1
|
Nazir A, Khan EU, Muneeb M, Qaisrani SN, Naveed S, Ahmad S, Yameen RMK, Al Sulaiman AR, Alhotan RA, Abudabos AE. Influence of Dietary Supplementation with Yeast Culture and Microencapsulated Butyric Acid on Growth Performance, Carcass Traits, Gut Health, and Immune Status in Broilers. Vet Sci 2025; 12:359. [PMID: 40284861 PMCID: PMC12031145 DOI: 10.3390/vetsci12040359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The study aimed to examine the effects of dietary supplementation with microencapsulated butyric acid (EBA) and yeast culture (YC) in broiler diets. A total of 450 Ross-308 broiler chicks were selected and randomly allocated to five dietary treatments with six replicates (15 birds per replicate) in a complete block design. The experimental diets included the following treatments: (1) Negative control (NC) with basal diet without any additives. (2) Positive control (PC) with basal diet + 0.2 g/kg enramycin. (3) EBA, basal diet + 0.3 g/kg EBA. (4) YC, basal diet + 1 g/kg YC. (5) EBA+YC, basal diet + 0.3 g/kg EBA and 1 g/kg YC. The results indicated a non-significant effect on feed intake (FI) during the experiment periods. However, the EBA+YC treatment exhibited significantly increased body weight gain (BWG), better feed conversion ratio (FCR), and enhanced carcass traits (p < 0.05) compared to other treatments. A significant effect was observed for the immune organ weights and ND titters. Villus height (VH) and the ratio of villus height-to-crypt depth (VH: CD) were noted for EBA+YC across all other treatments. Ileal microbial analysis revealed a significantly lower count of E. coli and Salmonella in the ileal digesta of broiler chickens in the EBA+YC treatment compared to the NC group (p < 0.05). In conclusion, dietary supplementation with any supplement positively influences the broiler's performance, carcass characteristics, gut health, and immune status over the NC group. More pronounced improvements were obtained from the EBA+YC group, indicating that EBA and YC had a synergistic effect on broilers.
Collapse
Affiliation(s)
- Azhar Nazir
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Shafqat Nawaz Qaisrani
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Saima Naveed
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (A.N.); (M.M.); (S.N.Q.); (S.N.)
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (S.A.); (R.M.K.Y.)
| | - Rao Muhammad Kashif Yameen
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (S.A.); (R.M.K.Y.)
| | - Ali R. Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ala E. Abudabos
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096-7500, USA
| |
Collapse
|
2
|
Huang W, Yang S, Cai W, Huang W, Liu Y, Li S, Zhou M, Tan B, Dong X. Effect of Feeding Frequency on the Growth, Body Composition, and Intestinal Health of Hybrid Grouper ( Epinephelus fuscoguttatus♀ × E. lanceolatu♂) Fed a High-Fat Diet. Animals (Basel) 2025; 15:346. [PMID: 39943116 PMCID: PMC11816143 DOI: 10.3390/ani15030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This experiment was to investigate the effects of feeding frequency on the growth performance, body composition, and intestinal health of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu ♂). Fifty-six days of feeding with four different feeding frequencies (1 time/day, 2 times/day, 3 times/day, and 4 times/day) were conducted on groupers with an initial body weight of 11.51 ± 0.02 g. The results show the following: (1) Weight gain rate (WGR) and specific growth rate (SGR) of the groupers in the 1 time/day group were significantly lower than in other groups (p < 0.05). (2) Superoxide dismutase (SOD) had the lowest value in the 1 time/day group, significantly lower than the 2 times/day and 4 times/day groups, catalase showed an upward trend, and the 4 times/day group was significantly greater than the other groups (p < 0.05). The total antioxidant capacity (T-AOC) and glutathione peroxidase (GPX) activities in the 1 time/day group were significantly lower than in the other groups (p < 0.05). (3) The increase in feeding frequency led to a significant increase in the expression levels of cat and il-6 (p < 0.05). In summary, appropriate feeding frequency can promote growth and enhance the antioxidant capacity of the fish's gut. We recommend a best feeding frequency of 2 times/day.
Collapse
Affiliation(s)
- Weibin Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shipei Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Wenshan Cai
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Wanting Huang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Yansheng Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shuaipeng Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Menglong Zhou
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.H.)
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Technology Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
3
|
Shahrajabian MH, Sun W. Study Rapid, Quantitative, and Simultaneous Detection of Drug Residues and Immunoassay in Chickens. Rev Recent Clin Trials 2025; 20:2-17. [PMID: 39171469 DOI: 10.2174/0115748871305331240724104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 08/23/2024]
Abstract
Different levels of residual drugs can be monitored within a relatively safe range without causing harm to human health if the appropriate dosing methodology is considered and the drug withdrawal period is controlled during poultry and livestock raising. Antimicrobials are factors that can suppress the growth of microorganisms, and antibiotic residues in livestock farming have been considered as a potential cause of antimicrobial resistance in animals and humans. Antimicrobial drug resistance is associated with the capability of a microorganism to survive the inhibitory effects of the antimicrobial components. Antibiotic residue presence in chicken is a human health concern due to its negative effects on consumer health. Neglected aspects related to the application of veterinary drugs may threaten the safety of both humans and animals, as well as their environment. The detection of chemical contaminants is essential to ensure food quality. The most important antibiotic families used in veterinary medicines are β-lactams (penicillins and cephalosporins), tetracyclines, chloramphenicols, macrolides, spectinomycin, lincosamide, sulphonamides, nitrofuranes, nitroimidazoles, trimethoprim, polymyxins, quinolones, and macrocyclics (glycopeptides, ansamycins, and aminoglycosides). Antibiotic residue presence is the main contributor to the development of antibiotic resistance, which is considered a chief concern for both human and animal health worldwide. The incorrect application and misuse of antibiotics carry the risk of the presence of residues in the edible tissues of the chicken, which can cause allergies and toxicity in hypersensitive consumers. The enforcement of the regulation of food safety depends on efficacious monitoring of antimicrobial residues in the foodstuff. In this review, we have explored the rapid detection of drug residues in broilers.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| |
Collapse
|
4
|
Dong S, Zhang N, Wang J, Cao Y, Johnston LJ, Ma Y. Effects of Medium- and Short-Chain Fatty Acids on Growth Performance, Nutrient Digestibility, Gut Microbiota and Immune Function in Weaned Piglets. Animals (Basel) 2024; 15:37. [PMID: 39794980 PMCID: PMC11718992 DOI: 10.3390/ani15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
The aim of this study was to investigate the combination effects of α-glycerol monolaurate (GML) and glyceryl tributyrate (TB) on growth performance, nutrient digestibility, gut microbiota, and immune function in weaned piglets. A total of 120 weaned piglets with an average body weight (BW) of 6.88 kg were randomly allocated to one of the three dietary treatments: (1) CON: a basal diet; (2) 0.1%: a basal diet with 0.1% MSCFA (GML/TB = 1:1); (3) 0.2%: a basal diet with 0.2% MSCFA (GML/TB = 1:1). The experiment lasted 28 days. There were no differences on average daily growth (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR). Supplementation with 0.1% MSCFA increased apparent total tract digestibility (ATTD) of crude protein (CP) and gross energy (GE, p < 0.05) on d 14 and increased GE (p < 0.05) on d 28 compared with the CON group. The ATTD of dry matter (DM), organic matter (OM) and crude protein (CP) of piglets supplemented with 0.1% MSCFA was higher (p < 0.05). Compared with the CON group, supplementation with 0.1% MSCFA increased immunoglobulin M (IgM) concentration, decreased interleukin-6 (IL-6) content (p < 0.05) on d 14 and decreased malonaldehyde (MDA), interleukin-1beta (IL-1β), IL-6 concentrations (p < 0.05) on d 28. Supplementation with 0.1% MSCFA increased total antioxidant capacity (T-AOC) concentration (p < 0.05), decreased GSH-Px, MDA content (p < 0.05) in jejunum compared with the CON group. Moreover, supplementation with MSCFA increased the activity of duodenal lipase (p < 0.05) and the abundance of firmicutes and decreased the abundance of proteobacteria compared with the CON group. Overall, supplementation with MSCFA can improve nutrient digestibility, enhance immunity and antioxidant capacity, and improve the intestinal health of piglets. The combined use of MSCFA is a nutrition regulation strategy worthy of further exploration in modern animal husbandry.
Collapse
Affiliation(s)
- Shuang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Nan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| | - Jihua Wang
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Yu Cao
- Galido Biotechnology Co., Ltd., Wuhan 430074, China; (J.W.); (Y.C.)
| | - Lee J. Johnston
- Department of Animal Science, West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA;
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.D.); (N.Z.)
| |
Collapse
|
5
|
Huerta A, Xiccato G, Bordignon F, Birolo M, Boskovic Cabrol M, Pirrone F, Trocino A. Dietary fat content and supplementation with sodium butyrate: effects on growth performance, carcass traits, meat quality, and myopathies in broiler chickens. Poult Sci 2024; 103:104199. [PMID: 39197337 PMCID: PMC11399674 DOI: 10.1016/j.psj.2024.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the effects of the dietary inclusion of microencapsulated sodium butyrate (Na-butyrate; 0, 150, and 300 mg Na-butyrate/kg diet) and dietary fat reduction (7.7% vs. 6.7% in the grower diet; 8.9% vs. 7.7% in the finisher diet) in 792 (half male and half female) broiler chickens on growth performance, carcass traits, and meat quality and the occurrence of wooden breast (WB), white striping (WS), and spaghetti meat (SM). Dietary supplementation with Na-butyrate did not affect the growth performance, carcass traits, meat quality traits, or myopathy rates. Dietary fat reduction did not influence feed intake (FI) but decreased average daily gain (ADG); increased feed conversion ratio (FCR) (P < 0.001); and decreased the occurrence of WS (-38%; P < 0.01), WB (-48%; P < 0.05), and SM (-90%; P < 0.01). Dietary fat reduction also increased cold carcass weight (P < 0.01), carcass yield (P < 0.05), and pectoralis major yield (P < 0.05), whereas meat quality was not affected. Compared to females, males had high body weight, ADG, and FI and low FCR (P < 0.001) at the end of the trial. Moreover, cold carcass weight and hind leg yield were higher in males than in females (P < 0.001), whereas females had higher carcass, breast, and p. major yields (P < 0.001). Males showed a higher rate of WB (P < 0.001) and a lower rate of SM (P < 0.01) than females, whereas WS occurrence did not differ between sexes. In conclusion, Na-butyrate supplementation did not affect growth performance, carcass traits, or meat quality. Conversely, the reduction in dietary fat greatly decreased myopathy occurrence, whereas moderately impaired growth performance.
