1
|
Aldridge DL, Moodley D, Park J, Phan AT, Rausch M, White KF, Ren Y, Golin K, Radaelli E, Kedl R, Holland PM, Hill J, Hunter CA. Endogenous IL-27 during toxoplasmosis limits early monocyte responses and their inflammatory activation by pathological T cells. mBio 2024; 15:e0008324. [PMID: 38376210 PMCID: PMC10936422 DOI: 10.1128/mbio.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Mice that lack the genes for IL-27, or the IL-27 receptor, and infected with Toxoplasma gondii develop T cell-mediated pathology. Here, studies were performed to determine the impact of endogenous IL-27 on the immune response to T. gondii in wild-type (WT) mice. Analysis of infected mice revealed the early production of IL-27p28 by a subset of Ly6Chi, inflammatory monocytes, and sustained IL-27p28 production at sites of acute and chronic infection. Administration of anti-IL-27p28 prior to infection resulted in an early (day 5) increase in levels of macrophage and granulocyte activation, as well as enhanced effector T cell responses, as measured by both cellularity, cytokine production, and transcriptional profiling. This enhanced acute response led to immune pathology, while blockade during the chronic phase of infection resulted in enhanced T cell responses but no systemic pathology. In the absence of IL-27, the enhanced monocyte responses observed at day 10 were a secondary consequence of activated CD4+ T cells. Thus, in WT mice, IL-27 has distinct suppressive effects that impact innate and adaptive immunity during different phases of this infection. IMPORTANCE The molecule IL-27 is critical in limiting the immune response to the parasite Toxoplasma gondii. In the absence of IL-27, a lethal, overactive immune response develops during infection. However, when exactly in the course of infection this molecule is needed was unclear. By selectively inhibiting IL-27 during this parasitic infection, we discovered that IL-27 was only needed during, but not prior to, infection. Additionally, IL-27 is only needed in the active areas in which the parasite is replicating. Finally, our work found that a previously unstudied cell type, monocytes, was regulated by IL-27, which contributes further to our understanding of the regulatory networks established by this molecule.
Collapse
Affiliation(s)
- Daniel L. Aldridge
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jeongho Park
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
- Kangwon National University College of Veterinary Medicine and Institute of Veterinary Science, Chuncheon, South Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, South Korea
| | - Anthony T. Phan
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Yue Ren
- Surface Oncology, Cambridge, Massachusetts, USA
| | - Karin Golin
- Surface Oncology, Cambridge, Massachusetts, USA
| | - Enrico Radaelli
- Comparative Pathology Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ross Kedl
- Surface Oncology, Cambridge, Massachusetts, USA
- University of Colorado, Anschuitz Medical Campus, Aurora, Colorado, USA
| | | | | | - Christopher A. Hunter
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Epigenetic DNA Methylation of EBI3 Modulates Human Interleukin-35 Formation via NFkB Signaling: A Promising Therapeutic Option in Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms22105329. [PMID: 34069352 PMCID: PMC8158689 DOI: 10.3390/ijms22105329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein–Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNFα led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NFκB signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESI-MS/MS analysis of DAC/TNFα-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNFα-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis.
Collapse
|
3
|
Chen Z, Ceballos-Francisco D, Guardiola FA, Huang D, Esteban MÁ. The alleviation of skin wound-induced intestinal barrier dysfunction via modulation of TLR signalling using arginine in gilthead seabream (Sparus aurata L). FISH & SHELLFISH IMMUNOLOGY 2020; 107:519-528. [PMID: 33217564 DOI: 10.1016/j.fsi.2020.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
The present study sought to investigate the effect of arginine on the involvement of toll-like receptors (TLRs) in skin wound-induced intestinal barrier dysfunction in gilthead seabream (Sparus aurata L.). Two replicates of fish (n = 8) were fed a commercial diet (CON, total 2.75% arginine), CON diet enriched with 1% arginine (ARG1, total 3.65% arginine) and 2% arginine (ARG2, total 4.53% arginine) for 30 days. Half of the fish were sampled, whereas the others were injured and sampled 7 days post-wounding. The intestinal histology results showed that a more intense infiltration of mixed leucocytes was evident in the wounded fish, which was remarkably reduced in fish that were fed the ARG1 diet. Serum IgM levels were significantly higher in the ARG1 group than levels in the CON group at 7 days post-wounding. Compared with the fish in the CON group after wounding, dietary administration of 1% arginine markedly downregulated the gene expression of TLRs (TLR2 and TLR5), MyD88, and proinflammatory cytokines (CSF1R, IL-1β, and TNFα), but significantly enhanced the gene expression of IκBα, the anti-inflammatory cytokine TGF-β1, and tight junction proteins (tricellulin and occludin) in wounded fish. Furthermore, the ARG2 diet demonstrated no additional benefits on intestinal cells, compared to both the ARG1 and the CON diets, and it even appeared to induce negative effects. In summary, dietary administration of 1% arginine significantly inhibited intestinal inflammatory response and tight junction disruption in skin-wounded gilthead seabream by modulating TLR signalling in the intestine.
