, France.,Univ Rennes, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Sophie Lumineau
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| |
Collapse
|
8
|
Du WG, Shine R. The behavioural and physiological ecology of embryos: responding to the challenges of life inside an egg. Biol Rev Camb Philos Soc 2022; 97:1272-1286. [PMID: 35166012 DOI: 10.1111/brv.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Adaptations of post-hatching animals have attracted far more study than have embryonic responses to environmental challenges, but recent research suggests that we have underestimated the complexity and flexibility of embryos. We advocate a dynamic view of embryos as organisms capable of responding - on both ecological and evolutionary timescales - to their developmental environments. By viewing embryos in this way, rather than assuming an inability of pre-hatching stages to adapt and respond, we can broaden the ontogenetic breadth of evolutionary and ecological research. Both biotic and abiotic factors affect embryogenesis, and embryos exhibit a broad range of behavioural and physiological responses that enable them to deal with changes in their developmental environments in the course of interactions with their parents, with other embryos, with predators, and with the physical environment. Such plasticity may profoundly affect offspring phenotypes and fitness, and in turn influence the temporal and spatial dynamics of populations and communities. Future research in this field could benefit from an integrated framework that combines multiple approaches (field investigations, manipulative experiments, ecological modelling) to clarify the mechanisms and consequences of embryonic adaptations and plasticity.
Collapse
Affiliation(s)
- Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
9
|
Embryonic antipredator defenses and behavioral carryover effects in the fathead minnow (Pimephales promelas). Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Chabenat A, Bidel F, Knigge T, Bellanger C. Alteration of predatory behaviour and growth in juvenile cuttlefish by fluoxetine and venlafaxine. CHEMOSPHERE 2021; 277:130169. [PMID: 33794438 DOI: 10.1016/j.chemosphere.2021.130169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Antidepressants in coastal waters may affect ontogeny of predatory behaviour in cuttlefish, which may, as a result, affect growth of newly-hatched cuttlefish. We investigated the effects of two of the most prescribed antidepressants, fluoxetine (FLX) and venlafaxine (VEN) in environmentally realistic concentrations on the predatory behaviour of hatchlings of Sepia officinalis. Newly-hatched cuttlefish were exposed from 1 h (i.e., day 1) to 5 days after hatching to either FLX alone (5 ng·L-1) or combined with VEN (2.5 ng·L-1 or 5 ng·L-1 each) to simulate an environmentally realistic exposure scenario. Their predatory behaviour was analysed through several parameters: prey detection, feeding motivation and success in catching the prey. All parameters improved in control animals over the first five days. The combination of FLX and VEN at 5 ng·L-1 each altered the predatory behaviour of the hatchlings by increasing the latency before attacking the prey, i.e., reducing feeding motivation, as well as by reducing the number of successful attacks. The changes in predatory behaviour tended to reduce food intake and affected growth significantly at 28 days post-hatching. Exposures to either FLX at 5 ng·L-1 or FLX and VEN in mixture at 2.5 ng·L-1 each tended to produce similar effects, even though they were not statistically significant. It is likely that the antidepressants affect maturation of the predatory behaviour and/or learning processes associated with the development of this behaviour. The slightest delay in maturation processes may have detrimental consequences for growth and population fitness.
Collapse
Affiliation(s)
- Apolline Chabenat
- NORMANDIE UNIV, UNICAEN, UNIV RENNES, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000, Caen, France; NORMANDIE UNIV, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I02, Environmental Stress and Biomonitoring of Aquatic Environments (SEBIO), 76600, Le Havre, France
| | - Flavie Bidel
- NORMANDIE UNIV, UNICAEN, UNIV RENNES, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000, Caen, France; Department of Neurobiology, Silberman Institute of Life Sciences, Hebrew University, Jerusalem, 9190401, Israel
| | - Thomas Knigge
- NORMANDIE UNIV, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I02, Environmental Stress and Biomonitoring of Aquatic Environments (SEBIO), 76600, Le Havre, France
| | - Cécile Bellanger
- NORMANDIE UNIV, UNICAEN, UNIV RENNES, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-14000, Caen, France.
| |
Collapse
|
11
|
|
12
|
Sampaio E, Ramos CS, Bernardino BLM, Bleunven M, Augustin ML, Moura É, Lopes VM, Rosa R. Neurally underdeveloped cuttlefish newborns exhibit social learning. Anim Cogn 2021; 24:23-32. [PMID: 32651650 DOI: 10.1007/s10071-020-01411-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/01/2020] [Accepted: 07/03/2020] [Indexed: 01/05/2023]
Abstract
Learning can occur through self-experience with the environment, or through the observation of others. The latter allows for adaptive behaviour without trial-and-error, thus maximizing individual fitness. Perhaps given their mostly solitary lifestyle, cuttlefish have seldomly been tested under observational learning scenarios. Here we used a multi-treatment design to disentangle if and how neurally immature cuttlefish Sepia officinalis hatchlings (up to 5 days) incorporate social information into their decision-making, when performing a task where inhibition of predatory behaviour is learned. In the classical social learning treatment using pre-trained demonstrators, observers did not register any predatory behaviour. In the inhibition by social learning treatment, using naïve (or sham) demonstrators, more observers than demonstrators learned the task, while also reaching learning criterion in fewer trials, and performing less number of attacks per trial. Moreover, the performance of demonstrator-observer pairs was highly correlated, indicating that the mere presence of conspecifics did not explain our results by itself. Additionally, observers always reported higher latency time to attack during trials, a trend that was reversed in the positive controls. Lastly, pre-exposure to the stimulus did not improve learning rates. Our findings reveal the vicarious capacity of these invertebrate newborns to learn modulation (inhibition) of predatory behaviour, potentially through emulation (i.e. affordance learning). Despite ongoing changes on neural organization during early ontogeny, cognitively demanding forms of learning are already present in cuttlefish newborns, facilitating behavioural adaptation at a critical life stage, and potentially improving individual fitness in the environment.
Collapse
Affiliation(s)
- Eduardo Sampaio
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal.
- Department of Collective Behaviour, Max Planck Institute for Animal Behavior, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
| | - Catarina S Ramos
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Bruna L M Bernardino
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Maela Bleunven
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Marta L Augustin
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Érica Moura
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Vanessa M Lopes
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| |
Collapse
|
13
|
Kuo TH, Chiao CC. Learned valuation during forage decision-making in cuttlefish. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201602. [PMID: 33489290 PMCID: PMC7813266 DOI: 10.1098/rsos.201602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Decision-making, when humans and other animals choose between two options, is not always based on the absolute values of the options but can also depend on their relative values. The present study examines whether decision-making by cuttlefish is dependent on relative values learned from previous experience. Cuttlefish preferred a larger quantity when making a choice between one or two shrimps (1 versus 2) during a two-alternative forced choice. However, after cuttlefish were primed under conditions where they were given a small reward for choosing one shrimp in a no shrimp versus one shrimp test (0 versus 1) six times in a row, they chose one shrimp significantly more frequently in the 1 versus 2 test. This reversed preference for a smaller quantity was not due to satiation at the time of decision-making, as cuttlefish fed a small shrimp six times without any choice test prior to the experiment still preferred two shrimps significantly more often in a subsequent 1 versus 2 test. This suggests that the preference of one shrimp in the quantity comparison test occurs via a process of learned valuation. Foraging preference in cuttlefish thus depends on the relative value of previous prey choices.
