1
|
Zongo S, Zongo S, Compaore CS, Konkobo FA, Barry PR, Roamba EN, Bazie D, Dakuyo R, Diao M, Konate K, Dicko MH. Phenolic compounds and safety of improved and local peanut varieties grown in Burkina Faso. Sci Rep 2025; 15:8702. [PMID: 40082496 PMCID: PMC11906593 DOI: 10.1038/s41598-025-92018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Peanuts are a tropical crop widely cultivated throughout the world. The seed is the most important part of the peanut. Burkina Faso is the 16th largest producer of peanuts in the world. Despite its economic and nutritional potential, peanut growers are subject to aflatoxin contamination. This present study aimed to evaluate the phenolic compounds and safety of various improved and local peanut varieties. The aflatoxin contents of the different varieties were determined by ultra-high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A UV-visible spectrophotometer quantified the phenolic contents. For all samples, results showed that water content varied from 3.85 ± 0.08 to 4.21 ± 0.06%, and pH from 6.11 ± 0.02 to 6.48 ± 0.02. Toxicological results showed total aflatoxin levels ranging from 0.04 to 1.86 µg/kg. Polyphenols had the highest values in peanut extracts, ranging from 5.64 ± 1.35 to 14.94 ± 2.79 mg GAE/g. Flavonoids ranged from 1.23 ± 0.11 to 2.24 ± 0.15 mg QE/g and flavonols from 0.14 ± 0.09 to 0.85 ± 0.36 mg QE/g. Condensed tannin contents range from 0.14 ± 0.02 to 0.26 ± 0.02 mg TAE/100 g and hydrolysable tannins from 0.03 ± 0 a to 0.16 ± 0.09 a mg TAE/g. TC tannins ranged from 0.14 ± 0.02 to 0.26 ± 0.02 mg TAE/100 g and THs from 0.03 ± 0 a to 0.16 ± 0.09 a mg TAE/g. Peanut seeds have interesting levels of phytonutrients. They could therefore be considered foods with therapeutic potential. Low levels of aflatoxins testify to the safety of the seeds.
Collapse
Affiliation(s)
- Sandrine Zongo
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
| | - Souleymane Zongo
- Department of Food Technology (DTA), Research Institute of Applied Sciences and Technologies (IRSAT), National Center for Scientific and Technological Research (CNRST), Ouagadougou, Burkina Faso
| | - Clarisse S Compaore
- Department of Food Technology (DTA), Research Institute of Applied Sciences and Technologies (IRSAT), National Center for Scientific and Technological Research (CNRST), Ouagadougou, Burkina Faso
| | - Fréderic Anderson Konkobo
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
| | - Poussian Raymond Barry
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
| | - Edwige Noëlle Roamba
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
| | - David Bazie
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
| | - Roger Dakuyo
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
- Virtual University of Burkina Faso, 01 BP 1020, Kadiogo 01, Ouagadougou, Burkina Faso
| | - Mamounata Diao
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
| | - Kiessoun Konate
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso.
- University Daniel Ouezzin Coulibaly, BP 176, Dédougou, Burkina Faso.