Collapse
Affiliation(s)
- Zhichu Chen
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - M Ángeles Esteban
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
4
|
Zhao S, Chen Z, Zheng J, Dai J, Ou W, Xu W, Ai Q, Zhang W, Niu J, Mai K, Zhang Y. Citric acid mitigates soybean meal induced inflammatory response and tight junction disruption by altering TLR signal transduction in the intestine of turbot, Scophthalmus maximus L. FISH & SHELLFISH IMMUNOLOGY 2019; 92:181-187. [PMID: 31176009 DOI: 10.1016/j.fsi.2019.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 05/27/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of citric acid on the involvement of TLRs in the soybean meal induced inflammatory response and tight junction disruption in the distal intestine of juvenile turbot (Scophthalmus maximus L.). Four isonitrogenous and isolipidic practical diets were formulated: fish meal-based diet (FM); 40% fish meal protein in FM replaced with soybean meal protein (SBM); SBM + 1.5% citric acid and SBM + 3% citric acid. Compared to the FM, diet SBM significantly increased the gene expression of TLRs (TLR2, TLR3, TLR5b, TLR9, TLR21, TLR22) and MyD88, as well as TLR related molecules (NF-κB, IRF-3, p38 and JNK), which were remarkably reduced by dietary citric acid. Similarly, citric acid supplementation in SBM markedly depressed gene expression of pro-inflammatory cytokines (TNF-α and IFN-γ) and pore-forming tight junction protein Claudin-7, and enhanced gene expression of the anti-inflammatory cytokine TGF-β1 and TJ proteins related to the decrease in paracellular permeability (Claudin-3, Claudin-4, Occludin, Tricellulin and ZO-1). Compared to the SBM, the concentration of IgM and C4 in serum was significantly reduced by dietary citric acid. In brief, dietary citric acid could synchronously inhibit TLRs-dependent inflammatory response regulated by NF-κB and IRF3, as well as cause TLRs-dependent tight junction disruption modulated by p38 and JNK. Therefore, citric acid could function on mitigating soybean meal induced enteropathy in the distal intestine of juvenile turbot.
Collapse
Affiliation(s)
- Sifan Zhao
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Zhichu Chen
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jing Zheng
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Weiqi Xu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jin Niu
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, PR China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
5
|
Petretto A, Carbotti G, Inglese E, Lavarello C, Pistillo MP, Rigo V, Croce M, Longo L, Martini S, Vacca P, Ferrini S, Fabbi M. Proteomic analysis uncovers common effects of IFN-γ and IL-27 on the HLA class I antigen presentation machinery in human cancer cells. Oncotarget 2018; 7:72518-72536. [PMID: 27683036 PMCID: PMC5341926 DOI: 10.18632/oncotarget.12235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/17/2016] [Indexed: 12/25/2022] Open
Abstract
IL-27, a member of the IL-12-family of cytokines, has shown anti-tumor activity in several pre-clinical models due to anti-proliferative, anti-angiogenic and immune-enhancing effects. On the other hand, IL-27 demonstrated immune regulatory activities and inhibition of auto-immunity in mouse models. Also, we reported that IL-27, similar to IFN-γ, induces the expression of IL-18BP, IDO and PD-L1 immune regulatory molecules in human cancer cells. Here, a proteomic analysis reveals that IL-27 and IFN-γ display a broad overlap of functions on human ovarian cancer cells. Indeed, among 990 proteins modulated by either cytokine treatment in SKOV3 cells, 814 showed a concordant modulation by both cytokines, while a smaller number (176) were differentially modulated. The most up-regulated proteins were common to both IFN-γ and IL-27. In addition, functional analysis of IL-27-regulated protein networks highlighted pathways of interferon signaling and regulation, antigen presentation, protection from natural killer cell-mediated cytotoxicity, regulation of protein polyubiquitination and proteasome, aminoacid catabolism and regulation of viral protein levels. Importantly, we found that IL-27 induced HLA class I molecule expression in human cancer cells of different histotypes, including tumor cells showing very low expression. IL-27 failed only in a cancer cell line bearing a homozygous deletion in the B2M gene. Altogether, these data point out to a broad set of activities shared by IL-27 and IFN-γ, which are dependent on the common activation of the STAT1 pathway. These data add further explanation to the anti-tumor activity of IL-27 and also to its dual role in immune regulation.
