1
|
Chen H, Ling R, Lai J, Liu Z, Wang Z, Yang H, Kong Y. CD44v6-mediated regulation of gastric cancer stem cells: a potential therapeutic target. Clin Exp Med 2025; 25:80. [PMID: 40069421 PMCID: PMC11897096 DOI: 10.1007/s10238-025-01611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Gastric cancer is the fourth most common cause of cancer-related deaths globally. Cancer stem cells (CSCs) play an essential role in tumor initiation, development, and chemoresistance. However, the molecular mechanisms that regulate CSC traits in gastric cancer, particularly the role of CD44v6 as a key CSC marker, remain poorly understood. Here, we demonstrate that CD44v6 is markedly upregulated in gastric cancer tissues and correlates with poor prognosis. Functional assays, including colony formation, wound healing, proliferation, and apoptosis assays, show that CD44v6 enhances CSC characteristics, such as self-renewal, proliferation, migration, and cisplatin chemoresistance. CD44v6 knockdown effectively suppresses these aggressive phenotypes. Mechanistically, CD44v6 regulates the expression of key CSC markers, including CD24, CD133, EpCAM, as well as stemness-related transcription factors Oct-4 and Nanog. Additionally, CD44v6 enhances cell proliferation and drug resistance in both in vitro and in vivo experiments. Collectively, our findings highlight the significant role of CD44v6 in regulating gastric CSC traits, suggesting it's a potential as a biomarker and therapeutic target for improving gastric cancer treatment outcomes, particularly in overcoming chemoresistance.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ruoyu Ling
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jiayu Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zhiqi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong Province, China.
| | - Hua Yang
- Department of Basic Medicine, School of Medicine, Foshan University, Foshan, 528225, Guangdong Province, China.
| | - Yi Kong
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
2
|
Yoshida C, Kadota K, Yamada K, Fujimoto S, Ibuki E, Ishikawa R, Haba R, Yajima T. CD44v6 downregulation as a prognostic factor for distant recurrence in resected stage I lung adenocarcinomas. Clin Exp Med 2023; 23:5191-5200. [PMID: 37743425 DOI: 10.1007/s10238-023-01185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
CD44 and CD44 variant isoforms have been reported as contributing factors to cancer progression. In this study, we aimed to assess whether CD44 and its variant isoforms were correlated with the prognostic factors for distant metastasis in stage I lung adenocarcinomas using tissue microarray and immunohistochemistry. In this single-center retrospective study, we analyzed the data of 490 patients with stage I lung adenocarcinoma resected between 1999 and 2016. We constructed tissue microarrays and performed immunohistochemistry for CD44s, CD44v6, and CD44v9. The risk of disease recurrence and its associations with clinicopathological risk factors were assessed. CD44v6 expression was significantly associated with recurrence. Patients with CD44v6-negative tumors had a significantly increased risk of developing distant recurrence than patients with CD44v6-positive tumors (5-year cumulative incidence of recurrence (CIR), 10.7% vs. 4.6%; P = 0.009). However, CD44v6-negative tumors were not associated with an increased risk of locoregional recurrence compared to CD44v6-positive tumors (5-year CIR, 6.0% vs. 4.0%; P = 0.39). The overall survival (OS) of patients with CD44v6-negative tumors was significantly lower than that of patients with CD44v6-positive tumors (5-year OS: 87% vs. 94%, P = 0.016). CD44v6-negative tumors were also associated with invasive tumor size and lymphovascular invasion. Even in stage I disease, tumors with negative-CD44v6 expression had more distant recurrences than those with positive-CD44v6 expression and were associated with poor prognosis in resected stage I lung adenocarcinomas. Thus, CD44v6 downregulation may be a prognostic factor for distant metastasis in stage I lung adenocarcinomas.
Collapse
Affiliation(s)
- Chihiro Yoshida
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of General Thoracic Surgery, Kochi Health Sciences Center, Kochi, Japan
| | - Kyuichi Kadota
- Department of Pathology, Faculty of Medicine, Shimane University, Shimane, Japan.