| | - Mamoudou H Dicko
- Laboratory of Biochemistry, Biotechnology, Food Technology and Nutrition (LABIOTAN), Department of Biochemistry and Microbiology, University Joseph KI- ZERBO, 09 BP 848, Ouagadougou, Burkina Faso
| |
Collapse
|
2
|
Cho CH, Youm G, Lim KM, Kim M, Lee DK, Cho YB, Yu HJ, Shin HS, Lee SH. Immune-enhancing effects of enzymatic hydrolysates of peanut sprouts in RAW 264.7 macrophages and cyclophosphamide-induced immunosuppressed mouse model. Food Res Int 2025; 205:115752. [PMID: 40032444 DOI: 10.1016/j.foodres.2025.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Immune deficiency is associated with the development of various diseases. Resveratrol, the main bioactive component of peanut sprouts, exerts immunomodulatory effects. Enzymatic hydrolysis increases the yield of bioactive components from plant resources. In this study, the immune-enhancing effects of three types of peanut sprout extracts (peanut sprout non-enzyme extract (PSNE), peanut sprout cellulase extract (PSCE), and peanut sprout pectinase extract (PSPE)) were evaluated to confirm the effectiveness of enzymatic hydrolysis extract of peanut sprouts. The immune-boosting potency of the extracts was assessed by measuring proinflammatory mediators (nitric oxide (NO), and prostaglandin E2 (PGE2)), inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 (MCP-1)) in RAW 264.7 cells. To evaluate the immune-boosting efficacy of the extract in an in vivo model, immune organ indices and total leukocyte and natural killer (NK) cell populations were measured in a cyclophosphamide-induced immunosuppressed mouse model. PSCE had a significantly higher resveratrol content than PSNE and PSPE. Moreover, PSCE actively increased NO and PGE2 production in RAW 264.7 cells in a concentration-dependent manner, indicating its immune-promoting potential. PSCE significantly increased the expression of inflammatory cytokines and promoted the phosphorylation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells, thereby enhancing immunity. In the mouse model, oral administration of PSCE enhanced immunity by suppressing the cyclophosphamide-induced loss of immune organ index and decline of leukocyte population in the blood and NK cell population in the spleen. Our results suggest that hydrolysis using cellulase can promote the immune-enhancing effects of peanut sprout extract by increasing the extraction of resveratrol.
Collapse
Affiliation(s)
- Chi Heung Cho
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Gahee Youm
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyung Min Lim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mingyeong Kim
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Da Kyoung Lee
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Yong Baik Cho
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Heong-Jun Yu
- YESKIN, Co, 379 Aenggogae-ro, Namdong-gu, Incheon 21695, Republic of Korea
| | - Hee Soon Shin
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang-Hoon Lee
- Division of Functional Food Research, Korea Food Research Institute, 245 nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Boulfous N, Belattar H, Ambra R, Pastore G, Ghorab A. Botanical Origin, Phytochemical Profile, and Antioxidant Activity of Bee Pollen from the Mila Region, Algeria. Antioxidants (Basel) 2025; 14:291. [PMID: 40227244 PMCID: PMC11939233 DOI: 10.3390/antiox14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen is a complex mixture of floral pollen, and nectar fused substances from bee saliva. It is well known for its high content of proteins, carbohydrates, lipids, vitamins, and phenolic compounds, among various other physiologically active components. Its composition varies significantly depending on its botanical sources and environmental conditions. This study investigates the relationship between the botanical origins, chemical compositions, and antioxidant activities of 15 bee pollen samples collected from different areas in the Mila region of northeastern Algeria. The botanical origins were identified using a palynological method, categorizing 11 samples as monofloral and the rest as polyfloral. The total phenolic and flavonoid contents were measured, and their antioxidant capacities were evaluated through DPPH radical scavenging assay, reducing power assay (FRAP), and total antioxidant capacity (TAC). HPLC analysis was conducted to measure 17 phenolic compounds. The data indicated that the total phenolic content (TPC) and flavonoid content (TFC) ranged from 7.72 ± 0.29 to 23.49 ± 1.48 mg GAE/g and from 1.48 ± 0.00 to 5.57 ± 0.27 mg QE/g of pollen, respectively. The variations in the concentration of bioactive compounds among samples led to significant differences in their antioxidant activities: DPPH (IC50: 1.12 ± 0.15 to 0.21 ± 0.00 mg/mL), FRAP (EC50: 0.06 ± 0.00 to 0.29 ± 0.00 mg/mL), and TAC (262.17 ± 3.41 to 677.14 ± 12.81 EAA mg/100 g of bee pollen), with the most active samples being monofloral types from Cistus type and Brassica type. A strong correlation was observed between TPC, TFC, and antioxidant activity. Among the 17 tested compounds, only coumaric acid, rutin, myricetin, naringenin, resveratrol, and kaempferol were detected. In conclusion, both monofloral and polyfloral bee pollen samples represent a rich source of polyphenols with significant antioxidant potential.