Collapse
Affiliation(s)
- Tzu-Hsin Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
14
|
Awareness of danger inside the egg: Evidence of innate and learned predator recognition in cuttlefish embryos. Learn Behav 2020; 48:401-410. [PMID: 32221844 DOI: 10.3758/s13420-020-00424-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Predation can be a very strong selective pressure on prey. Many studies have shown the existence of innate anti-predator responses, mostly in the early developmental stages of juvenile vertebrates. Learning to recognize predators is another possible defensive resource, but such a method involves a high death risk. There is evidence that prenatal learning exists in animals but few studies have explicitly tested for embryonic learning. The aim of this study was to test innate and learned predator recognition in cuttlefish embryos. For this, naïve embryos were exposed to chemical and visual cues emanating from predators, non-predators, and ink. Their response was assessed by measuring their ventilation rate (VR). We first show that VR decreased in response to both visual and chemical predatory cues and ink but not to non-predatory cues. Second, we show that when non-predatory cues (visual or chemical) are paired with predatory cues or ink for several days, embryonic VR significantly decreased. Such a response is likely adaptive, especially in a translucent egg, since it results in reduced movement and hence may lower the risk of detection by visual predators. This freezing-like behavior may also reduce the bioelectric field, thus lessening the predation risk by non-visual foragers. Our results report that cuttlefish embryos had an innate capacity to differentiate between harmless and harmful chemical and visual cues. They were also capable of learning to respond to harmless cues when they were paired with danger (predator or ink) based on conditioning. The combination of these behavioral mechanisms is an example of the early adaptability of cephalopods. Such behavioral plasticity may give the newly hatched cuttlefish a selective advantage when dealing with either known or unfamiliar threats. Nevertheless, more experiments are needed to test the efficiency of the embryos' response faced with known or new predators.
Collapse
|
15
|
Scaros AT, Andouche A, Baratte S, Croll RP. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol 2019; 528:1095-1112. [PMID: 31721188 DOI: 10.1002/cne.24809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Cephalopods are radically different from any other invertebrate. Their molluscan heritage, innovative nervous system, and specialized behaviors create a unique blend of characteristics that are sometimes reminiscent of vertebrate features. For example, despite differences in the organization and development of their nervous systems, both vertebrates and cephalopods use many of the same neurotransmitters. One neurotransmitter, histamine (HA), has been well studied in both vertebrates and invertebrates, including molluscs. While HA was previously suggested to be present in the cephalopod central nervous system (CNS), Scaros, Croll, and Baratte only recently described the localization of HA in the olfactory system of the cuttlefish Sepia officinalis. Here, we describe the location of HA using an anti-HA antibody and a probe for histidine decarboxylase (HDC), a synthetic enzyme for HA. We extended previous descriptions of HA in the olfactory organ, nerve, and lobe, and describe HDC staining in the same regions. We found HDC-positive cell populations throughout the CNS, including the optic gland and the peduncle, optic, dorso-lateral, basal, subvertical, frontal, magnocellular, and buccal lobes. The distribution of HA in the olfactory system of S. officinalis is similar to the presence of HA in the chemosensory organs of gastropods but is different than the sensory systems in vertebrates or arthropods. However, HA's widespread abundance throughout the rest of the CNS of Sepia is a similarity shared with gastropods, vertebrates, and arthropods. Its widespread use with differing functions across Animalia provokes questions regarding the evolutionary history and adaptability of HA as a transmitter.
Collapse
Affiliation(s)
- Alexia T Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Ituarte RB, Vázquez MG, Bas CC. Chemically induced plasticity in early life history of Palaemon argentinus: are chemical alarm cues conserved within palaemonid shrimps? ACTA ACUST UNITED AC 2019; 222:jeb.199984. [PMID: 31171603 DOI: 10.1242/jeb.199984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/04/2019] [Indexed: 11/20/2022]
Abstract
Most aquatic animals use infochemicals from both conspecifics and heterospecifics to assess local predation risks and enhance predator detection. Released substances from injured conspecifics and other species (chemical alarm cues) are reliable cues to indicate an imminent danger in a specific habitat and often mediate the development of inducible defenses. Amphibian and fish embryos have been shown to acquire this information while at the embryonic stage of development, in relation to the developing nervous system and sensory development. With the exception of Daphnia, there is no information on chemically mediated responses to alarm cues in embryos of any crustacean groups. Therefore, we tested whether embryo exposure to chemical cues simulating predation on conspecifics or heterospecifics (closely related, non-coexisting species), or a mixture of both, alters embryonic developmental time, size and morphology of the first larval instar in Palaemon argentinus (Crustacea: Decapoda). Embryonic exposure to chemical alarm cues from conspecifics shortened the embryonic developmental time and elicited larger larvae with a longer rostrum. Rostrum length of the first larval instar changed independently of their size, thus elongated rostra can be considered a defensive feature. Embryonic developmental time was not altered by chemical alarm cues from either heterospecifics or the mixed cues treatment; however, exposure to these cues resulted in larger larvae compared with the control group. Chemically induced morphological plasticity in larvae in response to alarm cues from con- and heterospecifics suggests that such cues are conserved in palaemonids shrimps, providing embryos with an innate recognition of heterospecific alarm cues as predicted by the phylogenetic relatedness hypothesis.
Collapse
Affiliation(s)
- Romina B Ituarte
- Grupo Zoología Invertebrados, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina .,Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina
| | - María G Vázquez
- Grupo Zoología Invertebrados, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina.,Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina
| | - Claudia C Bas
- Grupo Zoología Invertebrados, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina.,Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina
| |
Collapse
|
17
|
Mezrai N, Chiao CC, Dickel L, Darmaillacq AS. A difference in timing for the onset of visual and chemosensory systems during embryonic development in two closely related cuttlefish species. Dev Psychobiol 2019; 61:1014-1021. [PMID: 31172508 DOI: 10.1002/dev.21868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 11/09/2022]
Abstract
Embryos perceive environmental stimuli, thanks to their almost mature sensory systems. In cuttlefish, the embryonic development of Sepia officinalis and Sepia pharaonis is similar but the egg capsule transparency is different. S. officinalis' eggs are black (ink), which provide protection from predators. Conversely, those of S. pharaonis are translucent. The aim of this study was to test the visual and chemosensory perception abilities of these two cuttlefish embryos by observation of the ventilation rate (VR) before and after stimulation. Our results show that S. pharaonis responds to light at stage 22 and S. officinalis at stage 24. Conversely, S. pharaonis responds to predator odor at stage 23 and S. officinalis at stage 22. Both species are able to respond to these stimuli before hatching but do not have the same developmental schedule. Neither are the responses of the two cuttlefish exactly the same. In S. officinalis, VR increases after stimulations. In S. pharaonis, VR increases after light stimulation and decreases following the odor stimulation after stage 25. This result could reveal an ability to recognize stimuli at stage 25. The decrease could be identified as freezing-like behavior which would be more adaptive than an increase, since the embryos are visible.