| | - Kaede Yamada
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Syusuke Fujimoto
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Emi Ibuki
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ryou Ishikawa
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toshiki Yajima
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
3
|
Bhanu H, Mittal R, Raman S. Evaluation and Clinicopathological Correlation of CD44 in Colorectal Adenoma with Low/High-Grade Dysplasia and Carcinoma. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/q4yjbhtgzg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Kataki A, Giannakoulis VG, Derventzi A, Papiris K, Koniaris E, Konstadoulakis M. Membranous CD44v6 is upregulated as an early event in colorectal cancer: Downregulation is associated with circulating tumor cells and poor prognosis. Oncol Lett 2021; 22:820. [PMID: 34691247 PMCID: PMC8527563 DOI: 10.3892/ol.2021.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/01/2021] [Indexed: 01/30/2023] Open
Abstract
Previous studies have reported that CD44 variant 6 (CD44v6) and metastasis-associated protein 1 (MTA1) are contributing factors to cancer progression. The present study aimed to evaluate the expression profiles for associations with patients' demographic data, clinicopathological characteristics, the presence of partial epithelial-to-mesenchymal transition (pEMT), metastatic potential based on the presence of CK20+ CEA+ CXCR4+ circulating tumor cells (CTCs) and prognosis (median follow-up, 45 months). Thus, frozen tissue samples from 31 patients with stage I–III colorectal cancer (CRC), 15 benign colorectal polyps and seven normal colorectal tissues were analyzed to detect membranous (m)CD44v6 and MTA1 expression via flow cytometry. The results demonstrated that the mCD44v6 and MTA1 expression profiles were significantly correlated (rs=+0.786, P<0.001). Notably, MTA1 expression was not associated with any of the clinicopathological characteristics assessed. The percentage of mCD44v6-positive cells within tumors was higher in the right-sided cancer lesions (P=0.014), suggesting that proximal and distal CRCs are distinct clinicopathological entities. Furthermore, downregulated mCD44v6 expression was significantly associated with the presence of CTCs (P=0.017). This association was stronger for pEMT (co-expression of N- and E-cadherin mRNAs) primary lesions (P=0.009). In addition, patients with CRC with low levels of mCD44v6 had unfavorable survival outcomes (P=0.037). Taken together, these results suggest that targeted analysis of membranous CD44v6 as opposed to membranous-cytoplasmic expression is important in determining the prognosis of patients with CRC. Furthermore, downregulated mCD44v6 expression in malignancies presenting CTCs reinforces the importance of tumor-stroma reciprocal influence during the metastatic process and encourages the assessment of relevant therapeutic strategies.
Collapse
Affiliation(s)
- Agapi Kataki
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Vassilis G Giannakoulis
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Anastasia Derventzi
- First Department of Propaedeutic Surgery, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Konstantinos Papiris
- Department of Endoscopy, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Eythimios Koniaris
- Department of Pathology, Hippokration General Hospital of Athens, Athens 11527, Greece
| | - Manousos Konstadoulakis
- Second Surgery Clinic, Aretaieio Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
5
|
Maurizy C, Abeza C, Lemmers B, Gabola M, Longobardi C, Pinet V, Ferrand M, Paul C, Bremond J, Langa F, Gerbe F, Jay P, Verheggen C, Tinari N, Helmlinger D, Lattanzio R, Bertrand E, Hahne M, Pradet-Balade B. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat Commun 2021; 12:4810. [PMID: 34376666 PMCID: PMC8355188 DOI: 10.1038/s41467-021-24792-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The R2TP chaperone cooperates with HSP90 to integrate newly synthesized proteins into multi-subunit complexes, yet its role in tissue homeostasis is unknown. Here, we generated conditional, inducible knock-out mice for Rpap3 to inactivate this core component of R2TP in the intestinal epithelium. In adult mice, Rpap3 invalidation caused destruction of the small intestinal epithelium and death within 10 days. Levels of R2TP substrates decreased, with strong effects on mTOR, ATM and ATR. Proliferative stem cells and progenitors deficient for Rpap3 failed to import RNA polymerase II into the nucleus and they induced p53, cell cycle arrest and apoptosis. Post-mitotic, differentiated cells did not display these alterations, suggesting that R2TP clients are preferentially built in actively proliferating cells. In addition, high RPAP3 levels in colorectal tumors from patients correlate with bad prognosis. Here, we show that, in the intestine, the R2TP chaperone plays essential roles in normal and tumoral proliferation.
Collapse
Affiliation(s)
- Chloé Maurizy
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claire Abeza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | | | | | | | | | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - François Gerbe
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Jay
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Céline Verheggen
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | | | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Edouard Bertrand
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- IGH, Univ Montpellier, CNRS, Montpellier, France.
| | | | - Bérengère Pradet-Balade
- Equipe labélisée Ligue Nationale Contre le Cancer, Paris, France.