Collapse
Affiliation(s)
- Nassiba Boulfous
- Laboratory of Natural Sciences and Materials, Institute of Natural Sciences and Life, University Center Abdelhafid Boussouf, Mila 43000, Algeria;
| | - Hakima Belattar
- Laboratory of Natural Sciences and Materials, Institute of Natural Sciences and Life, University Center Abdelhafid Boussouf, Mila 43000, Algeria;
| | - Roberto Ambra
- CREA (Council for Agricultural Research and Economics), Research Centre for Food and Nutrition, 00178 Rome, Italy; (R.A.); (G.P.)
| | - Gianni Pastore
- CREA (Council for Agricultural Research and Economics), Research Centre for Food and Nutrition, 00178 Rome, Italy; (R.A.); (G.P.)
| | - Asma Ghorab
- Department of Vegetal Biology and Soil Sciences, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain;
| |
Collapse
|
4
|
Kim DY, Kim SS, Choi EJ, Kim H, Kim DH, Hong SM, Lee SB, Cho HD. Protective Effects of Peanut Sprouts from a Smart Farming System on the Barrier Function of Human Epithelial Cells. Prev Nutr Food Sci 2024; 29:474-484. [PMID: 39759809 PMCID: PMC11699578 DOI: 10.3746/pnf.2024.29.4.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, poses an emerging threat as it can lead to colorectal cancer, thrombosis, and other chronic conditions. The present study demonstrated the protective effects of peanut sprout extracts (PSEs) prepared from day 2 to day 7 of germination against lipopolysaccharide (LPS)-induced epithelial barrier breakdown. Although the peanut sprout length increased in a time-dependent manner from day 1 to day 7, the extraction yields remained relatively consistent from day 2 to day 7. With regard to antioxidant activities, the PSE from day 6 of germination exhibited the highest oxidative radical scavenging activity and total phenolic content. Similarly, it showed remarkable anti-permeability effects in LPS-stimulated Caco-2 cells and suppressed the degradation and dissociation of junctional markers (e.g., ZO-1 and E-cadherin) at cell-cell junctions. Collectively, these data demonstrate that PSE from day 6 of germination can be used as a functional food resource to reduce inflammatory barrier dysfunction.
Collapse
Affiliation(s)
- Dong Yoon Kim
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Soo-Sung Kim
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Eun-Jin Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
| | - Hoon Kim
- NANUMBIO Co., Ltd., Suncheon 57922, Korea
| | | | - Seong-Min Hong
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
- Glocal University Project Team, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
5
|
Xue J, Quan X, Yang J, Fang W, Yin Y. Study on the Mechanism of Flavonoid Enrichment in Black Soybean Sprouts by Abscisic Acid/Melatonin Under Slight Acid Treatment. Foods 2024; 13:3567. [PMID: 39593983 PMCID: PMC11593214 DOI: 10.3390/foods13223567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Plant hormones play a critical role in the physiological and biochemical mechanisms of plants, with functions such as regulating the metabolic pathways of secondary metabolite production and alleviating external stresses. In this study, the synthesis of flavonoids in black soybean sprouts was induced by slight acid combined with the plant hormones abscisic acid (ABA) and melatonin (MT). The results indicated that the contents of daidzin, genistin, daidzein, and genistein in black soybean sprouts treated with slight acid were increased by 10 μM ABA and 75 μM MT, and the total flavonoid content was significantly enhanced. Compared with the slight acid treatment, the H2O2 and malondialdehyde (MDA) contents in black soybean sprouts were increased after ABA treatment, and the black soybean sprouts were further stressed. However, the H2O2 and MDA contents in black soybean sprouts were significantly decreased after MT treatment, indicating that the stress of black soybean sprouts can be alleviated by MT. Under slight acid stress, the genes related to flavonoid synthesis in black soybean sprouts were induced by exogenous ABA, promoting the accumulation of flavonoids; under exogenous MT treatment, the activity of phenylpropanoid metabolism enzymes was significantly increased, the genes related to flavonoid synthesis were upregulated, and flavonoid synthesis was induced. These results suggest that the combination of slight acid and plant hormone treatments promotes the accumulation of flavonoid substances during the germination of black soybeans. This research lays the foundation for improving the growth conditions of black soybeans and promoting the enrichment of flavonoid substances in black soybeans.
