1
|
Liu Y, Wang X, Wang X, Mao W, Weng Y, Zhao Y, Duan C, Wang J. Procyanidins inhibit alphacoronavirus infection by reducing interferon antagonism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156549. [PMID: 40023969 DOI: 10.1016/j.phymed.2025.156549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The development of coronavirus drugs has primarily focused on targeting viral components, such as RNA-dependent RNA polymerase (RdRP), with relatively little attention given to enhancing host antiviral defenses. α-Coronaviruses, including human-infecting HCoV-NL63 and HCoV-229E, utilize immune evasion strategies such as suppressing host interferon production to establish infection. Procyanidins (PC), oligomeric compounds composed of catechin and epicatechin, have demonstrated the ability to stimulate host interferon synthesis, potentially counteracting this immune evasion. Exploring the inhibitory effects of PC specifically on α-coronaviruses offers a promising avenue for developing novel therapeutic strategies that bolster host immunity against these pathogens. PURPOSE This study aims to evaluate the inhibitory effects of PC on α-coronaviruses using different cell models and investigate whether its antiviral activity is linked to enhanced interferon production. By examining PC's effects on selected α-coronaviruses, this research explores its potential as a therapeutic strategy against human-infecting HCoV-NL63 and HCoV-229E, which evade innate immunity. METHODS Vero cells, human embryonic kidney 293T (HEK-293T) cells, and intestinal porcine epithelial-J2 (IPEC-J2) cells were used as cell models, with porcine epidemic diarrhea virus (PEDV) serving as the α-coronavirus infection model. The inhibitory effects of PC on the α-coronaviruses and its activation of interferon were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB). Co-immunoprecipitation (co-IP) was used to assess how PC impacts the degradation of Retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1) by coronavirus N protein. Confocal microscopy was utilized to observe the recovery of mitochondrial morphology disrupted by coronavirus, and flow cytometry analyses were conducted. RESULTS Viral cycle and time-of-addition analyses showed that PC inhibited PEDV infection during both the replication and release stages of the virus. Simultaneously, in the early stages of infection, PC countered PEDV's evasion of interferon by elevating host interferon levels. Co-immunoprecipitation experiments confirmed that this effect was achieved by reducing the binding of coronavirus N protein to key proteins in the interferon synthesis pathway, RIG-I and TBK1, a mechanism previously identified as one of the main reasons for interferon evasion by α-coronavirus N protein. Additionally, intriguingly, we observed that PC has the ability to restore excessive mitochondrial fission induced by coronaviruses, an effect achieved by reducing the binding of coronavirus N protein to mitochondrial fusion protein 1 (MFN1). This observation suggests potential mechanistic pathways through which PC impacts mitochondrial antiviral-related proteins. These results suggest that PC may also inhibit human α-coronaviruses, such as HCoV-NL63 and HCoV-229E, by utilizing similar antiviral mechanisms. This provides valuable insights into potential therapeutic strategies for treating human coronaviruses. CONCLUSIONS These results suggest that PC may inhibit α-coronavirus infection by reversing the virus's antagonistic effects on interferon. These findings provide a new perspective for exploring therapeutic mechanisms against coronaviruses like HCoV-NL63, HCoV-229E, SARS-CoV-2, SARS-CoV, and MERS-CoV, which can evade host innate immunity, including the identification of new drug targets.
Collapse
Affiliation(s)
- Yi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Xue Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xuefei Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Wensai Mao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Yujing Weng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| | - Yiqing Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Cong Duan
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Jiufeng Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Hainan, 572000, China.
| |
Collapse
|
2
|
da Conceição PJP, Ayusso GM, Carvalho T, Duarte Lima ML, Marinho MDS, Moraes FR, Galán-Jurado PE, González-Santamaría J, Bittar C, Zhang B, Jardim ACG, Rahal P, Calmon MF. In Vitro Evaluation of the Antiviral Activity of Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) Against Mayaro Virus. Viruses 2025; 17:258. [PMID: 40007013 PMCID: PMC11860591 DOI: 10.3390/v17020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The Mayaro virus (MAYV), Togaviridae family, genus Alphavirus, has caused several sporadic outbreaks, affecting countries in the Americas. Currently, there are no licensed drugs against MAYV, requiring the search for effective antiviral compounds. Thus, this study aimed to evaluate the antiviral potential of polyphenol (-)-epigallocatechin-3-gallate (EGCG) against MAYV infection, in vitro. Antiviral assays against MAYV were performed in BHK-21 and Vero E6 cells. In addition, molecular docking was performed with EGCG and the MAYV non-structural and structural proteins. EGCG showed a significant protective effect against MAYV infection in both cell lines. The virucidal assay showed an effect on extracellular viral particles at the entry stage into BHK-21 cells. Finally, it also showed significant inhibition in the post-entry stages of the MAYV replication cycle, acting on the replication of the genetic material and late stages, such as assembly and release. In addition, the MAYV proteins E1 and nsP1 were significantly inhibited by the EGCG treatment in BHK-21 cells. Molecular docking analysis also showed that EGCG could interact with MAYV Capsid and Envelope proteins (E1 and E2). Therefore, this study shows the potential of EGCG as a promising antiviral against MAYV, as it acts on different stages of the MAYV replication cycle.