- CRBM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
6
|
Ramezani S, Parkhideh A, Bhattacharya PK, Farach-Carson MC, Harrington DA. Beyond Colonoscopy: Exploring New Cell Surface Biomarkers for Detection of Early, Heterogenous Colorectal Lesions. Front Oncol 2021; 11:657701. [PMID: 34290978 PMCID: PMC8287259 DOI: 10.3389/fonc.2021.657701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each’s potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.
Collapse
Affiliation(s)
- Saleh Ramezani
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Arianna Parkhideh
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, United States
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
7
|
Guo Y, Gabola M, Lattanzio R, Paul C, Pinet V, Tang R, Turali H, Bremond J, Longobardi C, Maurizy C, Da Costa Q, Finetti P, Boissière-Michot F, Rivière B, Lemmers C, Garnier S, Bertucci F, Zlobec I, Chebli K, Tazi J, Azar R, Blanchard JM, Sicinski P, Mamessier E, Lemmers B, Hahne M. Cyclin A2 maintains colon homeostasis and is a prognostic factor in colorectal cancer. J Clin Invest 2021; 131:131517. [PMID: 33332285 DOI: 10.1172/jci131517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
To clarify the function of cyclin A2 in colon homeostasis and colorectal cancer (CRC), we generated mice deficient for cyclin A2 in colonic epithelial cells (CECs). Colons of these mice displayed architectural changes in the mucosa and signs of inflammation, as well as increased proliferation of CECs associated with the appearance of low- and high-grade dysplasias. The main initial events triggering those alterations in cyclin A2-deficient CECs appeared to be abnormal mitoses and DNA damage. Cyclin A2 deletion in CECs promoted the development of dysplasia and adenocarcinomas in a murine colitis-associated cancer model. We next explored the status of cyclin A2 expression in clinical CRC samples at the mRNA and protein levels and found higher expression in tumors of patients with stage 1 or 2 CRC compared with those of patients with stage 3 or 4 CRC. A meta-analysis of 11 transcriptome data sets comprising 2239 primary CRC tumors revealed different expression levels of CCNA2 (the mRNA coding for cyclin A2) among the CRC tumor subtypes, with the highest expression detected in consensus molecular subtype 1 (CMS1) and the lowest in CMS4 tumors. Moreover, we found high expression of CCNA2 to be a new, independent prognosis factor for CRC tumors.
Collapse
Affiliation(s)
- Yuchen Guo
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Monica Gabola
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Conception Paul
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ruizhi Tang
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Hulya Turali
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Julie Bremond
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ciro Longobardi
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Chloé Maurizy
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Quentin Da Costa
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Florence Boissière-Michot
- Translationnal Research Unit, Montpellier Cancer Institute, Montpellier, France - Université de Montpellier, Montpellier, France
| | - Benjamin Rivière
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Céline Lemmers
- PVM, Biocampus, Université de Montpellier, CNRS, Montpellier, France
| | - Séverine Garnier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France.,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Karim Chebli
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Rania Azar
- Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
| | - Jean-Marie Blanchard
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Emilie Mamessier
- Predictive Oncology Laboratory, Cancer Research Center of Marseille (CRCM), INSERM, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| |
Collapse
|
8
|
Kulsum S, Raju N, Raghavan N, Ramanjanappa RDR, Sharma A, Mehta A, Kuriakose MA, Suresh A. Cancer stem cells and fibroblast niche cross talk in an in-vitro oral dysplasia model. Mol Carcinog 2019; 58:820-831. [PMID: 30644602 DOI: 10.1002/mc.22974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
Abstract
Understanding the cellular interactions during oral carcinogenesis has the potential to identify novel prognostic and therapeutic targets. This study aimed at investigating the cancer stem cell (CSC)-fibroblast niche interactions using in-vitro dysplastic cell line models developed from different stages of 4NQO-induced oral carcinogenic mice model. The spontaneously transformed epithelial cells (DysMSCTR6, 14 and 16) were developed from three time points (mild/moderate/severe), while two fibroblast cell lines (FibroMSCTR12, 16) were developed from moderate and severe dysplastic tissue. The epithelial (Epcam+/Ck+) and the fibroblast cell lines (Vimentin+/α-SMA+/Ck-) were authenticated and assessment of cells representing progressive grades of dysplastic severity indicated a significant increase in dysplastic marker profile (P < 0.05). Evaluation of the CSC characteristics showed that an increase in expression of Cd133, Cd44, Aldh1a1, Notch1, and Sox2 was accompanied by an increase in migratory (P > 0.05) and colony formation capacity (P > 0.005). Targeting Notch1 (GSI inhibitor PZ0187; 30 μM), showed a significant reduction in cell proliferation capacity (P < 0.05) and in the dysplastic marker profile. Further, Notch1 inhibition resulted in down regulation of Cd133 and Aldh1a 1 (P < 0.05) and a complete abrogation of colony formation ability (P < 0.0001). The effect of niche interactions evaluated using FibroMSCTR12-conditioned media studies, revealed an enrichment of ALDH1A1+ cells (P < 0.05), induction of spheroid formation ability (P < 0.0001) and increased proliferation capacity (3.7 fold; P < 0.005). Although PZ0187 reduced cell viability by ∼40%, was unable to abrogate the conditioned-media induced increase in proliferation capacity completely. This study reports a Notch-1 dependent enrichment of CSC properties during dysplastic progression and a Notch-1 independent dysplastic cell-fibroblast interaction during oral carcinogenesis.
