1
|
Soltan YA, Morsy AS, Hashem NM, Elazab MAI, Sultan MA, El-Nile A, El Lail GA, El-Desoky N, Hosny NS, Mahdy AM, Hafez EE, Sallam SMA. In vitro efficacy of cetyltrimethylammonium bromide (CETAB)-modified nano-montmorillonite against aflatoxin B1 associated toxicity and methanogenesis. BMC Vet Res 2025; 21:155. [PMID: 40057750 PMCID: PMC11889834 DOI: 10.1186/s12917-025-04546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Modified nano-montmorillonite is gaining attention as a feed additive for its benefits on ruminal fermentation. Chemical and mechanical methods were used to modify montmorillonite. Cetyltrimethylammonium bromide (CETAB) was utilized for chemical modification, while grounding was carried out to achieve the desired nanoscale particle size, resulting in the formation of the nanoscale powder known as MNMCETAB. Impacts of MNMCETAB supplementation on a basal diet, either contaminated with aflatoxin B1 (AFB1) or not at a level of 20 ppb were tested. Treatments included control (no supplements), a diet with 5 g per kilogram of dry matter (DM) of natural montmorillonite (NM), and diets with MNMCETAB at two doses, 0.5 (low) and 1 (high) grams per kilogram DM. RESULTS The MNMCETAB showed better physicochemical traits than NM clay, including narrower particle size range, higher cation exchange capacity (CEC), greater specific surface area (SSA), and more functional groups. A significant linear decreasing effect (P < 0.05) of MNMCETAB addition on methane (CH) production was observed by the increasing level of the MNMCETAB clay. The control diet contaminated with AFB1 resulted in lower fiber degradability than the other treatments (P < 0.05). No variations were observed in ruminal protozoal counts by both clay supplementations, although there was a noticeable trend (P = 0.08) towards reduced protozoal populations due to AFB1 contamination. AFB1-contaminated diets showed indications of reduced (P < 0.05) levels of total volatile fatty acids (VFA), and concentrations of butyrate and propionate (P < 0.05), alongside shifts towards elevated (P = 0.006) acetate levels, while the low dose of MNMCETAB exhibited higher (P < 0.01) propionate concentrations than the other treatments. CONCLUSION These findings underscored the anti-methanogenic properties and the favorable impacts of MNMCETAB in mitigating the adverse impacts of AFB1on ruminal fermentation and nutrient degradability.
Collapse
Affiliation(s)
- Yosra A Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Amr S Morsy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Nesrein M Hashem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mahmoud A I Elazab
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mohamed A Sultan
- Economic and Agribusiness Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amr El-Nile
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Gomaa Abo El Lail
- Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nagwa El-Desoky
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nourhan S Hosny
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed M Mahdy
- Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Sobhy M A Sallam
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Gabr AA, Farrag F, Ahmed M, Soltan YA, Ateya A, Mafindi U. The Performance, Ingestive Behavior, Nutrient Digestibility, Ruminal Fermentation Profile, Health Status, and Gene Expression of Does Fed a Phytochemical- Lactobacilli Blend in Late Pregnancy. Animals (Basel) 2025; 15:598. [PMID: 40003079 PMCID: PMC11851990 DOI: 10.3390/ani15040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
This study investigated the effects of a phytochemical-Lactobacilli blend (PEL) on the performance and health of late-pregnant does. Thirty Zaraibi does (30.9 ± 0.37 kg body weight, 3-3.5 years old, 90 days pregnant) were randomly assigned to three experimental groups, ensuring equal distribution based on body weight, parity, litter size, and previous lactation milk production. The does were fed either a control diet (no supplementation) or a PEL-supplemented diet (control diet plus 2 g or 4 g of PEL per day) for 60 days. PEL supplementation linearly improved (p < 0.05) feed intake, nutrient digestibility, and ruminal concentrations of acetic and propionic acids, while significantly reducing (p < 0.05) ruminal ammonia-N concentrations. PEL supplementation linearly reduced (p < 0.05) feeding and rumination times while increasing idling time. Blood hematological parameters improved (p < 0.05) with PEL supplementation. Serum protein, liver and kidney function indicators, lipid metabolism, cortisol, and thyroid hormone levels were significantly improved (p < 0.01) in a linear manner with PEL supplementation. Antioxidant status, pro-inflammatory cytokines, and immune response were enhanced both linearly and quadratically (p < 0.05) with PEL treatment. Gene expression analysis revealed a linear upregulation (p < 0.05) of growth, immune, and antioxidant-related genes with PEL supplementation. These findings suggest that supplementing pregnant does with 4 g of PEL per day can effectively enhance their performance, health, and metabolic status.