Collapse
Affiliation(s)
- A Huerta
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - M Boskovic Cabrol
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F Pirrone
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - A Trocino
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy; Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
6
|
Ullah S, Zhang J, Feng F, Shen F, Qiufen M, Wang J, Ur Rahman T, Haleem A, Zhao M, Shao Q. Effect of Dietary Supplementation of Glycerol Monolaurate on Growth Performance, Digestive Enzymes, Serum Immune and Antioxidant Parameters, and Intestinal Morphology in Black Sea Bream. Animals (Basel) 2024; 14:2963. [PMID: 39457893 PMCID: PMC11503854 DOI: 10.3390/ani14202963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
An eight-week feeding trial was conducted to examine the impact of dietary supplementation with glycerol monolaurate (GML) on juvenile black sea bream. A basal diet was formulated containing 24% fish meal, while five additional diets were prepared, each supplemented with varying levels of GML: GML1 (0.01%), GML2 (0.02%), GML3 (0.04%), GML4 (0.08%), and GML5 (0.16%). Triplicate tanks were randomly allocated to each diet, each containing 20 fish with an initial weight of 1.55 ± 0.05 g. By the trial's end, the GML3 group displayed a notably higher final body weight (FBW), weight gain (WG), specific growth rate (SGR), and protein efficiency ratio (PER) compared to the other groups (p < 0.05), but the FCR was significantly higher in the control group. However, no significant differences were observed in the MFI, PPV, CF, HSI, IPF, VSI, or SR among the groups (p > 0.05). Regarding the proximate compositions of the dorsal muscle and whole body, no substantial differences were observed across the groups (p > 0.05). Additionally, there were no significant variations in digestive enzyme activity (p > 0.05), serum immune, or biochemical parameters in the midgut and hindgut among the treatment groups. But in the serum immune response IgM, C3 and C4 were significantly higher in the GML3 group as compared to the other groups (p < 0.05). However, the GML3 group exhibited significantly greater fore-intestinal villus height, crypt depth, villus height per crypt depth, and the number of goblet cells per villus compared to the other groups (p < 0.05). Overall, GML supplementation, particularly GML3, significantly improved growth indicators like the final body weight and intestinal morphology. While certain parameters remained unaffected, these findings suggest GML's potential as a beneficial dietary supplement in fish diets.
Collapse
Affiliation(s)
- Sami Ullah
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Zhongyuan Institute, Zhengzhou 450001, China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mo Qiufen
- College of Food and Health, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tanzil Ur Rahman
- Centre for Animal Sciences and Fisheries, University of Swat, Swat 19200, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qingjun Shao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Ocean Academy, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
7
|
Peng X, Zhou Q, Wang CQ, Zhang ZM, Luo Z, Xu SY, Feng B, Fang ZF, Lin Y, Zhuo Y, Jiang XM, Zhao H, Tang JY, Wu D, Che LQ. Dietary supplementation of proteases on growth performance, nutrient digestibility, blood characteristics and gut microbiota of growing pigs fed sorghum-based diets. Animal 2024; 18:101052. [PMID: 38181459 DOI: 10.1016/j.animal.2023.101052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Low-tannin sorghum is an excellent energy source in pig diets. However, sorghum contains several anti-nutritional factors that may have negative effects on nutrient digestibility. The impacts of proteases on growth performance, nutrient digestibility, blood parameters, and gut microbiota of growing pigs fed sorghum-based diets were studied in this study. Ninety-six pigs (20.66 ± 0.65 kg BW) were allocated into three groups (eight pens/group, four pigs/pen): (1) CON (control diet, sorghum-based diet included 66.98% sorghum), (2) PRO1 (CON + 200 mg/kg proteases), (3) PRO2 (CON + 400 mg/kg proteases) for 28 d. No differences were observed in growth performance and apparent total tract digestibility (ATTD) of nutrients between CON and PRO1 groups. Pigs fed PRO2 diet had increased (P < 0.05) BW on d 21 and 28, and increased (P < 0.05) average daily gain during d 14-21 and the overall period compared with pigs fed CON diet. In addition, pigs fed PRO2 diet had improved (P < 0.05) ATTD of gross energy, CP, and DM compared with pigs fed CON and PRO1 diets. Pigs fed PRO2 diet had lower (P < 0.05) plasma globulin (GLB) level and higher (P < 0.05) plasma glucose, albumin (ALB) and immunoglobulin G levels, and ALB/GLB ratio than pigs fed CON and PRO1 diets. Furthermore, pigs fed PRO2 diet had decreased (P < 0.05) the relative abundance of Acidobacteriota at the phylum level and increased (P < 0.05) the relative abundance of Prevotella_9 at the genus level. The linear discriminant analysis effect size analysis also showed that pigs fed PRO2 diet had significantly enriched short-chain fatty acid-producing bacteria, such as Subdoligranulum and Parabacteroides. In conclusion, protease supplementation at 400 mg/kg improved the growth performance of growing pigs fed sorghum-based diets, which may be attributed to the improvement of nutrient digestibility, host metabolism, immune status and associated with the altered gut microbiota profiles.
Collapse
Affiliation(s)
- X Peng
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Q Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - C Q Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Z M Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Z Luo
- Kemin (China) Technologies Co., Ltd., Sanzao, Zhuhai 519040, China
| | - S Y Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - B Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Z F Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Y Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Y Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - X M Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - H Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - J Y Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - D Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - L Q Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Asare PT, Greppi A, Geirnaert A, Pennacchia A, Babst A, Lacroix C. Glycerol and reuterin-producing Limosilactobacillus reuteri enhance butyrate production and inhibit Enterobacteriaceae in broiler chicken cecal microbiota PolyFermS model. BMC Microbiol 2023; 23:384. [PMID: 38053034 PMCID: PMC10696668 DOI: 10.1186/s12866-023-03091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Administering probiotic strains of Limosilactobacillus reuteri to poultry has been shown to improve poultry performance and health. Some strains of L. reuteri taxa can produce reuterin, a broad-spectrum antimicrobial compound from glycerol conversion, with high inhibitory activity against enterobacteria. However, little is known about the metabolism of glycerol in the complex chicken cecal microbiota nor the effect of glycerol, either alone or combined with L. reuteri on the microbiota. In this study, we investigated the effect of L. reuteri PTA5_F13, a high-reuterin-producing chicken strain and glycerol, alone or combined, on broiler chicken cecal microbiota composition and activity using the continuous PolyFermS model recently developed to mimic chicken cecal fermentation. METHODS Three independent PolyFermS chicken cecal microbiota models were inoculated with immobilized cecal microbiota from different animals and operated continuously. The effects of two additional levels of glycerol (50 and 100 mM) with or without daily supplementation of chicken-derived L. reuteri PTA5_F13 (107 CFU/mL final concentration) were tested in parallel second-stage reactors continuously inoculated with the same microbiota. We analyzed the complex chicken gut microbiota structure and dynamics upon treatment using 16S rRNA metabarcoding and qPCR. Microbiota metabolites, short-chain and branched-chain fatty acids, and glycerol and reuterin products were analyzed by HPLC in effluent samples from stabilized reactors. RESULTS Supplementation with 100 mM glycerol alone and combined with L. reuteri PTA5_F13 resulted in a reproducible increase in butyrate production in the three modelled microbiota (increases of 18 to 25%). Glycerol alone resulted also in a reduction of Enterobacteriaceae in two of the three microbiota, but no effect was detected for L. reuteri alone. When both treatments were combined, all microbiota quantitatively inhibited Enterobacteriaceae, including in the last model that had very high initial concentrations of Enterobacteriaceae. Furthermore, a significant 1,3-PDO accumulation was measured in the effluent of the combined treatment, confirming the conversion of glycerol via the reuterin pathway. Glycerol supplementation, independent of L. reuteri addition, did not affect the microbial community diversity. CONCLUSIONS Glycerol induced a stable and reproducible butyrogenic activity for all tested microbiota and induced an inhibitory effect against Enterobacteriaceae that was strengthened when reuterin-producing L. reuteri was spiked daily. Our in vitro study suggests that co-application of L. reuteri PTA5_F13 and glycerol could be a useful approach to promote chicken gut health by enhancing metabolism and protection against Enterobacteriaceae.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
- Present address: Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Anna Greppi
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Annelies Geirnaert
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Alessia Pennacchia
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Angela Babst
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, LFV D 20, Schmelzbergstrasse 7, CH-8042, Zurich, Switzerland.
| |
Collapse
|
9
|
Bawish BM, Zahran MFS, Ismael E, Kamel S, Ahmed YH, Hamza D, Attia T, Fahmy KNE. Impact of buffered sodium butyrate as a partial or total dietary alternative to lincomycin on performance, IGF-1 and TLR4 genes expression, serum indices, intestinal histomorphometry, Clostridia, and litter hygiene of broiler chickens. Acta Vet Scand 2023; 65:44. [PMID: 37770986 PMCID: PMC10540366 DOI: 10.1186/s13028-023-00704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Sodium butyrate (SB) is a short-chain fatty acid and a safe antibiotic alternative. During 35 days, this study compared the impact of coated SB (Butirex C4) and lincomycin (Lincomix) on broiler growth, gut health, and litter hygiene in 1200 one-day-old Ross-308 broiler chicks that were randomly assigned into 5-dietary groups with 5-replications each. Groups divided as follows: T1: Basal diet (control), T2: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds), T3: Basal diet with 100 g/ton lincomycin, T4: Basal diet with buffered SB (0.5 kg/ton starter feed, 0.25 kg/ton grower-finisher feeds) + 50 g/ton lincomycin, and T5: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds) + 50 g/ton lincomycin. Birds were housed in a semi-closed deep litter house, where feed and water were available ad libitum. Results were statistically analyzed using ANOVA and Tukey's post hoc tests. RESULTS Combined dietary supplementation with SB and lincomycin (T4 and T5) significantly enhanced body weights, weight gains, feed conversion ratio, and profitability index. Also, carcasses in T4 and T5 exhibited the highest dressing, breast, thigh, and liver yields. T5 revealed the best blood biochemical indices, while T3 showed significantly elevated liver and kidney function indices. T4 and T5 exhibited the highest expression levels of IGF-1 and TLR4 genes, the greatest villi length of the intestinal mucosa, and the lowest levels of litter moisture and nitrogen. Clostridia perfringens type A alpha-toxin gene was confirmed in birds' caeca, with the lowest clostridial counts defined in T4. CONCLUSIONS Replacing half the dose of lincomycin (50 g/ton) with 0.5 or 1 kg/ton coated SB as a dietary supplement mixture showed the most efficient privileges concerning birds' performance and health.
Collapse
Affiliation(s)
- Basma Mohamed Bawish
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt
| | | | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, 12211, Egypt.