Collapse
Affiliation(s)
- Nawel Mezrai
- Normandie Univ, UNICAEN, Univ Rennes, CNRS, Caen, France
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ludovic Dickel
- Normandie Univ, UNICAEN, Univ Rennes, CNRS, Caen, France
| | | |
Collapse
|
18
|
Warkentin KM, Jung J, Rueda Solano LA, McDaniel JG. Ontogeny of escape-hatching decisions: vibrational cue use changes as predicted from costs of sampling and false alarms. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2663-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Güell BA, Warkentin KM. When and where to hatch? Red-eyed treefrog embryos use light cues in two contexts. PeerJ 2018; 6:e6018. [PMID: 30533307 PMCID: PMC6283037 DOI: 10.7717/peerj.6018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Hatching timing is under strong selection and environmentally cued in many species. Embryos use multiple sensory modalities to inform hatching timing and many have spontaneous hatching patterns adaptively synchronized to natural cycles. Embryos can also adaptively shift their hatching timing in response to environmental cues indicating immediate threats or opportunities. Such cued shifts in hatching are widespread among amphibians; however, we know little about what, if anything, regulates their spontaneous hatching. Moreover, in addition to selection on hatching timing, embryos may experience benefits or suffer costs due to the spatial orientation of hatching. Amphibian eggs generally lack internal constraints on hatching direction but embryos might, nonetheless, use external cues to inform hatching orientation. The terrestrial embryos of red-eyed treefrogs, Agalychnis callidryas, hatch rapidly and prematurely in response to vibrational cues in egg-predator attacks and hypoxia if flooded. Here we examined A. callidryas’ use of light cues in hatching timing and orientation. To assess patterns of spontaneous hatching and the role of light cues in their diel timing, we recorded hatching times for siblings distributed across three light environments: continuous light, continuous dark, and a 12L:12D photoperiod. Under a natural photoperiod, embryos showed a clear diel pattern of synchronous hatching shortly after nightfall. Hatching was desynchronized in both continuous light and continuous darkness. It was also delayed by continuous light, but not accelerated by continuous dark, suggesting the onset of dark serves as a hatching cue. We examined hatching orientation and light as a potential directional cue for flooded embryos. Embryos flooded in their clutches almost always hatched toward open water, whereas individual eggs flooded in glass cups often failed to do so, suggesting the natural context provides a directional cue. To test if flooded embryos orient hatching toward light, we placed individual eggs in tubes with one end illuminated and the other dark, then flooded them and recorded hatching direction. Most embryos hatched toward the light, suggesting they use light as a directional cue. Our results support that A. callidryas embryos use light cues to inform both when and where to hatch. Both the spatial orientation of hatching and the timing of spontaneous hatching may affect fitness and be informed by cues in a broader range of species than is currently appreciated.
Collapse
Affiliation(s)
- Brandon A Güell
- University of California, San Diego, CA, United States of America.,Department of Biology, Boston University, Boston, MA, United States of America
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, United States of America.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
20
|
Scaros AT, Croll RP, Baratte S. Immunohistochemical Approach to Understanding the Organization of the Olfactory System in the Cuttlefish, Sepia officinalis. ACS Chem Neurosci 2018; 9:2074-2088. [PMID: 29578683 DOI: 10.1021/acschemneuro.8b00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cephalopods are nontraditional but captivating models of invertebrate neurobiology, particularly in evolutionary comparisons. Cephalopod olfactory systems have striking similarities and fundamental differences with vertebrates, arthropods, and gastropods, raising questions about the ancestral origins of those systems. We describe here the organization and development of the olfactory system of the common cuttlefish, Sepia officinalis, using immunohistochemistry and in situ hybridization. FMRFamide and/or related peptides and histamine are putative neurotransmitters in olfactory sensory neurons. Other neurotransmitters, including serotonin and APGWamide within the olfactory and other brain lobes, suggest efferent control of olfactory input and/or roles in the processing of olfactory information. The distributions of neurotransmitters, along with staining patterns of phalloidin, anti-acetylated α-tubulin, and a synaptotagmin riboprobe, help to clarify the structure of the olfactory lobe. We discuss a key difference, the lack of identifiable olfactory glomeruli, in cuttlefish in comparison to other models, and suggest its implications for the evolution of olfaction.
Collapse
Affiliation(s)
- Alexia T. Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sébastien Baratte
- Sorbonne Université,
MNHN, UNICAEN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes
Aquatiques (BOREA), Paris 75005, France
| |
Collapse
|
21
|
Crane AL, Helton EJ, Ferrari MC, Mathis A. Learning to find food: evidence for embryonic sensitization and juvenile social learning in a salamander. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Butler-Struben HM, Brophy SM, Johnson NA, Crook RJ. In Vivo Recording of Neural and Behavioral Correlates of Anesthesia Induction, Reversal, and Euthanasia in Cephalopod Molluscs. Front Physiol 2018. [PMID: 29515454 PMCID: PMC5826266 DOI: 10.3389/fphys.2018.00109] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cephalopod molluscs are among the most behaviorally and neurologically complex invertebrates. As they are now included in research animal welfare regulations in many countries, humane and effective anesthesia is required during invasive procedures. However, currently there is no evidence that agents believed to act as anesthetics produce effects beyond immobility. In this study we demonstrate, for the first time, that two of the most commonly used agents in cephalopod general anesthesia, magnesium chloride and ethanol, are capable of producing strong and reversible blockade of afferent and efferent neural signal; thus they are genuine anesthetics, rather than simply sedating agents that render animals immobile but not insensible. Additionally, we demonstrate that injected magnesium chloride and lidocaine are effective local anesthetic agents. This represents a considerable advance for cephalopod welfare. Using a reversible, minimally invasive recording procedure, we measured activity in the pallial nerve of cuttlefish (Sepia bandensis) and octopus (Abdopus aculeatus, Octopus bocki), during induction and reversal for five putative general anesthetic and two local anesthetic agents. We describe the temporal relationship between loss of behavioral responses (immobility), loss of efferent neural signal (loss of “consciousness”) and loss of afferent neural signal (anesthesia) for general anesthesia, and loss of afferent signal for local anesthesia. Both ethanol and magnesium chloride were effective as bath-applied general anesthetics, causing immobility, complete loss of behavioral responsiveness and complete loss of afferent and efferent neural signal. Cold seawater, diethyl ether, and MS-222 (tricaine) were ineffective. Subcutaneous injection of either lidocaine or magnesium chloride blocked behavioral and neural responses to pinch in the injected area, and we conclude that both are effective local anesthetic agents for cephalopods. Lastly, we demonstrate that a standard euthanasia protocol—immersion in isotonic magnesium chloride followed by surgical decerebration—produced no behavioral response and no neural activity during surgical euthanasia. Based on these data, we conclude that both magnesium chloride and ethanol can function as general anesthetic agents, and lidocaine and magnesium chloride can function as local anesthetic agents for cephalopod molluscs.
Collapse
Affiliation(s)
| | - Samantha M Brophy
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Nasira A Johnson
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
23
|
O'Brien CE, Jozet-Alves C, Mezrai N, Bellanger C, Darmaillacq AS, Dickel L. Maternal and Embryonic Stress Influence Offspring Behavior in the Cuttlefish Sepia officinalis. Front Physiol 2017; 8:981. [PMID: 29249984 PMCID: PMC5717421 DOI: 10.3389/fphys.2017.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Stress experienced during prenatal development-either applied to reproducing females (maternal stress), directly to developing offspring (embryonic stress) or in combination-is associated with a range of post-natal behavioral effects in numerous organisms. We conducted an experiment to discern if maternal and embryonic stressors affect the behavior of hatchlings of the cuttlefish Sepia officinalis, a species with features that allow for the examination of these stress types in isolation. Separating the impact of stress transmitted through the mother vs. stress experienced by the embryo itself will help clarify the behavioral findings in viviparous species for which it is impossible to disentangle these effects. We also compared the effect of a naturally-occurring (predator cue) and an "artificial" (bright, randomly-occurring LED light) embryonic stressor. This allowed us to test the hypothesis that a threat commonly faced by a species (natural threat) would be met with a genetically-programmed and adaptive response while a novel one would confound innate defense mechanisms and lead to maladaptive effects. We found that the maternal stressor was associated with significant differences in body patterning and activity patterns. By contrast, embryonic exposure to stressors increased the proportion of individuals that pursued prey. From these results, it appears that in cuttlefish, maternal and embryonic stressors affect different post-natal behavior in offspring. In addition, the effect of the artificial stressor suggests that organisms can sometimes react adaptively to a stressor even if it is not one that has been encountered during the evolutionary history of the species.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | | | - Nawel Mezrai
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | - Cécile Bellanger
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| | | | - Ludovic Dickel
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
| |
Collapse
|
24
|
Villanueva R, Perricone V, Fiorito G. Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits. Front Physiol 2017; 8:598. [PMID: 28861006 PMCID: PMC5563153 DOI: 10.3389/fphys.2017.00598] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of mechanoreceptor structures and the presence of long and filamentous arms are more abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in disguise, among others are known modes of hunting in cephalopods. Cannibalism and scavenger behavior is also known for some species and the development of current culture techniques offer evidence of their ability to feed on inert and artificial foods. Feeding requirements and prey choice change throughout development and in some species, strong ontogenetic changes in body form seem associated with changes in their diet and feeding strategies, although this is poorly understood in planktonic and larval stages. Feeding behavior is altered during senescence and particularly in brooding octopus females. Cephalopods are able to feed from a variety of food sources, from detritus to birds. Their particular requirements of lipids and copper may help to explain why marine crustaceans, rich in these components, are common prey in all cephalopod diets. The expected variation in climate change and ocean acidification and their effects on chemoreception and prey detection capacities in cephalopods are unknown and needs future research.
