1
|
Speliotes EK, Schneider CV. PNPLA3 I148M Interacts With Environmental Triggers to Cause Human Disease. Liver Int 2025; 45:e16106. [PMID: 39559944 PMCID: PMC11815600 DOI: 10.1111/liv.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) affects up to 30% of Western populations. While obesity is a recognized risk factor, MASLD does not develop in all obese individuals, highlighting the need to understand genetic and environmental interactions. The PNPLA3 I148M variant has been identified as a key genetic risk factor, significantly increasing the likelihood of MASLD development and progression. METHODS We reviewed current literature on the role of PNPLA3 I148M in MASLD, focusing on gene-environment interactions involving diet, physical activity, obesity, and insulin resistance. We included studies analysing ethnic differences in PNPLA3 I148M prevalence and its association with MASLD. Additionally, we reviewed data on how PNPLA3 I148M influences the response to therapies, including lipid-lowering medications and GLP-1 agonists. RESULTS The PNPLA3 I148M variant markedly heightens MASLD risk, particularly in Hispanic populations, where a higher prevalence of MASLD is observed. Lifestyle factors such as high sugar intake, alcohol consumption, and physical inactivity exacerbate MASLD risk among I148M carriers. Evidence shows that insulin resistance amplifies MASLD risk associated with the I148M variant, especially in non-diabetic individuals. Moreover, the PNPLA3 I148M variant interacts with other genetic loci, further modifying MASLD risk and disease course. The variant also influences treatment response, with variability observed in effectiveness of lipid-lowering therapies and GLP-1 agonists among carriers. CONCLUSION The interplay between PNPLA3 I148M and environmental factors underscores the need for personalized MASLD prevention and treatment strategies. Targeting both genetic and lifestyle contributors may enhance MASLD management, offering a tailored approach to reducing disease burden.
Collapse
Affiliation(s)
- Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
2
|
Zhang X, Chang KM, Yu J, Loomba R. Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction-Associated Steatotic Liver Diseases: A Pathway to Precision Medicine. ANNUAL REVIEW OF PATHOLOGY 2025; 20:375-403. [PMID: 39854186 DOI: 10.1146/annurev-pathmechdis-111523-023430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
Collapse
Affiliation(s)
- Xiang Zhang
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA;
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Tian Y, Wang B. Unraveling the pathogenesis of non-alcoholic fatty liver diseases through genome-wide association studies. J Gastroenterol Hepatol 2023; 38:1877-1885. [PMID: 37592846 PMCID: PMC10693931 DOI: 10.1111/jgh.16330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden around the world, affecting approximately 25% of the population. Recent advances in human genetic databases have allowed for the identification of various single nucleotide polymorphisms associated with NAFLD-related traits. Investigating the functions of these genetic factors provides insight into the pathogenesis of NAFLD and potentially identifies novel therapeutic targets for NAFLD. In this review, we summarized current research on genes with NAFLD-associated mutations, highlighting phospholipid remodeling and spatially clustered loci as common pathological and genetic features of these mutations. These features suggest a complex yet intriguing mechanism of dissociated steatosis and insulin resistance, which is observed in a subset of patients and may lead to more precise therapy against NAFLD in the future.