Collapse
Affiliation(s)
- Amr A. Gabr
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; (A.A.G.); (F.F.); (U.M.)
| | - Fayek Farrag
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; (A.A.G.); (F.F.); (U.M.)
| | - Mohamed Ahmed
- Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, Giza 12619, Egypt
| | - Yosra A. Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Umar Mafindi
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; (A.A.G.); (F.F.); (U.M.)
| |
Collapse
|
3
|
Sacarrão-Birrento L, Harrison LJS, Pienaar R, Toka FN, Torres-Acosta JFJ, Vilela VLR, Hernández-Castellano LE, Arriaga-Jordán CM, Soltan YA, Ungerfeld R, Özkan S, van Harten S, Ferlizza E, Rossiter P, Patra AK, Gunal AC, Bianchi CP, Starič J, Lach G, de Almeida AM. Challenges for Animal Health and Production in the Tropics and Mediterranean for the next 55 years. Trop Anim Health Prod 2024; 56:381. [PMID: 39532768 DOI: 10.1007/s11250-024-04212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
Tropical Animal Health and Production is a journal founded 55 years ago. It is dedicated to the publication of results of original research, investigation, and observation in all fields of animal health, welfare and production which may lead to improved health and productivity of livestock and better utilization of animal resources in tropical, subtropical and similar environments. Research is in strong alignment with the United Nations' Sustainable Development Goals, particularly No Poverty, Zero Hunger, and Good Health and Well-being. To celebrate its 55th anniversary, the editorial board has composed this Editorial article in an effort to address the major challenges that animal and veterinary scientists in the tropics and adjacent regions will address over the next 55 years. The task is accomplished in a systematic fashion addressing the topic species by species (cattle, small ruminants, pigs, poultry, camelids, etc.) and in the context of different groups of health challenges encompassing production, vector-borne, parasitic and transboundary diseases. Challenges are difficult and complex, and the solutions herein proposed may be difficult to implement. It aims to be an informed overview of the major difficulties the sector will experience in the near future, ultimately suggesting tools to address them. Only time will tell if they are accurate, effective or implementable. Nevertheless, Tropical Animal Health and Production Editorial Board, secretariat, reviewers and authors will certainly do their best to contribute to the advancement of animal health and production in the Tropics and the Mediterranean.
Collapse
Affiliation(s)
- Laura Sacarrão-Birrento
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Leslie J S Harrison
- University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, EH25 9RG, UK
| | - Ronel Pienaar
- Agricultural Research Council - Onderstepoort Veterinary Research, Epidemiology, Parasites and Vectors, Onderstepoort, South Africa
| | - Felix N Toka
- Ross University School of Veterinary Medicine, West Farm, P. O. Box 334, Basseterre, St. Kitts And Nevis
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786, Warsaw, Poland
| | - Juan F J Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Vinícius Longo Ribeiro Vilela
- Department of Veterinary Medicine, Federal Institute of Paraíba - IFPB, Sousa, Paraíba, Brazil
- Post-Graduate Program in Science and Animal Health, Federal University of Campina Grande - UFCG, Patos, Paraíba, Brazil
| | - Lorenzo E Hernández-Castellano
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413, Arucas, Spain
| | - Carlos Manuel Arriaga-Jordán
- Instituto de Ciencias Agropecuarias y Rurales (ICAR), Universidad Autónoma del Estado de México, Instituto Literario # 100, Toluca, Estado de México, Mexico
| | - Yosra Ahmed Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Rodolfo Ungerfeld
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Sezen Özkan
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100, İzmir, Türkiye
| | | | - Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Langston, OK, 73050, USA
| | - Aysel Caglan Gunal
- Department of Biology Education, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Carolina Paula Bianchi
- Laboratorio de Endocrinología, Centro de Investigación Veterinaria de Tandil (CIVETAN) (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, 7000, Tandil, Argentina
| | - Jože Starič
- Section for Ruminants, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| |
Collapse
|
4
|
Soltan Y, Morsy A, Elazab M, El-Nile AE, Hashem N, Sultan M, Hamad Y, El Lail GA, Abo-Sherif S, Dabour N, Kheadr E, Hafez E, Sallam S. Effects of Pichia manshurica yeast supplementation on ruminal fermentation, nutrient degradability, and greenhouse gas emissions in aflatoxin B1 contaminated diets. Trop Anim Health Prod 2024; 56:367. [PMID: 39476267 PMCID: PMC11525284 DOI: 10.1007/s11250-024-04184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
Yeast feed additives present a natural approach for mitigating ruminal greenhouse gases (GHG) in an environmentally sustainable manner. This study aimed to isolate yeast strains from ruminal fluids capable of reducing GHG from Aflatoxin (AFB1) contaminated diets. Two isolates of Pichia manchuria (FFNLYFC1 and FFNLYFC2) were isolated and identified from the ruminal contents of dairy Zaraibi goats. An in vitro gas production assay was conducted to evaluate the impact of the yeast supplementations on a basal diet contaminated with AFB1 or not. The treatments were control (-AFB1; basal diet without supplements), control with AFB1 contamination (+ AFB1; basal diet containing 20 ppb AFB1), and yeast-supplemented diets (basal diet supplemented with Saccharomyces cerevisiae, and three treatments of P. manchuria [FFNLYFC1, FFNLYFC2, and their mixture at 1:1 ratio (Mix)]. High biological components were detected in abundance of both FFNLYFC1, FFNLYFC2 filtrates (e.g., diisooctyl phthalate). The Mix and FFNLYFC2 of P. manchuria reduced (P < 0.05) methane by 23.5 and 20.8%, respectively, while only Mix inhibited carbon dioxide by 44% compared to the + AFB1 diet. All yeast diets improved (P < 0.05) ammonia concentration, total protozoal and Entodinium spp. counts compared to + AFB1 diet. The Mix exhibited higher (P < 0.05) values of ruminal degraded cellulose, total short-chain fatty acids, acetate and propionate compared to the individual isolates diets. The results suggest synergistic interactions among P. manshurica isolates, leading to enhanced ruminal fermentation and reduced GHG emissions while alleviating the adverse effects of AFB1. Therefore, we recommended the Mix of P. Manchuria as a novel feed additive to ruminant diets.