Collapse
Affiliation(s)
- Pâmela Jóyce Previdelli da Conceição
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Gabriela Miranda Ayusso
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Tamara Carvalho
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique (CNRS), 34000 Montpellier, France;
| | - Maria Leticia Duarte Lima
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Mikaela dos Santos Marinho
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM/UFU, Uberlândia 38405-302, MG, Brazil; (M.d.S.M.); (A.C.G.J.)
| | - Fábio Rogério Moraes
- Physics Department, São Paulo State University—UNESP, São José do Rio Preto 15385-000, SP, Brazil;
| | - Paola Elaine Galán-Jurado
- Grupo de Biología Celular y Molecular de Arbovirus, Departamento de Genómica y Proteómica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City 0816-02593, Panama; (P.E.G.-J.); (J.G.-S.)
| | - José González-Santamaría
- Grupo de Biología Celular y Molecular de Arbovirus, Departamento de Genómica y Proteómica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City 0816-02593, Panama; (P.E.G.-J.); (J.G.-S.)
| | - Cíntia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA;
| | - Bo Zhang
- Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM/UFU, Uberlândia 38405-302, MG, Brazil; (M.d.S.M.); (A.C.G.J.)
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| | - Marilia Freitas Calmon
- Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (P.J.P.d.C.); (G.M.A.); (M.L.D.L.); (P.R.)
| |
Collapse
|
3
|
Lopes RP, Máximo Vaz MA, Ferreira FL, Sousa GFD, Magalhães CLDB, Vieira-Filho SA, Siqueira Ferreira JM, Tótola AH, Duarte LP, Carlos de Magalhães J. Potent antiviral action detected in Tontelea micrantha extracts against Alphavirus chikungunya. Drug Dev Ind Pharm 2025; 51:102-110. [PMID: 39754533 DOI: 10.1080/03639045.2024.2449130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/09/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Tontelea micrantha, a notable plant species, has garnered interest for its medicinal properties, including anti-inflammatory, antibacterial and antiviral effects. A vaccine for Chikungunia virus is still under evaluation and no specific antiviral drug has been licensed to date. OBJECTIVE The work investigated antiviral activity of ethyl acetate (EAEF) and methanolic (EMF) extracts from T. micrantha leaves in mammalian cells exposed to Alphavirus chikungunya (CHIKV). METHODS The cytotoxicity, antiviral activity, selectivity index, effect on viral gene expression, virus production, and mechanisms of action were evaluated. RESULTS EAEF and EMF extracts showed anti-CHIKV effects at non-cytotoxic concentrations, with CC50 above 300 μg/mL, EC50 of 18 and 43 μg/mL respectively, and selectivity Index above 4. These concentrations drastically reduce viral yields and CHIKV gene expression and have shown activity both directly on viral particles and at different stages of the viral cycle. CONCLUSION EAEF and EMF showed robust antiviral activity against CHIKV, making them promising candidates for the development of anti-CHIKV drugs.
Collapse
Affiliation(s)
- Ranieli Paiva Lopes
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Millena Alves Máximo Vaz
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | | | | | | | | | | | - Antônio Helvécio Tótola
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| |
Collapse
|
4
|
Loaiza-Cano V, Hernández-Mira E, Pastrana-Restrepo M, Galeano E, Pardo-Rodriguez D, Martinez-Gutierrez M. The Mechanism of Action of L-Tyrosine Derivatives against Chikungunya Virus Infection In Vitro Depends on Structural Changes. Int J Mol Sci 2024; 25:7972. [PMID: 39063216 PMCID: PMC11277544 DOI: 10.3390/ijms25147972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Although the disease caused by chikungunya virus (CHIKV) is of great interest to public health organizations around the world, there are still no authorized antivirals for its treatment. Previously, dihalogenated anti-CHIKV compounds derived from L-tyrosine (dH-Y) were identified as being effective against in vitro infection by this virus, so the objective of this study was to determine the mechanisms of its antiviral action. Six dH-Y compounds (C1 to C6) dihalogenated with bromine or chlorine and modified in their amino groups were evaluated by different in vitro antiviral strategies and in silico tools. When the cells were exposed before infection, all compounds decreased the expression of viral proteins; only C4, C5 and C6 inhibited the genome; and C1, C2 and C3 inhibited infectious viral particles (IVPs). Furthermore, C1 and C3 reduce adhesion, while C2 and C3 reduce internalization, which could be related to the in silico interaction with the fusion peptide of the E1 viral protein. Only C3, C4, C5 and C6 inhibited IVPs when the cells were exposed after infection, and their effect occurred in late stages after viral translation and replication, such as assembly, and not during budding. In summary, the structural changes of these compounds determine their mechanism of action. Additionally, C3 was the only compound that inhibited CHIKV infection at different stages of the replicative cycle, making it a compound of interest for conversion as a potential drug.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (V.L.-C.); (E.H.-M.)
| | - Estiven Hernández-Mira
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (V.L.-C.); (E.H.-M.)
| | - Manuel Pastrana-Restrepo
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellin 050010, Colombia; (M.P.-R.); (E.G.)
| | - Elkin Galeano
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellin 050010, Colombia; (M.P.-R.); (E.G.)