Collapse
Affiliation(s)
- Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Amirkulova A, Derbissalina G, Benberin V, Shanazarov N, Abildinova G, Kozhakhmet D, Katchman H. Association between PNPLA3 and TM6SF2 gene polymorphisms and non-alcoholic fatty liver disease patients in Kazakhstan. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023; 20:em546. [DOI: 10.29333/ejgm/13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
<b>Background:</b> Non-alcoholic fatty liver disease (NAFLD) is a growing burden on a global scale and considered as the most common liver disease of the 21<sup>st</sup> century, affecting both adults and children. Genome-wide association studies (GWAS) in the field of liver diseases have made a significant contribution to the understanding of genetic background for NAFLD development. Targeted genes like PNPLA3 and TM6SF2 showed some relationship with the steatosis and hepatocellular carcinoma within NAFLD patients. In this study, we tried to analyze the frequency of PNPLA3 and TM6SF2 gene polymorphisms and their relationship to changes in instrumental and laboratory markers, the composition of the gut microbiome, the development and progression of NAFLD stage in Kazakhstan.<br />
<b>Materials and methods:</b> 39 individuals were involved in this study, including 18 men and 21 women: patients with a history of heavy alcohol consumption (>20 g/day) and other specific diseases such as hepatitis B and C virus infection, etc. were excluded. The diagnosis was established based on the results of clinical assessment and laboratory-instrumental results. The microbiome composition of the large intestine was studied by semiconductor sequencing of the bacterial genome using biochips. The degree of steatosis and liver fibrosis were evaluated by fibroscanning on fibroscan touch 502. Genotyping of PNPLA3 and TM6SF2 were carried out by PCR.<br />
<b>Results:</b> According to PNPLA3 genotyping: 21 patients (53.85%) were C/G, 7 (17.95%) were C/C and 11 (28.20%) were G/G. Within analyzed variables, GGT showed statistically significant difference among nucleotide variability with p-value of 0.012. Other parameters within metabolic panel also showed statistically significant difference between groups, namely, total cholesterol (p=0.036) and LDL (p=0.006). Genotyping of TM6SF2 includes 24 patients (61.54%) with C/C, 15 (38.46%) with C/T and 0 with T/T. The relationship between TM6SF2 liver function test results showed no statistically significant differences between groups. All other parameters including gut microbiome analysis are not statistically significant.<br />
<b>Conclusions:</b> In this study, C/G genotype possesses the highest risk and GGT along with LDL were the statistically significant parameter between them in PNPLA3 gene. TM6SF2 and gut microbiome analysis did not reveal any statistically significant differences. Additional studies with larger sample size are recommended to obtain for more detailed and sensitive results.
Collapse
Affiliation(s)
- Ainura Amirkulova
- Medical Center Hospital of President’s Affairs Administration of the Republic of Kazakhstan, Astana, KAZAKHSTAN
- NJSC Astana Medical University, Astana, KAZAKHSTAN
| | | | - Valeriy Benberin
- Medical Center Hospital of President’s Affairs Administration of the Republic of Kazakhstan, Astana, KAZAKHSTAN
| | - Nasrulla Shanazarov
- Medical Center Hospital of President’s Affairs Administration of the Republic of Kazakhstan, Astana, KAZAKHSTAN
| | - Gulshara Abildinova
- Medical Center Hospital of President’s Affairs Administration of the Republic of Kazakhstan, Astana, KAZAKHSTAN
| | - Doskhan Kozhakhmet
- Department of Internal Medicine, Nazarbayev University School of Medicine, Astana, KAZAKHSTAN
| | | |
Collapse
|
5
|
Buchynskyi M, Oksenych V, Kamyshna I, Vari SG, Kamyshnyi A. Genetic Predictors of Comorbid Course of COVID-19 and MAFLD: A Comprehensive Analysis. Viruses 2023; 15:1724. [PMID: 37632067 PMCID: PMC10459448 DOI: 10.3390/v15081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) and its potential impact on the severity of COVID-19 have gained significant attention during the pandemic. This review aimed to explore the genetic determinants associated with MAFLD, previously recognized as non-alcoholic fatty liver disease (NAFLD), and their potential influence on COVID-19 outcomes. Various genetic polymorphisms, including PNPLA3 (rs738409), GCKR (rs780094), TM6SF2 (rs58542926), and LYPLAL1 (rs12137855), have been investigated in relation to MAFLD susceptibility and progression. Genome-wide association studies and meta-analyses have revealed associations between these genetic variants and MAFLD risk, as well as their effects on lipid metabolism, glucose regulation, and liver function. Furthermore, emerging evidence suggests a possible connection between these MAFLD-associated polymorphisms and the severity of COVID-19. Studies exploring the association between indicated genetic variants and COVID-19 outcomes have shown conflicting results. Some studies observed a potential protective effect of certain variants against severe COVID-19, while others reported no significant associations. This review highlights the importance of understanding the genetic determinants of MAFLD and its potential implications for COVID-19 outcomes. Further research is needed to elucidate the precise mechanisms linking these genetic variants to disease severity and to develop gene profiling tools for the early prediction of COVID-19 outcomes. If confirmed as determinants of disease severity, these genetic polymorphisms could aid in the identification of high-risk individuals and in improving the management of COVID-19.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
