1
|
Wang S, Wang Z, Wang W, Sun H, Feng N, Zhao Y, Wang J, Wang T, Xia X, Yan F. A VSV-based oral rabies vaccine was sentineled by Peyer's patches and induced a timely and durable immune response. Mol Ther 2025; 33:1701-1719. [PMID: 40022445 PMCID: PMC11997495 DOI: 10.1016/j.ymthe.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025] Open
Abstract
The global eradication of canine-mediated human rabies remains an ongoing public health priority. While conventional oral rabies vaccines (ORVs) have demonstrated partial success in interrupting zoonotic transmission, current formulations necessitate improvements in both immunogenic profiles and mechanistic clarity. Herein, we present a recombinant vesicular stomatitis virus (VSV)-vectored vaccine candidate (rVSVΔG-ERA-G) engineered to express the glycoprotein of the rabies virus (RABV) ERA strain, substituting the native VSV glycoprotein. Preclinical evaluation across multiple mammalian species (Mus musculus, Canis lupus familiaris, Felis catus, Vulpes lagopus, and Nyctereutes procyonoides) revealed rapid seroconversion and sustained neutralizing antibody responses. Challenge experiments demonstrated 100% survival efficacy in pre-exposure prophylaxis models, with partial protection observed in post-exposure scenarios. Safety assessments confirmed significant attenuation of neurotropism and absence of horizontal transmission or environmental shedding. Furthermore, evidence showed that rVSVΔG-ERA-G is recognized by Peyer's patches (PPs), where a cascade activation of immune cells occurred. From another perspective, the absence of functional microfold cells in PPs hampered the initiation and progression of immune responses. This proof-of-concept study establishes rVSVΔG-ERA-G as an ORV candidate with enhanced biosafety and cross-species immunogenicity. The elucidation of M cell-dependent mucosal priming mechanisms provides a rational framework for optimizing the targeted delivery of ORVs.
Collapse
Affiliation(s)
- Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130000, China
| | - Weiqi Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin 130000, China
| | - Hongyu Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130000, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin 130000, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China.
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130000, China.
| |
Collapse
|
2
|
Li D, Wang X, Li G, Zhou J, Bian L, Zhao X, Xing L, Zeng J, Cui J, Cui L, Zhang Y, Chen Y. Optimizing rabies mRNA vaccine efficacy via RABV-G structural domain screening and heterologous prime-boost immunization. NPJ Vaccines 2025; 10:43. [PMID: 40025078 PMCID: PMC11873297 DOI: 10.1038/s41541-025-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025] Open
Abstract
mRNA vaccine has become a promising technology platform for rabies prevention. This study explores the roles of different structural domains of rabies virus glycoprotein (RABV-G) and heterologous prime-boost strategies for enhanced immune responses and protection. The results suggested that mRNA vaccines encoding full-length RABV-G (RABV-Full) and RABV-R333Q induced strong immune responses and provided full protection against rabies, while mRNA vaccines encoding ectodomain/transmembrane domain (RABV-TE) and ectodomain (RABV-E) were less effective. Heterologous immunization results revealed that mRNA-primed strategies yielded higher long-lasting VNTs, but lower early VNTs than inactivated rabies virus (IRV)-primed strategies. 2×RABV-Full and IRV > RABV-Full provided 100% protection, while that of RABV-Full>IRV was 90%. Transcriptome analysis showed that rabies mRNA vaccine induced both MHCI and MHCII antigen presentation, as well as B/T cell activation. In conclusion, full-length RABV-G mRNA vaccines, particularly with an 'IRV prime and RABV-Full boost' strategy, hold great potential for rabies prevention.
Collapse
Affiliation(s)
- Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Gaotian Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingying Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoyan Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Liao Xing
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Juanmei Zeng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxing Cui
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lili Cui
- Beijing Research Center, CSPC Pharmaceutical Group Co. Ltd., Beijing, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China.
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Meng X, Yan F, Wang W, Wang S, Cong H, Li J, Zhao Y, Wang T, Li N, Gao Y, Wang J, Feng N, Xia X. A single dose of an ALVAC vector-based RABV virus-like particle candidate vaccine induces a potent immune response in mice, cats and dogs. Emerg Microbes Infect 2024; 13:2406280. [PMID: 39295522 PMCID: PMC11443554 DOI: 10.1080/22221751.2024.2406280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
Rabies, caused by the Rabies virus (RABV), is a highly fatal zoonotic disease. Existing rabies vaccines have demonstrated good immune efficacy, but the complexity of immunization procedures and high cost has impeded the elimination of RABV, particularly in the post-COVID-19 era. There is a pressing need for safer and more effective rabies vaccines that streamline vaccination protocols and reduce expense. To meet this need, we have developed a potential rabies vaccine candidate called ALVAC-RABV-VLP, utilizing CRISPR/Cas9 gene editing technology. This vaccine employs a canarypox virus vector (ALVAC) to generate RABV virus-like particles (VLPs). In mice, a single dose of ALVAC-RABV-VLP effectively activated dendritic cells (DCs), follicular helper T cells (Tfh), and the germinal centre (GC)/plasma cell axis, resulting in durable and effective humoral immune responses. The survival rate of mice challenged with lethal RABV was 100%. Similarly, in dogs and cats, a single immunization with ALVAC-RABV-VLP elicited a stronger and longer-lasting antibody response. ALVAC-RABV-VLP induced superior cellular and humoral immunity in both mice and beagles compared to the commercial inactivated rabies vaccine. In conclusion, ALVAC-RABV-VLP induced robust protective immune responses in mice, dogs and cats, offering a novel, cost-effective, efficient, and promising approach for herd prevention of rabies.