Collapse
Affiliation(s)
- Safeena Kulsum
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India.,Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nalini Raju
- Department of Histopathology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Nisheena Raghavan
- Department of Histopathology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Ravindra D R Ramanjanappa
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India
| | - Anupam Sharma
- GROW Laboratory, Stem Cell Research Lab, Narayana Nethralaya, Narayana Health, Bangalore, India
| | - Alka Mehta
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Moni A Kuriakose
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India.,Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India.,Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| |
Collapse
|
9
|
Kennedy PJ, Sousa F, Ferreira D, Pereira C, Nestor M, Oliveira C, Granja PL, Sarmento B. Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta Biomater 2018; 81:208-218. [PMID: 30267881 DOI: 10.1016/j.actbio.2018.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/16/2018] [Accepted: 09/25/2018] [Indexed: 12/24/2022]
Abstract
Targeting of CD44 isoforms containing exon v6 (CD44v6) represents a viable strategy for the therapy and/or early diagnosis of metastatic cancers of the epithelium (e.g. gastric and colorectal cancer). We developed and characterized poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) modified with polyethylene glycol (PEG) and engrafted, by site-directed conjugation, with an engineered human Fab that specifically target human CD44v6 (v6 Fab-PLGA NPs). The v6 Fab-PLGA NPs displayed spherical morphology around 300 nm and were negatively charged. They strongly bound to a CD44v6-derived peptide and, more importantly, to cells that endogenously and exogenously express CD44v6, but not to non-expressing cells and cells expressing the standard isoform of CD44. The v6 Fab-PLGA NPs also recognized CD44v6 in tumor sections from cells grown subcutaneously within mice. The NPs had nominal cytotoxicity at 50 µg/mL and withstood simulated intestinal fluid exposure. Interestingly, v6 Fab-PLGA NPs cryopreserved in 10% trehalose and stored maintained specific cell binding. In conclusion, we envision NPs targeting CD44v6 as potential in vivo diagnostic agents and/or as anti-cancer agents in patients previously stratified with CD44v6+ carcinomas. STATEMENT OF SIGNIFICANCE: The v6 Fab-PLGA NPs displayed many favorable qualities as a potential CD44v6-targeted drug and/or diagnostic delivery agent. The NPs were designed for optimal ligand orientation and for immediate administration into humans. v6 Fab-PLGA NPs strongly bound to cells that endogenously and exogenously express CD44v6, but not to non-expressing cells and cells expressing the standard isoform of CD44. Binding ability was retained after freeze-drying and long-term storage, providing evidences on the stability of Fab-functionalized NPs. These NPs can potentially be used as an in vivo diagnostic from parenteral or oral/rectal administration.