Collapse
Affiliation(s)
- Yosra Soltan
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Amr Morsy
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mahmoud Elazab
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Amr E El-Nile
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Nesrein Hashem
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mohamed Sultan
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Younis Hamad
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | | | | | - Nassra Dabour
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ehab Kheadr
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Elsayed Hafez
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Sobhy Sallam
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Al Adawi SA, El-Zaiat HM, Morsy AS, Soltan YA. Lactation Performance and Rumen Fermentation in Dairy Cows Fed a Diet Supplemented with Monensin or Gum Arabic-Nano Montmorillonite Compost. Animals (Basel) 2024; 14:1649. [PMID: 38891693 PMCID: PMC11171063 DOI: 10.3390/ani14111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The exploration of natural alternatives to antibiotics for enhancing productivity and performance in dairy cows is a crucial objective in farm animal management. This is the first study aimed at developing and evaluating the physicochemical properties and effects of Arabic gum-nano montmorillonite (AGNM) compost compared to ionophore monensin as feed additives on rumen fermentation, blood metabolites, and milk production of Holstein dairy cows. In a replicated 4 × 4 Latin square design, four multiparous mid-lactation Holstein dairy cows with an average body weight of 520 ± 15 kg were enrolled. The dietary treatments included a control diet (basal diet without feed additives), monensin diet [a basal diet supplemented with 35 mg/kg dry matter (DM) monensin], and AGNM diets comprising basal diet supplemented with two levels: low (L-AGNM) at 1.5 g/kg DM, and high (H-AGNM) at 3 g/kg DM. AGNM as a feed additive demonstrated promising physiochemical parameters, including containing highly bioactive components (α-amyrin and lupeol), functional groups (OH and Si-O), and essential mineral contents (Mg2+). Supplementations with H-AGNM significantly improved ruminal (p = 0.031) concentrations of total volatile fatty acids (VFAs), acetic (p = 0.05) and butyric (p = 0.05), enhanced (p < 0.05) digestibility of fiber and organic matter, while decreased (p = 0.013) estimated methane production. However, an increase (p = 0.04) in blood high-density lipoprotein levels and decrease (p < 0.05) in concentrations of creatinine (CREA), bilirubin (BILT), cholesterol (CHOL), and sodium (Na) were observed with H-AGNM supplementation. Both monensin and H-AGNM improved (p = 0.008) feed efficiency compared to L-AGNM; however, neither AGNM nor monensin affected the milk composition or energy status indicators of the dairy cows. The findings of this study highlight the potential of AGNM as a natural candidate to replace monensin in enhancing ruminal VFA production, nutrient digestibility, feed efficiency, blood metabolites, and milk yield in dairy cows.
Collapse
Affiliation(s)
- Salim A. Al Adawi
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman;
| | - Hani M. El-Zaiat
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman;
| | - Amr S. Morsy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, P.O. Box 21934, Alexandria 21934, Egypt;
| | - Yosra A. Soltan
- Department of Animal and Fish Production, Faculty of Agriculture, University of Alexandria, Aflaton St., El-Shatby, P.O. Box 21545, Alexandria 21526, Egypt
| |
Collapse
|
6
|
Gamal L, Noshy MM, Aboul-Naga AM, Sabit H, El-Shorbagy HM. DNA methylation of GDF-9 and GHR genes as epigenetic regulator of milk production in Egyptian Zaraibi goat. Genes Genomics 2024; 46:135-148. [PMID: 37985544 PMCID: PMC10781795 DOI: 10.1007/s13258-023-01464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND DNA methylation is an epigenetic mechanism that takes place at gene promoters and a potent epigenetic marker to regulate gene expression. OBJECTIVE The study aimed to improve the milk production of Zaraibi goats by addressing the methylation pattern of two milk production-related genes: the growth hormone receptor (GHR) and the growth differentiation factor-9 (GDF-9). METHODS 54 and 46 samples of low and high milk yield groups, respectively, were collected. Detection of methylation was assessed in two CpG islands in the GDF-9 promoter via methylation-specific primer assay (MSP) and in one CpG island across the GHR promoter using combined bisulfite restriction analysis (COBRA). RESULTS A positive correlation between the methylation pattern of GDF-9 and GHR and their expression levels was reported. Breeding season was significantly effective on both peak milk yield (PMY) and total milk yield (TMY), where March reported a higher significant difference in PMY than November. Whereas single birth was highly significant on TMY than multiple births. The 3rd and 4th parities reported the highest significant difference in PMY, while the 4th parity was the most effective one on TMY. CONCLUSION These results may help improve the farm animals' milk productive efficiency and develop prospective epigenetic markers to improve milk yield by epigenetic marker-assisted selection (eMAS) in goat breeding programs.