Collapse
Affiliation(s)
- Andrea Petretto
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Grazia Carbotti
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Pia Pistillo
- Tumor Epigenetics Unit, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Valentina Rigo
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Michela Croce
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Luca Longo
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Stefania Martini
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Paola Vacca
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Silvano Ferrini
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Marina Fabbi
- Department of Integrated Oncological Therapies, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
6
|
Roewe J, Higer M, Riehl DR, Gericke A, Radsak MP, Bosmann M. Neuroendocrine Modulation of IL-27 in Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 199:2503-2514. [PMID: 28835457 DOI: 10.4049/jimmunol.1700687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Heterodimeric IL-27 (p28/EBV-induced gene 3) is an important member of the IL-6/IL-12 cytokine family. IL-27 is predominantly synthesized by mononuclear phagocytes and exerts immunoregulatory functional activities on lymphocytic and nonlymphocytic cells during infection, autoimmunity or neoplasms. There is a great body of evidence on the bidirectional interplay between the autonomic nervous system and immune responses during inflammatory disorders, but so far IL-27 has not been defined as a part of these multifaceted neuroendocrine networks. In this study, we describe the role of catecholamines (as mediators of the sympathetic nervous system) related to IL-27 production in primary mouse macrophages. Noradrenaline and adrenaline dose-dependently suppressed the release of IL-27p28 in LPS/TLR4-activated macrophages, which was independent of α1 adrenoceptors. Instead, β2 adrenoceptor activation was responsible for mediating gene silencing of IL-27p28 and EBV-induced gene 3. The β2 adrenoceptor agonists formoterol and salbutamol mediated suppression of IL-27p28 production, when triggered by zymosan/TLR2, LPS/TLR4, or R848/TLR7/8 activation, but selectively spared the polyinosinic-polycytidylic acid/TLR3 pathway. Mechanistically, β2 adrenergic signaling reinforced an autocrine feedback loop of macrophage-derived IL-10 and this synergized with inhibition of the JNK pathway for limiting IL-27p28. The JNK inhibitors SP600125 and AEG3482 strongly decreased intracellular IL-27p28 in F4/80+CD11b+ macrophages. In endotoxic shock of C57BL/6J mice, pharmacologic activation of β2 adrenoceptors improved the severity of shock, including hypothermia and decreased circulating IL-27p28. Conversely, IL-27p28 was 2.7-fold increased by removal of the catecholamine-producing adrenal glands prior to endotoxic shock. These data suggest a novel role of the sympathetic neuroendocrine system for the modulation of IL-27-dependent acute inflammation.
Collapse
Affiliation(s)
- Julian Roewe
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maximilian Higer
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Dennis R Riehl
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; and
| | - Markus P Radsak
- Third Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| |
Collapse
|
7
|
Gajanayaka N, O'Hara S, Konarski Y, Fernandes J, Muthumani K, Kozlowski M, Angel JB, Kumar A. HIV and HIV-Tat inhibit LPS-induced IL-27 production in human macrophages by distinct intracellular signaling pathways. J Leukoc Biol 2017; 102:925-939. [PMID: 28698313 DOI: 10.1189/jlb.4a0716-332rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 11/24/2022] Open
Abstract
Monocyte-derived Mϕs (MDMs) from HIV-infected patients and MDM infected in vitro with HIV exhibit a reduced ability to secrete various cytokines, including IL-12. Recently, IL-27, an IL-12 family cytokine, was shown to inhibit HIV replication in Mϕ. Whether HIV infection or HIV accessory protein(s) impact IL-27 production in Mϕs remains unknown. Herein, we show that in vitro HIV infection, as well as intracellular HIV-Tat (Tat) and Tat peptides, inhibit LPS-induced IL-27 production in human MDMs, suggesting impairment of the TLR4 signaling pathway. To understand the signaling pathways governing HIV or Tat-mediated inhibition of LPS-induced IL-27 production, we first demonstrated that p38 MAPK, PI3K, Src-homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1), and Src kinases regulate LPS-induced IL-27 production in MDMs. Tat caused down-regulation of TNFR-associated factor (TRAF)-6 and inhibitor of apoptosis 1 (cIAP-1) and subsequently decreased phosphorylation of downstream PI3K and p38 MAPKs, which were implicated in LPS-induced IL-27 production. Whereas SHP-1 and Src kinases regulated LPS-induced IL-27 production, Tat did not inhibit these kinases, suggesting that they were not involved in Tat-mediated inhibition of LPS-induced IL-27 production. In contrast to Tat, in vitro HIV infection of MDM inhibited LPS-induced IL-27 production via inhibition of p38 MAPK activation. Overall, HIV and Tat inhibit LPS-induced IL-27 production in human macrophages via distinct mechanisms: Tat through the inhibition of cIAP-1-TRAF-6 and subsequent inhibition of PI3K and p38 MAPKs, whereas HIV through the inhibition of p38 MAPK activation.