Collapse
Affiliation(s)
- Xianyong Meng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Haiyang Cong
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jiaqi Li
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
| | - Na Feng
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
4
|
Masum MHU, Mahdeen AA, Barua L, Parvin R, Heema HP, Ferdous J. Developing a chimeric multiepitope vaccine against Nipah virus (NiV) through immunoinformatics, molecular docking and dynamic simulation approaches. Microb Pathog 2024; 197:107098. [PMID: 39521154 DOI: 10.1016/j.micpath.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Nipah virus (NiV) is a highly lethal zoonotic pathogen that poses a significant threat to human and animal health. Unfortunately, no effective treatments have been developed for this deadly zoonotic disease. Therefore, we designed a chimeric multiepitope vaccine targeting the Nipah virus (NiV) glycoprotein and fusion protein through immunoinformatic approaches. Therefore, the vaccine was developed by combining promising and potential antigenic MHC-I, MHC-II, and B-cell epitopes obtained from the selected proteins. When combined, the MHC-I and MHC-II epitopes offered 100 % global population coverage. The physicochemical characterization also exhibited favorable properties, including solubility and potential functional stability of the vaccine within the body (GRAVY score of -0.308). Structural analyses unveiled a well-stabilized secondary and tertiary structure with a Ramachandran score of 84.4 % and a Z score of -5.02. Findings from docking experiments with TLR-2 (-1089.3 kJ/mol) and TLR-4 (-1016.7 kJ/mol) showed a strong affinity of the vaccine towards the receptor. Molecular dynamics simulations revealed unique conformational dynamics among the "vaccine-apo," "vaccine-TLR-2," and "vaccine-TLR-4″ complexes. Consequently, the complexes exhibited significant compactness, flexibility, and exposure to solvents. The results of the codon optimization were remarkable, as the vaccine showed a significant amount of expression in the E. coli vector (GC content of 45.36 % and a CAI score of 1.0). The results of immune simulations, however, showed evidence of both adaptive and innate immune responses induced by the vaccine. Therefore, we highly recommend further research on this chimeric multiepitope vaccine to establish its efficacy and safety against the Nipah virus (NiV).
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh.
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Logon Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rehana Parvin
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Homaira Pervin Heema
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Obstetrics and Gynecology, Chittagong Medical College Hospital, Chattogram, 4203, Bangladesh
| |
Collapse
|
5
|
Zhong K, Chen X, Zhang J, Jiang X, Zhang J, Huang M, Bi S, Ju C, Luo Y. Recent Advances in Oral Vaccines for Animals. Vet Sci 2024; 11:353. [PMID: 39195807 PMCID: PMC11360704 DOI: 10.3390/vetsci11080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Compared to traditional injected vaccines, oral vaccines offer significant advantages for the immunization of livestock and wildlife due to their ease of use, high compliance, improved safety, and potential to stimulate mucosal immune responses and induce systemic immunity against pathogens. This review provides an overview of the delivery methods for oral vaccines, and the factors that influence their immunogenicity. We also highlight the global progress and achievements in the development and use of oral vaccines for animals, shedding light on potential future applications in this field.
Collapse
Affiliation(s)
- Kaining Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xinting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xiaoyu Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Minyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Shuilian Bi
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
6
|
Kaye AD, Perilloux DM, Field E, Orvin CA, Zaheri SC, Upshaw WC, Behara R, Parker-Actlis TQ, Kaye AM, Ahmadzadeh S, Shekoohi S, Varrassi G. Rabies Vaccine for Prophylaxis and Treatment of Rabies: A Narrative Review. Cureus 2024; 16:e62429. [PMID: 39011185 PMCID: PMC11248466 DOI: 10.7759/cureus.62429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Rabies, a millennia-old viral infection transmitted through animal bites, poses a lethal threat to humans, with a historic fatality rate of 100% if left untreated. Louis Pasteur's introduction of the rabies vaccine in 1885 marked a turning point in the battle against rabies, preventing numerous cases. The purpose of this paper is to review the historical development, current challenges, and future prospects of rabies vaccination and treatment, with emphasis on the importance of continued research and collaborative efforts in the quest to eradicate this deadly infection. Historical vaccine development progressed from inactivated to live-attenuated forms, with modern recombinant techniques showing promise. The preventive measures at present primarily involve vaccination, but challenges persist, such as differing safety profiles and immunogenicity among vaccine types. Pre-exposure prophylaxis with a three-dose vaccine series is crucial, especially in high-risk scenarios. Post-exposure prophylaxis combines human rabies immunoglobulin and inactivated rabies virus vaccine. The quest for the next generation of vaccines explores genetically modified and viral vector-based approaches; emerging treatments include gene therapy, virus-like particles, and monoclonal antibodies, offering hope for improved outcomes. Economic barriers to post-exposure prophylaxis, limited education, and awareness challenge rabies control. Cost-effective solutions and comprehensive awareness campaigns are vital for the successful eradication of rabies. More research and collaborative endeavors remain pivotal in the ongoing journey to eradicate rabies, one of the deadliest infectious diseases known to humans, if not met with prophylactic measures.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Dominique M Perilloux
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Elizabeth Field
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Cody A Orvin
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Spencer C Zaheri
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - William C Upshaw
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Raju Behara
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Tomasina Q Parker-Actlis
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences University of the Pacific, Stockton, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
7
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
8
|
Zorzan M, Castellan M, Gasparotto M, Dias de Melo G, Zecchin B, Leopardi S, Chen A, Rosato A, Angelini A, Bourhy H, Corti D, Cendron L, De Benedictis P. Antiviral mechanisms of two broad-spectrum monoclonal antibodies for rabies prophylaxis and therapy. Front Immunol 2023; 14:1186063. [PMID: 37638057 PMCID: PMC10449259 DOI: 10.3389/fimmu.2023.1186063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Rabies is an acute and lethal encephalomyelitis caused by lyssaviruses, among which rabies virus (RABV) is the most prevalent and important for public health. Although preventable through the post-exposure administration of rabies vaccine and immunoglobulins (RIGs), the disease is almost invariably fatal since the onset of clinical signs. Two human neutralizing monoclonal antibodies (mAbs), RVC20 and RVC58, have been shown to be effective in treating symptomatic rabies. To better understand how these mAbs work, we conducted structural modeling and in vitro assays to analyze their mechanisms of action, including their ability to mediate Fc-dependent effector functions. Our results indicate that both RVC20 and RVC58 recognize and lock the RABV-G protein in its pre-fusion conformation. RVC58 was shown to neutralize more potently the extra-cellular virus, while RVC20 mainly acts by reducing viral spreading from infected cells. Importantly, RVC20 was more effective in promoting effector functions compared to RVC58 and 17C7-RAB1 mAbs, the latter of which is approved for human rabies post-exposure treatment. These results provide valuable insights into the multiple mechanisms of action of RVC20 and RVC58 mAbs, offering relevant information for the development of these mAbs as treatment for human rabies.