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taha Attia
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Sadat City, Minoufiya, 23897, Egypt
| | - Khaled Nasr Eldin Fahmy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
10
|
Liu M, Uyanga VA, Cao X, Liu X, Lin H. Regulatory Effects of the Probiotic Clostridium butyricum on Gut Microbes, Intestinal Health, and Growth Performance of Chickens. J Poult Sci 2023; 60:2023011. [PMID: 37143616 PMCID: PMC10150032 DOI: 10.2141/jpsa.2023011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Clostridium butyricum is an important probiotic for chickens and exerts various biological activities, including altering the composition of the intestinal microbiota, competing with other microorganisms for nutrients, improving the integrity of the intestinal mucosal system, changing the intestinal barrier, and improving overall host health. Intestinal microbes also play vital roles in maintaining the intestinal barrier, regulating intestinal health, and promoting chicken growth. During chicken production, chickens are vulnerable to various stressors that have detrimental effects on the intestinal barrier with significant economic consequences. C. butyricum is a known probiotic that promotes intestinal health and produces the short-chain fatty acid butyric acid, which is beneficial for the growth performance of chickens. This review elucidates the development and utilization of C. butyricum to improve intestinal barrier function and growth performance in chickens through its probiotic properties and interactions with intestinal microbes.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Victoria Anthony Uyanga
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xinyu Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| |
Collapse
|
11
|
Shaufi MAM, Sieo CC, Chong CW, Geok Hun T, Omar AR, Han Ming G, Wan Ho Y. Effects of Phage Cocktail, Probiotics, and Their Combination on Growth Performance and Gut Microbiota of Broiler Chickens. Animals (Basel) 2023; 13:ani13081328. [PMID: 37106891 PMCID: PMC10135209 DOI: 10.3390/ani13081328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Phages, which are often used therapeutically, have begun to receive interest as alternatives to antibiotic growth promoters (AGPs) for enhancing chicken growth. Another option that has been extensively studied as a growth promoter in chickens is probiotics. To the best of our knowledge, there is currently no study available on the use of phages and probiotics in combination as potential feed additives for broiler chickens. Therefore, this study demonstrated the effects of a phage cocktail, probiotics, and their combination on the growth performance and gut microbiota of broiler chickens. A total of 288 one-day-old male Cobb 500 broilers were randomly allotted to one of six treatments in a completely randomised design. The treatments were (i) C (basal diet (BD) only), (ii) 1ϕ (BD + 0.1% phage cocktail), (iii) 2ϕ (BD + 0.2% phage cocktail), (iv) P (BD + 0.1% probiotic), (v) 1ϕP (BD + 0.1% phage cocktail + 0.1% probiotic), and (vi) 2ϕP (BD + 0.2% phage cocktail + 0.1% probiotic). The 1ϕP treatment had significantly (p < 0.05) better BW (35 days), BWG (22-35 days, 1-35 days), and FCR (1-21 days, 22-35 days, 1-35 days) compared to C. Unique gut microbiota diversity was also found between the ϕP (1ϕP and 2ϕP) and non-ϕP groups (C, 1ϕ, 2ϕ, and P) in ilea, particularly in the 35-day-old chickens. Microorganisms associated with short-chain fatty acid (SCFA) producers were significantly (p < 0.05) more present in the ϕP group than in the non-ϕP group. The predicted genes related to carbohydrate and amino acid metabolism were significantly upregulated in ϕP groups compared to non-ϕP groups. These genes were involved in the digestion and absorption of nutrients, as well as the production of energy. Our findings showed that the 1ϕP treatment could be a potential alternative to AGPs for poultry, as growth performance was enhanced, and gut microbiota was positively modulated.
Collapse
Affiliation(s)
- Mohd Asrore Mohd Shaufi
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Chin Chin Sieo
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Chun Wie Chong
- Department of Life Sciences, International Medical University, Jalan Jalil Perkasa 19, Taman Esplanade, Kuala Lumpur 57000, Malaysia
| | - Tan Geok Hun
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| | - Gan Han Ming
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Yin Wan Ho
- Institute of Bioscience, Universiti Putra Malaysia UPM, Seri Kembangan 43400, Malaysia
| |
Collapse
|
12
|
Wang X, Wan M, Wang Z, Zhang H, Zhu S, Cao X, Xu N, Zheng J, Bu X, Xu W, Mai K, Ai Q. Effects of Tributyrin Supplementation on Growth Performance, Intestinal Digestive Enzyme Activity, Antioxidant Capacity, and Inflammation-Related Gene Expression of Large Yellow Croaker ( Larimichthys crocea) Fed with a High Level of Clostridium autoethanogenum Protein. AQUACULTURE NUTRITION 2023; 2023:2687734. [PMID: 36860969 PMCID: PMC9973137 DOI: 10.1155/2023/2687734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
An 8-week growth experiment was conducted to investigate effects of tributyrin (TB) supplementation on growth performance, intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of juvenile large yellow croaker (Larimichthys crocea) (initial weight of 12.90 ± 0.02 g) fed diets with high level of Clostridium autoethanogenum protein (CAP). In the negative control diet, 40% fish meal was used as the major source of protein (named as FM), while 45% fish meal protein of FM was substituted with CAP (named as FC) to form a positive control diet. Based on the FC diet, grade levels of 0.05%, 0.1%, 0.2%, 0.4%, and 0.8% tributyrin were added to formulate other five experimental diets. Results showed that fish fed diets with high levels of CAP significantly decreased the weight gain rate (WGR) and specific growth rate (SGR) compared with fish fed the FM diet (P < 0.05). WGR and SGR were significantly higher than in fish fed diets with 0.05% and 0.1% tributyrin that fed the FC diet (P < 0.05). Supplementation of 0.1% tributyrin significantly elevated fish intestinal lipase and protease activities compared to FM and FC diets (P < 0.05). Meanwhile, compared to fish fed the FC diet, fish fed diets with 0.05% and 0.1% tributyrin showed remarkably higher intestinal total antioxidant capacity (T-AOC). Malondialdehyde (MDA) content in the intestine of fish fed diets with 0.05%-0.4% tributyrin was remarkably lower than those in the fish fed the FC diet (P < 0.05). The mRNA expressions of tumor necrosis factor α (tnfα), interleukin-1β (il-1β), interleukin-6 (il-6), and interferon γ (ifnγ) were significantly downregulated in fish fed diets with 0.05%-0.2% tributyrin, and the mRNA expression of il-10 was significantly upregulated in fish fed the 0.2% tributyrin diet (P < 0.05). In regard to antioxidant genes, as the supplementation of tributyrin increased from 0.05% to 0.8%, the mRNA expression of nuclear factor erythroid 2-related factor 2 (nrf2) demonstrated a trend of first rising and then decreasing. However, the mRNA expression of Kelch-like ECH-associated protein 1 (keap1) was remarkably lower in fish fed the FC diet than that fed diets with tributyrin supplementation (P < 0.05). Overall, fish fed tributyrin supplementation diets can ameliorate the negative effects induced by high proportion of CAP in diets, with an appropriate supplementation of 0.1%.
Collapse
Affiliation(s)
- Xiuneng Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Haitao Zhang
- Guangdong Evergreen Feed Industry Co., Ltd., Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| |
Collapse
|
13
|
Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, Mack D, Stintzi A. Butyrate's role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr 2023; 42:61-75. [PMID: 36502573 DOI: 10.1016/j.clnu.2022.10.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.
Collapse
Affiliation(s)
- Kendra Hodgkinson
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Faiha El Abbar
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Peter Dobranowski
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Juliana Manoogian
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - David Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
14
|
Dietary Protected Sodium Butyrate and/or Olive Leaf and Grape-Based By-Product Supplementation Modifies Productive Performance, Antioxidant Status and Meat Quality in Broilers. Antioxidants (Basel) 2023; 12:antiox12010201. [PMID: 36671062 PMCID: PMC9854548 DOI: 10.3390/antiox12010201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
To meet the demand for chicken meat production, new additives that promote growth and health without adverse effects on meat quality are being investigated. This study was conducted to investigate the effect of protected sodium butyrate (PSB) (0 vs. 2 g/kg), an olive leaf and grape-based by-product (OLG-mix), or a combined supplementation of PSB and OLG-mix on productive performance, antioxidant status, carcass, and meat quality in broilers. PSB improved performance parameters with greater effect in the initial phase. Both, PSB and OLG-mix increased the plasma superoxide dismutase (SOD); however, PSB supplementation was more effective to delay the lipid oxidation of meat from the initial day of storage. OLG-mix produced meat with greater color intensity, b* value and lesser drip losses than PSB. The combination of PSB + OLG-mix did not produce more marked effects that the individual administration; except to control the oxidation of meat. Linear and positive correlations between antioxidant enzymes and weight gain were observed. Significant linear and negative relationships were quantified between plasma SOD and meat lipid oxidation according to dietary treatment. Therefore, the present study would be a first approximation to the possibilities for predicting growth range and meat quality through the evaluation of the blood oxidative status.
Collapse
|
15
|
El-Saadony MT, Yaqoob MU, Hassan FU, Alagawany M, Arif M, Taha AE, Elnesr SS, El-Tarabily KA, Abd El-Hack ME. Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. Anim Health Res Rev 2022; 23:136-146. [PMID: 36373971 DOI: 10.1017/s1466252321000220] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the increasing demand for antibiotic-free livestock products from the consumer side and the ban on the use of antibiotic growth promoters, the poultry feed industry is increasingly interested in developing more alternatives to cope with this problem. Organic acids (butyric acid) have many beneficial effects on poultry health, performance, and egg quality when used in their diet, thus they can be considered for the replacement of antibiotics in livestock production systems. Butyric acid is most efficacious against pathogenic bacteria such as Salmonella spp. and Escherichia coli, and stimulates the population of beneficial gut bacteria. It is a primary energy source for colonocytes and augments the differentiation and maturation of the intestinal cells. Collectively, butyric acid should be considered as an alternative to antibiotic growth promoters, because it reduces pathogenic bacteria and their toxins, enhancing gut health thereby increasing nutrient digestibility, thus leading to improved growth performance and immunity among birds. The possible pathways and mechanisms through which butyric acid enhances gut health and production performance are discussed in this review. Detailed information about the use of butyric acid in poultry and its possible benefits under different conditions are also provided, and the impacts of butyric acid on egg quality and osteoporosis are noted.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
16
|
GÜMÜŞ E, BAYRAKTAROĞLU AG, KARA K, AKSOY NH, CUFADAR Y. Influence of the Dietary Supplement of Protected Calcium Butyrate in Growing Japanese Quail Diets on Performance, Carcass Parameters, Blood Serum Biochemical Status, Meat Quality and Jejunum Histomorphology. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2022. [DOI: 10.33988/auvfd.1091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In this trial, it was planned to determine the effect of protected calcium butyrate (PCB) supplemented at different amounts on performance, carcass characteristics, blood biochemical values, jejunum histomorphology, and meat traits in Japanese quails. 196 one-day-old unsexed Japanese quails divided into 4 groups with 7 replicates. A conventional corn and soybean meal-based diet was formulated, and all groups’ diets were supplemented with 0, 0.5, 1.0 and 2.0 g/kg PCB respectively for 42 days. From the results, PCB supplementation significantly improved body weight (BW) on the 21st day, body weight gain (BWG) between 0 to 21 days, hot carcass yield (HCY), relative weights of the hearth. Similarly, blood urea nitrogen (BUN), total cholesterol (TC), low-density lipoprotein (LDL) and villus height (VH) levels were lower in PCB supplemented groups. Besides, PCB supplementation in Japanese quails decreased villus-crypt rate (VCR) except for the control and the group fed with 2.0 g/kg PCB. This study showed that dietary PCB supplementation in Japanese quails’ diet improved growth performance in young chicks and carcass yield, BUN, and lipid profile. On the other hand, the supplementation didn’t affect the antioxidant status, homocysteine, and folic acid values in blood and meat traits.
Collapse
Affiliation(s)
- Erinç GÜMÜŞ
- AKSARAY ÜNİVERSİTESİ, ESKİL MESLEK YÜKSEKOKULU, VETERİNERLİK BÖLÜMÜ
| | | | - Kanber KARA
- ERCIYES UNIVERSITY, FACULTY OF VETERINARY MEDICINE
| | | | | |
Collapse
|
17
|
Jadhav VV, Han J, Fasina Y, Harrison SH. Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Front Physiol 2022; 13:1035538. [PMID: 36406988 PMCID: PMC9667555 DOI: 10.3389/fphys.2022.1035538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.