Collapse
Affiliation(s)
- Roger Villanueva
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC)Barcelona, Spain
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNapoli, Italy
| |
Collapse
|
25
|
Liu YC, Liu TH, Su CH, Chiao CC. Neural Organization of the Optic Lobe Changes Steadily from Late Embryonic Stage to Adulthood in Cuttlefish Sepia pharaonis. Front Physiol 2017; 8:538. [PMID: 28798695 PMCID: PMC5529416 DOI: 10.3389/fphys.2017.00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
The optic lobe is the largest structure in the cuttlefish brain. While the general morphology of the optic lobe in adult cuttlefish has been well described, the 3D structure and ontogenetic development of its neural organization have not been characterized. To correlate observed behavioral changes within the brain structure along the development of this animal, optic lobes from the late embryonic stage to adulthood were examined systematically in the present study. The MRI scan revealed that the so called "cell islands" in the medulla of the cephalopod's optic lobe (Young, 1962, 1974) are in fact a contiguous tree-like structure. Quantification of the neural organizational development of optic lobes showed that structural features of the cortex and radial column zone were established earlier than those of the tangential zone during embryonic and post-hatching stages. Within the cell islands, the density of nuclei was decreased while the size of nuclei was increased during the development. Furthermore, the visual processing area in the optic lobe showed a significant variation in lateralization during embryonic and juvenile stages. Our observation of a continuous increase in neural fibers and nucleus size in the tangential zone of the optic lobe from late embryonic stage to adulthood indicates that the neural organization of the optic lobe is modified along the development of cuttlefish. These findings thus support that the ontogenetic change of the optic lobe is responsible for their continuously increased complexity in body patterning and visuomotor behaviors.
Collapse
Affiliation(s)
- Yung-Chieh Liu
- Institute of Systems Neuroscience, National Tsing Hua UniversityHsinchu, Taiwan
- Department of Life Science, National Tsing Hua UniversityHsinchu, Taiwan
| | - Tsung-Han Liu
- Institute of Molecular Medicine, National Tsing Hua UniversityHsinchu, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiung, Taiwan
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua UniversityHsinchu, Taiwan
- Department of Life Science, National Tsing Hua UniversityHsinchu, Taiwan
- Institute of Molecular Medicine, National Tsing Hua UniversityHsinchu, Taiwan
| |
Collapse
|
26
|
Sykes AV, Almansa E, Cooke GM, Ponte G, Andrews PLR. The Digestive Tract of Cephalopods: a Neglected Topic of Relevance to Animal Welfare in the Laboratory and Aquaculture. Front Physiol 2017; 8:492. [PMID: 28769814 PMCID: PMC5511845 DOI: 10.3389/fphys.2017.00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health and welfare of a cephalopod is essential whether it is in a research, aquaculture or public display. The inclusion of cephalopods in the European Union legislation (Directive 2010/63/EU) regulating the use of animals for scientific purposes has prompted detailed consideration and review of all aspects of the care and welfare of cephalopods in the laboratory but the information generated will be of utility in other settings. We overview a wide range of topics of relevance to cephalopod digestive tract physiology and their relationship to the health and welfare of these animals. Major topics reviewed include: (i) Feeding cephalopods in captivity which deals with live food and prepared diets, feeding frequency (ad libitum vs. intermittent) and the amount of food provided; (ii) The particular challenges in feeding hatchlings and paralarvae, as feeding and survival of paralarvae remain major bottlenecks for aquaculture e.g., Octopus vulgaris; (iii) Digestive tract parasites and ingested toxins are discussed not only from the perspective of the impact on digestive function and welfare but also as potential confounding factors in research studies; (iv) Food deprivation is sometimes necessary (e.g., prior to anesthesia and surgery, to investigate metabolic control) but what is the impact on a cephalopod, how can it be assessed and how does the duration relate to regulatory threshold and severity assessment? Reduced food intake is also reviewed in the context of setting humane end-points in experimental procedures; (v) A range of experimental procedures are reviewed for their potential impact on digestive tract function and welfare including anesthesia and surgery, pain and stress, drug administration and induced developmental abnormalities. The review concludes by making some specific recommendations regarding reporting of feeding data and identifies a number of areas for further investigation. The answer to many of the questions raised here will rely on studies of the physiology of the digestive tract.
Collapse
Affiliation(s)
- António V Sykes
- Centro de Ciências do Mar do Algarve, Universidade do AlgarveFaro, Portugal
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin UniversityCambridge, United Kingdom
| | - Giovanna Ponte
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| | - Paul L R Andrews
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| |
Collapse
|
27
|
|
28
|
Darmaillacq AS, Mezrai N, O'Brien CE, Dickel L. Visual Ecology and the Development of Visually Guided Behavior in the Cuttlefish. Front Physiol 2017; 8:402. [PMID: 28659822 PMCID: PMC5469150 DOI: 10.3389/fphys.2017.00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Cuttlefish are highly visual animals, a fact reflected in the large size of their eyes and visual-processing centers of their brain. Adults detect their prey visually, navigate using visual cues such as landmarks or the e-vector of polarized light and display intense visual patterns during mating and agonistic encounters. Although much is known about the visual system in adult cuttlefish, few studies have investigated its development and that of visually-guided behavior in juveniles. This review summarizes the results of studies of visual development in embryos and young juveniles. The visual system is the last to develop, as in vertebrates, and is functional before hatching. Indeed, embryonic exposure to prey, shelters or complex background alters postembryonic behavior. Visual acuity and lateralization, and polarization sensitivity improve throughout the first months after hatching. The production of body patterning in juveniles is not the simple stimulus-response process commonly presented in the literature. Rather, it likely requires the complex integration of visual information, and is subject to inter-individual differences. Though the focus of this review is vision in cuttlefish, it is important to note that other senses, particularly sensitivity to vibration and to waterborne chemical signals, also play a role in behavior. Considering the multimodal sensory dimensions of natural stimuli and their integration and processing by individuals offer new exciting avenues of future inquiry.