Collapse
Affiliation(s)
- Niranjala Gajanayaka
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Shifawn O'Hara
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Yulia Konarski
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Jason Fernandes
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kar Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Maya Kozlowski
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada; .,Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Department Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Anti-Inflammatory Effects of IL-27 in Zymosan-Induced Peritonitis: Inhibition of Neutrophil Recruitment Partially Explained by Impaired Mobilization from Bone Marrow and Reduced Chemokine Levels. PLoS One 2015; 10:e0137651. [PMID: 26360023 PMCID: PMC4567321 DOI: 10.1371/journal.pone.0137651] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/20/2015] [Indexed: 12/31/2022] Open
Abstract
Rapid activation of the innate immune system is critical for an efficient host response to invading pathogens. However, the inflammatory reaction has to be strictly controlled to minimize harmful immunopathology. A number of mediators including the cytokine interleukin-27 (IL-27) appear to be responsible for limitation and resolution of inflammation. Despite increasing knowledge of its suppressive effects on T cells, the influence on neutrophils and macrophages is poorly understood. To determine the role of IL-27 in innate immune responses we analysed the effect of IL-27 in a T cell independent model of zymosan-induced peritonitis. Early administration of recombinant IL-27 strongly reduced the number of neutrophils recruited to the peritoneal cavity after zymosan application as well as the neutrophil frequency in the blood. Simultaneously, IL-27 reduced the release of neutrophils from the bone marrow upon inflammation. Although cytokine levels were not affected by IL-27 treatment, the levels of the chemokines KC, MCP-1 and MIP-1α in the peritoneal fluid were strongly decreased. These findings demonstrate that IL-27 is able to control mobilisation and recruitment of neutrophils into the peritoneal cavity and identify a novel mechanism to limit inflammation caused by innate immune cells.
Collapse
|
9
|
Duan Y, Jia Y, Wang T, Wang Y, Han X, Liu L. Potent therapeutic target of inflammation, virus and tumor: focus on interleukin-27. Int Immunopharmacol 2015; 26:139-46. [PMID: 25812768 DOI: 10.1016/j.intimp.2015.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
Interleukin (IL)-27 is an important pleiotropic immunological regulator for having dual effects on the immune responses. Several distinct findings have been highlighted that in certain conditions, neutralizing IL-27 or its subunit IL-27p28 might be a useful strategy to limit inflammation. Recently more insights have revealed that IL-27 could also exert potent inhibitory functions in some other immune circumstances including virus infection and tumor immunity. In this review, we describe IL-27 receptor subunits and the mechanisms of individual IL-27, and summarize the advances of their preclinical application trials. In addition, the potential role of IL-27 as a clinical therapeutic target will also be discussed.