Collapse
Affiliation(s)
- Vidya V. Jadhav
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| | - Scott H. Harrison
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States,*Correspondence: Yewande Fasina, ; Scott H. Harrison,
| |
Collapse
|
18
|
Mátis G, Mackei M, Boomsma B, Fébel H, Nadolna K, Szymański Ł, Edwards JE, Neogrády Z, Kozłowski K. Dietary Protected Butyrate Supplementation of Broilers Modulates Intestinal Tight Junction Proteins and Stimulates Endogenous Production of Short Chain Fatty Acids in the Caecum. Animals (Basel) 2022; 12:ani12151940. [PMID: 35953929 PMCID: PMC9367590 DOI: 10.3390/ani12151940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Short chain fatty acid (SCFA) butyrate has various beneficial effects on the gut microbiota as well as on the overall health status and metabolism of the host organism. The modulatory role of butyrate on gut barrier integrity reflected by tight junction protein expression has been already described in mammalian species. However, there is limited information available regarding chickens. Therefore, the main aim of this study was to monitor the effects of protected butyrate on claudin barrier protein and monocarboxylate transporter 1 abundance in different gastrointestinal segments of chickens as well as the growth performance of broiler chickens. The effect of protected butyrate on the caecal microbiota was monitored by quantifying the concentrations of total eubacteria and key enzymes of butyrate production. Furthermore, intestinal SCFA concentrations were also measured. Based on the data obtained, protected butyrate increased the overall performance as well as the barrier integrity of various gut segments. Protected butyrate also positively affected the SCFA concentration and composition. These findings provide valuable insight into the complex effects of protected butyrate on broiler gut health, highlighting the beneficial effects in improving intestinal barrier integrity and performance parameters.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (G.M.); (M.M.); (Z.N.)
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (G.M.); (M.M.); (Z.N.)
| | - Bart Boomsma
- Palital Feed Additives B.V., De Tweede Geerden, 5334 LH Velddriel, The Netherlands; (B.B.); (J.E.E.)
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gesztenyés Str. 1, H-2053 Herceghalom, Hungary;
| | - Katarzyna Nadolna
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.N.); (Ł.S.)
| | - Łukasz Szymański
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.N.); (Ł.S.)
| | - Joan E. Edwards
- Palital Feed Additives B.V., De Tweede Geerden, 5334 LH Velddriel, The Netherlands; (B.B.); (J.E.E.)
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary; (G.M.); (M.M.); (Z.N.)
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5, 10-719 Olsztyn, Poland; (K.N.); (Ł.S.)
- Correspondence:
| |
Collapse
|
19
|
Liu L, Ling H, Zhang W, Zhou Y, Li Y, Peng N, Zhao S. Functional Comparison of Clostridium butyricum and Sodium Butyrate Supplementation on Growth, Intestinal Health, and the Anti-inflammatory Response of Broilers. Front Microbiol 2022; 13:914212. [PMID: 35722291 PMCID: PMC9201392 DOI: 10.3389/fmicb.2022.914212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Butyrate has been reported to promote proliferation of colonic epithelial cells and maintain intestinal barrier integrity in broilers. Although supplementation of Clostridium butyricum and sodium butyrate have been shown to confer benefits on broilers, their effects and mechanisms have not been compared. In this study, C. butyricum and sodium butyrate were added into the basal diet of broilers and their effects on growth performance, intestinal health, and anti-inflammatory response were analyzed. It was found that both C. butyricum and sodium butyrate showed good probiotic effects on broilers. Their effects on growth rate and expression of inflammation related genes were superior to that of the antibiotic oxytetracycline. Besides, the two dietary supplements improved intestinal structure integrity and secretion of inflammatory cytokines, whereas the antibiotic had negative effects. Comparison of the two supplements revealed that sodium butyrate more effectively improved the growth and intestinal structure of broilers than C. butyricum. On the contrary, C. butyricum was superior to sodium butyrate in promoting tight junction protein expression and anti-inflammatory response. In summary, this study demonstrates the positive effects of C. butyricum and sodium butyrate on broilers, and will serve as a reference for selection of appropriate butyrate supplementation for broilers in the breeding industry.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huayun Ling
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Wei Zhang
- Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Ying Zhou
- Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Zhang Q, Zhang K, Wang J, Bai S, Zeng Q, Peng H, Zhang B, Xuan Y, Ding X. Effects of coated sodium butyrate on performance, egg quality, nutrient digestibility, and intestinal health of laying hens. Poult Sci 2022; 101:102020. [PMID: 35901649 PMCID: PMC9326336 DOI: 10.1016/j.psj.2022.102020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
This study determined the effects of coated sodium butyrate (CSB) on production performance, egg quality, nutrient digestibility, and intestinal health of laying hens. We divided a total of 800 Lohmann laying hens, aged 51 wk, into 4 treatment groups: 0 (CON), 300 (CSB1), 500 (CSB2), and 800 (CSB3) mg/kg of CSB. Each group comprised 20 birds, with 10 replicates set. A 12-wk monitoring process was conducted for each laying hen. Compared to CON, dietary supplementation of CSB did not affect the average daily feed intake or the egg weight. The CSB3 group demonstrated a linear increase in the production performance (P < 0.05), with decreased feed conversion ratio (P < 0.05). CSB2 and CSB3 exhibited markedly elevated egg mass (P < 0.05). The CSB supplementation markedly enhanced the yolk color (P < 0.05). CSB1 improved the digestibility of dry matter (P = 0.029). No significant differences were observed among dietary treatments in the duodenal morphology (P > 0.05). The three dosages of CSB reduced the crypt depth (P < 0.05) in the jejunum, whereas CSB3 exhibited an increase in the villus height (VH; P = 0.048). The CSB3 group showed a markedly elevated ileal VH (P = 0.011). CSB supplementation significantly increased the butyric acid content in the cecum (P = 0.009). The hens fed on the 800 mg/kg CSB diet showed a significant increase (P = 0.029) in butyric acid content in the ileum. The CSB3 group showed an elevation in microbial diversity (P < 0.05). Additionally, at the phylum level, the CSB3 increased the enrichment of Bacteroidetes, the CSB2 increased Firmicutes, and the abundance of Deferribacteres was increased in CSB2 and CSB3 groups (P < 0.05). An enrichment of Muribaculaceae (family) was observed in the CSB3 group. In conclusion, dietary supplementation of CSB improved production, yolk color, intestinal morphology, butyrate content, and microbial composition in laying hens.
Collapse
|
21
|
Xiao G, Zheng L, Yan X, Yang Y, Qi Q, Gong L, Zhang H. Effects of Dietary Glycerol Monobutyrate Supplementation on Egg Performance, Biochemical Indices, and Gut Microbiota of Aged Hens. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.896705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This experiment aimed to determine the effect of dietary supplementation with glycerol monobutyrate (GMB) on egg-laying performance, biochemical indicators, and gut microflora at the late stage of laying hens. A total of 252 healthy Dawu Golden Phoenix laying hens with no difference in body weight were selected and randomly divided into two groups: (1) control group (CG), corn-soybean meal diet, (2) 500 mg glycerol monobutyrate/kg added to the basal diet. Six replicates were set up for each treatment group, with 21 birds per replicate. The trial started at week 55 and lasted for 8 weeks. Compared to the control group, the supplementation with GMB increased egg weight (P = 0.03), shell thickness (P = 0.03) and decreased egg breaking rate (P = 0.04). There was no significant difference in egg production rate, feed-to-egg ratio, egg shape index, eggshell strength, and Haugh unit between the two groups. In addition, dietary GMB decreased the levels of aspartate aminotransferase (P = 0.03) and total bilirubin (P = 0.02) in serum, and increased total antioxidant capacity (P = 0.03) and total superoxide dismutase (P = 0.02). However, alpha diversity indices (Ace, Chao1, Shannon, Simpson, goods_coverage, and PD_whole tree) were not different between the two groups. Notably, dietary GMB significantly decreased the abundances of Proteobacteria at the phylum level and the abundances of Enterobacter at the genus level (P < 0.01), but there was no significant difference in the composition of other cecal microbiota. In summary, the present study revealed that supplementation with 500 mg/kg glycerol monobutyrate improved egg weight, eggshell quality, and antioxidant capacity in serum, but its effect on cecal microbiota composition was limited.
Collapse
|
22
|
Scanes CG, Witt J, Ebeling M, Schaller S, Baier V, Bone AJ, Preuss TG, Heckmann D. Quantitative Morphometric, Physiological, and Metabolic Characteristics of Chickens and Mallards for Physiologically Based Kinetic Model Development. Front Physiol 2022; 13:858283. [PMID: 35464078 PMCID: PMC9019682 DOI: 10.3389/fphys.2022.858283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Physiologically based kinetic (PBK) models are a promising tool for xenobiotic environmental risk assessment that could reduce animal testing by predicting in vivo exposure. PBK models for birds could further our understanding of species-specific sensitivities to xenobiotics, but would require species-specific parameterization. To this end, we summarize multiple major morphometric and physiological characteristics in chickens, particularly laying hens (Gallus gallus) and mallards (Anas platyrhynchos) in a meta-analysis of published data. Where such data did not exist, data are substituted from domesticated ducks (Anas platyrhynchos) and, in their absence, from chickens. The distribution of water between intracellular, extracellular, and plasma is similar in laying hens and mallards. Similarly, the lengths of the components of the small intestine (duodenum, jejunum, and ileum) are similar in chickens and mallards. Moreover, not only are the gastrointestinal absorptive areas similar in mallard and chickens but also they are similar to those in mammals when expressed on a log basis and compared to log body weight. In contrast, the following are much lower in laying hens than mallards: cardiac output (CO), hematocrit (Hct), and blood hemoglobin. There are shifts in ovary weight (increased), oviduct weight (increased), and plasma/serum concentrations of vitellogenin and triglyceride between laying hens and sexually immature females. In contrast, reproductive state does not affect the relative weights of the liver, kidneys, spleen, and gizzard.
Collapse
Affiliation(s)
- Colin G. Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Department of Biological Science, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- *Correspondence: Colin G. Scanes,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Modulation of Hepatic Insulin and Glucagon Signaling by Nutritional Factors in Broiler Chicken. Vet Sci 2022; 9:vetsci9030103. [PMID: 35324832 PMCID: PMC8955576 DOI: 10.3390/vetsci9030103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Influencing the endocrine metabolic regulation of chickens by nutritional factors might provide novel possibilities for improving animal health and productivity. This study was designed to evaluate the impact of dietary cereal type (wheat-based (WB) vs. maize-based (MB) diets), crude protein level (normal (NP) vs. lowered (LP)), and sodium (n-)butyrate (1.5 g/kg diet) supplementation (vs. no butyrate) on the responsiveness of hepatic glucagon receptor (GCGR), insulin receptor beta (IRβ) and mammalian target of rapamycin (mTOR) in the phase of intensive growth of chickens. Liver samples of Ross 308 broiler chickens (Gallus gallus domesticus) were collected on day 21 for quantitative real-time polymerase chain reaction and Western blot analyses. Hepatic GCGR and mTOR gene expressions were up-regulated by WB and LP diet. GCGR and IRβ protein level decreased in groups with butyrate supplementation; however, the quantity of IRβ and mTOR protein increased in WB groups. Based on these data, the applied dietary strategies may be useful tools to modulate hepatic insulin and glucagon signaling of chickens in the period of intensive growth. The obtained results might contribute to the better understanding of glycemic control of birds and increase the opportunity of ameliorating insulin sensitivity, hence, improving the production parameters and the welfare of broilers.