Collapse
Affiliation(s)
- Anne-Sophie Darmaillacq
- UMR Centre National de la Recherche Scientifique Université de Caen-Université de Rennes 1, Normandie Université, Université de Caen Normandie, Team NECCCaen, France
| | | | | | | |
Collapse
|
29
|
Yasumuro H, Ikeda Y. Environmental Enrichment Accelerates the Ontogeny of Cryptic Behavior in Pharaoh Cuttlefish (Sepia pharaonis). Zoolog Sci 2016; 33:255-65. [PMID: 27268979 DOI: 10.2108/zs150197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined effect of environmental enrichment on cuttlefish, the most neutrally advanced invertebrate, to compare species variation of genetic and environmental influences. Cuttlefish were reared from seven to 117 days in one of three environments, namely, "poor" (artificial bottom without objects), "standard" (sandy bottom), and "enriched" (sandy bottom with objects). In Experiment 1, we explored whether enrichment affects the exhibition of crypsis in the cuttlefish. The cuttlefish in the standard and enriched environments spent most of their time at the bottom, exhibiting the mottled or disruptive pattern starting at 27 days of age. On the contrary, those in the poor environment exhibited uniform pattern starting at 87 days of age. Additionally, they repeatedly attempted to dig from 27 to 87 days of age, and moved around by hovering from 77 to 117 days of age. In Experiment 2, we exposed the cuttlefish to six novel substrates every other month after 53 days of age to verify whether enrichment actually affected the maturation of cryptic ability. Cuttlefish from the poor environment tended not to dig into white sandy bottom at 53-55 days of age. Additionally, they did not clearly exhibit appropriate body patterns in response to the six substrates compared to those from the other two environments at 81-83 days of age. However, at 113-115 days of age, most cuttlefish from the three environments exhibited similar cryptic behaviors in response to novel substrates. We conclude that physical enrichment promotes crypsis and accelerates the maturation of this ability in cuttlefish.
Collapse
Affiliation(s)
- Haruhiko Yasumuro
- 1 Department of Marine and Environmental Sciences, Graduate School of Engineering and Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yuzuru Ikeda
- 2 Department of Chemistry, Biology and Marine Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
30
|
O'Brien CE, Mezrai N, Darmaillacq AS, Dickel L. Behavioral development in embryonic and early juvenile cuttlefish (Sepia officinalis). Dev Psychobiol 2016; 59:145-160. [PMID: 27714785 DOI: 10.1002/dev.21476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022]
Abstract
Though a mollusc, the cuttlefish Sepia officinalis possesses a sophisticated brain, advanced sensory systems, and a large behavioral repertoire. Cuttlefish provide a unique perspective on animal behavior due to their phylogenic distance from more traditional (vertebrate) models. S. officinalis is well-suited to addressing questions of behavioral ontogeny. As embryos, they can perceive and learn from their environment and experience no direct parental care. A marked progression in learning and behavior is observed during late embryonic and early juvenile development. This improvement is concomitant with expansion and maturation of the vertical lobe, the cephalopod analog of the mammalian hippocampus. This review synthesizes existing knowledge regarding embryonic and juvenile development in this species in an effort to better understand cuttlefish behavior and animal behavior in general. It will serve as a guide to future researchers and encourage greater awareness of the utility of this species to behavioral science.
Collapse
Affiliation(s)
- Caitlin E O'Brien
- Groupe Mémoire et Plasticité Comportementale (GMPc EA 4259), Université de Caen-Normandie, Caen, France
| | - Nawel Mezrai
- Groupe Mémoire et Plasticité Comportementale (GMPc EA 4259), Université de Caen-Normandie, Caen, France
| | - Anne-Sophie Darmaillacq
- Groupe Mémoire et Plasticité Comportementale (GMPc EA 4259), Université de Caen-Normandie, Caen, France
| | - Ludovic Dickel
- Groupe Mémoire et Plasticité Comportementale (GMPc EA 4259), Université de Caen-Normandie, Caen, France
| |
Collapse
|
31
|
Visual attraction in Drosophila larvae develops during a critical period and is modulated by crowding conditions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1019-27. [DOI: 10.1007/s00359-015-1034-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/26/2022]
|
32
|
Colombelli-Négrel D, Hauber ME, Kleindorfer S. Prenatal learning in an Australian songbird: habituation and individual discrimination in superb fairy-wren embryos. Proc Biol Sci 2014; 281:20141154. [PMID: 25355472 PMCID: PMC4240978 DOI: 10.1098/rspb.2014.1154] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/26/2014] [Indexed: 12/23/2022] Open
Abstract
Embryos were traditionally considered to possess limited learning abilities because of the immaturity of their developing brains. By contrast, neonates from diverse species show behaviours dependent on prior embryonic experience. Stimulus discrimination is a key component of learning and has been shown by a handful of studies in non-human embryos. Superb fairy-wren embryos (Malurus cyaneus) learn a vocal password that has been taught to them by the attending female during incubation. The fairy-wren embryos use the learned element as their begging call after hatching to solicit more parental feeding. In this study, we test whether superb fairy-wren embryos have the capacity to discriminate between acoustical stimuli and whether they show non-associative learning. We measured embryonic heart rate response using a habituation/dishabituation paradigm with eggs sourced from nests in the wild. Fairy-wren embryos lowered their heart rate in response to the broadcasts of conspecific versus heterospecific calls, and in response to the calls of novel conspecific individuals. Thus, fairy-wrens join humans as vocal-learning species with known prenatal learning and individual discrimination.
Collapse
Affiliation(s)
| | - Mark E Hauber
- Department of Psychology, Hunter College and The Graduate Center, City University of New York, New York, NY 10065, USA
| | - Sonia Kleindorfer
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide 5001, Australia
| |
Collapse
|
33
|
Abstract
In a wide range of organisms, including humans, mothers can influence offspring via the care they provide. Comparatively little is known about the effects of fathering on offspring. Here, we test the hypothesis that fathers are capable of programming their offspring for the type of environment they are likely to encounter. Male threespine sticklebacks, Gasterosteus aculeatus, were either exposed to predation risk while fathering or not. Fathers altered their paternal behaviour when exposed to predation risk, and consequently produced adult offspring with phenotypes associated with strong predation pressure (smaller size, reduced body condition, reduced behavioural activity). Moreover, more attentive fathers produced offspring that showed stronger antipredator responses. These results are consistent with behaviourally mediated paternal programming: fathers can alter offspring phenotypes to match their future environment and influence offspring traits well into adulthood.
Collapse
Affiliation(s)
- Laura R Stein
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| | - Alison M Bell
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A
| |
Collapse
|
34
|
Buresi A, Croll RP, Tiozzo S, Bonnaud L, Baratte S. Emergence of sensory structures in the developing epidermis in sepia officinalis and other coleoid cephalopods. J Comp Neurol 2014; 522:3004-19. [PMID: 24549606 DOI: 10.1002/cne.23562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 11/11/2022]
Abstract
Embryonic cuttlefish can first respond to a variety of sensory stimuli during early development in the egg capsule. To examine the neural basis of this ability, we investigated the emergence of sensory structures within the developing epidermis. We show that the skin facing the outer environment (not the skin lining the mantle cavity, for example) is derived from embryonic domains expressing the Sepia officinalis ortholog of pax3/7, a gene involved in epidermis specification in vertebrates. On the head, they are confined to discrete brachial regions referred to as "arm pillars" that expand and cover Sof-pax3/7-negative head ectodermal tissues. As revealed by the expression of the S. officinalis ortholog of elav1, an early marker of neural differentiation, the olfactory organs first differentiate at about stage 16 within Sof-pax3/7-negative ectodermal regions before they are covered by the definitive Sof-pax3/7-positive outer epithelium. In contrast, the eight mechanosensory lateral lines running over the head surface and the numerous other putative sensory cells in the epidermis, differentiate in the Sof-pax3/7-positive tissues at stages ∼24-25, after they have extended over the entire outer surfaces of the head and arms. Locations and morphologies of the various sensory cells in the olfactory organs and skin were examined using antibodies against acetylated tubulin during the development of S. officinalis and were compared with those in hatchlings of two other cephalopod species. The early differentiation of olfactory structures and the peculiar development of the epidermis with its sensory cells provide new perspectives for comparisons of developmental processes among molluscs.