Collapse
Affiliation(s)
- Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Martina Castellan
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Barbara Zecchin
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alex Chen
- Vir Biotechnology, San Francisco, CA, United States
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology, Padua, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Mestre, Italy
- European Centre for Living Technology (ECLT), Venice, Italy
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padua, Padova, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
9
|
Izumi F, Miyamoto S, Masatani T, Sasaki M, Kawakami K, Takahashi T, Fujiwara T, Fujii Y, Okajima M, Nishiyama S, Sawa H, Sugiyama M, Ito N. Generation and characterization of a genetically modified live rabies vaccine strain with attenuating mutations in multiple viral proteins and evaluation of its potency in dogs. Vaccine 2023:S0264-410X(23)00779-X. [PMID: 37400284 DOI: 10.1016/j.vaccine.2023.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Live rabies vaccines have advantageous features that can facilitate mass vaccination for dogs, the most important reservoirs/transmitters of rabies. However, some live vaccine strains have problems in their safety, namely, risks from the residual pathogenicity and the pathogenic reversion of live vaccine strains. The reverse genetics system of rabies virus provides a feasible option to improve the safety of a live vaccine strain by, for example, artificially introducing attenuating mutations into multiple viral proteins. It was previously demonstrated in separate studies that introduction of amino acid residues Leu at position 333 in the viral glycoprotein (G333), Ser at G194, and Leu/His at positions 273/394 in the nucleoprotein (N273/394) enhance the safety of a live vaccine strain. In this study, to test our hypothesis that combinational introduction of these residues would significantly increase the safety level of a vaccine strain, we generated a novel live vaccine candidate, ERA-NG2, that is attenuated by mutations at N273/394 and G194/333, and we examined its safety and immunogenicity in mice and dogs. ERA-NG2 did not cause any clinical signs in mice after intracerebral inoculation. After 10 passages in suckling mouse brains, ERA-NG2 retained all of the introduced mutations except the mutation at N394 and the highly attenuated phenotype. These findings indicate that the ERA-NG2 is highly and stably attenuated. After confirming that ERA-NG2 induced a virus-neutralizing antibody (VNA) response and protective immunity in mice, we immunized dogs intramuscularly with a single dose (105-7 focus-forming units) of ERA-NG2 and found that, at all of the tested doses, the strain induced a VNA response in dogs without inducing any clinical signs. These findings demonstrate that ERA-NG2 has a high level of safety and a substantial level of immunogenicity in dogs and thus is a promising live vaccine candidate that can facilitate vaccination in dogs.
Collapse
Affiliation(s)
- Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Shoya Miyamoto
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Center for One Medicine Innovative Research (COMIT), Institute for Advanced Study, Gifu University, Japan.
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Kazuo Kawakami
- Advanced Technology Development Center, Kyoritsu Seiyaku Corporation, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takuro Fujiwara
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Center for One Medicine Innovative Research (COMIT), Institute for Advanced Study, Gifu University, Japan.
| |
Collapse
|
10
|
Megawati Saputra IL, Suwarno S, Husein WF, Suseno PP, Prayoga IMA, Vos A, Arthawan IM, Schoonman L, Weaver J, Zainuddin N. Immunogenicity of Oral Rabies Vaccine Strain SPBN GASGAS in Local Dogs in Bali, Indonesia. Viruses 2023; 15:1405. [PMID: 37376704 DOI: 10.3390/v15061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Dog-mediated rabies is endemic in much of Indonesia, including Bali. Most dogs in Bali are free-roaming and often inaccessible for parenteral vaccination without special effort. Oral rabies vaccination (ORV) is considered a promising alternative to increase vaccination coverage in these dogs. This study assessed immunogenicity in local dogs in Bali after oral administration of the highly attenuated third-generation rabies virus vaccine strain SPBN GASGAS. Dogs received the oral rabies vaccine either directly or by being offered an egg-flavored bait that contained a vaccine-loaded sachet. The humoral immune response was then compared with two further groups of dogs: a group that received a parenteral inactivated rabies vaccine and an unvaccinated control group. The animals were bled prior to vaccination and between 27 and 32 days after vaccination. The blood samples were tested for the presence of virus-binding antibodies using ELISA. The seroconversion rate in the three groups of vaccinated dogs did not differ significantly: bait: 88.9%; direct-oral: 94.1%; parenteral: 90.9%; control: 0%. There was no significant quantitative difference in the level of antibodies between orally and parenterally vaccinated dogs. This study confirms that SPBN GASGAS is capable of inducing an adequate immune response comparable to a parenteral vaccine under field conditions in Indonesia.
Collapse
Affiliation(s)
- Irene Linda Megawati Saputra
- Directorate of Animal Health, Ministry of Agriculture, Jakarta 12550, Indonesia
- Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
| | - Suwarno Suwarno
- Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
| | - Wahid Fakhri Husein
- Emergency Centre for Transboundary Animal Diseases, The Food and Agriculture Organization of the United Nations, Jakarta 12550, Indonesia
| | - Pebi Purwo Suseno
- Directorate of Animal Health, Ministry of Agriculture, Jakarta 12550, Indonesia
| | | | - Ad Vos
- Veterinary Public Health, Ceva SA, 33500 Libourne, France
| | - I Made Arthawan
- Bali Provincial Animal Health Services, Den Pasar 80225, Indonesia
| | - Luuk Schoonman
- Emergency Centre for Transboundary Animal Diseases, The Food and Agriculture Organization of the United Nations, Jakarta 12550, Indonesia
| | - John Weaver
- Australia Indonesia Health Security Partnership, Jakarta 12550, Indonesia
| | - Nuryani Zainuddin
- Directorate of Animal Health, Ministry of Agriculture, Jakarta 12550, Indonesia
| |
Collapse
|
11
|
Freuling CM, Busch F, Shikongo MB, Silume N, van der Westhuizen J, Khaiseb S, Shilongo A, Müller T. Emergency response using oral rabies vaccination of dogs -field data from Namibia demonstrate high efficiency. One Health 2023; 16:100562. [PMID: 37363208 PMCID: PMC10288086 DOI: 10.1016/j.onehlt.2023.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Dog-mediated rabies is responsible for tens of thousands of human deaths annually, and in resource-constrained settings, vaccinating dogs to control the disease at source remains challenging for various reasons. Currently, rabies elimination efforts rely on mass dog vaccination by the parenteral route. While oral rabies vaccination (ORV) of dogs is primarily considered a tool to increase herd immunity, particularly by targeting free-roaming and stray dogs, here, we are showcasing an ORV-only approach as an emergency response model. Using a third-generation vaccine and a standardized egg-flavored bait, we assessed the effectiveness and vaccination under field conditions in the Zambezi region of Namibia. During this trial, with four teams and within four working days, 3097 dogs were offered a bait, of which 88,0% were considered vaccinated. Teams managed to vaccinate, on average, over 20 dogs/h, despite using a door-to-door vaccination approach. The favorable results both in terms of bait acceptance and successful vaccination as well as field applicability and effectiveness further support the great potential of ORV in dog rabies control programmes.
