1
|
Zheng S, Verjans GMGM, Evers A, van den Wittenboer E, Tjhie JHT, Snoeck R, Wiertz EJHJ, Andrei G, van Kampen JJA, Lebbink RJ. CRISPR/Cas9-mediated genome editing of the thymidine kinase gene in a clinical HSV-1 isolate identifies F289S as novel acyclovir-resistant mutation. Antiviral Res 2024; 228:105950. [PMID: 38944159 DOI: 10.1016/j.antiviral.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that establishes a lifelong infection in sensory neurons of infected individuals, accompanied with intermittent reactivation of latent virus causing (a)symptomatic virus shedding. Whereas acyclovir (ACV) is a safe and highly effective antiviral to treat HSV-1 infections, long-term usage can lead to emergence of ACV resistant (ACVR) HSV-1 and subsequently ACV refractory disease. Here, we isolated an HSV-1 strain from a patient with reactivated herpetic eye disease that did not respond to ACV treatment. The isolate carried a novel non-synonymous F289S mutation in the viral UL23 gene encoding the thymidine kinase (TK) protein. Because ACV needs conversion by viral TK and subsequently cellular kinases to inhibit HSV-1 replication, the UL23 gene is commonly mutated in ACVR HSV-1 strains. The potential role of the F289S mutation causing ACVR was investigated using CRISPR/Cas9-mediated HSV-1 genome editing. Reverting the F289S mutation in the original clinical isolate to the wild-type sequence S289F resulted in an ACV-sensitive (ACVS) phenotype, and introduction of the F289S substitution in an ACVS HSV-1 reference strain led to an ACVR phenotype. In summary, we identified a new HSV-1 TK mutation in the eye of a patient with ACV refractory herpetic eye disease, which was identified as the causative ACVR mutation with the aid of CRISPR/Cas9-mediated genome engineering technology. Direct editing of clinical HSV-1 isolates by CRISPR/Cas9 is a powerful strategy to assess whether single residue substitutions are causative to a clinical ACVR phenotype.
Collapse
Affiliation(s)
- Shuxuan Zheng
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Jeroen H T Tjhie
- Department of Medical Microbiology and Immunology, Microvida, Tilburg, the Netherlands
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Sureram S, Arduino I, Ueoka R, Rittà M, Francese R, Srivibool R, Darshana D, Piel J, Ruchirawat S, Muratori L, Lembo D, Kittakoop P, Donalisio M. The Peptide A-3302-B Isolated from a Marine Bacterium Micromonospora sp. Inhibits HSV-2 Infection by Preventing the Viral Egress from Host Cells. Int J Mol Sci 2022; 23:947. [PMID: 35055133 PMCID: PMC8778767 DOI: 10.3390/ijms23020947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 μM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.
Collapse
Affiliation(s)
- Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
| | - Irene Arduino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Reiko Ueoka
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | | | - Dhanushka Darshana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
| | - Jörn Piel
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (R.U.); (J.P.)
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute of the “Cavalieri Ottolenghi” Foundation (NICO), University of Turin, 10043 Orbassano, Italy;
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| | - Prasat Kittakoop
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; (S.S.); (S.R.)
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10210, Thailand
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (I.A.); (M.R.); (R.F.); (D.L.)