Collapse
Affiliation(s)
- Auxane Buresi
- Museum National d'Histoire Naturelle (MNHN), DMPA, UMR Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, CP51 75005, Paris, France; Université Pierre et Marie Curie-Paris, Paris, 6, France
| | | | | | | | | |
Collapse
|
35
|
Vidal EAG, Villanueva R, Andrade JP, Gleadall IG, Iglesias J, Koueta N, Rosas C, Segawa S, Grasse B, Franco-Santos RM, Albertin CB, Caamal-Monsreal C, Chimal ME, Edsinger-Gonzales E, Gallardo P, Le Pabic C, Pascual C, Roumbedakis K, Wood J. Cephalopod culture: current status of main biological models and research priorities. ADVANCES IN MARINE BIOLOGY 2014; 67:1-98. [PMID: 24880794 DOI: 10.1016/b978-0-12-800287-2.00001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A recent revival in using cephalopods as experimental animals has rekindled interest in their biology and life cycles, information with direct applications also in the rapidly growing ornamental aquarium species trade and in commercial aquaculture production for human consumption. Cephalopods have high rates of growth and food conversion, which for aquaculture translates into short culture cycles, high ratios of production to biomass and high cost-effectiveness. However, at present, only small-scale culture is possible and only for a few species: the cuttlefish Sepia officinalis, the loliginid squid Sepioteuthis lessoniana and the octopuses Octopus maya and O. vulgaris. These four species are the focus of this chapter, the aims of which are as follows: (1) to provide an overview of the culture requirements of cephalopods, (2) to highlight the physical and nutritional requirements at each phase of the life cycle regarded as essential for successful full-scale culture and (3) to identify current limitations and the topics on which further research is required. Knowledge of cephalopod culture methods is advanced, but commercialization is still constrained by the highly selective feeding habits of cephalopods and their requirement for large quantities of high-quality (preferably live) feed, particularly in the early stages of development. Future research should focus on problems related to the consistent production of viable numbers of juveniles, the resolution of which requires a better understanding of nutrition at all phases of the life cycle and better broodstock management, particularly regarding developments in genetic selection, control of reproduction and quality of eggs and offspring.
Collapse
Affiliation(s)
- Erica A G Vidal
- Center for Marine Studies, University of Parana (UFPR), Parana, Brazil.
| | | | - José P Andrade
- CCMAR-CIMAR L.A., Centro de Ciencias do Mar do Algarve, Campus de Gambelas, Universidade doAlgarve, Faro, Portugal
| | - Ian G Gleadall
- International Fisheries Science Unit, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - José Iglesias
- Oceanographic Center of Vigo. Spanish Institute of Oceanography, Subida a Radio Faro, Pontevedra, Spain
| | - Noussithé Koueta
- UMR BOREA, MNHN, UPMC, UCBN, CNRS-7028, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, Caen cedex, France
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Susumu Segawa
- Tokyo University of Fisheries, Minato-ku, Tokyo, Japan
| | - Bret Grasse
- Monterey Bay Aquarium, Monterey, California, USA
| | | | - Caroline B Albertin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Maria E Chimal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | | | - Pedro Gallardo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Charles Le Pabic
- UMR BOREA, MNHN, UPMC, UCBN, CNRS-7028, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, Caen cedex, France
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Katina Roumbedakis
- Laboratório Sanidade de Organismos Aquáticos. Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - James Wood
- Mounts Botanical Garden, West Palm Beach, Florida, USA
| |
Collapse
|
36
|
Robin JP, Roberts M, Zeidberg L, Bloor I, Rodriguez A, Briceño F, Downey N, Mascaró M, Navarro M, Guerra A, Hofmeister J, Barcellos DD, Lourenço SAP, Roper CFE, Moltschaniwskyj NA, Green CP, Mather J. Transitions during cephalopod life history: the role of habitat, environment, functional morphology and behaviour. ADVANCES IN MARINE BIOLOGY 2014; 67:361-437. [PMID: 24880797 DOI: 10.1016/b978-0-12-800287-2.00004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cephalopod life cycles generally share a set of stages that take place in different habitats and are adapted to specific, though variable, environmental conditions. Throughout the lifespan, individuals undertake a series of brief transitions from one stage to the next. Four transitions were identified: fertilisation of eggs to their release from the female (1), from eggs to paralarvae (2), from paralarvae to subadults (3) and from subadults to adults (4). An analysis of each transition identified that the changes can be radical (i.e. involving a range of morphological, physiological and behavioural phenomena and shifts in habitats) and critical (i.e. depending on environmental conditions essential for cohort survival). This analysis underlines that transitions from eggs to paralarvae (2) and from paralarvae to subadults (3) present major risk of mortality, while changes in the other transitions can have evolutionary significance. This synthesis suggests that more accurate evaluation of the sensitivity of cephalopod populations to environmental variation could be achieved by taking into account the ontogeny of the organisms. The comparison of most described species advocates for studies linking development and ecology in this particular group.
Collapse
Affiliation(s)
- Jean-Paul Robin
- Université de Caen Basse-Normandie, UMR BOREA: Biologie des ORganismes et des Ecosystèmes Aquatiques, Esplanade de la paix, CS 14032, 14032 Caen, France; UMR BOREA, UMR CNRS7208, IRD207, UPMC, MNHN, UCBN, 14032 Caen, France.
| | - Michael Roberts
- Rhodes University, Grahamstown, South Africa; Oceans & Coasts Research, Victoria & Alfred Waterfront, Cape Town, South Africa
| | - Lou Zeidberg
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Isobel Bloor
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
| | - Almendra Rodriguez
- El Colegio de la Frontera Sur, Colonia Casasano, Cuautla, Morelos, Mexico
| | - Felipe Briceño
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Downey
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa; Bayworld Centre for Research & Education, Constantia, Cape Town, South Africa
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Mike Navarro
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA; Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Angel Guerra
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - Jennifer Hofmeister
- Caldwell Laboratory, Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Diogo D Barcellos
- Laboratório de Ecossistemas Pesqueiros (LabPesq), Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, Butantã, São Paulo, SP, Brazil
| | | | - Clyde F E Roper
- Smithsonian Institution, National Museum of Natural History, Washington, District of Columbia, USA
| | - Natalie A Moltschaniwskyj
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Corey P Green
- Department of Environment and Primary Industries, Fisheries Victoria, Queenscliff, Victoria, Australia
| | - Jennifer Mather
- Psychology Department, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
37
|
Buresi A, Canali E, Bonnaud L, Baratte S. Delayed and asynchronous ganglionic maturation during cephalopod neurogenesis as evidenced by Sof-elav1 expression in embryos of Sepia officinalis (Mollusca, Cephalopoda). J Comp Neurol 2013; 521:1482-96. [PMID: 23047428 DOI: 10.1002/cne.23231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/27/2012] [Accepted: 10/02/2012] [Indexed: 01/05/2023]
Abstract
Among the Lophotrochozoa, centralization of the nervous system reaches an exceptional level of complexity in cephalopods, where the typical molluscan ganglia become highly developed and fuse into hierarchized lobes. It is known that ganglionic primordia initially emerge early and simultaneously during cephalopod embryogenesis but no data exist on the process of neuron differentiation in this group. We searched for members of the elav/hu family in the cuttlefish Sepia officinalis, since they are one of the first genetic markers of postmitotic neural cells. Two paralogs were identified and the expression of the most neural-specific gene, Sof-elav1, was characterized during embryogenesis. Sof-elav1 is expressed in all ganglia at one time of development, which provides the first genetic map of neurogenesis in a cephalopod. Our results unexpectedly revealed that Sof-elav1 expression is not similar and not coordinated in all the prospective ganglia. Both palliovisceral ganglia show extensive Sof-elav1 expression soon after emergence, showing that most of their cells differentiate into neurons at an early stage. On the contrary, other ganglia, and especially both cerebral ganglia that contribute to the main parts of the brain learning centers, show a late extensive Sof-elav1 expression. These delayed expressions in ganglia suggest that most ganglionic cells retain their proliferative capacities and postpone differentiation. In other molluscs, where a larval nervous system predates the development of the definitive adult nervous system, cerebral ganglia are among the first to mature. Thus, such a difference may constitute a cue in understanding the peculiar brain evolution in cephalopods.