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogota 111711, Colombia;
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia; (V.L.-C.); (E.H.-M.)
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellin 050010, Colombia
| |
Collapse
|
5
|
Lopes RP, Ferreira FL, Faria de Sousa G, Cruz Nizer WSD, Magalhães CLDB, Ferreira JMS, Tótola AH, Duarte LP, de Magalhães JC. Activity of extracts and terpenoids from Tontelea micrantha (Mart. ex Schult.) A.C.Sm. (Celastraceae) against pathogenic bacteria. Nat Prod Res 2024:1-10. [PMID: 38328949 DOI: 10.1080/14786419.2024.2309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
The pharmacological properties of plant extracts and phytochemicals, such as flavonoids and terpenoids, remain of great interest. In this work, the effect of extracts, friedelan-3,21-dione, and 3β-O-D-glucosyl-sitosterol isolated from Tontelea micrantha roots was evaluated against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. The antibacterial activity was evaluated by the minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively), and the synergistic effect was assessed by the Checkerboard assay. Furthermore, the cytotoxicity of the plant-derived compounds against Vero cells was measured by the 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) method. The biological effects of the isolated compounds were predicted using the PASS online software. The chloroform and hexane extracts of T. micrantha roots showed promising antibacterial effect, with MIC in the range of 4.8-78.0 µg/mL. Further analyses showed that these compounds do not affect the integrity of the membrane. The combination with streptomycin strongly reduced the MIC of this antibiotic and extracts. The extracts were highly toxic to Vero cells, and no cytotoxicity was detected for the two terpenoids isolated from them (i.e. friedelan-3,21-dione and 3β-O-D-glucosyl-sitosterol; CC50 > 1000 μg/mL). Therefore, extracts obtained from T. micrantha roots significantly inhibited bacterial growth and are considered promising agents against pathogenic bacteria. The cytotoxicity results were very relevant and can be tested in bioassays.
Collapse
Affiliation(s)
- Ranieli Paiva Lopes
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | | | | | | | | | | | - Antônio Helvécio Tótola
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| |
Collapse
|
6
|
Ferraz AC, Gomes PWP, Menegatto MBDS, Lima RLS, Guimarães PH, Reis JDE, Carvalho ARV, Pamplona SDGSR, Muribeca ADJB, de Magalhães JC, Yoshioka E Silva CY, da Silva MN, Magalhães CLDB. Exploring the antiviral potential of justicidin B and four glycosylated lignans from Phyllanthus brasiliensis against Zika virus: A promising pharmacological approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155197. [PMID: 37952409 DOI: 10.1016/j.phymed.2023.155197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging arbovirus that in recent years has been associated with cases of severe neurological disorders, such as microcephaly in newborns and Guillain-Barré syndrome in adults. As there is no vaccine or treatment, the search for new therapeutic targets is of great relevance. In this sense, plants are extremely rich sources for the discovery of new bioactive compounds and the species Phyllanthus brasiliensis (native to the Amazon region) remains unexplored. PURPOSE To investigate the potential antiviral activity of compounds isolated from P. brasiliensis leaves against ZIKV infection. METHODS In vitro antiviral assays were performed with justicidin B (a lignan) and four glycosylated lignans (tuberculatin, phyllanthostatin A, 5-O-β-d-glucopyranosyljusticidin B, and cleistanthin B) against ZIKV in Vero cells. MTT colorimetric assay was used to assess cell viability and plaque forming unit assay to quantify viral load. In addition, for justicidin B, tests were performed to investigate the mechanism of action (virucidal, adsorption, internalization, post-infection). RESULTS The isolated compounds showed potent anti-ZIKV activities and high selectivity indexes. Moreover, justicidin B, tuberculatin, and phyllanthostatin A completely reduced the viral load in at least one of the concentrations evaluated. Among them, justicidin B stood out as the main active, and further investigation revealed that justicidin B exerts its antiviral effect during post-infection stages, resulting in a remarkable 99.9 % reduction in viral load when treatment was initiated 24 h after infection. CONCLUSION Our findings suggest that justicidin B inhibits endosomal internalization and acidification, effectively interrupting the viral multiplication cycle. Therefore, the findings shed light on the promising potential of isolated compounds isolated from P. brasiliensis, especially justicidin B, which could contribute to the drug development and treatments for Zika virus infections.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, San Diego, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California, USA
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Pedro Henrique Guimarães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - José Diogo Evangelista Reis
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Alice Rhelly Veloso Carvalho
- Instituto de Ciências da Saúde, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Abraão de Jesus Barbosa Muribeca
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, Pará, Brazil
| | - José Carlos de Magalhães
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Minas Gerais, Brazil; Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Instituto de Ciências da Saúde, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Milton Nascimento da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Carvalho ARV, Reis JDE, Gomes PWP, Ferraz AC, Mardegan HA, Menegatto MBDS, Souza Lima RL, de Sarges MRV, Pamplona SDGSR, Jeunon Gontijo KS, de Magalhães JC, da Silva MN, Magalhães CLDB, Silva CYYE. Untargeted-based metabolomics analysis and in vitro/in silico antiviral activity of extracts from Phyllanthus brasiliensis (Aubl.) Poir. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:869-883. [PMID: 37403427 DOI: 10.1002/pca.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 μg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 μg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 μg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.