Collapse
|
24
|
Chemically Protected Sodium Butyrate Improves Growth Performance and Early Development and Function of Small Intestine in Broilers as One Effective Substitute for Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11020132. [PMID: 35203735 PMCID: PMC8868412 DOI: 10.3390/antibiotics11020132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/14/2023] Open
Abstract
The purpose of this study was to investigate the effects of chemically protected sodium butyrate (CSB) on growth performance and the early development and function of small intestine in broilers as one potential substitute for antibiotics. A total of 192 one-day-old Arbor Acres male broilers were randomly assigned into three dietary treatment groups (eight replicates per treatment): the control (CON) diet; ANT diet, CON diet supplemented with the antibiotics (enramycin, 8 mg/kg and aureomycin, 100 mg/kg); CSB diet, CON diet supplemented with 1000 mg/kg CSB, respectively. The results showed that dietary CSB and antibiotics addition significantly improved the growth performance of broilers by increasing the body weight gain (BWG) and feed conversion ratio (FCR) during different stages (p < 0.05). On day 21, the supplement of CSB in diet improved the structure of small intestine (duodenum, jejunum, and ileum) in broilers by increasing the ratio of villus height to crypt depth (VH/CD) (p < 0.05) and enhanced the butyric acid (BA) (p < 0.05) and total short chain fatty acids (SCFA) concentrations of small intestine (jejunum and ileum) compared with the CON and ANT diets. Besides that, the superoxide dismutase (SOD), total antioxidant capacity (TAC) and TAC to malondialdehyde (TAC/MDA) ratio of the ileal and jejunal mucosa were significantly higher (p < 0.05) in the CSB and ANT than in the CON. In addition, the supplement of CSB in diet markedly significantly enhanced α-amylase, lipase, and trypsin activities of the ileum (p < 0.05) as compared to the ANT diet. 16S rRNA gene sequencing indicated that CSB markedly increased the microbiota diversity of ileum in broilers at 21 days of age as compared to CON and ANT (p < 0.05). Furthermore, we found that Firmicutes was the predominant phyla and Lactobacillus was the major genus in the ileum of broilers. Compared with the ANT diet, the supplement of CSB in diet increased the relative abundance of some genera microbiota (e.g., Candidatus_Arthromitus, Romboutsia) by decreasing the relative abundance of Lactobacillus. Moreover, Akkermansia in the CSB was the highest in comparison to that in the CON and ANT. In addition, Kitasatospora that belongs to the phylum Actinobacteriota was only found in ileum of broilers fed the ANT diet. In summary, the supplement of 1000 mg/kg CSB in the diet improved the growth performance by promoting early development and function of the small intestine, which is associated with the regulation of intestinal flora and reestablishment of micro-ecological balance in broilers. Thus, CSB has great potential value as one of effective substitutes for in-feed antibiotics in the broiler industry.
Collapse
|
25
|
Bindari YR, Gerber PF. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult Sci 2021; 101:101612. [PMID: 34872745 PMCID: PMC8713025 DOI: 10.1016/j.psj.2021.101612] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Maintenance of "gut health" is considered a priority in commercial chicken farms, although a precise definition of what constitutes gut health and how to evaluate it is still lacking. In research settings, monitoring of gut microbiota has gained great attention as shifts in microbial community composition have been associated with gut health and productive performance. However, microbial signatures associated with productivity remain elusive because of the high variability of the microbiota of individual birds resulting in multiple and sometimes contradictory profiles associated with poor or high performance. The high costs associated with the testing and the need for the terminal sampling of a large number of birds for the collection of gut contents also make this tool of limited use in commercial settings. This review highlights the existing literature on the chicken digestive system and associated microbiota; factors affecting the gut microbiota and emergence of the major chicken enteric diseases coccidiosis and necrotic enteritis; methods to evaluate gut health and their association with performance; main issues in investigating chicken microbial populations; and the relationship of microbial profiles and production outcomes. Emphasis is given to emerging noninvasive and easy-to-collect sampling methods that could be used to monitor gut health and microbiological changes in commercial flocks.
Collapse
Affiliation(s)
- Yugal Raj Bindari
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
26
|
Lin Q, Liu Y, Li L, Huai M, Wang Y, Lv T, Zhao H, Jiang G, Wang X, Liu C, Qiu H, Dai Q. Effects of a mixture of mono-glycerides of butyric-, capric-, and caprylic acid with chlortetracycline on the growth performance, intestine morphology, and cecal microflora of broiler birds. Poult Sci 2021; 101:101617. [PMID: 34936952 PMCID: PMC8704447 DOI: 10.1016/j.psj.2021.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate the effects of a mixture of mono-glycerides of butyric-, capric-, and caprylic acid (MMG) on the growth performance, intestinal morphology, and cecal microflora of broilers. A total of 960 male Arbor Acre broilers were offered basal diets with or without Chlortetracycline additive (CA) at 500 g/t, and MMG at 3,000, 1,000, or 650 g/t, with 8 replicates of 20 birds per treatment. The results confirmed 500 g/t CA with/without 1,000 g/t MMG increased the average daily weight gain (ADG) of birds compared to the control group 1 during the 42-d experimental period (P < 0.05). Comparing to the control group 1, 500 g/t CA with either 650 g or 1,000 g/t MMG or 1,000 g MMG alone increased the ADG of birds during the late growth stage (22–42 d) (P < 0.05). On d 42, the serum triglyceride levels were higher (P < 0.05) in groups supplemented with CA and CA + 1,000 g/t MMG comparing to the control group; while urea nitrogen level was higher in the control group comparing to the rest of treatment groups Compared to the control group 1, 1,000 g/t MMG alone without CA decreased the abundance of Faecalibacterium and Bacteroides but increased the abundance of Escherichia/Shiegella. About 500 g/t CA alone treatment group had higher abundance of Lactobacillus comparing to the rest of groups. In conclusion, dietary supplement with MMG showed beneficial efficacy on the growth and intestinal function of broilers, demonstrating the potential value of MMG to poultry industry. In terms of dosage, the current trial shows that 3,000 g/t (1–21 d) and 1,000 g/t (22–42 d) MMG without CA was the appropriate dietary supplemented rate for broilers. And the mixed use of 500 g/t CA and 1,000 g/t MMG was benefit for broilers at 22 to 42 d.
Collapse
Affiliation(s)
- Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Yang Liu
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China; College of Animal Science and Technology, Hunan Agriculture University, Changsha, Hunan 410131, China
| | - Lily Li
- BASF South East Asia Pte. Ltd. Singapore, 038987, Singapore
| | | | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Tuo Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Guitao Jiang
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Qiuzhong Dai
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China.
| |
Collapse
|
27
|
Phytogenic Ingredients from Hops and Organic Acids Improve Selected Indices of Welfare, Health Status Markers, and Bacteria Composition in the Caeca of Broiler Chickens. Animals (Basel) 2021; 11:ani11113249. [PMID: 34827980 PMCID: PMC8614400 DOI: 10.3390/ani11113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The selection for the rapid growth rate in broiler chickens that has been carried out over the years has negatively influenced their health and welfare status. In recent years, a number of reports have been delivered on the use of additives that improve broilers’ intestinal peristalsis and production results. The authors of this paper have proved that applying a mixture with 50% hops (manifesting strong antioxidant, antibacterial, and antifungal properties) may bring benefits to the quantity and quality of the final product. This may refer to the production performance, flock health status, and welfare of birds. The thematic scope of this research is currently of significant importance, as veterinary inspections pay particular attention to the quality of litter and the welfare of birds, and this motivates producers to improve breeding conditions, which will contribute to better production systems. Abstract The objective of this study was to determine the influence of phytogenic product-supplemented, organic acid-supplemented, and prebiotic-supplemented diets on the production results, antioxidative status, and selected welfare indices in broiler chickens. A total of 1155 one-day old male Ross 308 broilers were randomly assigned to one of three treatment groups: Group C, no additives; Group A, supplemented with phytogenic supplement (50% hop); and Group P, supplemented with 65% organic acids and their salts, and 30% prebiotic complex. Health condition and production results were monitored during the entire experiment. After 42 days, 10 birds from each dietary treatment group were selected for blood sampling and slaughter analysis. The results obtained revealed that over the whole feeding period, none of the investigated additives significantly affected broiler performance indices. However, feeding the birds treatment-A increased the relative abundance of Bifidobacterium in caecal digesta compared to the other treatments, whereas feeding treatment-P increased the relative abundance of Lactobacillus compared to the control treatment. Overall, treatment-A was more effective at increasing relative abundance of Clostridia in birds at 42 days of age than treatment-P. Finally, there were no changes in blood levels of antioxidant indices or liver function indicators.
Collapse
|
28
|
Miao S, Zhou W, Li H, Zhu M, Dong X, Zou X. Effects of coated sodium butyrate on production performance, egg quality, serum biochemistry, digestive enzyme activity, and intestinal health of laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1960209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sasa Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenting Zhou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huaiyu Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mingkun Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Karunaratne ND, Newkirk RW, Ames NP, Van Kessel AG, Bedford MR, Classen HL. Hulless barley and β-glucanase affect ileal digesta soluble beta-glucan molecular weight and digestive tract characteristics of coccidiosis-vaccinated broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:595-608. [PMID: 34377846 PMCID: PMC8326591 DOI: 10.1016/j.aninu.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022]
Abstract
Exogenous β-glucanase (BGase) in barley-based feed has been shown to reduce digesta viscosity in chickens, and thereby improve performance. Less well studied is the potential for BGase to convert barley β-glucan into low molecular weight carbohydrates, which might influence digestive tract function and enteric disease. Coccidiosis-vaccinated broiler chickens were fed graded levels of hulless barley (HB) and BGase to determine their effects on β-glucan depolymerization and digestive tract characteristics. Broilers were fed high β-glucan HB (0%, 30% and 60% replacing wheat) and BGase (0%, 0.01% and 0.1%) in a 3 × 3 factorial arrangement. A total of 5,346 broilers were raised in litter floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to 1 pen in each of 9 rooms. The significance level was set at P ≤ 0.05. At both 11 and 33 d of broiler ages, peak molecular weight of β-glucan in ileal digesta decreased with increasing BGase for 30% and 60% HB. The maximum molecular weight for the smallest 10% β-glucan molecules (MW-10%) decreased with BGase at both ages for 30% and 60% HB; for birds fed 0% HB, only 0.1% BGase decreased MW-10%. The 0.1% BGase increased caecal short chain fatty acids (SCFA) compared to the 0.01% BGase at d 11 only for the 60% HB. Ileal pH increased with increasing HB and BGase at d 11 and 33. Caecal pH was lower for 0.1% BGase than 0% BGase for 60% HB at d 11. Relative mRNA expression of interleukin 6 (IL-6) and IL-8 in the ileum increased with 0.1% BGase at d 11 and 33, respectively, whereas expression of ileal mucin 2 (MUC2) decreased with 0.1% BGase at d 33. In the caeca, interactions between HB and BGase were significant for monocarboxylate transporter 1 (MCT1) and mucin 5AC (MUC5 AC) on d 11, but no treatment effects were found at d 33. In conclusion, BGase depolymerized high molecular weight β-glucan in HB in a dose-dependent manner. Hulless barley and BGase did not increase SCFA concentrations (except for 60% HB with 0.1% BGase at d 11) and caused minor effects on digestive tract histomorphological measurements and relative mRNA gene expression.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Rex W. Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Nancy P. Ames
- Agriculture and Agri-food Canada, Winnipeg, R3T 2E1, Manitoba, Canada
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | | | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| |
Collapse
|
30
|
Hofacre CL, Mathis GF, Lumpkins BS, Sygall R, Vaessen S, Hofacre CS, Smith JA, Clanton E. Efficacy of Butyric and Valeric Acid Esters in a Necrotic Enteritis Challenge Model. Avian Dis 2021; 64:407-414. [PMID: 33205166 DOI: 10.1637/aviandiseases-d-19-00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/13/2020] [Indexed: 11/05/2022]
Abstract
Restrictions on the use of antibiotics in poultry production have increased interest in nonantibiotic alternatives to control necrotic enteritis (NE). Volatile fatty acids, and in particular butyric acid preparations, have shown potential as aids in controlling NE. Valeric acid compounds may be a new additional alternative. This series of three trials compared the effects of tributyrin, monovalerin, which is an organic acid mixture, and bacitracin in a NE challenge model consisting of challenge with coccidiosis followed by Clostridium perfringens. Trial 1 was a pen trial comparing tributyrin at 0.5 kg/metric ton continuously in the feed, a proprietary organic acid blend at 1 kg per 1000 L as a metaphylactic treatment in the water, and bacitracin in the feed at 55 g/metric ton. Tributyrin and the organic acid mixture were at least as effective as bacitracin in controlling the growth- and efficiency-suppressing effects of the NE challenge, and the organic acid mixture reduced NE lesion scores. None of the treatments reduced mortality. Trial 2 was a battery study comparing monovalerin at 1.5 kg/metric ton and bacitracin in the feed. Both interventions provided significant control of both clinical and subclinical NE, with bacitracin being slightly superior to monovalerin. Trial 3 was a pen trial comparing monovalerin at 1 kg or 1.5 kg/metric ton continuously, or 0.5 kg/metric ton from 0 to 14 days and 0.25 kg/metric ton from 14 to 42 days (variable dose), to tributyrin at the same variable-dose schedule. The higher dose of monovalerin appeared to suppress feed intake and weight gain prechallenge but also produced the lowest NE mortality and the lowest total mortality of the challenged groups. All of the treatments except the variable-dose monovalerin treatment demonstrated reductions in NE lesion scores compared with the positive challenge control group; however, they did not control mortality and had fewer effects on the performance effects of subclinical NE. Results of these studies indicate that the organic acid products monovalerin and tributyrin may be useful adjuncts to reduce NE in antibiotic-free broiler production.