| |
Collapse
|
3
|
Rose R, Brunnemann AK, Baukmann S, Bühler S, Fickenscher H, Sauerbrei A, Zell R, Krumbholz A. Antiviral susceptibility of recombinant Herpes simplex virus 1 strains with specific polymerase amino acid changes. Antiviral Res 2021; 195:105166. [PMID: 34419483 DOI: 10.1016/j.antiviral.2021.105166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023]
Abstract
Acyclovir (ACV) and penciclovir and their prodrugs are recommended for therapy or prophylaxis of Herpes simplex virus 1 (HSV-1) infections. Their administration, however, can lead to the emergence of resistant strains with altered viral thymidine kinase (TK) function, especially in immunocompromised patients. Furthermore, amino acid (aa) changes of the viral deoxyribonucleic acid polymerase (POL) may contribute to resistance to the aforementioned nucleoside analogues. Given this, treatment with foscarnet (FOS) or cidofovir (CDV) may represent an important alternative. Both drugs directly affect POL activity. Several aa changes of POL, such as L49I, E70K, L359I, E421V, P829S, T1121M, and M1226I, have been observed in ACV-resistant clinical strains which also carried relevant aa changes in their TK. Their contribution to ACV, FOS, and CDV resistance is not fully understood. In this study, these seven aa changes with unknown significance for ACV, FOS and CDV resistance were introduced separately into the POL of a recombinant HSV-1 strain rHSV-1(17+)Lox, equipped with or without information for expression of green fluorescent protein (GFP). The GFP-expressing variants were tested for susceptibility to ACV, FOS and CDV. An rHSV-1(17+)Lox GFP strain with the S724N change conferring resistance to ACV and FOS was generated and included as a control. Only the S724N change was confirmed to induce ACV and FOS resistance, whereas the other changes did not contribute to resistance. The underlying nucleotide substitutions of the POL gene should be therefore considered as natural polymorphism. These data will improve sequence-based prediction of antiviral susceptibility.
Collapse
Affiliation(s)
- Ruben Rose
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Anne-Kathrin Brunnemann
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Simon Baukmann
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany
| | - Sarah Bühler
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Andreas Sauerbrei
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany
| | - Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany.
| |
Collapse
|
4
|
Sauerbrei A, Bohn-Wippert K. Phenotypic and Genotypic Testing of HSV-1 and HSV-2 Resistance to Antivirals. Methods Mol Biol 2020; 2060:241-261. [PMID: 31617182 DOI: 10.1007/978-1-4939-9814-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Resistance testing of antivirals to herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) can be done by phenotypic and genotypic methods. The determination of a resistant phenotype is based on the calculation of inhibitory concentrations for the antiviral drug, which should be tested. The main advantage of this resistance test is a clear interpretation of laboratory findings, but the method is time-consuming and a considerable experience is required by handling infectious virus. Genotypic resistance testing is based on the detection of resistance-related mutations in viral genes encoding the thymidine kinase and DNA polymerase, which need to be amplified and sequenced. This approach has the advantage of being faster, but only frameshift mutations, stops of translation, and amino acid substitutions described in the literature can be interpreted without doubt. By contrast, numerous novel amino acid substitutions are diagnostically less conclusive.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Jena, Germany.
| | - Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
5
|
Vikas R, Prabhu SG, Mudgal PP, Shetty U, Karunakaran K, Jagadesh A, Auti A, Stansilaus RP, Nair S, Arunkumar G. HSV susceptibility to acyclovir - genotypic and phenotypic characterization. Antivir Ther 2018; 24:141-145. [PMID: 30507553 DOI: 10.3851/imp3279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Infections due to drug-resistant herpes simplex viruses (HSV) represent an important clinical concern, especially in immunocompromised patients. The present study was aimed at detecting acyclovir (ACV) susceptibility in HSV clinical samples. METHODS A total of 13 HSV-positive clinical samples (5 HSV-1 and 8 HSV-2) recovered from patients (1 immunocompromised and 12 of unknown immune status) were included in the study. The genotypic analysis involved an initial UL23 (thymidine kinase) gene sequencing, followed by a confirmatory phenotypic assay using plaque reduction technique. RESULTS Two novel amino acid changes, A37V and H283N, were detected in HSV-1 positive clinical samples, which were found to be susceptible to acyclovir (half maximal effective concentration = 1.5 µM) by plaque reduction assay. CONCLUSIONS These two novel amino acid changes could be therefore considered as natural polymorphisms, a phenomenon widely associated with the HSV-UL23 gene.
Collapse
Affiliation(s)
- Raksha Vikas
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Suresha G Prabhu
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Piya P Mudgal
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Ujwal Shetty
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Kavitha Karunakaran
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Anitha Jagadesh
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Amogh Auti
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Rithu P Stansilaus
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Sudheesh Nair
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| | - Govindakarnavar Arunkumar
- Manipal Centre for Virus Research, Manipal Academy of Higher Education (deemed to be University), Manipal, Karnataka, India
| |
Collapse
|