Collapse
Affiliation(s)
- Alice Rhelly V Carvalho
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - José Diogo E Reis
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Centre, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Ariane Coelho Ferraz
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Horrana A Mardegan
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maria Rosilda V de Sarges
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Sônia das G S R Pamplona
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | | | - José Carlos de Magalhães
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Programme, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de São João del-Rei, São João del Rei, Brazil
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Consuelo Yumiko Yoshioka E Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Sciences Post-Graduation Programme, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
8
|
Rabelo VWH, da Silva VD, Sanchez Nuñez ML, dos Santos Corrêa Amorim L, Buarque CD, Kuhn RJ, Abreu PA, Nunes de Palmer Paixão IC. Antiviral evaluation of 1,4-disubstituted-1,2,3-triazole derivatives against Chikungunya virus. Future Virol 2023; 18:865-880. [PMID: 37974899 PMCID: PMC10636642 DOI: 10.2217/fvl-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Aim This work aimed to investigate the antiviral activity of two 1,4-disubstituted-1,2,3-triazole derivatives (1 and 2) against Chikungunya virus (CHIKV) replication. Materials & methods Cytotoxicity was analyzed using colorimetric assays and the antiviral potential was evaluated using plaque assays and computational tools. Results Compound 2 showed antiviral activity against CHIKV 181-25 in BHK-21 and Vero cells. Also, this compound presented a higher activity against CHIKV BRA/RJ/18 in Vero cells, like compound 1. Compound 2 exhibited virucidal activity and inhibited virus entry while compound 1 inhibited virus release. Molecular docking suggested that these derivatives inhibit nsP1 protein while compound 1 may also target capsid protein. Conclusion Both compounds exhibit promising antiviral activity against CHIKV by blocking different steps of virus replication.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
| | - Verônica Diniz da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, CEP, 22451-900, Brazil
| | - Maria Leonisa Sanchez Nuñez
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
| | - Leonardo dos Santos Corrêa Amorim
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - Camilla Djenne Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, CEP, 22451-900, Brazil
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Paula Alvarez Abreu
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, RJ, CEP, 27965-045, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, CEP, 24210-201, Brazil
- Programas de Pós-graduação em Biotecnologia Marinha e de Neurologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
9
|
de Jesús López Medina Y, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Protective Effects of Caffeine on Chikungunya and Zika Virus Infections: An in Vitro and in Silico Study. Chem Biodivers 2023; 20:e202300192. [PMID: 37489706 DOI: 10.1002/cbdv.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Infection by viruses Chikungunya (CHIKV) and Zika (ZIKV) continue to be serious problems in tropical and subtropical areas of the world. Here, we evaluated the antiviral and virucidal activity of caffeine against CHIKV and ZIKV in Vero, A549, and Huh-7 cell lines. Results showed that caffeine displays antiviral properties against both viruses. By pre-and post-infection treatment, caffeine significantly inhibited CHIKV and ZIKV replication in a dose-dependent manner. Furthermore, caffeine showed a virucidal effect against ZIKV. Molecular docking suggests the possible binding of caffeine with envelope protein and RNA-dependent RNA polymerase of CHIKV and ZIKV. This is the first study that showed an antiviral effect of caffeine against CHIKV and ZIKV. Although further studies are needed to better understand the mechanism of caffeine-mediated repression of viral replication, caffeine appears to be a promising compound that could be used for in vivo studies, perhaps in synergy with other compounds present in daily beverages.
Collapse
Affiliation(s)
| | | | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
10
|
Nunes DADF, Lopes GFM, Nizer WSDC, Aguilar MGD, Santos FRDS, Sousa GFD, Ferraz AC, Duarte LP, Brandão GC, Vieira-Filho SA, Magalhães CLDB, Ferreira JMS, de Magalhães JC. Virucidal antiviral activity of Maytenus quadrangulata extract against Mayaro virus: Evidence for the presence of catechins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116436. [PMID: 37003399 DOI: 10.1016/j.jep.2023.116436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS The leaves (LAE; EC50 12.0 μg/mL) and branches (TAE; EC50 101.0 μg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.
Collapse
Affiliation(s)
| | | | | | - Mariana G de Aguilar
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Ariane Coelho Ferraz
- Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
| |
Collapse
|
11
|
Paschoalino M, Marinho MDS, Santos IA, Grosche VR, Martins DOS, Rosa RB, Jardim ACG. An update on the development of antiviral against Mayaro virus: from molecules to potential viral targets. Arch Microbiol 2023; 205:106. [PMID: 36881172 PMCID: PMC9990066 DOI: 10.1007/s00203-023-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Mayaro virus (MAYV), first isolated in 1954 in Trinidad and Tobago islands, is the causative agent of Mayaro fever, a disease characterized by fever, rashes, headaches, myalgia, and arthralgia. The infection can progress to a chronic condition in over 50% of cases, with persistent arthralgia, which can lead to the disability of the infected individuals. MAYV is mainly transmitted through the bite of the female Haemagogus spp. mosquito genus. However, studies demonstrate that Aedes aegypti is also a vector, contributing to the spread of MAYV beyond endemic areas, given the vast geographical distribution of the mosquito. Besides, the similarity of antigenic sites with other Alphavirus complicates the diagnoses of MAYV, contributing to underreporting of the disease. Nowadays, there are no antiviral drugs available to treat infected patients, being the clinical management based on analgesics and non-steroidal anti-inflammatory drugs. In this context, this review aims to summarize compounds that have demonstrated antiviral activity against MAYV in vitro, as well as discuss the potentiality of viral proteins as targets for the development of antiviral drugs against MAYV. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential anti-MAYV drug candidates.