Collapse
Affiliation(s)
- Yuqing Duan
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Yunlong Jia
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Tingting Wang
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Yu Wang
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Xiaonan Han
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China
| | - Lihua Liu
- Department of Biotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Shijiazhuang, China.
| |
Collapse
|
10
|
Barreto-de-Souza V, Ferreira PLC, Vivarini ADC, Calegari-Silva T, Soares DC, Regis EG, Pereira RMS, Silva AM, Saraiva EM, Lopes UG, Bou-Habib DC. IL-27 enhances Leishmania amazonensis infection via ds-RNA dependent kinase (PKR) and IL-10 signaling. Immunobiology 2014; 220:437-44. [PMID: 25466588 DOI: 10.1016/j.imbio.2014.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 12/21/2022]
Abstract
The protozoan parasite Leishmania infects and replicates in macrophages, causing a spectrum of diseases in the human host, varying from cutaneous to visceral clinical forms. It is known that cytokines modulate the immunological response against Leishmania and are relevant for infection resolution. Here, we report that Interleukin (IL)-27 increases Leishmania amazonensis replication in human and murine macrophages and that the blockage of the IL-10 receptor on the surface of infected cells abolished the IL-27-mediated enhancement of Leishmania growth. IL-27 induced the activation/phosphorylation of protein kinase R (PKR) in macrophages, and PKR blockage or PKR gene deletion abrogated the enhancement of the parasite growth driven by IL-27, as well as the L. amazonensis-induced macrophage production of IL-27. We also observed that L. amazonensis-induced expression of IL-27 depends on type I interferon signaling and the engagement of Toll-like receptor 2. Treatment of Leishmania-infected mice with IL-27 increased lesion size and parasite loads in the footpad and lymph nodes of infected animals, indicating that this cytokine exerts a local and a systemic effect on parasite growth and propagation. In conclusion, we show that IL-27 is a L. amazonensis-enhancing factor and that the PKR/IFN1 axis and IL-10 are critical mediators of this IL-27 induced effect.
Collapse
Affiliation(s)
| | - Pedro L C Ferreira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Calegari-Silva
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid Costa Soares
- Laboratory of Immunobiology of Leishmaniasis, Paulo de Goes Institute of Microbiology, Department of Immunology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo G Regis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Renata M S Pereira
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Elvira M Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Paulo de Goes Institute of Microbiology, Department of Immunology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses G Lopes
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology, Translational Research in Health and Environment in the Amazon Region (INCT-IMPeTAM), Brazil.
| | | |
Collapse
|
11
|
An image-based genetic assay identifies genes in T1D susceptibility loci controlling cellular antiviral immunity in mouse. PLoS One 2014; 9:e108777. [PMID: 25268627 PMCID: PMC4182575 DOI: 10.1371/journal.pone.0108777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of complex diseases, such as type 1 diabetes (T1D), derives from interactions between host genetics and environmental factors. Previous studies have suggested that viral infection plays a significant role in initiation of T1D in genetically predisposed individuals. T1D susceptibility loci may therefore be enriched in previously uncharacterized genes functioning in antiviral defense pathways. To identify genes involved in antiviral immunity, we performed an image-based high-throughput genetic screen using short hairpin RNAs (shRNAs) against 161 genes within T1D susceptibility loci. RAW 264.7 cells transduced with shRNAs were infected with GFP-expressing herpes simplex virus type 1 (HSV-1) and fluorescent microscopy was performed to assess the viral infectivity by fluorescence reporter activity. Of the 14 candidates identified with high confidence, two candidates were selected for further investigation, Il27 and Tagap. Administration of recombinant IL-27 during viral infection was found to act synergistically with interferon gamma (IFN-γ) to activate expression of type I IFNs and proinflammatory cytokines, and to enhance the activities of interferon regulatory factor 3 (IRF3). Consistent with a role in antiviral immunity, Tagap-deficient macrophages demonstrated increased viral replication, reduced expression of proinflammatory chemokines and cytokines, and decreased production of IFN-β. Taken together, our unbiased loss-of-function genetic screen identifies genes that play a role in host antiviral immunity and delineates roles for IL-27 and Tagap in the production of antiviral cytokines.