6
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
7
|
Youssef SS, Youness RA, Abbas EAER, Osman NM, ELFiky A, El-Kassas M. miR-516a-3P, a potential circulating biomarker in hepatocellular carcinoma, correlated with rs738409 polymorphism in PNPLA3. Per Med 2022; 19:483-493. [PMID: 36239555 DOI: 10.2217/pme-2022-0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/10/2022] [Indexed: 12/02/2022]
Abstract
Aim: The aim was to investigate the expression profile of miR-516a-3P and its correlation with the PNPLA3 rs738409 polymorphism in Egyptian hepatitis C virus (HCV) and hepatocellular carcinoma (HCC) patients. Materials & methods: miR-516a-3P was quantified and rs738409 was genotyped by quantitative reverse transcription PCR. Results: miR-516a-3P was significantly upregulated in HCC patients compared with HCV patients (p = 0.001). Receiver operating characteristic curve analysis confirmed that miR-516a-3P discriminates HCC from HCV (p = 0.001). A significant (p = 0.015) correlation between miR-516a-3p level and PNPLA3 rs738409 genotypes was recorded in HCV patients, yet it was not recorded in either healthy individuals or HCC patients. miR-516a-3p level was significantly (p = 0.001) higher in HCV patients carrying the rs738409 GG genotype than in those carrying the CC genotype. Conclusion: miR-516a-3P is a potential biomarker in HCC. PNPLA3 rs738409 GG carriers affect miR-516a-3P expression in HCV, and this may highlight a new mechanism in liver disease.
Collapse
Affiliation(s)
- Samar Samir Youssef
- Microbial Biotechnology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Rana Ahmed Youness
- School of Life & Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
- Pharmaceutical Biology Department, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, Egypt
| | - Eman Abd El-Razek Abbas
- Microbial Biotechnology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Noha Mohamed Osman
- Cell Biology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Asmaa ELFiky
- Environmental & Occupational Medicine Department, Environmental Research Division, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
8
|
Liao S, An K, Liu Z, He H, An Z, Su Q, Li S. Genetic variants associated with metabolic dysfunction-associated fatty liver disease in western China. J Clin Lab Anal 2022; 36:e24626. [PMID: 35881683 PMCID: PMC9459258 DOI: 10.1002/jcla.24626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION We aimed to confirm the association between some single nucleotide polymorphisms (SNPs) and metabolic dysfunction-associated fatty liver disease (MAFLD) in western China. METHODS A total of 286 cases and 250 healthy controls were enrolled in our study. All samples were genotyped for patatin-like phospholipase domain containing 3 (PNPLA3) rs738409, transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, membrane-bound O-acyltransferase domain containing 7 (MBOAT7) rs641738, glucokinase regulator (GCKR) rs1260326 and rs780094, and GATA zinc finger domain containing 2A (GATAD2A) rs4808199. Using logistic regression analysis, we evaluated the association between MAFLD and each SNP under different models. Multiple linear regression was used to find the association between SNPs and laboratory characteristics. Multifactor dimensionality reduction was applied to test SNP-SNP interactions. RESULTS The recessive model and additive model of PNPLA3 rs738409 variant were related to MAFLD (odds ratio [OR] = 1.791 and 1.377, respectively, p = 0.038 and 0.027, respectively). However, after Benjamini-Hochberg adjustment for multiple tests, all associations were no longer statistically significant. PNPLA3 rs738409 correlated with AST levels. GCKR rs780094 and rs1260326 negatively correlated with serum glucose but positively correlated with triglycerides in MAFLD. Based on MDR analysis, the best single-locus and multilocus models for MAFLD risk were rs738409 and six-locus models, respectively. CONCLUSIONS In the Han population in western China, no association was found between these SNPs and the risk of MAFLD. PNPLA3 rs738409 was associated with aspartate aminotransferase levels in MAFLD patients. GCKR variants were associated with increased triglyceride levels and reduced serum fasting glucose in patients with MAFLD.