Collapse
Affiliation(s)
- Jiyuan Xue
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| | - Xiaolan Quan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China;
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 210095, China; (J.X.); (X.Q.); (W.F.)
| |
Collapse
|
6
|
Elsafy M, Tia NAJ, Sir Elkhatim KA, Othman MH, Hassan AB, Rahmatov M, Abdelhalim TS. Unveiling the influences of P fertilization on bioactive compounds and antioxidant activity in grains of four sorghum cultivars. PLoS One 2024; 19:e0311756. [PMID: 39480873 PMCID: PMC11527271 DOI: 10.1371/journal.pone.0311756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUNDS Phosphorus is a critical nutrient in agriculture, influencing plant growth and nutritional quality. OBJECTIVES This study, uniquely designed to investigate the effects of phosphorus (P) fertilization levels, sorghum cultivars, and growing locations on phytochemical content and antioxidant activity in sorghum grains, employed four sorghum cultivars (Hakeka, P954063, Tabat, and Tetron) grown under three P levels (0P, 1P, 2P) in two locations (Gezira and White Nile) in Sudan. METHODS In this study, four sorghum cultivars were grown in two distinct locations in Sudan, employing a split-plot design with three (P) fertilization levels. P was applied as triple super phosphate directly with the seeds, and additional fertilization included urea applied in two split doses. At physiological maturity, representative sorghum panicles were harvested, processed, and analyzed for bioactive compounds and antioxidant activities using standard extraction and quantification techniques such as Folin-Ciocalteu for phenolics and colorimetric flavonoid assays. Antioxidant activities were assessed through various assays, including DPPH and FRAP. Statistical analyses were performed using a three-way ANOVA to examine the effects of cultivar, P level, and location on the measured parameters, supplemented by multivariate analysis to further elucidate the interactions between these factors. RESULTS Significant interactions (p<0.001) were observed among cultivars, P levels, and locations for total phenolic content (TPC), total flavonoid content (TFC), carotenoids, tannins, and various antioxidant activity measures (DPPH, FRAP, ABTS, TRP, H2O2). P fertilization significantly increased all measured phytochemicals and antioxidant activities compared to non-treated cultivars, except for H2O2, which decreased with P application. Among cultivars, Hakeka consistently exhibited the highest TFC, carotenoid content, and antioxidant activities (DPPH, FRAP, TRP, ABTS), particularly at the 2P level. P954063 showed the highest TPC and tannin concentrations. Tetron generally had the lowest phytochemical and antioxidant levels. White Nile showed higher TPC, carotenoids, DPPH, FRAP, TRP, and ABTS levels, while Gezira had higher TFC, tannins, and H2O2 concentrations. The impact of phosphorus fertilization often varies between locations. Strong positive correlations were found between TPC and all antioxidant assays (r = 0.68-0.90) and total carotenoids and antioxidant activities (r = 0.73-0.93). CONCLUSIONS This study recommended cultivating the Tabat variety with 2P doses in Gezira. In addition, the Hakeka cultivar showed the highest increases in total flavonoid content, carotenoids, and antioxidant activities, particularly under the highest P level (2P). The findings highlight that P plays a critical role in enhancing sorghum's nutritional and health-promoting qualities, which are essential for leveraging this staple crop for food and nutrition security strategies in semi-arid regions.