Collapse
|
12
|
Paulus P, Rupprecht K, Baer P, Obermüller N, Penzkofer D, Reissig C, Scheller B, Holfeld J, Zacharowski K, Dimmeler S, Schlammes J, Urbschat A. The early activation of toll-like receptor (TLR)-3 initiates kidney injury after ischemia and reperfusion. PLoS One 2014; 9:e94366. [PMID: 24736450 PMCID: PMC3988056 DOI: 10.1371/journal.pone.0094366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/13/2014] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most important complications in hospitalized patients and its pathomechanisms are not completely elucidated. We hypothesize that signaling via toll-like receptor (TLR)-3, a receptor that is activated upon binding of double-stranded nucleotides, might play a crucial role in the pathogenesis of AKI following ischemia and reperfusion (IR). Male adult C57Bl6 wild-type (wt) mice and TLR-3 knock-out (-/-) mice were subjected to 30 minutes bilateral selective clamping of the renal artery followed by reperfusion for 30 min 2.5h and 23.5 hours or subjected to sham procedures. TLR-3 down-stream signaling was activated already within 3 h of ischemia and reperfusion in post-ischemic kidneys of wt mice lead to impaired blood perfusion followed by a strong pro-inflammatory response with significant neutrophil invasion. In contrast, this effect was absent in TLR-3-/- mice. Moreover, the quick TLR-3 activation resulted in kidney damage that was histomorphologically associated with significantly increased apoptosis and necrosis rates in renal tubules of wt mice. This finding was confirmed by increased kidney injury marker NGAL in wt mice and a better preserved renal perfusion after IR in TLR-3-/- mice than wt mice. Overall, the absence of TLR-3 is associated with lower cumulative kidney damage and maintained renal blood perfusion within the first 24 hours of reperfusion. Thus, we conclude that TLR-3 seems to participate in the pathogenesis of early acute kidney injury.
Collapse
Affiliation(s)
- Patrick Paulus
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| | - Katrin Rupprecht
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Patrick Baer
- Department of Internal Medicine III, Division of Nephrology, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Nicholas Obermüller
- Department of Internal Medicine III, Division of Nephrology, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Daniela Penzkofer
- Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany
| | - Christin Reissig
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Bertram Scheller
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Johannes Holfeld
- Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt am Main, Germany
| | - Joelle Schlammes
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Anja Urbschat
- Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
13
|
IFN-γ-induced IL-27 and IL-27p28 expression are differentially regulated through JNK MAPK and PI3K pathways independent of Jak/STAT in human monocytic cells. Immunobiology 2014; 219:1-8. [DOI: 10.1016/j.imbio.2013.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 06/05/2013] [Indexed: 01/10/2023]
|
14
|
Abstract
A growing body of evidence suggests an essential role of the heterodimeric cytokine, IL-27, for regulating immunity. IL-27 is composed of two subunits (p28 and EBI3) and is classified as a member of the IL-12 family of cytokines. APCs have been recognized as a major cellular source of IL-27 following activation with microbial products or IFNs (types I and II). In this review, we describe the current knowledge of the implications of IL-27 during the pathogenesis of infectious and autoimmune diseases. Experimental studies have used genetically targeted IL-27RA-/- mice, EBI3-/- mice, and p28-/- mice or involved study designs with administration of bioengineered IL-27/IL-27RA homologs. Whereas many reports have described that IL-27 suppresses inflammation, we also review the current literature, suggesting promotion of inflammation by IL-27 in some settings. Recent advances have also been made in understanding the cross-talk of cleavage products of the complement system with IL-27-mediated immune responses. Additional data on IL-27 have been obtained recently by observational studies in human patients with acute and chronic inflammatory diseases. Collectively, the findings from the past decade identify IL-27 as a critical immunoregulatory cytokine, especially for T cells, whereas some controversy is fueled by results challenging the view of IL-27 as a classical silencer of inflammation.
Collapse
Affiliation(s)
- Markus Bosmann
- 1.University of Michigan Medical School, 1301 Catherine Rd., Ann Arbor, MI 48109-5602, USA.
| | | |
Collapse
|
15
|
Moore TC, Petro TM. IRF3 and ERK MAP-kinases control nitric oxide production from macrophages in response to poly-I:C. FEBS Lett 2013; 587:3014-20. [PMID: 23892079 DOI: 10.1016/j.febslet.2013.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/20/2013] [Accepted: 07/13/2013] [Indexed: 11/18/2022]
Abstract
Understanding nitric oxide (NO) in innate anti-viral immunity and immune-mediated pathology is hampered by incomplete details of its transcriptional and signaling factors. We found in macrophages that IRF3, ERK MAP-kinases, and PKR are essential to NO production in response to RNA-virus mimic, poly I:C, a TLR3 agonist. ERK's role in NO induction may be through phosphorylation of serine-171 of IRF3 and expression of NO-inducing cytokines, IL-6 and IFN-β. However, these cytokines induced less NO in IRF3 knockout or knockdown macrophages. These findings show that ERK and IRF3 coordinate induction of NO by macrophages in response to stimulation of TLR3.