Collapse
Affiliation(s)
- Marina Paschoalino
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Daniel Oliveira Silva Martins
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Rafael Borges Rosa
- Institute Aggeu Magalhães, Fiocruz Pernambuco, Recife, Pernambuco, Brazil.,Rodents Animal Facilities Complex, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. .,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
Lopes GFM, Lima WG, Santos FRS, Nunes DAF, Passos MJF, Fernandes SOA, de Magalhães JC, Dos Santos LL, Ferreira JMS. Anti-Mayaro virus activity of a hydroethanolic extract from Fridericia chica (Bonpl.) L. G. Lohmann leaves. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115685. [PMID: 36067840 DOI: 10.1016/j.jep.2022.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro fever is a neglected tropical disease. The region of the most significant circulation of the Mayaro virus (MAYV) is the Amazon rainforest, situated in remote areas that are difficult to access and where medicine is scarce. Thus, the regional population uses plants as an alternative for the treatment of various diseases. Fridericia chica is an endemic plant of tropical regions used in traditional medicine to treat fever, malaise, inflammation, and infectious diseases such as hepatitis B. However, its antiviral activity is poorly understood. AIM OF THE STUDY This study aimed to investigate the anti-MAYV activity of the hydroethanolic extract of the leaves of Fridericia chica (HEFc) in mammalian cells and its possible mechanism of action. MATERIALS AND METHODS The antiviral activity of HEFc was studied using Vero cell lines against MAYV. The cytotoxicity and antiviral activity of the extract were evaluated by the 3-(4, 5- dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The overall antiviral activity was confirmed by the plaque forming units (PFU) method. Then, the effects of HEFc on MAYV multiplication kinetics, virus adsorption, penetration, and post-penetration, and its virucidal activity were determined in Vero cells using standard experimental procedures. RESULTS HEFc exerted a effect against viral infection in Vero cells at a non-cytotoxic concentration, and no virion was detected in the supernatant in a dose-dependent and selective manner. HEFc inhibited MAYV in the early and late stages of the viral multiplication cycle. The extract showed significant virucidal activity at low concentrations and did not affect adsorption or viral internalization stages. In addition, HEFc reduced virions at all post-infection times investigated. CONCLUSIONS HEFc has good antiviral activity against MAYV, acting directly on the viral particles. This plant extract possesses an excellent and promising potential for developing effective herbal antiviral drugs.
Collapse
Affiliation(s)
- Gabriela F M Lopes
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil; Molecular Biology Laboratory, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil.
| | - Willam G Lima
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe R S Santos
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Damiana A F Nunes
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Maria J F Passos
- Multi-User Analytical Center, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Simone O A Fernandes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José C de Magalhães
- Laboratory of Virology and Cell Technology, Universidade Federal de São João del-Rei (UFSJ), Ouro Branco, Minas Gerais, Brazil
| | - Luciana L Dos Santos
- Molecular Biology Laboratory, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Jaqueline M S Ferreira
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
13
|
Honokiol and Alpha-Mangostin Inhibit Mayaro Virus Replication through Different Mechanisms. Molecules 2022; 27:molecules27217362. [DOI: 10.3390/molecules27217362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus with an increasing circulation across the Americas. In the present study, we evaluated the potential antiviral activity of the following natural compounds against MAYV and other arboviruses: Sanguinarine, (R)-Shikonin, Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin. Sanguinarine and Shikonin showed significant cytotoxicity, whereas Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin were well tolerated in all the cell lines tested. Honokiol and α-Mangostin treatment protected Vero-E6 cells against MAYV-induced damage and resulted in a dose-dependent reduction in viral progeny yields for each of the MAYV strains and human cell lines assessed. These compounds also reduced MAYV viral RNA replication in HeLa cells. In addition, Honokiol and α-Mangostin disrupted MAYV infection at different stages of the virus life cycle. Moreover, Honokiol and α-Mangostin decreased Una, Chikungunya, and Zika viral titers and downmodulated the expression of E1 and nsP1 viral proteins from MAYV, Una, and Chikungunya. Finally, in Honokiol- and α-Mangostin-treated HeLa cells, we observed an upregulation in the expression of type I interferon and specific interferon-stimulated genes, including IFNα, IFNβ, MxA, ISG15, OAS2, MDA-5, TNFα, and IL-1β, which may promote an antiviral cellular state. Our results indicate that Honokiol and α-Mangostin present potential broad-spectrum activity against different arboviruses through different mechanisms.