Collapse
Affiliation(s)
- Layaly Gamal
- Sheep and Goat Research Department, Animal Production Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Magda M Noshy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - A M Aboul-Naga
- Sheep and Goat Research Department, Animal Production Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Haidan M El-Shorbagy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Faculty of Biotechnology, October University for Modern Science and Arts, 6th October, Giza, Egypt.
| |
Collapse
|
7
|
Karageorgou A, Tsafou M, Goliomytis M, Hager-Theodorides A, Politi K, Simitzis P. Effect of Dietary Supplementation with a Mixture of Natural Antioxidants on Milk Yield, Composition, Oxidation Stability and Udder Health in Dairy Ewes. Antioxidants (Basel) 2023; 12:1571. [PMID: 37627566 PMCID: PMC10451849 DOI: 10.3390/antiox12081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Due to the limitations in the use of antibiotic agents, researchers are constantly seeking natural bioactive compounds that could benefit udder health status but also milk quality characteristics in dairy animals. The aim of the current study was therefore to examine the effects of a standardized mixture of plant bioactive components (MPBC) originated from thyme, anise and olive on milk yield, composition, oxidative stability and somatic cell count in dairy ewes. Thirty-six ewes approximately 75 days after parturition were randomly allocated into three experimental treatments, which were provided with three diets: control (C); without the addition of the mixture, B1; supplemented with MPBC at 0.05% and B2; supplemented with rumen protected MPBC at 0.025%. The duration of the experiment was 11 weeks, and milk production was weekly recorded, while individual milk samples for the determination of composition, oxidative stability, somatic cell count (SCC), pH and electric conductivity were collected. Every two weeks, macrophage, lymphocyte, and polymorphonuclear leukocyte counts were also determined in individual milk samples. It was observed that milk yield was the greatest in the B2 group, with significant differences within the seventh and ninth week (p < 0.05), whereas no significant differences were found for milk composition, with the exception of the seventh week, when protein, lactose and non-fat solid levels were lower in MPBC groups (p < 0.05). Oxidative stability was improved in the groups that received the MPBC, with significant differences at the third, seventh, tenth and eleventh week (p < 0.05). SCC was also significantly lower at the second, eighth and ninth week in B2 compared to the other groups (p < 0.05), while no significant effects on the macrophage, lymphocyte, and polymorphonuclear leukocyte counts were observed. In conclusion, the MPBC addition had a positive effect on sheep milk yield, oxidative stability and somatic cell count, without any negative effect on its composition.
Collapse
Affiliation(s)
| | | | | | | | | | - Panagiotis Simitzis
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (A.K.); (M.G.); (A.H.-T.); (K.P.)
| |
Collapse
|
8
|
Basyony M, Morsy AS, Soltan YA. Extracts of Apricot ( Prunus armeniaca) and Peach ( Prunus pérsica) Kernels as Feed Additives: Nutrient Digestibility, Growth Performance, and Immunological Status of Growing Rabbits. Animals (Basel) 2023; 13:ani13050868. [PMID: 36899727 PMCID: PMC10000093 DOI: 10.3390/ani13050868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
This study assessed the effects of the kernel extracts of apricot (AKE; Prunus armeniaca) and peach (PKE; Prunus pérsica), and their mixture (Mix) on growth efficiency, feed utilization, cecum activity, and health status, of growing rabbits. Weaned male New Zealand White rabbits at six weeks old [n = 84, 736 ± 24 SE g body weight (BW)] were randomly allotted to four dietary groups. The first group received no feed additives (control), the second and third groups received 0.3 mL/kg BW of AKE and PKE, respectively, and the fourth group received a mixture of AKE and PKE (1:1) at 0.3 mL/kg BW (Mix). Results indicated that 2(3h)-Furanone, 5-Heptyldihydro was found in abundance in both extracts, while 1,1-Dimethyl-2 Phenylethy L Butyrate and 1,3-Dioxolane, and 4-Methyl-2-Phenyl- were the most components detected in AKE and Cyclohexanol and 10-Methylundecan-4-olide were found in abundance in PKE. All the experimental extracts enhanced (p < 0.05) the growth performance, cecal fermentation parameters, and cecal L. acidiophilus and L. cellobiosus count, while PKE and the mixture treatments presented the highest (p = 0.001) total weight gain and average weight gain without affecting the feed intake. Rabbits that received the mix treatment had the highest (p < 0.05) nutrient digestibility and nitrogen retained, and the lowest (p = 0.001) cecal ammonia concentration. All the experimental extracts enhanced (p < 0.05) the blood antioxidant indicators (including total antioxidant capacity, catalase, and superoxide dismutase concentrations), and immune response of growing rabbits. In general, fruit kernel extracts are rich sources of bioactive substances that can be used as promising feed additives to promote the growth and health status of weaned rabbits.