Collapse
Affiliation(s)
- Tyler C Moore
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
16
|
Lin Y, Ren L, Wang W, Di J, Zeng S, Saito S. Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice. J Reprod Immunol 2009; 82:12-23. [PMID: 19560213 DOI: 10.1016/j.jri.2009.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 03/18/2009] [Accepted: 03/27/2009] [Indexed: 12/15/2022]
Abstract
Toll-like receptor (TLR)-TLR cross talk is thought to be important in TLR signaling. Herein, we investigated the effect of specific TLR3 and TLR7 agonists, poly (I:C) and R837, individually and in combination, on uterine immune cell function and their subsequent effects on pregnancy outcome. Allogeneic pregnancies in the non-obese diabetic (NOD) mousexC57BL/6 and wild-type BALB/cxC57BL/6 model were used. An additive increase in embryo resorption was observed after induction with both poly (I:C) and R837, and was associated with elevated numbers of both TNF-alpha- and IFN-gamma-producing CD45(+) cells in the uterus. Further examination showed that while cytokine expression was detected in both CD3(+) cells and CD49b(+) cells in BALB/c mice, NOD mouse cells behaved differently. In NOD mice, elevated cytokine expression was attributed to CD3(+) T cells, with no response detected in the CD49b(+) NK cells. The additive effect of combined agonists was partially inhibited by the Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) inhibitor SP600125 and almost completely abrogated by the extracellular signal-regulated kinase (ERK) MAPK inhibitor PD98059. These results suggest that increased TLR3 and TLR7 signals are transmitted via Th1-type T cells, rather than NK cells, in NOD mice. Furthermore, the ERK MAPK pathway may be critical in TLR3 and TLR7 signaling.
Collapse
Affiliation(s)
- Yi Lin
- Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiaotong University, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S. IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. THE JOURNAL OF IMMUNOLOGY 2009; 182:3928-36. [PMID: 19265172 DOI: 10.4049/jimmunol.0802226] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IFN-beta, an effective therapy against relapsing-remitting multiple sclerosis, is naturally secreted during the innate immune response against viral pathogens. The objective of this study was to characterize the immunomodulatory mechanisms of IFN-beta targeting innate immune response and their effects on dendritic cell (DC)-mediated regulation of T cell differentiation. We found that IFN-beta1a in vitro treatment of human monocyte-derived DCs induced the expression of TLR7 and the members of its downstream signaling pathway, including MyD88, IL-1R-associated kinase 4, and TNF receptor-associated factor 6, while it inhibited the expression of IL-1R. Using small interfering RNA TLR7 gene silencing, we confirmed that IFN-beta1a-induced changes in MyD88, IL-1R-associated kinase 4, and IL-1R expression were dependent on TLR7. TLR7 expression was also necessary for the IFN-beta1a-induced inhibition of IL-1beta and IL-23 and the induction of IL-27 secretion by DCs. Supernatant transfer experiments confirmed that IFN-beta1a-induced changes in DC cytokine secretion inhibit Th17 cell differentiation as evidenced by the inhibition of retinoic acid-related orphan nuclear hormone receptor C and IL-17A gene expression and IL-17A secretion. Our study has identified a novel therapeutic mechanism of IFN-beta1a that selectively targets the autoimmune response in multiple sclerosis.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
18
|
Turrin NP. Central nervous system Toll-like receptor expression in response to Theiler's murine encephalomyelitis virus-induced demyelination disease in resistant and susceptible mouse strains. Virol J 2008; 5:154. [PMID: 19094215 PMCID: PMC2614974 DOI: 10.1186/1743-422x-5-154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 12/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In immunopathological diseases, such as multiple sclerosis (MS), genetic and environmental factors that contribute to the initiation and progression of the disease are often discussed. The Theiler murine encephalomyelitis virus-induced demyelination disease (TMEV-IDD) model used to study MS reflects this: genetically susceptible mice infected intra-cerebrally with TMEV develop a chronic demyelination disease. TMEV-IDD can be induced in resistant mouse strains by inducing innate immunity with lipopolysaccharide (LPS). Interestingly, Toll-like receptor 4 (TLR4) is the cognate receptor for LPS and its activation can induces up-regulation of other TLRs, such as TLR7 (the receptor for TMEV) and 9, known to be involved in autoimmunity. Up-regulation of TLRs could be involved in precipitating an autoimmune susceptible state. Consequently, we looked at TLR expression in the susceptible (SJL/J) and resistant (C57BL/6) strains of mice infected with TMEV. The resistant mice were induced to develop TMEV-IDD by two LPS injections following TMEV infection. RESULTS Both strains were found to up-regulate multiple TLRs (TLR2, 7 and 9) following the TMEV infection. Expression of these TLRs and of viral mRNA was significantly greater in infected SJL/J mice. The susceptible SJL/J mice showed up-regulation of TLR3, 6 and 8, which was not seen in C57BL/6 mice. CONCLUSION Expression of TLRs by susceptible mice and the up-regulation of the TLRs in resistant mice could participate in priming the mice toward an autoimmune state and develop TMEV-IDD. This could have implications on therapies that target TLRs to prevent the emergence of conditions such as MS in patients at risk for the disease.