Collapse
Affiliation(s)
- Shenling Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kang An
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoli Su
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li ZY, Wu G, Qiu C, Zhou ZJ, Wang YP, Song GH, Xiao C, Zhang X, Deng GL, Wang RT, Yang YL, Wang XL. Mechanism and therapeutic strategy of hepatic TM6SF2-deficient non-alcoholic fatty liver diseases via in vivo and in vitro experiments. World J Gastroenterol 2022; 28:2937-2954. [PMID: 35978872 PMCID: PMC9280743 DOI: 10.3748/wjg.v28.i25.2937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The lack of effective pharmacotherapies for nonalcoholic fatty liver disease (NAFLD) is mainly attributed to insufficient research on its pathogenesis. The pathogenesis of TM6SF2-efficient NAFLD remains unclear, resulting in a lack of therapeutic strategies for TM6SF2-deficient patients.
AIM To investigate the role of TM6SF2 in fatty acid metabolism in the context of fatty liver and propose possible therapeutic strategies for NAFLD caused by TM6SF2 deficiency.
METHODS Liver samples collected from both NAFLD mouse models and human participants (80 cases) were used to evaluate the expression of TM6SF2 by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction. RNA-seq data retrieved from the Gene Expression Omnibus database were used to confirm the over-expression of TM6SF2. Knockdown and overexpression of TM6SF2 were performed to clarify the mechanistic basis of hepatic lipid accumulation in NAFLD. MK-4074 administration was used as a therapeutic intervention to evaluate its effect on NAFLD caused by TM6SF2 deficiency.
RESULTS Hepatic TM6SF2 levels were elevated in patients with NAFLD and NAFLD mouse models. TM6SF2 overexpression can reduce hepatic lipid accumulation, suggesting a protective role for TM6SF2 in a high-fat diet (HFD). Downregulation of TM6SF2, simulating the TM6SF2 E167K mutation condition, increases intracellular lipid deposition due to dysregulated fatty acid metabolism and is characterized by enhanced fatty acid uptake and synthesis, accompanied by impaired fatty acid oxidation. Owing to the potential effect of TM6SF2 deficiency on lipid metabolism, the application of an acetyl-CoA carboxylase inhibitor (MK-4074) could reverse the NAFLD phenotypes caused by TM6SF2 deficiency.
CONCLUSION TM6SF2 plays a protective role in the HFD condition; its deficiency enhanced hepatic lipid accumulation through dysregulated fatty acid metabolism, and MK-4074 treatment could alleviate the NAFLD phenotypes caused by TM6SF2 deficiency.