Collapse
|
14
|
Ye H, Luo L, Wang J, Jiang K, Yue T, Yang H. Highly galloylated and A-type prodelphinidins and procyanidins in persimmon (Diospyros kaki L.) peel. Food Chem 2022; 378:131972. [PMID: 35032795 DOI: 10.1016/j.foodchem.2021.131972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 01/29/2023]
Abstract
The structure of persimmon peel proanthocyanidins (PPPAs) was characterized. After acid catalysis of PPPAs in the presence of phloroglucinol, five reaction products such as (epi)gallocatechin-phloroglucinol ((E)GC-ph) etc. were identified by HPLC-DAD-ESI/MS. FT-IR analysis confirmed that all of the compounds exhibited a 2, 3-cis configuration. Therefore, the extension units in PPPAs were EGC, epigallocatechin gallate (EGCG), epicatechin, and epicatechin gallate and only EGCG was detected as the terminal unit. PPPAs contained 25.21% of procyanidins and 74.79% of prodelphindins and had a high degree of 3-O-galloylation (>74.79%). The mean degree of polymerization of PPPAs was calculated to be 10.18. MALDI-TOF MS analysis showed that A-type linkage and galloylation existed commonly in PPPAs.
Collapse
Affiliation(s)
- Huanfeng Ye
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Lin Luo
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jiao Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Kun Jiang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
15
|
Abstract
Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.
Collapse
|
16
|
|
17
|
Evaluation of Antiviral Activity of Cyclic Ketones against Mayaro Virus. Viruses 2021; 13:v13112123. [PMID: 34834929 PMCID: PMC8625987 DOI: 10.3390/v13112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Mayaro virus (MAYV) is a neglected arthropod-borne virus found in the Americas. MAYV infection results in Mayaro fever, a non-lethal debilitating disease characterized by a strong inflammatory response affecting the joints and muscles. MAYV was once considered endemic to forested areas in Brazil but has managed to adapt and spread to urban regions using new vectors, such as Aedes aegypti, and has the potential to cause serious epidemics in the future. Currently, there are no vaccines or specific treatments against MAYV. In this study, the antiviral activity of a series of synthetic cyclic ketones were evaluated for the first time against MAYV. Twenty-four compounds were screened in a cell viability assay, and eight were selected for further evaluation. Effective concentration (EC50) and selectivity index (SI) were calculated and compound 9-(5-(4-chlorophenyl]furan-2-yl)-3,6-dimethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2))-dione (9) (EC50 = 21.5 µmol·L−1, SI = 15.8) was selected for mechanism of action assays. The substance was able to reduce viral activity by approximately 70% in both pre-treatment and post-treatment assays.
Collapse
|
18
|
Moraes TFS, Ferraz AC, da Cruz Nizer WS, Tótola AH, Soares DBS, Duarte LP, Vieira-Filho SA, Magalhães CLB, de Magalhães JC. A methanol extract and N,N-dimethyltryptamine from Psychotria viridis Ruiz & Pav. inhibit Zika virus infection in vitro. Arch Virol 2021; 166:3275-3287. [PMID: 34536126 DOI: 10.1007/s00705-021-05230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Zika virus (ZIKV) is a public health problem due to its association with serious fetal and neurological complications and the lack of antiviral agents and licensed vaccines against this virus. Surveillance studies have alerted about the potential occurrence of a new South American epidemic episode due to the recent circulation of an African ZIKV strain detected in Brazil. Therefore, it is essential to discover antiviral agents, including natural substances, that are capable of neutralizing the action of ZIKV. Several Psychotria species have antimicrobial and anti-inflammatory properties. Thus, a methanol extract and dimethyltryptamine from Psychotria viridis were evaluated for their ability to inhibit ZIKV infection in vitro by measuring the effective concentration that protects 50% of cells and investigating their possible mechanisms of action. The tested samples showed antiviral activity against ZIKV. The extract showed virucidal activity, affecting viral and non-cellular elements, inactivating the virus before infection or when it becomes extracellular after the second cycle of infection. It was also observed that both extract and dimethyltryptamine could inhibit the virus at intracellular stages of the viral cycle. In addition to dimethyltryptamine, it is believed that other compounds also contribute to the promising virucidal effect observed for the methanol extract. To our knowledge, this is the first report of the activity of a methanolic extract and dimethyltryptamine from Psychotria viridis against cellular ZIKV infection. These two samples, extracted from natural sources, are potential candidates for use as antiviral drugs to inhibit ZIKV infections.
Collapse
Affiliation(s)
- Thaís F S Moraes
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.,Department of Microbiology, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 31270-901, Brazil
| | - Ariane C Ferraz
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.,Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Prêto, MG, 35400-000, Brazil
| | - Waleska S da Cruz Nizer
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.,Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Antônio H Tótola
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil
| | - Débora B S Soares
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucienir P Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Sidney A Vieira-Filho
- Department of Pharmacy, Pharmacy's School, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Cintia L B Magalhães
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Prêto, MG, 35400-000, Brazil
| | - José C de Magalhães
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.