Collapse
Affiliation(s)
- Charles L Hofacre
- Southern Poultry Research Group, Inc., 1061 Hale Road, Watkinsville, GA 30677
| | - Greg F Mathis
- Southern Poultry Research, Inc., 2011 Brock Road, Athens, GA 30607-3153
| | - Brett S Lumpkins
- Southern Poultry Research, Inc., 2011 Brock Road, Athens, GA 30607-3153
| | - Richard Sygall
- Perstorp BU Feed and Food, Perstorp Waspik BV, Industrieweg 8, 5165 NH Waspik, the Netherlands
| | - Stefan Vaessen
- Perstorp BU Feed and Food, Perstorp Waspik BV, Industrieweg 8, 5165 NH Waspik, the Netherlands
| | - Christa S Hofacre
- Southern Poultry Research Group, Inc., 1061 Hale Road, Watkinsville, GA 30677
| | - John A Smith
- Alectryon LLC, 395 Ridge Circle, Baldwin, GA 30511-3409
| | - Eric Clanton
- Southern Poultry Research Group, Inc., 1061 Hale Road, Watkinsville, GA 30677
| |
Collapse
|
31
|
Kumar A, Toghyani M, Kheravii SK, Pineda L, Han Y, Swick RA, Wu SB. Potential of blended organic acids to improve performance and health of broilers infected with necrotic enteritis. ACTA ACUST UNITED AC 2021; 7:440-449. [PMID: 34258432 PMCID: PMC8245907 DOI: 10.1016/j.aninu.2020.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Organic acids (OA) and their blends have been shown to positively affect performance and health of broilers. However, the data in the literature are not consistent. This study examined the potential of blended short-chain fatty acids (SCFA) with medium-chain fatty acids (MCFA) as alternatives to antibiotic growth promoters (AGP) on performance, health and welfare of broilers infected with necrotic enteritis (NE). The additives used were: A) a blend of SCFA, MCFA, and a phenolic compound (SMP); B) a blend of free and buffered SCFA with MCFA (SMF); C) a blend of free and buffered SCFA with a high concentration of MCFA (SHM). A total of 1,404 Ross 308 one-day-old male parental chicks were randomly distributed into 78-floor pens with 13 replicates of 18 birds each. Six treatments were the following: T1, unchallenged control (UCC); T2, challenged control (CHC); T3, challenged group plus zinc bacitracin (BAC); T4, challenged group plus additive SMP; T5, challenged group plus additive SMF; T6, challenged group plus additive SHM. Challenged birds were gavaged with Eimeria spp. on d 9 and Clostridium perfringens EHE-NE18 on d 14. Post NE challenge and cumulatively, BWG, FCR, and nutrient digestibility of birds were compromised (P < 0.05) by NE challenge indicating a successful induction of sub-clinical NE. Additive SHM had higher BWG compared to CHC and BAC groups (P = 0.001; d 10 to 24) but not different from SMP and SMF groups (P > 0.05). All the 3 additive groups had lower FCR compared to CHC (P = 0.001; d 0 to 35), and exhibited similar jejunal lesions (d 16) compared to BAC and apparent ileal protein digestibility (d 21) compared to UCC and BAC groups (P > 0.05). Birds in additive SHM group had a higher concentration of serum IgA compared to all groups (P = 0.001) except additive SMF (P > 0.05; d 21). All the additive groups had lower footpad dermatitis and hock burns compared to CHC (P < 0.05). The findings suggest the potential of blended OA as alternatives to BAC to protect broilers from NE indicated by improved FCR, immunity, digestibility, and bird welfare.
Collapse
Affiliation(s)
- Alip Kumar
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Mehdi Toghyani
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Lane Pineda
- Trouw Nutrition R & D, Stationsstraat 77, 3811 MH, Amersfoort, the Netherlands
| | - Yanming Han
- Trouw Nutrition R & D, Stationsstraat 77, 3811 MH, Amersfoort, the Netherlands
| | - Robert A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
32
|
Hanchai K, Trairatapiwan T, Lertpatarakomol R. Drinking water supplemented with wood vinegar on growth performance, intestinal morphology, and gut microbial of broiler chickens. Vet World 2021; 14:92-96. [PMID: 33642791 PMCID: PMC7896902 DOI: 10.14202/vetworld.2021.92-96] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Wood vinegar is a product generated from the combustion and distillation of wood and other plant materials. It has been shown to suppress bacteria, resulting in healthier livestock and increased yields. This study aimed to determine the efficacy of drinking water supplemented with wood vinegar on growth performance, intestinal health, and gut microbial of broilers. Materials and Methods: A total of 120 Ross 308 1-day-old male broiler chicks were randomly distributed in a completely randomized experimental design. The study consisted of three treatments containing four replicates, with 10 birds in each. Treatments were given 0.5% and 1.0% (V/V) wood vinegar supplemented in drinking water, while no supplementation was given to the control group. The animals were raised in an open-house system. All groups were provided with a commercial diet and drinking water ad libitum. Analysis of variance was conducted using the general linear model procedure to compare the levels of wood vinegar supplementation in drinking water on growth performance, intestinal morphology, and gut microbial. Results: No significant differences (p>0.05) were found for body weight gain, feed intake, feed conversion ratio, and water consumption between groups during the starter (1-21 days old), grower (22-35 days old), and whole (1-35 days old) growth periods. Moreover, no significant differences in villi height and crypt depth (p>0.05) at 21 and 35 days of age were found. In addition, no significant difference in terms of lactic acid bacteria and Escherichia coli was found between the different treatments. Conclusion: Drinking water supplemented with wood vinegar was not found to have an effect on the growth performance and gut microbial of broiler chickens in the present study. However, the supplementation of wood vinegar in drinking water could improve intestinal morphology.
Collapse
Affiliation(s)
- Kornkamon Hanchai
- Department of Clinical Veterinary Science, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum Samphan Road, Nong Chok, Bangkok, 10530 Thailand
| | - Tassanee Trairatapiwan
- Department of Animal Science and Veterinary Basic Science, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum Samphan Road, Nong Chok, Bangkok, 10530 Thailand
| | - Rachakris Lertpatarakomol
- Department of Animal Science and Veterinary Basic Science, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum Samphan Road, Nong Chok, Bangkok, 10530 Thailand
| |
Collapse
|
33
|
Liu W, La ALTZ, Evans A, Gao S, Yu Z, Bu D, Ma L. Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning. J Anim Sci Biotechnol 2021; 12:2. [PMID: 33397482 PMCID: PMC7780688 DOI: 10.1186/s40104-020-00521-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background There is increasing research interest in using short-chain fatty acids (SCFAs) including butyrate as potential alternatives to antibiotic growth promoters in animal production. This study was conducted to evaluate the effects of supplementation of sodium butyrate (SB) in liquid feeds (milk, milk replacer, and the mixture of both) on the growth performance, rumen fermentation, and serum antioxidant capacity and immunoglobins in dairy calves before weaning. Forty healthy female Holstein calves (4-day-old, 40 ± 5 kg of body weight) were housed in individual hutches and randomly allocated to 1 of 4 treatment groups (n = 10 per group) using the RAND function in Excel. The control group was fed no SB (SB0), while the other three groups were supplemented with 15 (SB15), 30 (SB30), or 45 (SB45) g/d of SB mixed into liquid feeds offered. The calves were initially fed milk only (days 2 to 20), then a mixture of milk and milk replacer (days 21 to 23), and finally milk replacer only (days 24 to 60). Results The SB supplementation enhanced growth and improved feed conversion into body weight gain compared with the SB0 group, and the average daily gain increased quadratically with increasing SB supplementation. No significant effect on rumen pH; concentrations of NH3-N, individual and total VFAs; or acetate: propionate (A:P) ratio was found during the whole experimental period. Serum glutathione peroxidase activity increased linearly with the increased SB supplementation, while the serum concentration of maleic dialdehyde linearly decreased. Serum concentrations of immunoglobulin A, immunoglobulin G, or immunoglobulin M were not affected by the SB supplementation during the whole experimental period. Conclusions Under the conditions of this study, SB supplementation improved growth performance and antioxidant function in pre-weaned dairy calves. We recommended 45 g/d as the optimal level of SB supplementation mixed into liquid feeds (milk or milk replacer) to improve the growth and antioxidant function of dairy calves before weaning.
Collapse
Affiliation(s)
- Wenhui Liu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - A La Teng Zhu La
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Alexander Evans
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shengtao Gao
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Dengpan Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China. .,Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing, 100193, People's Republic of China.
| | - Lu Ma
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
34
|
Turcotte C, Thibodeau A, Quessy S, Topp E, Beauchamp G, Fravalo P, Archambault M, Gaucher ML. Impacts of Short-Term Antibiotic Withdrawal and Long-Term Judicious Antibiotic Use on Resistance Gene Abundance and Cecal Microbiota Composition on Commercial Broiler Chicken Farms in Québec. Front Vet Sci 2020; 7:547181. [PMID: 33409294 PMCID: PMC7779680 DOI: 10.3389/fvets.2020.547181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The ever-increasing problem of antibiotic resistance makes routine use of antibiotics in animal production no longer considered as a reasonable and viable practice. The Chicken Farmers of Canada have developed and are implementing an Antimicrobial Use Reduction Strategy, which has the ultimate goal of eliminating the preventive use of medically important antibiotics in broiler chicken and turkey production. However, very little is known about the real overall impact of an antibiotic use reduction strategy in complex ecosystems, such as the bird intestine or the commercial broiler chicken farm. The main objectives of the present study were to compare the abundance of antibiotic resistance-encoding genes, characterize the intestinal microbiota composition, and evaluate the presence of Clostridium perfringens, in six commercial poultry farms adopting short-term antibiotic withdrawal and long-term judicious use strategy. Implementing an antibiotic-free program over a 15-months period did not reduce the abundance of many antibiotic resistance-encoding genes, whereas the judicious use of antibiotics over 6 years was found effective. The short-term antibiotic withdrawal and the long-term judicious use strategy altered the intestinal microbiota composition, with the Ruminococcaceae and Lachnospiraceae families being negatively impacted. These findings are in agreement with the lower production performance and with the increased C. perfringens populations observed for farms phasing out the use of antibiotics. Adopting a conventional rearing program on commercial broiler chicken farms selected for specific antibiotic resistance-encoding genes in many barns. This study highlights the potential impacts of different rearing programs in poultry production and will help guide future policies in order to reduce the use of antibiotics while maintaining production performance.