Collapse
Affiliation(s)
- Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut (FLI), 17493 Greifswald-Insel Riems, Germany
| | - Mainelo Beatrice Shikongo
- Animal Disease Control, Zambezi Region, Ministry of Agriculture, Water & Land Reform, Directorate of Veterinary Services, State Veterinary Office, Katima Mulilo, Namibia
| | - Nzwana Silume
- Animal Disease Control, Zambezi Region, Ministry of Agriculture, Water & Land Reform, Directorate of Veterinary Services, State Veterinary Office, Katima Mulilo, Namibia
| | - Jolandie van der Westhuizen
- Central Veterinary Laboratory, Directorate of Veterinary Services (DVS), Ministry of Agriculture Water and Land Reform, Windhoek, Namibia
| | - Siegfried Khaiseb
- Central Veterinary Laboratory, Directorate of Veterinary Services (DVS), Ministry of Agriculture Water and Land Reform, Windhoek, Namibia
| | - Albertina Shilongo
- Directorate of Veterinary Services (DVS), Ministry of Agriculture Water and Land Reform, Windhoek, Namibia
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
13
|
Natesan K, Isloor S, Vinayagamurthy B, Ramakrishnaiah S, Doddamane R, Fooks AR. Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines (Basel) 2023; 11:vaccines11040756. [PMID: 37112668 PMCID: PMC10147034 DOI: 10.3390/vaccines11040756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Rabies is a disease of antiquity and has a history spanning millennia ever since the first interactions between humans and dogs. The alarming fatalities caused by this disease have triggered rabies prevention strategies since the first century BC. There have been numerous attempts over the past 100 years to develop rabies vaccineswith the goal of preventing rabies in both humans and animals. Thepre-Pasteurian vaccinologists, paved the way for the actual history of rabies vaccines with the development of first generation vaccines. Further improvements for less reactive and more immunogenic vaccines have led to the expansion of embryo vaccines, tissue culture vaccines, cell culture vaccines, modified live vaccines, inactivated vaccines, and adjuvanted vaccines. The adventof recombinant technology and reverse genetics have given insight into the rabies viral genome and facilitated genome manipulations, which in turn led to the emergence of next-generation rabies vaccines, such as recombinant vaccines, viral vector vaccines, genetically modified vaccines, and nucleic acid vaccines. These vaccines were very helpful in overcoming the drawbacks of conventional rabies vaccines with increased immunogenicity and clinical efficacies. The path traversed in the development of rabies vaccines from Pasteur to the modern era vaccines, though, faced numerous challenges;these pioneering works have formed the cornerstone for the generation of thecurrent successful vaccines to prevent rabies. In the future, advancements in the scientific technologies and research focus will definitely lay the path for much more sophisticated vaccine candidates for rabies elimination.
Collapse
Affiliation(s)
- Krithiga Natesan
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Shrikrishna Isloor
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
- Correspondence: ; Tel.: +91-9449992287
| | | | - Sharada Ramakrishnaiah
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Rathnamma Doddamane
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Anthony R. Fooks
- APHA Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
14
|
Transferrin Receptor Protein 1 Cooperates with mGluR2 To Mediate the Internalization of Rabies Virus and SARS-CoV-2. J Virol 2023; 97:e0161122. [PMID: 36779763 PMCID: PMC9972945 DOI: 10.1128/jvi.01611-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.
Collapse
|
15
|
Abstract
Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.
Collapse
|
16
|
Rabies Vaccine: Recent Update and Comprehensive Review of in vitro and in vivo Studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Freuling CM, Busch F, Vos A, Ortmann S, Lohr F, Hedimbi N, Peter J, Nelson HA, Shoombe K, Shilongo A, Gorejena B, Kaholongo L, Khaiseb S, van der Westhuizen J, Dietze K, Geurtse G, Müller T. Oral rabies vaccination of dogs-Experiences from a field trial in Namibia. PLoS Negl Trop Dis 2022; 16:e0010422. [PMID: 35994498 PMCID: PMC9436088 DOI: 10.1371/journal.pntd.0010422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/01/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dog-mediated rabies is responsible for tens of thousands of human deaths annually, and in resource-constrained settings, vaccinating dogs to control the disease at source remains challenging. Currently, rabies elimination efforts rely on mass dog vaccination by the parenteral route. To increase the herd immunity, free-roaming and stray dogs need to be specifically addressed in the vaccination campaigns, with oral rabies vaccination (ORV) of dogs being a possible solution. Using a third-generation vaccine and a standardized egg-flavoured bait, bait uptake and vaccination was assessed under field conditions in Namibia. During this trial, both veterinary staff as well as dog owners expressed their appreciation to this approach of vaccination. Of 1,115 dogs offered a bait, 90% (n = 1,006, 95%CI:91-94) consumed the bait and 72.9% (n = 813, 95%CI:70.2-75.4) of dogs were assessed as being vaccinated by direct observation, while for 11.7% (n = 130, 95%CI:9.9-17.7) the status was recorded as "unkown" and 15.4% (n = 172, 95%CI: 13.4-17.7) were considered as being not vaccinated. Smaller dogs and dogs offered a bait with multiple other dogs had significantly higher vaccination rates, while other factors, e.g. sex, confinement status and time had no influence. The favorable results of this first large-scale field trial further support the strategic integration of ORV into dog rabies control programmes. Given the acceptance of the egg-flavored bait under various settings worldwide, ORV of dogs could become a game-changer in countries, where control strategies using parenteral vaccination alone failed to reach sufficient vaccination coverage in the dog population.