Collapse
|
10
|
Testa U, Pelosi E, Castelli G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel) 2018; 6:E31. [PMID: 29652830 PMCID: PMC6024750 DOI: 10.3390/medsci6020031] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
11
|
Preclinical evaluation of a novel engineered recombinant human anti-CD44v6 antibody for potential use in radio-immunotherapy. Int J Oncol 2018; 52:1875-1885. [PMID: 29658563 PMCID: PMC5919712 DOI: 10.3892/ijo.2018.4364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023] Open
Abstract
CD44v6 is overexpressed in a variety of cancers, rendering it a promising target for radio-immunotherapy (RIT). In this study, we have characterized a novel engineered recombinant monoclonal anti-CD44v6 antibody, AbN44v6, and assessed its potential for use in RIT using either 177Lu or 131I as therapeutic radionuclides. In vitro affinity and specificity assays characterized the binding of the antibody labeled with 177Lu, 125I or 131I. The therapeutic effects of 177Lu-AbN44v6 and 131I-AbN44v6 were investigated using two in vitro 3D tumor models with different CD44v6 expression. Finally, the normal tissue biodistribution and dosimetry for 177Lu-AbN44v6 and 125I-AbN44v6/131I-AbN44v6 were assessed in vivo using a mouse model. All AbN44v6 radioconjugates demonstrated CD44v6-specific binding in vitro. In the in vitro 3D tumor models, dose-dependent therapeutic effects were observed with both 177Lu-AbN44v6 and 131I-AbN44v6, with a greater significant therapeutic effect observed on the cells with a higher CD44v6 expression. Biodistribution experiments demonstrated a greater uptake of 177Lu-AbN44v6 in the liver, spleen and bone, compared to 125I-AbN44v6, whereas 125I-AbN44v6 demonstrated a longer circulation time. In dosimetric calculations, the critical organs for 177Lu-AbN44v6 were the liver and spleen, whereas the kidneys and red marrow were considered the critical organs for 131I-AbN44v6. The effective dose was in the order of 0.1 mSv/MBq for both labels. In conclusion, AbN44v6 bound specifically and with high affinity to CD44v6. Furthermore, in vitro RIT demonstrated growth inhibition in a CD44v6-specific activity-dependent manner for both radioconjugates, demonstrating that both 177Lu-AbN44v6 and 131I-AbN44v6 may be promising RIT candidates. Furthermore, biodistribution and dosimetric analysis supported the applicability of both conjugates for RIT. The CD44v6-specific therapeutic effects observed with radiolabeled AbN44v6 in the 3D tumor models in vitro, combined with the beneficial dosimetry in vivo, render AbN44v6 a potential candidate for RIT.
Collapse
|
12
|
Wang JL, Su WY, Lin YW, Xiong H, Chen YX, Xu J, Fang JY. CD44v6 overexpression related to metastasis and poor prognosis of colorectal cancer: A meta-analysis. Oncotarget 2017; 8:12866-12876. [PMID: 28030817 PMCID: PMC5355062 DOI: 10.18632/oncotarget.14163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
CD44v6 has recently been reported as a biomarker for colorectal cancer. However, the clinical and prognostic significance of CD44v6 in colorectal cancer remains controversial. Therefore, we performed a meta-analysis to clarify this issue. A comprehensive literature search was performed using Medline, Embase and Web of Science, and the statistical analysis was conducted using Stata software. A total of twenty-one studies including 3918 colorectal cancer cases were included. The pooled analysis showed that CD44v6 overexpression in colorectal cancer was an independent prognostic marker correlating with lower 5-year overall survival rate (OR=0.78, 95%CI =0.67-0.91, p=0.001). CD44v6 overexpression was also associated with more lymph node invasion (OR=1.48, 95%CI= 1.02-2.15, p=0.04), and advanced Dukes stage (OR=2.47, 95%CI= 1.29-4.73, p=0.01). In addition, while excluding Zolbec's study, CD44v6 overexpression was associated with distance metastasis (OR=1.65, 95%CI =1.13-2.40, p=0.01). Taken together, this meta-analysis suggested that CD44v6 is an efficient prognostic factor in colorectal cancer.
Collapse
Affiliation(s)
- Ji-Lin Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Wen-Yu Su
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Yan-Wei Lin
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Hua Xiong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Jie Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| |
Collapse
|
13
|
Yamamoto T, Hiroi A, Itagaki H, Kato Y, Iizuka B, Itabashi M, Shibata N, Nagashima Y. Well-differentiated adenocarcinoma associated with ulcerative colitis. SAGE Open Med Case Rep 2017; 5:2050313X17692902. [PMID: 28255443 PMCID: PMC5315366 DOI: 10.1177/2050313x17692902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/09/2017] [Indexed: 11/17/2022] Open
Abstract
Objectives: Adenocarcinoma is known to be associated with ulcerative colitis, but the diagnosis is sometimes challenging, both clinically and pathologically. Methods and Results: We present a case of extremely well-differentiated adenocarcinoma associated with ulcerative colitis, in which preoperative diagnosis was not possible. Glands in biopsy specimens showed a serrated appearance that looked like low-grade dysplasia or regenerative mucosa. After an operation due to severe symptoms of stenosis, carcinoma was diagnosed. Tumor cells, especially in invasive glands, tended to show stronger immunoreactivity against anti-CK7, TNF-α and Aurora B antibodies compared to cells of mucosal lesion. Interestingly, CD44v6, one of the adhesion molecules, was less expressed in invasive glands, while those glands exhibited stronger expression of a disintegrin and metalloproteinase 17 (ADAM 17), one of the sheddases that cleaves an extracellular domain of CD44. Conclusions: These observations appear interesting to consider the pathogenesis and to diagnose extremely well-differentiated adenocarcinoma in ulcerative colitis, although further investigation is needed.