Collapse
Affiliation(s)
- Auxane Buresi
- Muséum National d'Histoire Naturelle (MNHN), DMPA, UMR Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, 75005 Paris, France.
| | | | | | | |
Collapse
|
38
|
Mather JA, Kuba MJ. The cephalopod specialties: complex nervous system, learning, and cognition. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2013-0009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While clearly of molluscan ancestry, the coleoid cephalopods are emergent within the phylum for complexity of brain and behaviour. The brain does not just have centralization of the molluscan ganglia but also contains lobes with “higher order” functions such as storage of learned information, and centres have been compared with the vertebrate cerebellum and frontal lobe. The flexible muscular hydrostat movement system theoretically has unlimited degrees of freedom, and octopuses are models for “soft movement” robots. The decentralized nervous system, particularly in the arms of octopuses, results in decision making at many levels. Free of the molluscan shell and with evolutionary pressure from the bony fishes, coleoids have evolved a specialty in cognition and they may have a simple form of consciousness. Cephalopods also have a skin display system of unmatched complexity and excellence of camouflage, also used for communication with predators and conspecifics. A cephalopod is first and foremost a learning animal, using the display system for deception, having spatial memory, personalities, and motor play. They represent an alternative model to the vertebrates for the evolution of complex brains and high intelligence, which has as yet been only partly explored.
Collapse
Affiliation(s)
- Jennifer A. Mather
- Department of Psychology, The University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Michael J. Kuba
- Department of Neurobiology, Institute of Life Sciences and Interdisciplinary Center for Neural Computation, Hebrew University, 91904 Jerusalem, Israel
| |
Collapse
|
39
|
Cartron L, Dickel L, Shashar N, Darmaillacq AS. Maturation of polarization and luminance contrast sensitivities in cuttlefish (Sepia officinalis). ACTA ACUST UNITED AC 2013; 216:2039-45. [PMID: 23430993 DOI: 10.1242/jeb.080390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polarization sensitivity is a characteristic of the visual system of cephalopods. It has been well documented in adult cuttlefish, which use polarization sensitivity in a large range of tasks such as communication, orientation and predation. Because cuttlefish do not benefit from parental care, their visual system (including the ability to detect motion) must be efficient from hatching to enable them to detect prey or predators. We studied the maturation and functionality of polarization sensitivity in newly hatched cuttlefish. In a first experiment, we examined the response of juvenile cuttlefish from hatching to the age of 1 month towards a moving, vertically oriented grating (contrasting and polarized stripes) using an optomotor response apparatus. Cuttlefish showed differences in maturation of polarization versus luminance contrast motion detection. In a second experiment, we examined the involvement of polarization information in prey preference and detection in cuttlefish of the same age. Cuttlefish preferentially chose not to attack transparent prey whose polarization contrast had been removed with a depolarizing filter. Performances of prey detection based on luminance contrast improved with age. Polarization contrast can help cuttlefish detect transparent prey. Our results suggest that polarization is not a simple modulation of luminance information, but rather that it is processed as a distinct channel of visual information. Both luminance and polarization sensitivity are functional, though not fully matured, in newly hatched cuttlefish and seem to help in prey detection.
Collapse
Affiliation(s)
- Lelia Cartron
- Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité Comportementale (EA 4259), F-14032 Caen, France
| | | | | | | |
Collapse
|
40
|
Di Poi C, Darmaillacq AS, Dickel L, Boulouard M, Bellanger C. Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:84-91. [PMID: 23474317 DOI: 10.1016/j.aquatox.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 05/27/2023]
Abstract
Recent ecotoxicological studies highlight the increasing presence of pharmaceuticals discharged in the aquatic environment. Amongst them is the antidepressant fluoxetine (FLX), a selective serotonin reuptake inhibitor, primarily indicated for treatment of depression. The effect of chronic exposure to FLX on memory processing in 1-month-old cuttlefish Sepia officinalis was evaluated. Three groups of new-borns were reared in different conditions: one control group (no FLX) and two groups exposed to environmental concentrations of FLX (1 and 100ng/L) from 15 days pre-hatching to 1 month post-hatching. Acquisition and retention performances were assessed using the 'prawn-in-the-tube' procedure. Perinatal exposure to fluoxetine led to significant changes in memory processing of the animals. The lowest observed effect concentration of this antidepressant on learning and retention was 1ng/L which is under the range of environmental contamination. Cuttlefish exposed at low FLX concentration had impaired acquisition capabilities and animals exposed at high FLX concentration displayed a deficit of memory retention compared to the control group that had nonimpaired initial acquisition and retention performances. The results subsequently suggested that FLX-induced changes in cognitive capacities could potentially lead to inappropriate predatory behaviors in the natural environment. The study provides the basis for future studies on how pharmaceutical contaminants disrupt cognition in ecologically and economically relevant marine invertebrates.
Collapse
Affiliation(s)
- Carole Di Poi
- Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale, EA 4259, 14032 Caen cedex, France
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Romagny S, Darmaillacq AS, Guibé M, Bellanger C, Dickel L. Feel, smell and see in an egg: emergence of perception and learning in an immature invertebrate, the cuttlefish embryo. ACTA ACUST UNITED AC 2013; 215:4125-30. [PMID: 23136152 DOI: 10.1242/jeb.078295] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is now well established that prenatal sensory experience affects development itself and has long-term consequences in terms of postnatal behavior. This study focused on the functionality of the sensory system in cuttlefish in ovo. Embryos of stage 23, 25 and 30 received a tactile, chemical or visual stimulus. An increase of mantle contraction rhythm was taken to indicate a behavioral response to the stimulus. We clearly demonstrated that tactile and chemical systems are functional from stage 23, whereas the visual system is functional only from stage 25. At stage 25 and 30, embryos were also exposed to a repeated light stimulus. Stage 30 embryos were capable of habituation, showing a progressive decrease in contractions across stimulations. This process was not due to fatigue as we observed response recovery after a dishabituation tactile stimulus. This study is the first to show that cuttlefish embryos behaviorally respond to stimuli of different modalities and that the visual system is the last to become functional during embryonic development, as in vertebrate embryos. It also provides new evidence that the memory system develops in ovo in cuttlefish.