Collapse
Affiliation(s)
- Mohammed Elsafy
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Nouralhuda A. J. Tia
- Department of Plant Nutrition, Soil and Land Use Center, Agricultural Research Corporation, ARC, Wad Medani, Sudan
| | - Khitma A. Sir Elkhatim
- Biotechnology and Biosafety Research Center, Agricultural Research Corporation, ARC, Shmbat, Sudan
| | - Mazahir H. Othman
- Biotechnology and Biosafety Research Center, Agricultural Research Corporation, ARC, Shmbat, Sudan
| | - Amro B. Hassan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- Environment and Natural Resource and Desertification Research Institute (ENDRI), National Center for Research, Khartoum, Sudan
| | - Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Tilal Sayed Abdelhalim
- Biotechnology and Biosafety Research Center, Agricultural Research Corporation, ARC, Shmbat, Sudan
| |
Collapse
|
7
|
Pérez-Delgado FJ, García-Villa MD, Fernández-Quiroz D, Villegas-Ochoa M, Domínguez-Avila JA, Gonzalez-Aguilar GA, Ayala-Zavala JF, Martínez-Martínez A, Montiel-Herrera M. Clicking gallic acid into chitosan prolongs its antioxidant activity and produces intracellular Ca 2+ responses in rat brain cells. Int J Biol Macromol 2024; 277:134343. [PMID: 39097059 DOI: 10.1016/j.ijbiomac.2024.134343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Gallic acid is a vegetable-derived and highly bioactive phenolic acid, but its antioxidant capacity is sensitive to environmental conditions. Chitosan is a biopolymer capable of exerting significant protection to various molecules, including phenolic compounds. A chitosan derivative that extends the antioxidant activity of gallic acid was synthesized by click chemistry and characterized by FT-IR, 1H NMR, and antioxidant capacity assays. Our results show that synthesized polymeric solutions and nanoparticles of N-(gallic acid) chitosan were both internalized by rat brain cells, processes that were modulated by extracellular Ca2+ and Na+. Their internalization was supported by dynamic light scattering and ζ-potential analyses, while Ca2+ imaging recordings performed in brain cells revealed the potential biological effect of N-(gallic acid) chitosan. We conclude that the synthesis of an N-(gallic acid) chitosan derivative through click chemistry is viable and may serve as strategy to prolong its antioxidant activity and to study its biological effects in vivo.
Collapse
Affiliation(s)
- Francisco Jonathan Pérez-Delgado
- Department of Medicine and Health Sciences, University of Sonora, Building 7D Boulevard Luis Donaldo Colosio and Reforma, CP 83000 Hermosillo, Sonora, Mexico; Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Miriam Denise García-Villa
- Department of Medicine and Health Sciences, University of Sonora, Building 7D Boulevard Luis Donaldo Colosio and Reforma, CP 83000 Hermosillo, Sonora, Mexico
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, University of Sonora, Blvd. Luis Encinas and Rosales, S/N, Colonia Centro, CP 83000 Hermosillo, Sonora, Mexico
| | - Mónica Villegas-Ochoa
- Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Jesús Abraham Domínguez-Avila
- Cátedras CONACYT-Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Gustavo Adolfo Gonzalez-Aguilar
- Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Jesús Fernando Ayala-Zavala
- Research Center for Food and Development A. C., Highway Gustavo Enrique Astiazaran Rosas No. 46, La Victoria, Building E, CP 83304 Hermosillo, Sonora, Mexico
| | - Alejandro Martínez-Martínez
- Department of Chemical Biological Sciences, Autonomous University of Ciudad Juárez, Anillo del Pronaf and Estocolmo S/N; Ciudad Juarez, CP 32300 Chihuahua, Mexico
| | - Marcelino Montiel-Herrera
- Department of Medicine and Health Sciences, University of Sonora, Building 7D Boulevard Luis Donaldo Colosio and Reforma, CP 83000 Hermosillo, Sonora, Mexico.