Collapse
Affiliation(s)
- Conrad Martin Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, WOAH Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
| | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - Adriaan Vos
- Ceva Innovation Center GmbH, Dessau–Rosslau, Germany
| | | | | | - Nehemia Hedimbi
- Animal Disease Control, Kunene, Ministry of Agriculture, Water & Land Reform, Directorate of Veterinary Services, State Veterinary Office, Opuwo, Namibia
| | - Josephat Peter
- Directorate of Veterinary Services, State Veterinary Office, Omusati, Namibia
| | | | - Kenneth Shoombe
- Deputy Chief Veterinary Officer, Animal Disease Control, North, Ministry of Agriculture, Water & Land Reform, Directorate of Veterinary Services, State Veterinary Office, Ongwediva, Namibia
| | - Albertina Shilongo
- Chief Veterinary Officer, Directorate of Veterinary Services, Ministry of Agriculture, Water and Land Reform, Windhoek, Namibia
| | - Brighton Gorejena
- Faculty of Agriculture and Natural Resources, Ogongo Campus, University of Namibia, Wnindhoek, Namibia
| | - Lukas Kaholongo
- Faculty of Agriculture and Natural Resources, Ogongo Campus, University of Namibia, Wnindhoek, Namibia
| | - Siegfried Khaiseb
- Central Veterinary Laboratory, Directorate of Veterinary Services (DVS), Ministry of Agriculture Water and Land Reform, Windhoek, Namibia
| | - Jolandie van der Westhuizen
- Central Veterinary Laboratory, Directorate of Veterinary Services (DVS), Ministry of Agriculture Water and Land Reform, Windhoek, Namibia
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | | | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), WHO Collaborating Centre for Rabies Surveillance and Research, WOAH Reference Laboratory for Rabies, Greifswald-Insel Riems, Germany
| |
Collapse
|
18
|
Itakura Y, Tabata K, Morimoto K, Ito N, Chambaro HM, Eguchi R, Otsuguro KI, Hall WW, Orba Y, Sawa H, Sasaki M. Glu333 in rabies virus glycoprotein is involved in virus attenuation through astrocyte infection and interferon responses. iScience 2022; 25:104122. [PMID: 35402872 PMCID: PMC8983343 DOI: 10.1016/j.isci.2022.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
The amino acid residue at position 333 of the rabies virus (RABV) glycoprotein (G333) is a major determinant of RABV pathogenicity. Virulent RABV strains possess Arg333, whereas the attenuated strain HEP-Flury (HEP) possesses Glu333. To investigate the potential attenuation mechanism dependent on a single amino acid at G333, comparative analysis was performed between HEP and HEP333R mutant with Arg333. We examined their respective tropism for astrocytes and the subsequent immune responses in astrocytes. Virus replication and subsequent interferon (IFN) responses in astrocytes infected with HEP were increased compared with HEP333R both in vitro and in vivo. Furthermore, involvement of IFN in the avirulency of HEP was demonstrated in IFN-receptor knockout mice. These results indicate that Glu333 contributes to RABV attenuation by determining the ability of the virus to infect astrocytes and stimulate subsequent IFN responses. Glu333 in G protein is responsible for astrocyte infection with RABV HEP strain Arg333 mutation in G protein decreases astrocyte tropism of RABV HEP RABV HEP evokes higher IFN responses in astrocytes than HEP with Arg333 mutation Glu333-dependent astrocyte infection is involved in the attenuation of RABV HEP
Collapse
Affiliation(s)
- Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Herman M. Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ken-ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - William W. Hall
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin 4, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Global Virus Network, Baltimore, MD 21201, USA
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Corresponding author
| |
Collapse
|
19
|
Molini U, Hassel R, Ortmann S, Vos A, Loschke M, Shilongo A, Freuling CM, Müller T. Immunogenicity of the Oral Rabies Vaccine Strain SPBN GASGAS in Dogs Under Field Settings in Namibia. Front Vet Sci 2021; 8:737250. [PMID: 34760958 PMCID: PMC8573107 DOI: 10.3389/fvets.2021.737250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Dog-mediated rabies is endemic throughout Africa. While free-roaming dogs that play a crucial role in rabies transmission are often inaccessible for parenteral vaccination during mass dog vaccination campaigns, oral rabies vaccination (ORV) is considered to be a promising alternative to increase vaccination coverage in these hard-to-reach dogs. The acceptance of ORV as an efficient supplementary tool is still low, not least because of limited immunogenicity and field trial data in local dogs. In this study, the immunogenicity of the highly attenuated 3rd-generation oral rabies vaccine strain SPBN GASGAS in local free-roaming dogs from Namibia was assessed by determining the immune response in terms of seroconversion for up to 56 days post-vaccination. At two study sites, free-roaming dogs were vaccinated by administering the vaccine either by direct oral administration or via a vaccine-loaded egg bait. Pre- and post-vaccination blood samples were tested for rabies virus neutralizing as well as binding antibodies using standard serological assays. A multiple logistic regression (MLR) analysis was performed to determine a possible influence of study area, vaccination method, and vaccine dose on the seroconversion rate obtained. About 78% of the dogs vaccinated by the oral route seroconverted (enzyme-linked immunosorbent assay, ELISA), though the seroconversion as determined by a rapid fluorescence focus inhibition test (RFFIT) was much lower. None of the factors examined had a significant effect on the seroconversion rate. This study confirms the immunogenicity of the vaccine strain SPBN GASGAS and the potential utility of ORV for the control of dog-mediated rabies in African dogs.