Collapse
Affiliation(s)
- Mohamed Basyony
- Department of Poultry Nutrition, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12126, Egypt
| | - Amr S. Morsy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Yosra A. Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- Correspondence: or ; Tel.: +20-121099010
| |
Collapse
|
9
|
Khalil MM, Soltan YA, Khadiga GA, Elmahdy A, Sallam SM, Zommara MA, Rabee AE, Khattab IM. Comparison of dietary supplementation of sodium selenite and bio-nanostructured selenium on nutrient digestibility, blood metabolites, antioxidant status, milk production, and lamb performance of Barki ewes. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Soltan YA, Morsy AS, Hashem NM, Elazab MAI, Sultan MA, El-Nile A, Marey HN, El Lail GA, El-Desoky N, Hosny NS, Mahdy AM, Hafez EE, Sallam SMA. Potential of montmorillonite modified by an organosulfur surfactant for reducing aflatoxin B1 toxicity and ruminal methanogenesis in vitro. BMC Vet Res 2022; 18:387. [PMID: 36329452 PMCID: PMC9632135 DOI: 10.1186/s12917-022-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background Montmorillonite clay modified by organosulfur surfactants possesses high cation exchange capacity (CEC) and adsorption capacity than their unmodified form (UM), therefore they may elevate the adverse impact of aflatoxin B1 (AFB1) on ruminal fermentation and methanogenesis. Chemical and mechanical modifications were used to innovate the organically modified nano montmorillonite (MNM). The UM was modified using sodium dodecyl sulfate (SDS) and grounded to obtain the nanoscale particle size form. The dose-response effects of the MNM supplementation to a basal diet contaminated or not with AFB1 (20 ppb) were evaluated in vitro using the gas production (GP) system. The following treatments were tested: control (basal diet without supplementations), UM diet [UM supplemented at 5000 mg /kg dry matter (DM)], and MNM diets at low (500 mg/ kg DM) and high doses (1000 mg/ kg DM). Results Results of the Fourier Transform Infra-Red Spectroscopy analysis showed shifts of bands of the OH-group occurred from lower frequencies to higher frequencies in MNM, also an extra band at the lower frequency range only appeared in MNM compared to UM. Increasing the dose of the MNM resulted in linear and quadratic decreasing effects (P < 0.05) on GP and pH values. Diets supplemented with the low dose of MNM either with or without AFB1 supplementation resulted in lower (P = 0.015) methane (CH4) production, ruminal pH (P = 0.002), and ammonia concentration (P = 0.002) compared to the control with AFB1. Neither the treatments nor the AFB1 addition affected the organic matter or natural detergent fiber degradability. Contamination of AFB1 reduced (P = 0.032) CH4 production, while increased (P < 0.05) the ruminal pH and ammonia concentrations. Quadratic increases (P = 0.012) in total short-chain fatty acids and propionate by MNM supplementations were observed. Conclusion These results highlighted the positive effects of MNM on reducing the adverse effects of AFB1 contaminated diets with a recommended dose of 500 mg/ kg DM under the conditions of this study.
Collapse
Affiliation(s)
- Yosra A Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Amr S Morsy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Nesrein M Hashem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mahmoud A I Elazab
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mohamed A Sultan
- Economic and Agribusiness Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amr El-Nile
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Haneen N Marey
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Gomaa Abo El Lail
- Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nagwa El-Desoky
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nourhan S Hosny
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed M Mahdy
- Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Sobhy M A Sallam
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Nano and natural zeolite feed supplements for dairy goats: feed intake, ruminal fermentation, blood metabolites, and milk yield and fatty acids profile. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
An Z, Luo G, Abdelrahman M, Riaz U, Gao S, Yao Z, Ye T, Lv H, Zhao J, Chen C, Yang L. Effects of capsicum oleoresin supplementation on rumen fermentation and microbial abundance under different temperature and dietary conditions in vitro. Front Microbiol 2022; 13:1005818. [PMID: 36225375 PMCID: PMC9549126 DOI: 10.3389/fmicb.2022.1005818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to determine the effect of capsicum oleoresin (CAP) on rumen fermentation and microbial abundance under different temperature and dietary conditions in vitro. The experimental design was arranged in a 2 × 2 × 3 factorial format together with two temperatures (normal: 39°C; hyperthermal: 42°C), two forage/concentrate ratios (30:70; 70:30), and two CAP concentrations in the incubation fluid at 20 and 200 mg/L with a control group. Regarding the fermentation characteristics, high temperature reduced short-chain fatty acids (SCFA) production except for molar percentages of butyrate while increasing acetate-to-propionate ratio and ammonia concentration. The diets increased total SCFA, propionate, and ammonia concentrations while decreasing acetate percentage and acetate-to-propionate ratio. CAP reduced acetate percentage and acetate-to-propionate ratio. Under hyperthermal condition, CAP could reduce acetate percentage and increase acetate-to-propionate ratio, lessening the negative effect of high heat on SCFA. Hyperthermal condition and diet altered the relative abundance of microbial abundance in cellulose-degrading bacteria. CAP showed little effect on the microbial abundance which only increased Butyrivibrio fibrisolvens. Thus, CAP could improve rumen fermentation under different conditions, with plasticity in response to the ramp of different temperature and dietary conditions, although hardly affecting rumen microbial abundance.