Collapse
Affiliation(s)
- Nicolas P Turrin
- Molecular Endocrinology & Oncology Research Centre (CHUQ), Québec City, Québec, Canada.
| |
Collapse
|
19
|
Mestre L, Docagne F, Correa F, Loría F, Hernangómez M, Borrell J, Guaza C. A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 2008; 40:258-66. [PMID: 19059482 DOI: 10.1016/j.mcn.2008.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/27/2008] [Accepted: 10/31/2008] [Indexed: 11/30/2022] Open
Abstract
Adhesion molecules are critical players in the regulation of transmigration of blood leukocytes across the blood-brain barrier in multiple sclerosis (MS). Cannabinoids (CBs) are potential therapeutic agents in the treatment of MS, but the mechanisms involved are only partially known. Using a viral model of MS we observed that the cannabinoid agonist WIN55,212-2 administered at the time of virus infection suppresses intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in brain endothelium, together with a reduction in perivascular CD4+ T lymphocytes infiltrates and microglial responses. WIN55,212-2 also interferes with later progression of the disease by reducing symptomatology and neuroinflammation. In vitro data from brain endothelial cell cultures, provide the first evidence of a role of peroxisome proliferator-activated receptors gamma (PPARgamma) in WIN55,212-2-induced downregulation of VCAM-1. This study highlights that inhibition of brain adhesion molecules by WIN55,212-2 might underline its therapeutic effects in MS models by targeting PPAR-gamma receptors.
Collapse
Affiliation(s)
- L Mestre
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Cajal Institute (CSIC), Av. Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Al-Salleeh F, Petro TM. Promoter Analysis Reveals Critical Roles for SMAD-3 and ATF-2 in Expression of IL-23 p19 in Macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 181:4523-33. [DOI: 10.4049/jimmunol.181.7.4523] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Steurbaut S, Merckx E, Rombaut B, Vrijsen R. Modulation of viral replication in macrophages persistently infected with the DA strain of Theiler's murine encephalomyelitis virus. Virol J 2008; 5:89. [PMID: 18680564 PMCID: PMC2515842 DOI: 10.1186/1743-422x-5-89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/04/2008] [Indexed: 11/30/2022] Open
Abstract
Background Demyelinating strains of Theiler's murine encephalomyelitis virus (TMEV) such as the DA strain are the causative agents of a persistent infection that induce a multiple sclerosis-like disease in the central nervous system of susceptible mice. Viral persistence, mainly associated with macrophages, is considered to be an important disease determinant that leads to chronic inflammation, demyelination and autoimmunity. In a previous study, we described the establishment of a persistent DA infection in RAW macrophages, which were therefore named DRAW. Results In the present study we explored the potential of diverse compounds to modulate viral persistence in these DRAW cells. Hemin was found to increase viral yields and to induce cell lysis. Enviroxime and neutralizing anti-TMEV monoclonal antibody were shown to decrease viral yields, whereas interferon-α and interferon-γ completely cleared the persistent infection. We also compared the cytokine pattern secreted by uninfected RAW, DRAW and interferon-cured DRAW macrophages using a cytokine protein array. The chemokine RANTES was markedly upregulated in DRAW cells and restored to a normal expression level after abrogation of the persistent infection with interferon-α or interferon-γ. On the other hand, the chemokine MCP-1 was upregulated in the interferon-cured DRAW cells. Conclusion We have identified several compounds that modulate viral replication in an in vitro model system for TMEV persistence. These compounds now await further testing in an in vivo setting to address fundamental questions regarding persistent viral infection and immunopathogenesis.
Collapse
Affiliation(s)
- Stephane Steurbaut
- Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|