| |
Collapse
|
8
|
Zhao J, Lu L, Chai Q, Jin W, Zhu M, Qi S, Shentu J, Long Y, Shen D. Combined application of resveratrol and a ryegrass endophyte in PAH-contaminated soil remediation and its impact on soil microbial communities. RSC Adv 2024; 14:31768-31776. [PMID: 39380652 PMCID: PMC11459276 DOI: 10.1039/d4ra05648e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024] Open
Abstract
The unique capacity of certain plant endophytes to degrade organic pollutants has garnered considerable interest in recent years. However, it remains uncertain whether endophytes can maintain high degradation activity after in vitro culture and whether they can be used directly in the remediation of contaminated soils. This study reveals that resveratrol, a plant secondary metabolite, selectively boosts the degradation of polycyclic aromatic hydrocarbons (PAHs) by endophytic Methylobacterium extorquens C1 (C1) in vitro, while exerting negligible effects on the activity of indigenous soil bacteria. For the first time, a combined application of C1 and resveratrol was employed in the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. The findings indicate that the sole use of resveratrol failed to promote the removal of PAHs by indigenous soil microorganisms, whereas sole application of C1 boosted Methylobacterium-related PAH-degrading bacterial abundance, enhancing PAH removal, yet concurrently reduced overall soil microbial diversity. The combination of resveratrol and C1 not only stimulated the PAH removal but also mitigated the impact of C1 on the soil microbial community structure when C1 was applied individually. Specifically, the optimal removal efficacy was achieved with a treatment combination of 5 mg kg-1 resveratrol and 1.2 × 107 CFU kg-1 of C1, leading to a 130% and 231% increase in the removal of phenanthrene and acenaphthene, respectively, over a 15 days period. This study proposes a novel approach for the bioremediation of organic-contaminated soil by using the specific biological response of plant endophytic bacteria to secondary metabolites.
Collapse
Affiliation(s)
- Jiawei Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Qiwei Chai
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
- Zhoushan Municipal Ecology and Environment Bureau Zhoushan China
| | - Wei Jin
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University Hangzhou 310012 China
| |
Collapse
|
9
|
Hernández-Montesinos IY, Carreón-Delgado DF, Lazo-Zamalloa O, Tapia-López L, Rosas-Morales M, Ochoa-Velasco CE, Hernández-Carranza P, Cruz-Narváez Y, Ramírez-López C. Exploring Agro-Industrial By-Products: Phenolic Content, Antioxidant Capacity, and Phytochemical Profiling via FI-ESI-FTICR-MS Untargeted Analysis. Antioxidants (Basel) 2024; 13:925. [PMID: 39199171 PMCID: PMC11351152 DOI: 10.3390/antiox13080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
This study investigates agro-industrial by-products as sources of bioactive compounds, particularly focusing on phenolic compounds known for their antioxidant properties. With growing interest in natural alternatives to synthetic antioxidants due to safety concerns, this study highlights the health benefits of plant-derived phenolic compounds in food preservation and healthcare products. Traditional and advanced analytical techniques were used to obtain phytochemical profiles of various residue extracts, including espresso (SCG) and cold-brew spent coffee grounds (CBCG), pineapple peel (PP), beetroot pomace (BP), apple pomace (AP), black carrot pomace (BCP), and garlic peel (GP). Assessments of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity (AC) supported their revalorization. CBCG showed the highest TPC, TFC, and AC. TPC content in by-products decreased in the order CBCG > SCG > GP > BCP > PP > AP > BP, with a similar trend for TFC and AC. Phytochemical profiling via FI-ESI-FTICR-MS enabled the preliminary putative identification of a range of compounds, with polyphenols and terpenes being the most abundant. Univariate and multivariate analyses revealed key patterns among samples. Strong positive correlations (Pearson's R > 0.8) indicated significant contribution of polyphenols to antioxidant capacities. These findings highlight the potential of agro-industrial residues as natural antioxidants, advocating for their sustainable utilization.