Collapse
Affiliation(s)
- Zhigao An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Gan Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Mohamed Abdelrahman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Animal Production Department, Faculty of Agriculture, Assiut University, Asyut, Egypt
| | - Umair Riaz
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shanshan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Zhiqiu Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Tingzhu Ye
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Haimiao Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | - Jvnwei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
| | | | - Liguo Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
- *Correspondence: Liguo Yang,
| |
Collapse
|
13
|
Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet Sci 2022; 9:vetsci9090475. [PMID: 36136691 PMCID: PMC9502430 DOI: 10.3390/vetsci9090475] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
There is an increasing pressure to identify natural feed additives that improve the productivity and health of livestock, without affecting the quality of derived products. The objective of this study was to evaluate the effects of dietary supplementation with essential oils (EOs) on productive performance, rumen parameters, serum metabolites, and quality of products (meat and milk) derived from small ruminants by means of a meta-analysis. Seventy-four peer-reviewed publications were included in the data set. Weighted mean differences (WMD) between the EOs treatments and the control treatment were used to assess the magnitude of effect. Dietary inclusion of EOs increased (p < 0.05) dry matter intake (WMD = 0.021 kg/d), dry matter digestibility (WMD = 14.11 g/kg of DM), daily weight gain (WMD = 0.008 kg/d), and feed conversion ratio (WMD = −0.111). The inclusion of EOs in small ruminants’ diets decreased (p < 0.05) ruminal ammonia nitrogen concentration (WMD = −0.310 mg/dL), total protozoa (WMD = −1.426 × 105/mL), methanogens (WMD = −0.60 × 107/mL), and enteric methane emissions (WMD = −3.93 L/d) and increased ruminal propionate concentration (WMD = 0.726 mol/100 mol, p < 0.001). The serum urea concentration was lower (WMD = −0.688 mg/dL; p = 0.009), but serum catalase (WMD = 0.204 ng/mL), superoxide dismutase (WMD = 0.037 ng/mL), and total antioxidant capacity (WMD = 0.749 U/mL) were higher (p < 0.05) in response to EOs supplementation. In meat, EOs supplementation decreased (p < 0.05) the cooking loss (WMD = −0.617 g/100 g), malondialdehyde content (WMD = −0.029 mg/kg of meat), yellowness (WMD = −0.316), and total viable bacterial count (WMD = −0.780 CFU/g of meat). There was higher (p < 0.05) milk production (WMD = 0.113 kg/d), feed efficiency (WMD = 0.039 kg/kg), protein (WMD = 0.059 g/100 g), and lactose content in the milk (WMD = 0.100 g/100 g), as well as lower somatic cell counts in milk (WMD = −0.910 × 103 cells/mL) in response to EOs supplementation. In conclusion, dietary supplementation with EOs improves productive performance as well as meat and milk quality of small ruminants. In addition, EOs improve antioxidant status in blood serum and rumen fermentation and decrease environmental impact.
Collapse
|
14
|
Zhang C, Yu Q, Wang J, Yu Y, Zhang Y, Sun Y. Effects of Dietary Supplementation With Clostridium butyricum on Growth Performance, Apparent Digestibility, Blood Metabolites, Ruminal Fermentation and Bacterial Communities of Fattening Goats. Front Nutr 2022; 9:888191. [PMID: 35685891 PMCID: PMC9173004 DOI: 10.3389/fnut.2022.888191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023] Open
Abstract
Clostridium butyricum (C. butyricum) is currently widely used to improve the body health and productive performance of monogastric animals. However, there have been few reports on the effects and specific mechanism of action of Clostridium butyricum in ruminants. This study aimed to investigate the effects of Clostridium butyricum supplementation on the growth performance and digestive microbiota of fattening goats. Twenty-four healthy male Albas goats (body weight = 22 ± 2.03 kg) were randomly divided into 3 treatment groups with eight goats in each group. The treatments were as follows: control group (CON) (basal diet, concentrate to forage ratio = 65:35); low-dose Clostridium butyricum (LCB) (basal diet plus 2.0 × 108 CFU/kg Clostridium butyricum); and high-dose Clostridium butyricum (HCB) (basal diet plus 1.0 × 109 CFU/kg Clostridium butyricum). The experiment lasted for 8 weeks after a 2-week adaptation period. Therefore, growth performance and rumen and rectum microbiota were evaluated in goats supplemented with Clostridium butyricum and its metabolites. The results showed that dietary supplementation with Clostridium butyricum significantly increased the pH (P < 0.05), but had no significant effect on growth performance (P > 0.05). Compared with the control group, dietary Clostridium butyricum supplementation significantly increased the relative abundance of Prevotella_1, Christensenellaceae AE_R-7_Group and Prevotellaceae AE_UCG-003 (P < 0.05), and significantly decreased Succiniclasticum and Muribaculaceae_unclassified (P < 0.05). The relative abundance of Clostridium in the rumen was <1.0%. Moreover, 16S rDNA analysis showed that the fecal Clostridium or Clostridium butyricum count was significantly decreased (P < 0.05), and the relative abundance of Alistipes and Akkermansia was increased (P < 0.10) in the low-dose group compared with the control group. Supplementing Clostridium butyricum in a high-concentrate diet did not significantly affect the performance of goats, while regulation of the gastrointestinal microbiota and related metabolites was associated with rumen fermentation.
Collapse
Affiliation(s)
- Chengrui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingyuan Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jihong Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yidong Yu
- Ordos Academy of Agriculture and Animal Husbandry, Ordos, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Yonggen Zhang
| | - Yukun Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Yukun Sun
| |
Collapse
|
15
|
Modified Nano-Montmorillonite and Monensin Modulate In Vitro Ruminal Fermentation, Nutrient Degradability, and Methanogenesis Differently. Animals (Basel) 2021; 11:ani11103005. [PMID: 34680023 PMCID: PMC8532677 DOI: 10.3390/ani11103005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Two types of modified nano-montmorillonite (MNM) were developed by ion-exchange reactions using two different surfactants; sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CETAB), to prepare MNMSDS and MNMCETAB, respectively. Both MNM types were on the nano-scale and had higher cation-exchange capacity values than NM clay. The MNMCETAB had the highest zeta potential (-27 mV) compared with the other clays. Effects of MNM types on in vitro ruminal batch culture fermentation, nutrient degradability, and methane (CH4) emission compared with monensin were evaluated in vitro using a semi-automatic gas production system. The experimental treatments were the control (0 supplementations), monensin (40 mg/kg DM), and NM (5 g NM/kg DM), and two levels of MNMSDS and MNMCETAB were supplemented at 0.05 (low) and 0.5 (high) g/kg DM to the control basal feed substrate. Among the experimental treatments, the high dose of both MNM types reduced (p < 0.01) CH4 production and ammonia concentrations compared with the control, while only MNMCETAB treatment tended to increase (p = 0.08) the truly degraded organic matter compared with monensin. All MNM treatments increased (p < 0.01) acetate molar proportions compared with monensin. The high MNMCETAB increased (p < 0.01) the in vitro ruminal batch culture pH compared with the control and monensin. The MNMCETAB supplemented at 0.5 g/kg DM is the most efficient additive to reduce CH4 emission with the advantage of enhancing the in vitro nutrient degradability of the experimental feed substrate. These results indicated that MNM could modulate the in vitro ruminal fermentation pattern in a dose- and type-dependent manner.