Collapse
Affiliation(s)
- Zu-Yin Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing 100034, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Chen Qiu
- Institute of Gallstone Disease, Shanghai East Hospital, Shanghai 200120, China
| | - Zhi-Jie Zhou
- Department of General Surgery, Huashan Hospital North, Shanghai 201907, China
| | - Yu-Peng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guo-He Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao Xiao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200041, China
| | - Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Gui-Long Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai 201600, China
| | - Rui-Tao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai 201600, China
| | - Yu-Long Yang
- Institute of Gallstone Disease, Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Liang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
10
|
Astarini FD, Ratnasari N, Wasityastuti W. Update on Non-Alcoholic Fatty Liver Disease-Associated Single Nucleotide Polymorphisms and Their Involvement in Liver Steatosis, Inflammation, and Fibrosis: A Narrative Review. IRANIAN BIOMEDICAL JOURNAL 2022; 26:252-268. [PMID: 36000237 PMCID: PMC9432469 DOI: 10.52547/ibj.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
Abstract
Genetic factors are involved in the development, progression, and severity of non-alcoholic fatty liver disease (NAFLD). Polymorphisms in genes regulating liver functions may increase liver susceptibility to NAFLD. Therefore, we conducted this literature study to present recent findings on NAFLD-associated polymorphisms from published articles in PubMed from 2016 to 2021. From 69 selected research articles, 20 genes and 34 SNPs were reported to be associated with NAFLD. These mutated genes affect NAFLD by promoting liver steatosis (PNPLA3, MBOAT7, TM2SF6, PTPRD, FNDC5, IL-1B, PPARGC1A, UCP2, TCF7L2, SAMM50, IL-6, AGTR1, and NNMT), inflammation (PNPLA3, TNF-α, AGTR1, IL-17A, IL-1B, PTPRD, and GATAD2A), and fibrosis (IL-1B, PNPLA3, MBOAT7, TCF7L2, GATAD2A, IL-6, NNMT, UCP, AGTR1, and TM2SF6). The identification of these genetic factors helps to better understand the pathogenesis pathways of NAFLD.
Collapse
Affiliation(s)
- Fajar Dwi Astarini
- Master in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, 55281 Indonesia
| | - Neneng Ratnasari
- Subdivision of Gastroenterohepatology, Department of Internal Medicine, Dr. Sardjito Hospital, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| | - Widya Wasityastuti
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia
| |
Collapse
|
11
|
Li XY, Liu Z, Li L, Wang HJ, Wang H. TM6SF2 rs58542926 is related to hepatic steatosis, fibrosis and serum lipids both in adults and children: A meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1026901. [PMID: 36353245 PMCID: PMC9637980 DOI: 10.3389/fendo.2022.1026901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIMS Findings about the associations between transmembrane 6 superfamily member 2 (TM6SF2) rs58542926 and nonalcoholic fatty liver disease have not been consistently replicated, particularly in steatosis and fibrosis. The present study aimed to investigate the associations between the rs58542926T allele and the spectrum of NAFLD and its related metabolic phenotypes. METHODS Systematic literature research was performed to analyse the associations between rs58542926 and the spectrum of NAFLD and its related metabolic phenotypes. A random effects meta-analysis with a dominant genetic model was applied. RESULTS Data from 123,800 individuals across 44 studies were included in the current meta-analysis.rs58542926 T allele was associated with an increased risk of NAFLD in both adults (OR=1.62; 95% CI: 1.40, 1.86) and children (OR=2.87; 95% CI: 1.85, 4.46). Children had a stronger association with NAFLD (P=0.01). rs58542926 T allele was also positively associated with steatosis progression (mean difference=0.22; 95% CI: 0.05, 0.39) and fibrosis stage (OR=1.50; 95% CI: 1.20, 1.88) in adults. The TM6SF2 rs58542926 T allele was positively associated with ALT in both adults and children (both P<0.01) and only with higher AST in adults (P<0.01). The rs58542926 T allele was negatively associated with serum total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TGs) in both adults and children (all P<0.01).The serum level of TG was much lower in adults than in children (P<0.01). CONCLUSION TM6SF2 rs58542926 is involved in the entire spectrum of NAFLD and its related metabolic phenotype, and differences in serum lipid levels were observed between adults and children. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021288163.