Collapse
Affiliation(s)
- Sébastien Romagny
- Equipe d'Ethologie et de Psychobiologie Sensorielle, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS/Université de Bourgogne/INRA, F-21000 Dijon, France
| | | | | | | | | |
Collapse
|
43
|
Dickel L, Darmaillacq AS, Jozet-Alves C, Bellanger C. Learning, Memory, and Brain Plasticity in Cuttlefish (Sepia officinalis). ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
44
|
Bloor ISM, Attrill MJ, Jackson EL. A review of the factors influencing spawning, early life stage survival and recruitment variability in the common cuttlefish (Sepia officinalis). ADVANCES IN MARINE BIOLOGY 2013; 65:1-65. [PMID: 23763891 DOI: 10.1016/b978-0-12-410498-3.00001-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Global landings of cephalopods (cuttlefish, squid and octopus) have increased dramatically over the past 50 years and now constitute almost 5% of the total world's fisheries production. At a time when landings of many traditional fin-fish stocks are continuing to experience a global decline as a result of over-exploitation, it is expected that fishing pressure on cephalopod stocks will continue to rise as the fishing industry switch their focus onto these non-quota species. However, long-term trends indicate that landings may have begun to plateau or even decrease. In European waters, cuttlefish are among the most important commercial cephalopod resource and are currently the highest yielding cephalopod group harvested in the north-east Atlantic, with the English Channel supporting the main fishery for this species. Recruitment variability in this short-lived species drives large fluctuations in landings. In order to provide sustainable management for Sepia officinalis populations, it is essential that we first have a thorough understanding of the ecology and life history of this species, in particular, the factors affecting spawning, early life stage (ELS) survival and recruitment variability. This review explores how and why such variability exists, starting with the impact of maternal effects (e.g. navigation, migration and egg laying), moving onto the direct impact of environmental variation on embryonic and ELSs and culminating on the impacts that these variations (maternal and environmental) have at a population level on annual recruitment success. Understanding these factors is critical to the effective management of expanding fisheries for this species.
Collapse
Affiliation(s)
- Isobel S M Bloor
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK.
| | | | | |
Collapse
|
45
|
Peralta Quesada PC, Schausberger P. Prenatal chemosensory learning by the predatory mite Neoseiulus californicus. PLoS One 2012; 7:e53229. [PMID: 23300897 PMCID: PMC3530487 DOI: 10.1371/journal.pone.0053229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022] Open
Abstract
Background Prenatal or embryonic learning, behavioral change following experience made prior to birth, may have significant consequences for postnatal foraging behavior in a wide variety of animals, including mammals, birds, fish, amphibians, and molluscs. However, prenatal learning has not been previously shown in arthropods such as insects, spiders and mites. Methodology/Principal Findings We examined prenatal chemosensory learning in the plant-inhabiting predatory mite Neoseiulus californicus. We exposed these predators in the embryonic stage to two flavors (vanillin or anisaldehyde) or no flavor (neutral) by feeding their mothers on spider mite prey enriched with these flavors or not enriched with any flavor (neutral). After the predators reached the protonymphal stage, we assessed their prey choice through residence and feeding preferences in experiments, in which they were offered spider mites matching the maternal diet (neutral, vanillin or anisaldehyde spider mites) and non-matching spider mites. Predator protonymphs preferentially resided in the vicinity of spider mites matching the maternal diet irrespective of the type of maternal diet and choice situation. Across treatments, the protonymphs preferentially fed on spider mites matching the maternal diet. Prey and predator sizes did not differ among neutral, vanillin and anisaldehyde treatments, excluding the hypothesis that size-assortative predation influenced the outcome of the experiments. Conclusions/Significance Our study reports the first example of prenatal learning in arthropods.
Collapse
Affiliation(s)
- Paulo C. Peralta Quesada
- Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Schausberger
- Group of Arthropod Ecology and Behavior, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
46
|
Cartron L, Darmaillacq AS, Dickel L. The "prawn-in-the-tube" procedure: what do cuttlefish learn and memorize? Behav Brain Res 2012. [PMID: 23178535 DOI: 10.1016/j.bbr.2012.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For several decades the "prawn-in-the-tube" procedure has been extensively used in the exploration of behavioral plasticity and its neural correlates in cuttlefish. Although the nature of the task has been characterized, the effect of reinforcement and the extent of different cues cuttlefish can use to solve and memorize the task remain unclear. To determine whether cuttlefish learned to inhibit predatory behavior because of pain incurred when the tentacles hit the glass tube, the shrimp prey (typically attacked with a tentacle strike) was replaced by crabs (normally caught by a jumping strategy, using all eight arms together, which is thought less likely to be painful). We showed that the cuttlefish is still capable of learning inhibition of predatory behavior when it adopts another catching strategy, which suggests that pain from the tentacles hitting the tube has little effect on the learning process. The two latest experiments have shown that cuttlefish do not learn to inhibit predatory behavior towards a specific type of prey, but rather learn and memorize visual (light polarization) and tactile information from the glass tube. The "prawn-in-the-tube" procedure is a powerful and user-friendly tool in the investigation of the processing and retention of multisensory information in invertebrates. Our recent findings now open up new areas of investigation into the neural correlates of learning and memory processes in cuttlefish.
Collapse
Affiliation(s)
- Lelia Cartron
- Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale, EA 4259, F-14032 Caen cedex, France
| | | | | |
Collapse
|
47
|
Albertin CB, Bonnaud L, Brown CT, Crookes-Goodson WJ, da Fonseca RR, Di Cristo C, Dilkes BP, Edsinger-Gonzales E, Freeman RM, Hanlon RT, Koenig KM, Lindgren AR, Martindale MQ, Minx P, Moroz LL, Nödl MT, Nyholm SV, Ogura A, Pungor JR, Rosenthal JJC, Schwarz EM, Shigeno S, Strugnell JM, Wollesen T, Zhang G, Ragsdale CW. Cephalopod genomics: A plan of strategies and organization. Stand Genomic Sci 2012; 7:175-88. [PMID: 23451296 PMCID: PMC3570802 DOI: 10.4056/sigs.3136559] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics- Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.
Collapse
Affiliation(s)
- Caroline B Albertin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee YH, Yan HY, Chiao CC. Effects of early visual experience on the background preference in juvenile cuttlefish Sepia pharaonis. Biol Lett 2012; 8:740-3. [PMID: 22791707 DOI: 10.1098/rsbl.2012.0398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although cuttlefish are capable of showing diverse camouflage body patterns against a variety of background substrates, whether they show background preference when given a choice of substrates is not well known. In this study, we characterized the background choice of post-embryonic cuttlefish (Sepia pharaonis) and examined the effects of rearing visual environments on their background preferences. Different rearing backgrounds (enriched, uniformly grey and checkerboard) were used to raise cuttlefish from eggs or hatchlings, and four sets of two-background-choice experiments (differences in contrast, shape, size and side) were conducted at day 1 and weeks 4, 8 and 12 post-hatch. Cuttlefish reared in the enriched environment preferred high-contrast backgrounds at all post-embryonic stages. In comparison, those reared in the impoverished environments (uniformly grey and checkerboard) had either reversed or delayed high-contrast background preference. In addition, cuttlefish raised on the uniformly grey background, exposed to a checkerboard briefly (0.5 or 3 h) at week 4 and tested at week 8 showed increased high-contrast background preference. Interestingly, cuttlefish in the enriched group preferred an object size similar to their body size at day 1 and week 4, but changed this preference to smaller objects at week 12. These results suggest that high-contrast backgrounds may be more adaptive for juvenile cuttlefish, and visually enriched environments are important for the development of these background preference behaviours.
Collapse
Affiliation(s)
- Yi-Hsin Lee
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | |
Collapse
|
49
|
Food imprinting and visual generalization in embryos and newly hatched cuttlefish, Sepia officinalis. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.04.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Jozet-Alves C, Viblanc VA, Romagny S, Dacher M, Healy SD, Dickel L. Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|