Collapse
Affiliation(s)
- Umberto Molini
- School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Rainer Hassel
- School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Steffen Ortmann
- Ceva Innovation Center, Ceva Santé Animale, Dessau-Roßlau, Germany
| | - Ad Vos
- Ceva Innovation Center, Ceva Santé Animale, Dessau-Roßlau, Germany
| | - Malaika Loschke
- School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Albertina Shilongo
- Directorate of Veterinary Services, Ministry of Agriculture, Water and Land Reform, Windhoek, Namibia
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Riems, Germany
| |
Collapse
|
20
|
ILRUN Downregulates ACE2 Expression and Blocks Infection of Human Cells by SARS-CoV-2. J Virol 2021; 95:e0032721. [PMID: 33963054 DOI: 10.1128/jvi.00327-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.
Collapse
|
21
|
Ito N, Okamoto T, Sasaki M, Miyamoto S, Takahashi T, Izumi F, Inukai M, Jarusombuti S, Okada K, Nakagawa K, Fujii Y, Nishiyama S, Masatani T, Sawa H, Sugiyama M. Safety enhancement of a genetically modified live rabies vaccine strain by introducing an attenuating Leu residue at position 333 in the glycoprotein. Vaccine 2021; 39:3777-3784. [PMID: 34092430 DOI: 10.1016/j.vaccine.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022]
Abstract
To improve the safety of genetically modified live rabies vaccine strains, most studies have utilized an attenuating Arg-to-Glu mutation at position 333 in the glycoprotein (G333), which is responsible for attenuation of the live vaccine strain SAG2. The Glu residue requires two nucleotide substitutions to revert to pathogenic Arg, thus significantly lowering the probability of pathogenic reversion caused by the Glu-to-Arg mutation at G333. However, only one nucleotide substitution is sufficient to convert the Glu residue to another pathogenic residue, Lys, and thereby to cause pathogenic reversion. This indicates a potential safety problem of SAG2 and the live vaccine candidates attenuated by Glu at G333. In this study, aiming to solve this problem, we examined the utility of a Leu residue, which requires two nucleotide substitutions to be both Arg and Lys, as an attenuating mutation at G333. Using a reverse genetics system of the live vaccine strain ERA, we generated ERA-G333Leu by introducing an Arg-to-Leu mutation at G333. Similar to ERA-G333Glu, which is attenuated by an Arg-to-Glu mutation at G333, ERA-G333Leu did not cause obvious clinical signs in 6-week-old mice after intracerebral inoculation. Importantly, after 10 passages in suckling mouse brains, ERA-G333Glu acquired a pathogenic Lys or Arg at G333 and a high level of lethality in mice, whereas ERA-G333Leu retained the attenuating Leu at G333 and only showed a modest level of virulence probably caused by a mutation at G194. In addition, ERA-G333Leu and ERA-G333Glu induced neutralizing antibody response and protective immunity in mice with similar efficiencies. The results demonstrate that, compared to ERA-G333Glu, ERA-G333Leu is more stably attenuated, also indicating the high utility of a Leu residue as an attenuating mutation at G333 in the development of live rabies vaccine strains with a high level of safety.
Collapse
Affiliation(s)
- Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan; Joint Graduate School of Veterinary Sciences, Gifu University, Japan.
| | - Takuya Okamoto
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shoya Miyamoto
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Fumiki Izumi
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Maho Inukai
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Supasiri Jarusombuti
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Graduate School of Bioagricultural Science, Nagoya University, Japan
| | - Kazuma Okada
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kento Nakagawa
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Joint Graduate School of Veterinary Sciences, Gifu University, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
22
|
Mara K, Dai M, Brice AM, Alexander MR, Tribolet L, Layton DS, Bean AGD. Investigating the Interaction between Negative Strand RNA Viruses and Their Hosts for Enhanced Vaccine Development and Production. Vaccines (Basel) 2021; 9:vaccines9010059. [PMID: 33477334 PMCID: PMC7830660 DOI: 10.3390/vaccines9010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host–pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host–pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host–pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.
Collapse
|
23
|
Luo J, Zhang B, Lyu Z, Wu Y, Zhang Y, Guo X. Single amino acid change at position 255 in rabies virus glycoprotein decreases viral pathogenicity. FASEB J 2020; 34:9650-9663. [PMID: 32469133 DOI: 10.1096/fj.201902577r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Previous studies have indicated that the amino acid at position 333 in the glycoprotein (G) is closely related to rabies virus (RABV) pathogenicity. However, whether there are other amino acid residues in G that relate to pathogenicity remain unclear. The aim of this study is to find new amino acid residues in G that could strongly reduce RABV pathogenicity. The present study found that the pathogenicity of a virulent strain was strongly attenuated when the amino acid glycine (Gly) replaced the aspartic acid (Asp) at position 255 in G (D255G) as intracranial (i.c.) infection with this D255G mutant virus did not cause death in adult mice. The indexes of neurotropism of the D255G mutant strain and the parent GD-SH-01 are 0.72 and 10.0, respectively, which indicate that the D255G mutation decreased the neurotropism of RABV. In addition, the D255G mutation significantly decreased RABV replication in the mouse brain. Furthermore, the D255G mutation enhanced the immune response in mice, which contributed to the clearance of RABV after infection. The Asp255 → Gly255 mutation was genetically stable in vitro and in vivo. In this study, we describe a new referenced amino acid site in G that relates to the pathogenicity of RABV.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ziyu Lyu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuting Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Integrin β1 Promotes Peripheral Entry by Rabies Virus. J Virol 2020; 94:JVI.01819-19. [PMID: 31666383 DOI: 10.1128/jvi.01819-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/03/2023] Open
Abstract
Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin β1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies.IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin β1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.
Collapse
|
25
|
The Serine/Threonine Kinase AP2-Associated Kinase 1 Plays an Important Role in Rabies Virus Entry. Viruses 2019; 12:v12010045. [PMID: 31905947 PMCID: PMC7019586 DOI: 10.3390/v12010045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/16/2022] Open
Abstract
Rabies virus (RABV) invades the central nervous system and nearly always causes fatal disease in humans. RABV enters cells via clathrin-mediated endocytosis upon receptor binding. The detailed mechanism of this process and how it is regulated are not fully understood. Here, we carried out a high-through-put RNAi analysis and identified AP2-associated kinase 1 (AAK1), a serine/threonine kinase, as an important cellular component in regulating the entry of RABV. AAK1 knock-down greatly inhibits RABV infection of cells, and AAK1-induced phosphorylation of threonine 156 of the μ subunit of adaptor protein 2 (AP2M1) is found to be required for RABV entry. Inhibition of AAK1 kinase activity by sunitinib blocked AP2M1 phosphorylation, significantly inhibiting RABV infection and preventing RABV from entering early endosomes. In vivo studies revealed that sunitinib prolongs the survival of mice challenged with RABV street virus. Our findings indicate that AAK1 is a potential drug target for postexposure prophylaxis against rabies.