Collapse
Affiliation(s)
- Xue-Ying Li
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Zheng Liu
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
- *Correspondence: Hui Wang,
| |
Collapse
|
12
|
TM6SF2/PNPLA3/MBOAT7 Loss-of-Function Genetic Variants Impact on NAFLD Development and Progression Both in Patients and in In Vitro Models. Cell Mol Gastroenterol Hepatol 2021; 13:759-788. [PMID: 34823063 PMCID: PMC8783129 DOI: 10.1016/j.jcmgh.2021.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The I148M Patatin-like Phospholipase Domain-containing 3 (PNPLA3), the rs641738 in the Membrane bound O-acyltransferase domain containing 7-transmembrane channel-like 4 (MBOAT7-TMC4) locus, and the E167K Transmembrane 6 Superfamily Member 2 (TM6SF2) polymorphisms represent the main predisposing factors to nonalcoholic fatty liver disease (NAFLD) development and progression. We previously generated a full knockout of MBOAT7 in HepG2 cells (MBOAT7-/-), homozygous for I148M PNPLA3. Therefore, we aimed to investigate the synergic impact of the 3 at-risk variants on liver injury and hepatocellular carcinoma (HCC) in a large cohort of NAFLD patients, and create in vitro models of genetic NAFLD by silencing TM6SF2 in both HepG2 and MBOAT7-/- cells. METHODS NAFLD patients (n = 1380), of whom 121 had HCC, were stratified with a semiquantitative score ranging from 0 to 3 according to the number of PNPLA3, TM6SF2, and MBOAT7 at-risk variants. TM6SF2 was silenced in HepG2 (TM6SF2-/-) and MBOAT7-/- (MBOAT7-/-TM6SF2-/-) through Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). RESULTS In NAFLD patients, the additive weight of these mutations was associated with liver disease severity and an increased risk of developing HCC. In HepG2 cells, TM6SF2 silencing altered lipid composition and induced the accumulation of microvesicular lipid droplets (LDs), whereas the MBOAT7-/-TM6SF2-/- cells showed a mixed microvesicular/macrovesicular pattern of LDs. TM6SF2 deletion strongly affected endoplasmic reticulum and mitochondria ultrastructures, thus increasing endoplasmic reticulum/oxidative stress. The mitochondrial number was increased in both TM6SF2-/- and MBOAT7-/-TM6SF2-/- models, suggesting an unbalancing in mitochondrial dynamics, and the silencing of both MBOAT7 and TM6SF2 impaired mitochondrial activity with a shift toward anaerobic glycolysis. MBOAT7-/-TM6SF2-/- cells also showed the highest proliferation rate. Finally, the re-overexpression of MBOAT7 and/or TM6SF2 reversed the metabolic and tumorigenic features observed in the compound knockout model. CONCLUSIONS The co-presence of the 3 at-risk variants impacts the NAFLD course in both patients and experimental models, affecting LD accumulation, mitochondrial functionality, and metabolic reprogramming toward HCC.
Collapse
|
13
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
14
|
Salari N, Darvishi N, Mansouri K, Ghasemi H, Hosseinian-Far M, Darvishi F, Mohammadi M. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. BMC Endocr Disord 2021; 21:125. [PMID: 34147109 PMCID: PMC8214766 DOI: 10.1186/s12902-021-00789-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common disorder that is known to be the leading cause of chronic liver disease worldwide. This study aims to systematically review and meta-analyze the association between PNPLA3 rs738409 polymorphism and non-alcoholic fatty liver. METHODS Following a systematic review and meta-analysis method, articles without any time limitation, were extracted from SID, MagIran, IranDoc, Scopus, Embase, Web of Science (WoS), PubMed and ScienceDirect international databases. Random effects model was used for analysis, and heterogeneity of studies was investigated considering the I2 index and using Comprehensive Meta-Analysis software. RESULTS The odds ratio of CC genotype in patients with non-alcoholic fatty liver demonstrates the protective effect of CC genotype with the ratio of 0.52, whereas CG genotype presents an increasing effect of CG genotype with the ratio of 0.19, and GG genotype also showed an increasing effect of GG genotype with the ratio of 1.05. Moreover, CG + GG genotypes as a single group demostrated an odds rartio of 0.88. CONCLUSION This meta-analysis highlights that people with CC genotype has 52% lower chance of developing non-alcoholic fatty liver disease, and those with CG genotype had 19% higher risk of developing non-alcoholic fatty liver. Those with GG genotype were 105% more likely to develop non-alcoholic fatty liver than others. Moreover, those present in a population with CG + GG genotypes were 88% more likely to have non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloufar Darvishi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooman Ghasemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Melika Hosseinian-Far
- Department of Food Science & Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Kermanshah, Iran