Collapse
Affiliation(s)
- Tomoko Yamamoto
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan; Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuko Hiroi
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan; Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroko Itagaki
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan; Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Bunei Iizuka
- Department of Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Michio Itabashi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan; Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
14
|
Hartmans E, Orian-Rousseau V, Matzke-Ogi A, Karrenbeld A, de Groot DJA, de Jong S, van Dam GM, Fehrmann RS, Nagengast WB. Functional Genomic mRNA Profiling of Colorectal Adenomas: Identification and in vivo Validation of CD44 and Splice Variant CD44v6 as Molecular Imaging Targets. Am J Cancer Res 2017; 7:482-492. [PMID: 28255344 PMCID: PMC5327362 DOI: 10.7150/thno.16816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. High adenoma miss rates, especially seen in high-risk patients, demand for better endoscopic detection. By fluorescently 'highlighting' specific molecular characteristics, endoscopic molecular imaging has great potential to fulfill this need. To implement this technique effectively, target proteins that distinguish adenomas from normal tissue must be identified. In this study we applied in silico Functional Genomic mRNA (FGmRNA) profiling, which is a recently developed method that results in an enhanced view on the downstream effects of genomic alterations occurring in adenomas on gene expression levels. FGmRNA profiles of sporadic adenomas were compared to normal colon tissue to identify overexpressed genes. We validated the protein expression of the top identified genes, AXIN2, CEMIP, CD44 and JUN, in sporadic adenoma patient samples via immunohistochemistry (IHC). CD44 was identified as the most attractive target protein for imaging purposes and we proved its relevance in high-risk patients by demonstrating CD44 protein overexpression in Lynch lesions. Subsequently, we show that the epithelial splice variant CD44V6 is highly overexpressed in our patient samples and we demonstrated the feasibility of visualizing adenomas in ApcMin/+ mice in vivo by using a fluorescently labeled CD44v6 targeting peptide. In conclusion, via in silico functional genomics and ex vivo protein validation, this study identified CD44 as an attractive molecular target for both sporadic and high-risk Lynch adenomas, and demonstrates the in vivo applicability of a small peptide drug directed against splice variant CD44v6 for adenoma imaging.
Collapse
|
15
|
Liu HG, Lv L, Shen H. Intratumoral heterogeneity of CD44v6 in rectal cancer. Clin Transl Oncol 2016; 19:425-431. [PMID: 27553603 DOI: 10.1007/s12094-016-1542-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE CD44v6 plays a controversial role in tumor progression and patient outcome in colorectal cancer by plenty of conflicting reports. The purpose of this study was to profile the intratumoral heterogeneity of CD44v6 in rectal cancer and investigate its role in lymph node metastasis. METHODS Sixty patients were included in this study. Immunohistochemistry for CD44v6 was performed in normal mucosa, primary tumor, and lymph node metastasis with whole tissue sections. The staining intensity in tumor center and invasive front was separately measured. Sampling bias was evaluated by quantitative real-time PCR with 15 pairs of frozen tissues from different sites of the primary tumor. RESULTS CD44v6 expression increased from normal mucosa to primary tumor to lymph node metastasis. Multiple intratumoral staining patterns was observed in primary tumor, and CD44v6 expression in invasive front was significantly higher than that in tumor center. In addition, mRNA expression levels differed across different geographical regions of the tumor. No association between CD44v6 expression and lymph node metastasis was revealed. CONCLUSIONS Substantial intratumoral heterogeneity of CD44v6 exists in rectal cancer that impacts the outcome of individual studies. CD44v6 expression should be assessed in a more precise way with a specified staining pattern and in a designated location.
Collapse
Affiliation(s)
- H-G Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou Road No. 1838, Guangzhou, 510515, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Shatai Road No. 1023, Guangzhou, 510515, China.,Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Fuxue Road No. 2, Wenzhou, 325000, China
| | - L Lv
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Fuxue Road No. 2, Wenzhou, 325000, China
| | - H Shen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou Road No. 1838, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Shatai Road No. 1023, Guangzhou, 510515, China.
| |
Collapse
|