Collapse
|
16
|
Sun X, Wang Y, Wang E, Zhang S, Wang Q, Zhang Y, Wang Y, Cao Z, Yang H, Wang W, Li S. Effects of Saccharomyces cerevisiae Culture on Ruminal Fermentation, Blood Metabolism, and Performance of High-Yield Dairy Cows. Animals (Basel) 2021; 11:ani11082401. [PMID: 34438858 PMCID: PMC8388736 DOI: 10.3390/ani11082401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Nowadays, the lifetime milk production of dairy cows, as well as the fat and protein contents of milk, has reached an unprecedented high. These improvements pose threats and challenges to animal health and welfare due to metabolic stress. The cows, during the high-yielding period, are especially susceptible to metabolic diseases such as digestive alterations, rumen acidosis, and lameness. This study assessed the effects of Saccharomyces cerevisiae culture (SC), a food supplement, on ruminal pH, volatile fatty acid (VFA), inflammatory cytokines, and the performance of high-yield dairy cows. The results show that supplementing high-yield lactating cows with the SC of 100 g/d increases milk yield, milk fat content, and milk lactose content, but does not affect protein content. SC supplementation affects overall ruminal VFA concentration and induces a significantly greater ruminal pH. It has the potential to enhance the rumen microbial growth and decrease the inflammation response. Our research suggests that SC supplementation has a positive effect on the productivity and health of dairy cows. Abstract High-yield dairy cows with high-concentrate diets are more prone to experiencing health problems associated with rumen microbial imbalance. This study assessed the effects of Saccharomyces cerevisiae culture (SC), a food supplement, on ruminal pH, volatile fatty acid (VFA), inflammatory cytokines, and performance of high-yield dairy cows. Forty Holstein cows with similar characteristics (e.g., milk yield, days of milk, and parity) were randomly divided into two groups: an experimental group fed the basal ration supplemented with the SC of 100 g of SC per cow per day (hour, SC group), and a control group fed the same basal ration diet without SC (i.e., CON group). On average, the supplementation of SC started at 73 days of lactation. The experimental period lasted approximately 70 days (from 18 January to 27 March 2020), including 10 days for dietary adaptation. Milk yield was recorded daily. Rumen fluid and milk samples were collected after 2 h of feeding in the morning of day 0, 15, 30, and 60. The data showed that rumen pH increased (p < 0.05) when cows were provided with SC. On average, the cows in the SC group produced 1.36 kg (p < 0.05) more milk per day than those in the CON group. Milk fat content of cows in the SC group was also higher (4.11% vs. 3.96%) (p < 0.05). Compared with the CON group, the concentration of acetic acid in the rumen fluid of dairy cows in the SC group was significantly higher (p < 0.05). There were no differences (p > 0.05) found in milk protein content and propionic acid between groups. The SC group had a tendency increase in butyric acid (p = 0.062) and total VFA (p = 0.058). The result showed that SC supplementation also enhanced the ratio between acetic and propionic. Most of the mean inflammatory cytokine (IL-2, IL-6, γ-IFN, and TNF-α) concentrations (p < 0.05) of the SC group were lower than CON group. This study demonstrated that high-yield cows receiving supplemental SC could produce more milk with higher fat content, have higher rumen acetate, and potentially less inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Yue Wang
- Animal Production Systems Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands;
| | - Erdan Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Shu Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Yan Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
- Correspondence: (W.W.); (S.L.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (X.S.); (E.W.); (S.Z.); (Q.W.); (Y.Z.); (Y.W.); (Z.C.); (H.Y.)
- Correspondence: (W.W.); (S.L.)