| |
Collapse
|
19
|
Salles TS, Meneses MDF, Caldas LA, Sá-Guimarães TE, de Oliveira DM, Ventura JA, Azevedo RC, Kuster RM, Soares MR, Ferreira DF. Virucidal and antiviral activities of pomegranate (Punica granatum) extract against the mosquito-borne Mayaro virus. Parasit Vectors 2021; 14:443. [PMID: 34479605 PMCID: PMC8414858 DOI: 10.1186/s13071-021-04955-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The arthropod-borne Mayaro virus (MAYV) causes "Mayaro fever," a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. There are currently no licensed drugs against most mosquito-transmitted viruses. Punica granatum (pomegranate) fruits cultivated in Brazil have been subjected to phytochemical investigation for the identification and isolation of antiviral compounds. In the present study, we explored the antiviral activity of pomegranate extracts in Vero cells infected with Mayaro virus. METHODS The ethanol extract and punicalagin of pomegranate were extracted solely from the shell and purified by chromatographic fractionation, and were chemically identified using spectroscopic techniques. The cytotoxicity of the purified compounds was measured by the dye uptake assay, while their antiviral activity was evaluated by a virus yield inhibition assay. RESULTS Pomegranate ethanol extract (CC50 = 588.9, IC50 = 12.3) and a fraction containing punicalagin as major compound (CC50 = 441.5, IC50 = 28.2) were shown to have antiviral activity (SI 49 and 16, respectively) against Mayaro virus, an alphavirus. Immunofluorescence analysis showed the virucidal effect of pomegranate extract, and transmission electron microscopy (TEM) revealed damage in viral particles treated with this extract. CONCLUSIONS The P. granatum extract is a promising source of antiviral compounds against the alphavirus MAYV and represents an excellent candidate for future studies with other enveloped RNA viruses.
Collapse
Affiliation(s)
- Tiago Souza Salles
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Lucio Ayres Caldas
- National Institute of Science and Technology for Structural Biology and Bioimaging, INBEB, Rio de Janeiro, RJ, Brazil.,Laboratory of Cellular Ultrastructure Hertha Meyer, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Danielle M de Oliveira
- Natural Products Research Institute, IPPN, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José A Ventura
- Capixaba Institute of Research, Technical Assistance and Rural Extension, Espirito Santo, Vitoria, Brazil
| | - Renata Campos Azevedo
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo M Kuster
- Natural Products Research Institute, IPPN, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Chemistry Department, Federal University of Espírito Santo, Vitoria, Espirito Santo, Brazil
| | - Márcia Regina Soares
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davis Fernandes Ferreira
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Structural Biology and Bioimaging, INBEB, Rio de Janeiro, RJ, Brazil.,Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Monsalve-Escudero LM, Loaiza-Cano V, Pájaro-González Y, Oliveros-Díaz AF, Diaz-Castillo F, Quiñones W, Robledo S, Martinez-Gutierrez M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 2021; 21:216. [PMID: 34454481 PMCID: PMC8397866 DOI: 10.1186/s12906-021-03386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. METHODS The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student's t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. RESULTS In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). CONCLUSIONS The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.
Collapse
Affiliation(s)
- Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Yina Pájaro-González
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia.,Grupo de Investigación en Farmacia Asistencial y Farmacología, Universidad del Atlántico, Barranquilla, Colombia
| | - Andrés Felipe Oliveros-Díaz
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Fredyc Diaz-Castillo
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales. Universidad de Antioquia, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.
| |
Collapse
|
21
|
Loaiza-Cano V, Monsalve-Escudero LM, Restrepo MP, Quintero-Gil DC, Pulido Muñoz SA, Galeano E, Zapata W, Martinez-Gutierrez M. In Vitro and In Silico Anti-Arboviral Activities of Dihalogenated Phenolic Derivates of L-Tyrosine. Molecules 2021; 26:3430. [PMID: 34198817 PMCID: PMC8201234 DOI: 10.3390/molecules26113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the serious public health problem represented by the diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses, there are still no specific licensed antivirals available for their treatment. Here, we examined the potential anti-arbovirus activity of ten di-halogenated compounds derived from L-tyrosine with modifications in amine and carboxyl groups. The activity of compounds on VERO cell line infection and the possible mechanism of action of the most promising compounds were evaluated. Finally, molecular docking between the compounds and viral and cellular proteins was evaluated in silico with Autodock Vina®, and the molecular dynamic with Gromacs®. Only two compounds (TDC-2M-ME and TDB-2M-ME) inhibited both ZIKV and CHIKV. Within the possible mechanism, in CHIKV, the two compounds decreased the number of genome copies and in the pre-treatment strategy the infectious viral particles. In the ZIKV model, only TDB-2M-ME inhibited the viral protein and demonstrate a virucidal effect. Moreover, in the U937 cell line infected with CHIKV, both compounds inhibited the viral protein and TDB-2M-ME inhibited the viral genome too. Finally, the in silico results showed a favorable binding energy between the compounds and the helicases of both viral models, the NSP3 of CHIKV and cellular proteins DDC and β2 adrenoreceptor.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| | - Manuel Pastrana Restrepo
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellín 050001, Colombia; (M.P.R.); (E.G.)
| | - Diana Carolina Quintero-Gil
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| | | | - Elkin Galeano
- Grupo de Investigación en Productos Naturales Marinos, Universidad de Antioquia, Medellín 050001, Colombia; (M.P.R.); (E.G.)