| | - Fateme Darvishi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Mohammadi
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int J Mol Sci 2021; 22:ijms22094459. [PMID: 33923295 PMCID: PMC8123173 DOI: 10.3390/ijms22094459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Collapse
|
16
|
Botello-Manilla AE, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Genetics and epigenetics purpose in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2020; 14:733-748. [PMID: 32552211 DOI: 10.1080/17474124.2020.1780915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION nonalcoholic fatty liver disease (NAFLD) comprises a broad spectrum of diseases, which can progress from benign steatosis to nonalcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. NAFLD is the most common chronic liver disease in developed countries, affecting approximately 25% of the general population. Insulin resistance, adipose tissue dysfunction, mitochondrial and endoplasmic reticulum stress, chronic inflammation, genetic and epigenetic factors are NAFLD triggers that control the disease susceptibility and progression. AREAS COVERED In recent years a large number of investigations have been carried out to elucidate genetic and epigenetic factors in the disease pathogenesis, as well as the search for diagnostic markers and therapeutic targets. This paper objective is to report the most studied genetic and epigenetic variants around NAFLD. EXPERT OPINION NAFLD lead to various comorbidities, which have a considerable impact on the patient wellness and life quality, as well as on the costs they generate for the country's health services. It is essential to continue with molecular research, since it could be used as a clinical tool for prognosis and disease severity. Specifically, in the field of hepatology, plasma miRNAs could provide a novel tool in liver diseases diagnosis and monitoring, representing an alternative to invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico.,Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation , Mexico City, Mexico
| | | |
Collapse
|
17
|
Kanda T, Goto T, Hirotsu Y, Masuzaki R, Moriyama M, Omata M. Molecular Mechanisms: Connections between Nonalcoholic Fatty Liver Disease, Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:1525. [PMID: 32102237 PMCID: PMC7073210 DOI: 10.3390/ijms21041525] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), causes hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The patatin-like phospholipase-3 (PNPLA3) I148M sequence variant is one of the strongest genetic determinants of NAFLD/NASH. PNPLA3 is an independent risk factor for HCC among patients with NASH. The obesity epidemic is closely associated with the rising prevalence and severity of NAFLD/NASH. Furthermore, metabolic syndrome exacerbates the course of NAFLD/NASH. These factors are able to induce apoptosis and activate immune and inflammatory pathways, resulting in the development of hepatic fibrosis and NASH, leading to progression toward HCC. Small intestinal bacterial overgrowth (SIBO), destruction of the intestinal mucosa barrier function and a high-fat diet all seem to exacerbate the development of hepatic fibrosis and NASH, leading to HCC in patients with NAFLD/NASH. Thus, the intestinal microbiota may play a role in the development of NAFLD/NASH. In this review, we describe recent advances in our knowledge of the molecular mechanisms contributing to the development of hepatic fibrosis and HCC in patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-8506, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
18
|
Dong XC. PNPLA3-A Potential Therapeutic Target for Personalized Treatment of Chronic Liver Disease. Front Med (Lausanne) 2019; 6:304. [PMID: 31921875 PMCID: PMC6927947 DOI: 10.3389/fmed.2019.00304] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid droplet-associated protein that has been shown to have hydrolase activity toward triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with fatty liver disease was revealed by a genome-wide association study (GWAS) of Hispanic, African American, and European American individuals in the Dallas Heart Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3 rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation (steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma regardless of etiologies including alcohol- or obesity-related and others. The frequency of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene variant and environment interaction poses a serious concern for public health, especially chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic studies, novel therapeutic strategies are expected to be developed for the treatment of the PNPLA3(148M) variant-associated chronic liver diseases in the near future.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Center for Diabetes and Metabolic Diseases, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|