Collapse
|
26
|
Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Vet Microbiol 2019; 241:108549. [PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
Collapse
Affiliation(s)
- Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
27
|
Rupprecht CE, Kuzmin IV, Yale G, Nagarajan T, Meslin FX. Priorities in applied research to ensure programmatic success in the global elimination of canine rabies. Vaccine 2019; 37 Suppl 1:A77-A84. [PMID: 30685249 DOI: 10.1016/j.vaccine.2019.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 01/19/2023]
Abstract
The elimination of human rabies mediated by dogs is attainable in concept, based upon current sensitive and specific diagnostic methods, existing safe and effective human and veterinary vaccines and a sound virological, pathological and epidemiological understanding of the disease. Globally, all developed countries achieved this goal. Regionally, major progress occurred throughout the Americas. However, less advancement is evident in Africa and Asia. Our objective was to concentrate upon those salient improvements to extant tools and methods over the next five years which could assist and simplify the task for both those developing countries that have already begun the process, as well as other localities in the earlier stages of consideration. We considered several categories of applied research which could be accomplished in the short term, based upon the available scientific evidence and recent recommendations from subject matter experts and key opinion leaders, focused upon perceived major limitations to prior program success. Areas of concentration included: laboratory-based surveillance, pathogen detection and characterization; human rabies prophylaxis; veterinary biologics; implementation of canine vaccination; and oral vaccination of free-ranging community dogs. Further real-time application in these core areas with proven techniques and technology would simplify attaining not only the global goal focused subtly upon human mortality, but the actual elimination of canine rabies as well.
Collapse
Affiliation(s)
| | | | - Gowri Yale
- Mission Rabies, Panaji, Goa 403002, India
| | | | | |
Collapse
|
28
|
Wang J, Wang Z, Liu R, Shuai L, Wang X, Luo J, Wang C, Chen W, Wang X, Ge J, He X, Wen Z, Bu Z. Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathog 2018; 14:e1007189. [PMID: 30028877 PMCID: PMC6070288 DOI: 10.1371/journal.ppat.1007189] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/01/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) invades the central nervous system and nearly always causes fatal disease in humans. How RABV interacts with host neuron membrane receptors to become internalized and cause rabid symptoms is not yet fully understood. Here, we identified a novel receptor of RABV, which RABV uses to infect neurons. We found that metabotropic glutamate receptor subtype 2 (mGluR2), a member of the G protein-coupled receptor family that is abundant in the central nervous system, directly interacts with RABV glycoprotein to mediate virus entry. RABV infection was drastically decreased after mGluR2 siRNA knock-down in cells. Antibodies to mGluR2 blocked RABV infection in cells in vitro. Moreover, mGluR2 ectodomain soluble protein neutralized the infectivity of RABV cell-adapted strains and a street strain in cells (in vitro) and in mice (in vivo). We further found that RABV and mGluR2 are internalized into cells and transported to early and late endosomes together. These results suggest that mGluR2 is a functional cellular entry receptor for RABV. Our findings may open a door to explore and understand the neuropathogenesis of rabies. Rabies virus (RABV) invades the central nervous system and nearly always causes fatal disease in humans. How RABV interacts with host neuron membrane receptors to become internalized and cause rabid symptoms is not yet fully understood. Here, we identified metabotropic glutamate receptor subtype 2 (mGluR2) as a novel cellular RABV receptor for host cell entry. mGluR2 directly interacts with RABV G protein and both proteins are internalized together. Our findings may open a door to explore the fundamental molecular mechanisms for rabies neuropathogenesis.
Collapse
Affiliation(s)
- Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zilong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Renqiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xinxin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jie Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Chong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Weiye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (ZB); (ZW)
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- * E-mail: (ZB); (ZW)
| |
Collapse
|
29
|
Cliquet F, Guiot AL, Aubert M, Robardet E, Rupprecht CE, Meslin FX. Oral vaccination of dogs: a well-studied and undervalued tool for achieving human and dog rabies elimination. Vet Res 2018; 49:61. [PMID: 30005701 PMCID: PMC6045873 DOI: 10.1186/s13567-018-0554-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/13/2018] [Indexed: 12/25/2022] Open
Abstract
The mass vaccination of dogs is a proven tool for rabies prevention. Besides parenteral delivery of inactivated vaccines, over the past several decades, several self-replicating biologics, including modified-live, attenuated and recombinant viruses, have been evaluated for the oral vaccination of dogs against rabies. Vaccines are included within an attractive bait for oral consumption by free-ranging dogs. Due to the high affinity between dogs and humans, such biologics intended for oral vaccination of dogs (OVD) need to be efficacious as well as safe. Baits should be preferentially attractive to dogs and not to non-target species. Although many different types have been evaluated successfully, no universal bait has been identified to date. Moreover, high bait acceptance does not necessarily mean that vaccine efficacy and programmatic success is predictable. The use of OVD in the laboratory and field has demonstrated the safety and utility of this technology. Within a One Health context, OVD should be considered as part of a holistic plan for the global elimination of canine rabies.
Collapse
Affiliation(s)
- Florence Cliquet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, Technopôle agricole et vétérinaire de Pixérécourt, CS 40009, 54220 Malzéville, France
| | - Anne-Laure Guiot
- Conseils en Pharmacie et Biologie, 2 place des Quatre Vierges, 69110 Sainte Foy les Lyon, France
| | | | - Emmanuelle Robardet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, OIE Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, Technopôle agricole et vétérinaire de Pixérécourt, CS 40009, 54220 Malzéville, France
| | | | | |
Collapse
|
30
|
Mendoza EJ, Warner B, Kobinger G, Ogden NH, Safronetz D. Baited vaccines: A strategy to mitigate rodent-borne viral zoonoses in humans. Zoonoses Public Health 2018; 65:711-727. [PMID: 29931738 DOI: 10.1111/zph.12487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/05/2018] [Accepted: 05/21/2018] [Indexed: 11/27/2022]
Abstract
Rodents serve as the natural reservoir and vector for a variety of pathogens, some of which are responsible for severe and life-threatening disease in humans. Despite the significant impact in humans many of these viruses, including Old and New World hantaviruses as well as Arenaviruses, most have no specific vaccine or therapeutic to treat or prevent human infection. The recent success of wildlife vaccines to mitigate rabies in animal populations offers interesting insight into the use of similar strategies for other zoonotic agents of human disease. In this review, we discuss the notion of using baited vaccines as a means to interrupt the transmission of viral pathogens between rodent reservoirs and to susceptible human hosts.