Collapse
Affiliation(s)
- Itzel Yoali Hernández-Montesinos
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - David Fernando Carreón-Delgado
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Oxana Lazo-Zamalloa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Lilia Tapia-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Minerva Rosas-Morales
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| | - Carlos Enrique Ochoa-Velasco
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Paola Hernández-Carranza
- Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, 4 Sur 104, Centro Histórico, Puebla 72000, Mexico
| | - Yair Cruz-Narváez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Av. Instituto Politécnico Nacional, Lindavista, Gustavo A. Madero, Ciudad de México 07700, Mexico
| | - Carolina Ramírez-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, km 1.5, Tepetitla de Lardizábal, Tlaxcala 90700, Mexico
| |
Collapse
|
10
|
Jeong H, Huh CK, Ha HK, Kim J, Oh I. Development of an Emulsion Gel Containing Peanut Sprout Oil as a Fat Replacer in Muffins: Physicochemical, Tomographic, and Texture Properties. Gels 2023; 9:783. [PMID: 37888356 PMCID: PMC10606939 DOI: 10.3390/gels9100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Peanut sprouts are known to increase their resveratrol content during germination, leading to cultivation in smart farms. Recently, peanut sprout oil extraction and sales have gained traction; however, processed foods utilizing peanut sprout oil have yet to be developed. In this study, water-in-oil (W/O) emulsion gels were structured with water, peanut sprout oil (PSO), sorbitan monostearate (SMS), and candelilla wax (CW) in different ratios, and their potential as shortening substitutes in muffins was evaluated on physicochemical and sensory properties. PSO comprised 67% unsaturated fatty acids and had higher phospholipid (17.97%) and resveratrol (15.95 µg/L) contents and antioxidant activity (71.52%) compared to peanut oil. The PSO emulsion gels were physically structured without changing their chemical compositions. The SMS and CW ratios were found to have a significant influence on the textural properties, solid fat content, rheology, and crystallization of the emulsion gels. The viscoelastic properties of the emulsion gels showed a higher storage modulus than loss modulus and increased with increasing gelator content. Muffins prepared with emulsion gels were characterized by a harder texture and larger pore size, while in the case of muffins mixed with a ratio of 25% SMS and 75% CW, there was no significant difference in overall preference of sensory evaluation compared to shortening muffins. Thus, these findings reveal the potential utility of PSO as a fat substitute and indicate that W/O emulsion gels are suitable for producing muffins without a loss of quality.
Collapse
Affiliation(s)
- Hyunjin Jeong
- Department of Food Science & Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (H.J.); (C.-K.H.)
| | - Chang-Ki Huh
- Department of Food Science & Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (H.J.); (C.-K.H.)
| | - Ho-Kyung Ha
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Jungsil Kim
- Department of Bio-Industrial Machinery Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Imkyung Oh
- Department of Food Science & Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (H.J.); (C.-K.H.)