Collapse
Affiliation(s)
- Catherine Turcotte
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sylvain Quessy
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Guy Beauchamp
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Pôle Agroalimentaire du Cnam, Conservatoire National des Arts et Métiers, Paris, France
| | - Marie Archambault
- Swine and Poultry Infectious Diseases Research Centre, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
35
|
Effects of monobutyrin supplementation on egg production, biochemical indexes, and gut microbiota of broiler breeders. Poult Sci 2020; 100:100907. [PMID: 33518348 PMCID: PMC7936130 DOI: 10.1016/j.psj.2020.11.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
The objective of the present study was to determine the effect of monobutyrin supplementation on egg production, biochemical indexes, and gut microbiota of broiler breeders at the late stage of production. A total of 180 healthy Qingyuan partridge broilers were randomly assigned to 2 groups: 1) corn-soybean meal-based diet and 2) basal diet supplemented with 250 mg monobutyrin/kg. Each treatment group had 6 replicates/cages with 15 birds within each replicate. The experiment started at week 33 and lasted for 8 wk. Egg production rate, feed conversion rate, shell breaking strength, and shell thickness were not different between control and treatment groups. Supplementation of monobutyrin increased egg weight and tended to decrease egg breaking rate of Qingyuan partridge chickens. Supplementation of monobutyrin did not affect any of the biochemical indexes except total protein concentration. The 4 antioxidant parameters measured were not affected either. Alpha diversity indexes (Shannon, Simpson, Chao1, Ace, and Good's Coverage) and composition of cecal microbiota were not affected by monobutyrin supplementation. Overall, supplementation of monobutyrin at 250 mg/kg level improved egg quality, but its effect on cecal microbiota composition was limited.
Collapse
|
36
|
Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective. BIOLOGY 2020; 9:biology9110411. [PMID: 33238534 PMCID: PMC7700346 DOI: 10.3390/biology9110411] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Chickens are raised with the assistance of the regular use of antibiotics, not only for the prevention and treatment of diseases but, also, for body growth. Overuse and misuse of antibiotics in animals are contributing to the rising threat of antibiotic resistance. Therefore, antibiotic-free broiler meat production is becoming increasingly popular worldwide to meet consumer demand. However, numerous challenges need to be overcome in producing antibiotic-free broiler meat by adopting suitable strategies regarding food safety and chicken welfare issues. This review focuses on the current scenario of antibiotic use, prospects, and challenges in sustainable antibiotic-free broiler meat production. We also discuss the needs and challenges of antibiotic alternatives and provide a future perspective on antibiotic-free broiler meat production. Abstract Antibiotic-free broiler meat production is becoming increasingly popular worldwide due to consumer perception that it is superior to conventional broiler meat. Globally, broiler farming impacts the income generation of low-income households, helping to alleviate poverty and secure food in the countryside and in semi-municipal societies. For decades, antibiotics have been utilized in the poultry industry to prevent and treat diseases and promote growth. This practice contributes to the development of drug-resistant bacteria in livestock, including poultry, and humans through the food chain, posing a global public health threat. Additionally, consumer demand for antibiotic-free broiler meat is increasing. However, there are many challenges that need to be overcome by adopting suitable strategies to produce antibiotic-free broiler meat with regards to food safety and chicken welfare issues. Herein, we focus on the importance and current scenario of antibiotic use, prospects, and challenges in the production of sustainable antibiotic-free broiler meat, emphasizing broiler farming in the context of Bangladesh. Moreover, we also discuss the need for and challenges of antibiotic alternatives and provide a future outlook for antibiotic-free broiler meat production.
Collapse
|
37
|
Wu P, Golly MK, Guo Y, Ma H, He R, Luo X, Luo S, Zhang C, Zhang L, Zhu J. Effect of partial replacement of soybean meal with high-temperature fermented soybean meal in antibiotic-growth-promoter-free diets on growth performance, organ weights, serum indexes, intestinal flora and histomorphology of broiler chickens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Pascual A, Trocino A, Birolo M, Cardazzo B, Bordignon F, Ballarin C, Carraro L, Xiccato G. Dietary supplementation with sodium butyrate: growth, gut response at different ages, and meat quality of female and male broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1824590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Antón Pascual
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Angela Trocino
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Marco Birolo
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Padova, Italy
| | - Barbara Cardazzo
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Francesco Bordignon
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
- Institute of Animal Science and Technology, Polytechnic University of Valencia, Valencia, Spain
| | - Cristina Ballarin
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Lisa Carraro
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Università di Padova, Legnaro, Padova, Italy
| | - Gerolamo Xiccato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Padova, Italy
| |
Collapse
|
39
|
Kujawa TJ, van Doorn DA, Wambacq WA, Hesta M, Pellikaan WF. Evaluation of equine rectal inoculum as representative of the microbial activities within the horse hindgut using a fully automated in vitro gas production technique system. J Anim Sci 2020; 98:5741007. [PMID: 32076715 DOI: 10.1093/jas/skaa050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
The in vitro gas production technique (IVGPT) has been a valuable tool in ruminant nutrition research for decades and has more recently been used in horse nutrition studies to investigate fermentation activities of the equine hindgut though primarily using feces as inoculum. This study was conducted to evaluate the use of equine rectal content in the IVGPT system as a viable inoculum that can be considered representative of the activities throughout the equine hindgut. Additionally, the study was conducted to measure the effects on fermentation kinetics and end-product production using inoculum from horses fed supplemental levels of coated sodium butyrate in an IVGPT system. Eight warmblood horses were fed a diet consisting of haylage (1% DM intake based on ideal body weight [BW]) and a mash concentrate formulated to provide 2.5 g nonstructural carbohydrate (NSC)/kg BW per meal. The diet was intended to create a NSC challenge to the microbial populations of the hindgut. The horses were randomly assigned to treatment or control group and after a 1-wk diet-adaptation period, the treatment group received 0.4 g/kg BW per day of a coated sodium butyrate supplement, while the control group received a placebo (coating only). After a 3-wk treatment period, the animals were sacrificed and digesta from the cecum, left ventral colon, right dorsal colon, and the rectum were collected within 30 min postmortem and used as inocula for the IVGPT trial. Haylage and concentrates fed to the test animals were also used as substrates in vitro. Sodium butyrate supplementation was not significant for gas production parameters or VFA measured suggesting no effect of sodium butyrate supplementation on the extent or kinetics of gas production or microbial end-product production (P ≥ 0.073). Differences in inocula were significant for organic matter corrected cumulative gas production (P = 0.0001), asymptotic gas production of the second phase (A2) (P < 0.0001); and maximal rate of OM degradation of the second phase (Rmax2) (P = 0.002). Inocula had a significant effect on total VFA (P = 0.0002), butyrate (Bu) (P = 0.015), branched chain fatty acids (P < 0.0001), pH (P < 0.0001), and ammonia (NH3) (P = 0.0024). In conclusion, based on observed results from this study, total tract digestibility may be overestimated if using rectal content inoculum to evaluate forage-based feeds in an IVGPT system.
Collapse
Affiliation(s)
- Theresa J Kujawa
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Animal Sciences, Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| | - David A van Doorn
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Equine Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wendy A Wambacq
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wilbert F Pellikaan
- Department of Animal Sciences, Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
40
|
Gupta A, Bansal M, Wagle B, Sun X, Rath N, Donoghue A, Upadhyay A. Sodium Butyrate Reduces Salmonella Enteritidis Infection of Chicken Enterocytes and Expression of Inflammatory Host Genes in vitro. Front Microbiol 2020; 11:553670. [PMID: 33042060 PMCID: PMC7524895 DOI: 10.3389/fmicb.2020.553670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella Enteritidis (SE) is a facultative intracellular pathogen that colonizes the chicken gut leading to contamination of carcasses during processing. A reduction in intestinal colonization by SE could result in reduced carcass contamination thereby reducing the risk of illnesses in humans. Short chain fatty acids such as butyrate are microbial metabolites produced in the gut that exert various beneficial effects. However, its effect on SE colonization is not well known. The present study investigated the effect of sub-inhibitory concentrations (SICs) of sodium butyrate on the adhesion and invasion of SE in primary chicken enterocytes and chicken macrophages. In addition, the effect of sodium butyrate on the expression of SE virulence genes and selected inflammatory genes in chicken macrophages challenged with SE were investigated. Based on the growth curve analysis, the two SICs of sodium butyrate that did not reduce SE growth were 22 and 45 mM, respectively. The SICs of sodium butyrate did not affect the viability and proliferation of chicken enterocytes and macrophage cells. The SICs of sodium butyrate reduced SE adhesion by ∼1.7 and 1.8 Log CFU/mL, respectively. The SE invasion was reduced by ∼2 and 2.93 Log CFU/mL, respectively in chicken enterocytes (P < 0.05). Sodium butyrate did not significantly affect the adhesion of SE to chicken macrophages. However, 45 mM sodium butyrate reduced invasion by ∼1.7 Log CFU/mL as compared to control (P < 0.05). Exposure to sodium butyrate did not change the expression of SE genes associated with motility (flgG, prot6E), invasion (invH), type 3 secretion system (sipB, pipB), survival in macrophages (spvB, mgtC), cell wall and membrane integrity (tatA), efflux pump regulator (mrr1) and global virulence regulation (lrp) (P > 0.05). However, a few genes contributing to type-3 secretion system (ssaV, sipA), adherence (sopB), macrophage survival (sodC) and oxidative stress (rpoS) were upregulated by at least twofold. The expression of inflammatory genes (Il1β, Il8, and Mmp9) that are triggered by SE for host colonization was significantly downregulated (at least 25-fold) by sodium butyrate as compared to SE (P < 0.05). The results suggest that sodium butyrate has an anti-inflammatory potential to reduce SE colonization in chickens.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Basanta Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
41
|
Ząbek K, Szkopek D, Michalczuk M, Konieczka P. Dietary Phytogenic Combination with Hops and a Mixture of a Free Butyrate Acidifier and Gluconic Acid Maintaining the Health Status of the Gut and Performance in Chickens. Animals (Basel) 2020; 10:ani10081335. [PMID: 32748807 PMCID: PMC7459994 DOI: 10.3390/ani10081335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023] Open
Abstract
Additives with bioactive properties can improve chickens' gut health. This study investigated the physiological status of the gut, including its morphological structure and microbiome activities in chickens fed diets supplemented with phytogenic ingredients with hops (Anta®Phyt) or a mixture of a free butyrate acidifier and gluconic acid (PreAcid). In this study, 1155 broilers were distributed to three dietary treatments with 5 replicate pens per treatment, 77 birds each. Anta®Phyt was added at 400/300/200/200 mg/kg diet whereas PreAcid was added at 3/2/1/1 g/kg starter/grower I/grower II/finisher diet respectively. Dietary treatments did not compromise body weight in different growth periods. In the birds fed PreAcid-supplemented diet, higher gut concentration of butyric acid was observed, particularly in the early stage of growth, while the profile of the short-chain fatty acids was maintained among the treatments. Neither additive significantly affected cecal bacterial enzyme activities. Feeding the birds with Anta®Phyt and PreAcid had beneficial effects on gut morphostructure indices, including intestinal wall thickness, crypt depth and the villus height to crypt depth ratio, in 35- and 42-day old birds. In conclusion, the feeding Anta®Phyt- or PreAcid-supplemented diet exerted beneficial effects on the indices determining the physiological status of the gut and maintained good performance of birds of different ages.