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050001, Colombia;
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680005, Colombia; (V.L.-C.); (L.M.M.-E.); (D.C.Q.-G.)
| |
Collapse
|
22
|
Mello MVP, Domingos TFS, Ferreira DF, Ribeiro MMJ, Ribeiro TP, Rodrigues CR, Souza AMT. Antiviral Drug Discovery and Development for Mayaro Fever - What do we have so far? Mini Rev Med Chem 2020; 20:921-928. [PMID: 32178610 DOI: 10.2174/1389557520666200316160425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/01/2020] [Accepted: 03/08/2020] [Indexed: 11/22/2022]
Abstract
Tropical infectious diseases cause millions of deaths every year in developing countries, with about half of the world population living at risk. Mayaro virus (MAYV) is an emerging arbovirus that causes Mayaro fever, which is characterized by fever, headache, diarrhea, arthralgia, and rash. These symptoms can be clinically indistinguishable from other arboviruses, such as Dengue, Zika, and Chikungunya, which makes the diagnosis and treatment of the disease more difficult. Though, the Mayaro virus is a potential candidate to cause large-scale epidemics on the scale of ZIKV and CHIKV. Despite this, there is no licensed vaccine or antiviral for the treatment of Mayaro fever and most arboviruses, so the design and development of candidates for antiviral drugs are urgently needed. In this context, this mini-review aims to provide an overview of studies of anti-MAYV derivatives and highlight the importance of the discovery and development of promising drug candidates for Mayaro fever.
Collapse
Affiliation(s)
- Marcos V P Mello
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Chemistry Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | - Thaisa F S Domingos
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Davis F Ferreira
- Department of Virology, Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Molecular and Structural Biochemistry, North Carolina State University, North Carolina, United States of America
| | - Mariana M J Ribeiro
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thayssa P Ribeiro
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos R Rodrigues
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra M T Souza
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Mayaro Virus Infection: Clinical Features and Global Threat. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Antiviral effect of silymarin against Zika virus in vitro. Acta Trop 2020; 211:105613. [PMID: 32621935 DOI: 10.1016/j.actatropica.2020.105613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) epidemic and its association with severe neurological syndromes have raised worldwide concern. Despite the great clinical relevance of this infection, no vaccine or specific treatment is available and the search for antiviral compounds against ZIKV is extremely necessary. Several natural compounds, such as silymarin, exhibit antioxidant, hepatoprotective, and antiviral properties; however, the antiviral potential of this compound remains partially investigated. Therefore, the objective of this study was to evaluate in vitro the antiviral activity of silymarin against ZIKV infection. Global antiviral activity, dose-dependent, plaque reduction, and time-of-drug-addition assays were used to determine the anti-ZIKV activity of silymarin. Additionally, to start characterizing the mechanisms of action we determined whether silymarin could have a virucidal effect and inhibit viral adsorption and penetration stages. Regarding its global antiviral activity, silymarin showed significant inhibition of ZIKV infection, protecting cells infected with EC50 equal to 34.17μg/mL, with a selectivity index greater than 17 and 4x greater than that of the positive control (ribavirin). Its greatest efficiency was achieved at 125μg/mL, whose cell viability did not differ from the control without infection and treatment. Furthermore, treatment with silymarin reduced viral load by up to two logs (> 90%) concerning viral control, when evaluating virucidal activity and the precocious times of infection. Thus, our results set to show the promising anti-ZIKV activity of silymarin, which does not seem to have a single inhibition mechanism, acting at different times of infection, and still has the advantage of silymarin be a phytotherapy already available on the market.
Collapse
|
25
|
Dos Santos M, Teixeira TR, Santos FRDS, Lima WG, Ferraz AC, Silva NL, Leite FJ, Siqueira JM, Luyten W, de Castro AHF, de Magalhães JC, Ferreira JMS. Bauhinia holophylla (Bong.) Steud. leaves-derived extracts as potent anti-dengue serotype 2. Nat Prod Res 2019; 35:2804-2809. [PMID: 31554433 DOI: 10.1080/14786419.2019.1669030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen and made the disease a major health concern worldwide. However, specific antiviral drugs against this arbovirose or vaccines are not yet available for treatment or prevention. Thus, here we aimed to study the antiviral activity of hydroethanolic extract, fraction ethyl acetate and subfractions of the leaves of Bauhinia holophylla (Fabaceae:Cercideae), a native plant of the Brazilian Cerrado, against DENV-2 by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method in mammalian cells culture. As results, the hydroethanolic extract showed the most potent effect, with an inhibitory concentration (IC50) of 3.2 μg mL-1 and selectivity index (SI) of 27.6, approximately 16-times higher anti-DENV-2 activity than of the ribavirin (IC50 52.8 μg mL-1). Our results showed in this study appointed that B. holophylla has a promising anti-dengue activity, which was associated mainly with the presence of flavonoids.
Collapse
Affiliation(s)
- Michelli Dos Santos
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Thaiz Rodrigues Teixeira
- Laboratório de Química Orgânica do Ambiente Marinho. Departamento de Física e Química da Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ariane Coelho Ferraz
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Divinópolis, Brazil.,Laboratório de Biologia Molecular e Celular, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Nathália Lucca Silva
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Flávio José Leite
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - João Máximo Siqueira
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | | | | | - José Carlos de Magalhães
- Laboratório de Biologia Molecular e Celular, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | | |
Collapse
|