Collapse
Affiliation(s)
- Emelissa J Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Bryce Warner
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gary Kobinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Centre Hospitalier de l'Université Laval, Quebec City, Quebec, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, St-Hyacinthe, Quebec, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Shuai L, Wang X, Wen Z, Ge J, Wang J, Zhao D, Bu Z. Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antiviral Res 2017; 146:36-44. [DOI: 10.1016/j.antiviral.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
32
|
Yang DK, Kim HH, Lee SH, Jeong WH, Tark D, Cho IS. A genetically modified rabies vaccine (ERAGS) induces protective immunity in dogs and cattle. Clin Exp Vaccine Res 2017; 6:128-134. [PMID: 28775977 PMCID: PMC5540961 DOI: 10.7774/cevr.2017.6.2.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The current live attenuated rabies vaccine must be replaced with a safer vaccine based on the ERAGS strain to prevent rabies in South Korea. We evaluated the safety and immunogenicity of a new strain in dogs and cattle. MATERIALS AND METHODS The ERAGS strain, featuring two mutations altering two amino acids in a glycoprotein of rabies virus, was propagated in NG108-15 cells. We lyophilized the virus in the presence of two different stabilizers to evaluate the utilities of such preparations as novel rabies vaccines for animals. To explore safety and immunogenicity, dogs and cattle were inoculated with the vaccine at various doses via different routes and observed daily for 8 weeks post-inoculation (WPI). Immunogenicity was evaluated using a fluorescent antibody virus neutralization test or enzyme-linked immunosorbent assay. RESULTS The two different stabilizers did not differ greatly in terms of maintenance of virus viability in accelerated stability testing. No clinical signs of rabies developed in dogs or cattle inoculated with the vaccines (107.0 FAID50/mL). Dogs and cattle inoculated intramuscularly with 105.0 FAID50/mL exhibited virus neutralization assay titers of 4.6 IU/mL and 1.5 to 0.87 IU/mL at 4 WPI, respectively. All control animals remained rabies virus-seronegative throughout, confirming that no contact transmission occurred between vaccinated and control animals. CONCLUSION Our findings indicate that the new rabies vaccine is safe and immunogenic in dogs and cattle.
Collapse
Affiliation(s)
- Dong-Kun Yang
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Ha-Hyun Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Seung Heon Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Woong-Ho Jeong
- Kangwondo Veterinary Service Laboratory, Pyeongchang, Korea
| | - Dongseop Tark
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| |
Collapse
|
33
|
Rabies vaccine development by expression of recombinant viral glycoprotein. Arch Virol 2016; 162:323-332. [PMID: 27796547 DOI: 10.1007/s00705-016-3128-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
The rabies virus envelope glycoprotein (RVGP) is the main antigen of rabies virus and is the only viral component present in all new rabies vaccines being proposed. Many approaches have been taken since DNA recombinant technology became available to express an immunogenic recombinant rabies virus glycoprotein (rRVGP). These attempts are reviewed here, and the relevant results are discussed with respect to the general characteristics of the rRVGP, the expression system used, the expression levels achieved, the similarity of the rRVGP to the native glycoprotein, and the immunogenicity of the vaccine preparation. The most recent studies of rabies vaccine development have concentrated on in vivo expression of rRVGP by viral vector transduction, serving as the biotechnological basis for a new generation of rabies vaccines.
Collapse
|
34
|
Yang DK, Kim HH, Choi SS, Kim JT, Lee KB, Lee SH, Cho IS. Safety and immunogenicity of recombinant rabies virus (ERAGS) in mice and raccoon dogs. Clin Exp Vaccine Res 2016; 5:159-68. [PMID: 27489806 PMCID: PMC4969280 DOI: 10.7774/cevr.2016.5.2.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 12/29/2022] Open
Abstract
Purpose The development of a genetically modified live rabies vaccine applicable to wild raccoon dogs is necessary for the eradication of rabies in Korea. Thus, we constructed a recombinant rabies virus (RABV) called the ERAGS strain, using a reverse genetic system and evaluated its safety and efficacy in mice and its safety and immunogenicity in raccoon dogs. Materials and Methods ERAGS, which has Asn194Ser and Arg333Glu substitutions in the glycoprotein, was constructed using site-directed mutagenesis. Mice were inoculated with the ERAGS strain (either 105.0 or 107.0 FAID50/mL) via intramuscular (IM) or intracranial injections and then challenged with a virulent RABV. Raccoon dogs were administered the ERAGS strain (108.0 FAID50/mL) either orally or via the IM route and the immunogenicity of the strain was evaluated using fluorescent antibody virus neutralization tests. Results The ERAGS strain inoculated into murine neuroblastoma cells reached 107.8 FAID50/mL at 96-hour post-inoculation. The virus was not pathogenic and induced complete protection from virulent RABV in immunized 4- and 6-week-old mice. Korean raccoon dogs immunized with the ERAGS strain via IM or oral route were also safe from the virus and developed high titer levels (26.4-32.8 IU/mL) of virus-neutralizing antibody (VNA) at 4 weeks post-inoculation. Conclusion The ERAGS RABV strain was effectively protective against rabies in mice and produced a high VNA titer in raccoon dogs.
Collapse
Affiliation(s)
- Dong-Kun Yang
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Ha-Hyun Kim
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Sung-Suk Choi
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - Jong-Tack Kim
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Kang-Bok Lee
- Jeonnam Wildlife Management Center, Suncheon, Korea
| | - Seong Heon Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, MAFRA, Gimcheon, Korea
| |
Collapse
|