| |
Collapse
|
17
|
El-Raghi AA, Hassan MAE, El-Ratel IT, Hashem NM, Abdelnour SA. Sustainable Management of Voluntary Culling Risk in Primiparous Zaraibi Goats in Egypt: Roles of Season and Reproductive and Milk Production-Related Traits. Animals (Basel) 2021; 11:ani11082342. [PMID: 34438799 PMCID: PMC8388718 DOI: 10.3390/ani11082342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Sustainable production of livestock farms mainly depends on efficient management and precise decisions. One of the most important managemental decisions that play a great role in the continuation of production and profitability is culling. Excluding non-efficient animals from the production cycle is a very critical decision as a wrong and aggressive culling decision may cause a certain loss in farm profitability by increasing costs of replacement. Identifying factors that affect culling risk can aid breeders in creating suitable interventions to maintain productive animals. In this study, logistic regression analysis was used to study the pattern of culling risk factors in primiparous Nubian goats. The effect of ten independent factors including season, reproductive traits, and milk production traits on the percentage of voluntary culling risk was studied. The presented outcomes clearly indicated that birth weight, total litter size at birth, litter size at weaning, number of kids dead, total milk yield, average daily milk yield, lactation period, and age at first kidding had significant effects on culling risk, while both the birth season of the dam and kidding season did not exhibit significant effects on culling risk. In practice, monitoring of traits that indicate milk imbalance and older age at first kidding could promote identifying goats at high risk of being culled. Abstract The purpose of the current study is to reconnoiter the relationships between season (birth season, BS, and kidding season, KS), reproductive traits (birth weight, BW; total litter size at birth, TLS; litter size at weaning, LSW; the number of kids dead, NKD, and; age at first kidding, AFK) and milk production (total milk yield, TMY; average daily milk yield, DMY, and; lactation period, LP), with voluntary culling risk in primiparous Zaraibi goats. Records of 637 primiparous does were collected during the period 2008–2014 from a herd of Zaraibi goats raised at the El-Serw Experimental Station, which belongs to the Animal Production Research Institute. Our data revealed that the voluntary and involuntary culling was 89.12% and 10.88%, respectively. Moreover, the BW, TLS, LSW, NKD, TMY, DMY, LP, AFK had significant effects on culling risk (p < 0.05), while both the season of birth and kidding did not exhibit significant effects on culling risk. The thinnest goats at birth were more likely to be culled compared to those with body energy reserves. Does with weaned twins and triplets kids were 9.5% (OR = 0.905) and 43% (OR = 0.570), respectively less likely to be culled compared to those with singles. Likewise, does with dead twins and triplets kids had 2.566 and 2.138 times, respectively higher odds of culling compared to those with singles. Interestingly, culling risk decreased with 74.6% (OR = 0.254), 79.8% (OR = 0.202), and 75.6% (OR = 0.244) in does with TMY, LP, and DMY more than 230 kg, 260 days, and 0.800 kg, respectively compared to their counterparts (less than 185 kg, 240 day, and 0.500 kg, respectively). Moreover, culling risk increased steadily along with increasing AFK; the animals with an AFK of more than 24 months had 2.974 times higher odds of culling compared to those with an AFK that varied between 22 and 24 months. It could be concluded that the most critical issues for higher culling probability in dairy goats were attributed to the lower TMY (<185 kg) and DMY (<0.5 kg), and shorter LP (<245 days), as well as older age at first kidding (>2 years). This putative information could be used as indicators to enhance the management and genetic approaches in dairy goats and thus sustain productivity with low cost.
Collapse
Affiliation(s)
- Ali Ali El-Raghi
- Department of Animal Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| | - Mahmoud A. E. Hassan
- Animal Production Research Institute (APRI), Agriculture Research Center, Ministry of Agriculture, Dokki, Giza 12619, Egypt;
| | - Ibrahim T. El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
- Correspondence: (N.M.H.); (S.A.A.)
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (N.M.H.); (S.A.A.)
| |
Collapse
|
18
|
In Vitro and In Vivo Assessment of Dietary Supplementation of Both Natural or Nano-Zeolite in Goat Diets: Effects on Ruminal Fermentation and Nutrients Digestibility. Animals (Basel) 2021; 11:ani11082215. [PMID: 34438673 PMCID: PMC8388406 DOI: 10.3390/ani11082215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 01/20/2023] Open
Abstract
This study aimed to evaluate in vitro and in vivo dietary supplementation with different levels of natural or nano-zeolite forms on rumen fermentation patterns and nutrient digestibility. In the in vitro experiment, a basal diet (50% concentrate: 50% forage) was incubated without additives (control) and with natural zeolite (10, 20, 30 g/kg DM) or nano-zeolite (0.2, 0.3, 0.4, 0.5, 1.0 g/kg DM) for 24 h to assess their effect on ruminal fermentation, feed degradability, and gas and methane production using a semi-automatic system of in vitro gas production (GP). The most effective doses obtained from the in vitro experiment were evaluated in vivo using 30 Barki goats (26 ± 0.9 SE kg body weight). Goats were allocated into three dietary treatments (n = 10/treatment) as follows: control (basal diet without any supplementations), natural zeolite (20 g/kg DM diet), and nano-zeolite (0.40 g/kg DM diet). The in vitro results revealed that only the nano-zeolite supplementation form quadratically (p= 0.004) increased GP, and the level of 0.5 g/kg DM had the highest GP value compared to the control. Both zeolite forms affected the CH4 production, linear, and quadratic reductions (p < 0.05) in CH4 (mL/g DM), consistent with linear increases in truly degraded organic matter (TDOM) (p = 0.09), and propionate molar proportions (p = 0.007) were observed by nano zeolite treatment, while the natural form of zeolite resulted in a linear CH4 reduction consistent with a linear decrease (p = 0.004) in NH3-N, linear increases in TDOM (p = 0.09), and propionate molar proportions (p = 0.004). Results of the in vivo experiment demonstrated that the nutrient digestibility was similar among all treatments. Nano zeolite enhanced (p < 0.05) the total short-chain fatty acids and butyrate concentrations, while both zeolite forms decreased (p < 0.001) NH3-N compared to the control. These results suggested that both zeolite supplementation forms favorably modified the rumen fermentation in different patterns.
Collapse
|