Collapse
Affiliation(s)
- Katarzyna Ząbek
- Department of Animal Nutrition, Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (K.Z.); (D.S.)
| | - Dominika Szkopek
- Department of Animal Nutrition, Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (K.Z.); (D.S.)
| | - Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland;
| | - Paweł Konieczka
- Department of Animal Nutrition, Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (K.Z.); (D.S.)
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-22-765-33-65
| |
Collapse
|
42
|
Growth Inhibition of Common Enteric Pathogens in the Intestine of Broilers by Microbially Produced Dextran and Levan Exopolysaccharides. Curr Microbiol 2020; 77:2128-2136. [PMID: 32661680 DOI: 10.1007/s00284-020-02091-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Antibiotics are generally applied for treatment or as subtherapeutic agents to overcome diseases caused by pathogenic bacteria including Escherichia coli, Salmonella and Enterococcus species in poultry. However, due to their possible adverse effects on animal health and to maintain food safety, probiotics, prebiotics, and synbiotics have been proposed as alternatives to antibiotic growth promoters (AGPs) in poultry production. In this study, the effects of prebiotics on the augmentation of broiler's indigenous gut microbiology were studied. Day old 180 broilers chicks were divided into four treatment groups: G, L, C1, and C2. The groups G and L were fed with basal diet containing 3% dextran and 3% levan, respectively. Control groups were fed with basal diets without antibiotic (C1) and with antibiotics (C2). The experimental groups showed decreased mortality as compared to control groups. After 35 days, the chickens were euthanized and intestinal fluid was analyzed for enteric pathogens on chromogenic agar plates and by 16S rRNA gene sequencing. Inhibition of the growth of E. coli and Enterococcus was observed in groups G and L, respectively, whereas Salmonella was only present in group C1. Also, high populations of lactic acid bacteria were detected in the intestine of prebiotic fed birds as compared to controls. These results depict that dextran and levan have the potential to replace the use of antibiotics in poultry feed for inhibiting the growth of common enteric pathogens. To the best of our knowledge, this is the first study where effects of dextran and levan on intestinal microbiota of broilers have been reported.
Collapse
|
43
|
Lan R, Zhao Z, Li S, An L. Sodium butyrate as an effective feed additive to improve performance, liver function, and meat quality in broilers under hot climatic conditions. Poult Sci 2020; 99:5491-5500. [PMID: 33142467 PMCID: PMC7647702 DOI: 10.1016/j.psj.2020.06.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/31/2020] [Accepted: 06/13/2020] [Indexed: 11/09/2022] Open
Abstract
This study was conducted to investigate the effects of dietary sodium butyrate (SB) supplementation on growth performance, liver function, antioxidant capacity, carcass characteristics, and meat quality in broilers under hot climatic conditions. A total of 288 one-day-old Arbor Acres broilers were randomly allocated to 4 dietary treatments as follow: CON, control diet without SB; T1, control diet with 300 mg/kg SB; T2, control diet with 600 mg/kg SB; and T3, control diet with 1,200 mg/kg SB. Each treatment had 6 replication pens and 12 broilers per pen. The results indicated that the BW on day 35; ADG from day 1 to 21, day 22 to 35, and day 1 to 35; and ADFI from day 22 to 35 linearly (P < 0.05) increased with SB supplementation. Interestingly, alanine aminotransferase and aspartate aminotransferase content in serum were linearly (P < 0.05) decreased by SB supplementation. There was linear (P < 0.05) improvement in activity of superoxide dismutase and catalase in the liver, whereas the content of malondialdehyde was linearly (P < 0.05) decreased with the inclusion of SB. Increasing SB level linearly (P < 0.05) increased CP composition and decreased drip loss percentage on day 1 and 3 of breast muscle. Furthermore, there was linear (P < 0.05) improvement in activity of superoxide dismutase, glutathione peroxidase, and catalase, whereas the content of malondialdehyde showed decreasing trend (P < 0.10) with the inclusion of SB in breast muscle. In conclusion, SB can be used as an effective feed additive to improve growth performance, liver function, and meat quality of broilers under hot climatic conditions.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Zhihui Zhao
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Siqi Li
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Lilong An
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China.
| |
Collapse
|
44
|
Upadhaya SD, Jiao Y, Kim YM, Lee KY, Kim IH. Coated sodium butyrate supplementation to a reduced nutrient diet enhanced the performance and positively impacted villus height and faecal and digesta bacterial composition in weaner pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Lin F, Li X, Wen J, Wang C, Peng Y, Feng J, Hu C. Effects of coated sodium butyrate on performance, diarrhea, intestinal microflora and barrier function of pigs during the first 2-week post-weaning. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Effects of Tributyrin Supplementation on Growth Performance, Insulin, Blood Metabolites and Gut Microbiota in Weaned Piglets. Animals (Basel) 2020; 10:ani10040726. [PMID: 32331306 PMCID: PMC7222802 DOI: 10.3390/ani10040726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In animal farming, alternatives to antibiotics are required due to the increase of antimicrobial resistance. In this contest, tributyrin showed the ability to promote gut health, to modulate gut microbiota and to improve protein digestibility, leading also to higher growth performance. However, although the mode of action of tributyrin on the intestinal epithelial cells has been partially explained, its effects on lipid and protein metabolism needs to be investigated. This paper provides information about the influence of tributyrin on production traits, blood parameters, faecal microbiota and faecal protein excretion in weaned piglets. Abstract The aim of this study was to investigate the effects of tributyrin supplementation on the production traits, the main metabolic parameters and gut microbiota in weaned piglets. One hundred and twenty crossbred piglets (Large White × Landrace) were randomly divided into two experimental groups (six pens each; 10 piglets per pen): the control group (CTRL), that received a basal diet, and the tributyrin group (TRIB) that received the basal diet supplemented with 0.2% tributyrin. The experimental period lasted 40 days. Production traits were measured at days 14, 28 and 40. A subset composed of 48 animals (n = 4 for each pen; n = 24 per group) was considered for the evaluation of serum metabolic parameters and hair cortisol by enzyme-linked immunosorbent assay (ELISA), and faecal microbiota by real-time polymerase chain reaction (PCR). Our results showed that the treatment significantly increased body weight (BW) at day 28 and day 40 (p = 0.0279 and p = 0.0006, respectively) and average daily gain (ADG) from day 28 to day 40 (p = 0.046). Gain to feed ratio (G:F) was significantly higher throughout the experimental period (p = 0.049). Even if the serum parameters were in the physiological range, albumin, albumin/globulin (A/G) ratio, glucose and high-density lipoproteins (HDL) fraction were significantly higher in the TRIB group. On the contrary, tributyrin significantly decreased the urea blood concentration (p = 0.0026), which was correlated with lean gain and feed efficiency. Moreover, serum insulin concentration, which has a regulatory effect on protein and lipid metabolism, was significantly higher in the TRIB group (p = 0.0187). In conclusion, this study demonstrated that tributyrin can be considered as a valid feed additive for weaned piglets.
Collapse
|
47
|
Aristimunha P, Mallheiros R, Ferket P, Cardinal K, Filho AM, Santos E, Cavalcante D, Ribeiro A. Effect of Dietary Organic Acids and Humic Substance Supplementation on Performance, Immune Response and Gut Morphology of Broiler Chickens. J APPL POULTRY RES 2020. [DOI: 10.3382/japr/pfz031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
Effect of Sodium Butyrate on Intestinal Health of Poultry – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0077] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Health of the intestine is one of the main reasons that affects the bird’s performance, and thus the economic yield in the poultry sector. Various studies have examined how to improve the intestinal health using dietary supplements, including organic acids such as sodium butyrate (SB). The efficacy of the dietary supplementation in poultry is often assessed using an important parameter such as intestinal integrity, which is often assessed as a measure of high villus height and the ratio of villus height to crypt depth, or count of goblet cell numbers. In broilers, the villus length and width were increased by the addition of dietary SB. Since, at day 21 and 42, the villus length was increased by 55 and 27%, and 39 and 18% for birds fed 0.5 and 1 g/kg, respectively, compared with the control diet. Furthermore, SB plays an important role in development of poultry intestinal epithelium. It can be employed by the intestinal epithelial cells as an energy source to stimulate their differentiation and proliferation, and to improve intestinal barrier function. SB is effective against acid intolerant species such as Salmonella, Clostridium perfringens and E. coli. In addition, use of butyric acid at 0.6% reduced the pH of gastrointestinal segments. For this, SB could be a potential alternative in maintaining the health of gastrointestinal tract and improving the productive performance of poultry. This review refers to the expanding horizons in the research on SB supplementation in poultry health and nutrition.
Collapse
|
49
|
Wang C, Shen Z, Cao S, Zhang Q, Peng Y, Hong Q, Feng J, Hu C. Effects of tributyrin on growth performance, intestinal microflora and barrier function of weaned pigs. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
García J, Mandalawi HA, Fondevila G, Mateos GG. Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight. Poult Sci 2019; 98:3937-3949. [PMID: 30938811 DOI: 10.3382/ps/pez129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/04/2019] [Indexed: 01/05/2023] Open
Abstract
We studied the effects of beak trimming and sodium-butyrate inclusion in the diet on growth performance and gastrointestinal tract (GIT) traits of brown-egg pullets differing in initial BW. In experiment 1, a total of 6 treatments were organized as a 2 × 3 factorial with 2 BW at hatch (light, 33.9 g and heavy, 37.6 g) and 3 beak trimming protocols [mild (MI-0) or aggressive (AG-0) infrared power setting at hatch and traditional hot blade at 8 D of age (HB-8)] as main effects. Initial BW did not affect growth performance or GIT traits at any age. From hatch to 5 wk of age, HB-8 pullets had lower ADFI (P < 0.01) and ADG (P < 0.05) than MI-0 and AG-0 pullets but no differences were detected after this age. Beak trimming did not affect FCR, BW uniformity, GIT traits, or bacteria count in the excreta at any age. In experiment 2, a total of 12 treatments were organized as a 2 × 3 × 2 factorial, with 2 BW at hatch, 3 beak trimming protocol (as per in experiment 1), and 2 levels of a sodium-butyrate additive (0 vs. 0.3%) as main effects. At 7 D of life, beak treatment reduced pullet growth and AG-0 procedure impaired pullet uniformity (P < 0.001) but the birds recovered completely by day 14 (P < 0.001 for the interaction with time). Cumulatively (0 to 6 wk of age), pullets beak treated at hatch (MI-0 and AG-0) had greater ADFI than HB-8 pullets (P < 0.01). Sodium butyrate tended to improve ADG (P = 0.073) and FCR (P = 0.069) with most of the benefits observed for the first 2 wk of life. In summary, initial BW and beak trimming procedure did not affect final pullet growth in any of the 2 experiments, or GIT traits in experiment 1. Sodium butyrate tended to improve growth and FCR from 0 to 6 wk of age but did not affect BW uniformity.
Collapse
Affiliation(s)
- J García
- Camar Agroalimentaria, S. L., 45214 Toledo, Spain.,Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - H A Mandalawi
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G Fondevila
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G G Mateos
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|