| |
Collapse
|
11
|
Wang Y, Liu D, Yin H, Wang H, Cao C, Wang J, Zheng J, Liu J. Transcriptomic and Metabolomic Analyses of the Response of Resistant Peanut Seeds to Aspergillus flavus Infection. Toxins (Basel) 2023; 15:414. [PMID: 37505683 PMCID: PMC10467056 DOI: 10.3390/toxins15070414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Peanut seeds are susceptible to Aspergillus flavus infection, which has a severe impact on the peanut industry and human health. However, the molecular mechanism underlying this defense remains poorly understood. The aim of this study was to analyze the changes in differentially expressed genes (DEGs) and differential metabolites during A. flavus infection between Zhonghua 6 and Yuanza 9102 by transcriptomic and metabolomic analysis. A total of 5768 DEGs were detected in the transcriptomic study. Further functional analysis showed that some DEGs were significantly enriched in pectinase catabolism, hydrogen peroxide decomposition and cell wall tissues of resistant varieties at the early stage of infection, while these genes were differentially enriched in the middle and late stages of infection in the nonresponsive variety Yuanza 9102. Some DEGs, such as those encoding transcription factors, disease course-related proteins, peroxidase (POD), chitinase and phenylalanine ammonialyase (PAL), were highly expressed in the infection stage. Metabolomic analysis yielded 349 differential metabolites. Resveratrol, cinnamic acid, coumaric acid, ferulic acid in phenylalanine metabolism and 13S-HPODE in the linolenic acid metabolism pathway play major and active roles in peanut resistance to A. flavus. Combined analysis of the differential metabolites and DEGs showed that they were mainly enriched in phenylpropane metabolism and the linolenic acid metabolism pathway. Transcriptomic and metabolomic analyses further confirmed that peanuts infected with A. flavus activates various defense mechanisms, and the response to A. flavus is more rapid in resistant materials. These results can be used to further elucidate the molecular mechanism of peanut resistance to A. flavus infection and provide directions for early detection of infection and for breeding peanut varieties resistant to aflatoxin contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jihong Liu
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.W.); (D.L.); (H.Y.); (H.W.); (C.C.); (J.W.); (J.Z.)
| |
Collapse
|
12
|
Influence of Dehydration Temperature on Obtaining Chia and Okra Powder Mucilage. Foods 2023; 12:foods12030569. [PMID: 36766097 PMCID: PMC9914348 DOI: 10.3390/foods12030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Gum and mucilage from seeds and fruits are objects of study because they have characteristics of high viscosity at low concentrations and gelling properties, which are useful characteristics for modifying the texture and stabilizing products in the food industry. Chia and okra have high concentrations of polysaccharide gums in their composition, which makes them an interesting target for use in the composition of foods that require the use of texture enhancers and stabilizers. The present study investigated the influence of dehydration temperature on the characteristics of chia and okra powder mucilage obtained at different temperatures. The mucilages were extracted using an aqueous process and dehydrated in an air circulation oven at 50, 60, and 70 °C until hydroscopic equilibrium. Then, the powdered chia mucilage (CM) and okra mucilage (OM) were analyzed for chemical and physicochemical characteristics, bioactive compounds, antioxidant activity, and physical properties. It was found that powdered mucilage had low water content and water activity, with CM standing out in terms of ash, pectin, and starch content and OM, along with higher averages of proteins, sugars, total phenolic compounds, anthocyanins, flavonoids, and antioxidant activity. As for the physical parameters, CM stood out in relation to greater solubility and lower hygroscopicity, whereas OM presented higher wettability rates. Both powdered mucilages were classified as having good fluidity and cohesiveness from low to intermediate. In relation to the dehydration temperature, the best mucilage properties were verified at 70 °C. The study revealed that mucilages have good functional properties offering great potential as raw material for industry.
Collapse
|
13
|
Yin Y, Hu J, Yang Z, Fang W, Yang J. Effects of methyl jasmonate and NaCl treatments on the resveratrol accumulation and defensive responses in germinated peanut (Arachis hypogaea L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:664-673. [PMID: 36563572 DOI: 10.1016/j.plaphy.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this study, the effects of methyl jasmonate (MeJA) and sodium chloride (NaCl) treatments on the resveratrol biosynthesis and physiology of peanuts during germination were investigated. The results showed that MeJA (150 μM) and NaCl (150 mM) treatments significantly promoted resveratrol biosynthesis in germinated peanuts. MeJA and NaCl treatments promoted resveratrol accumulation by regulating the activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) and their gene expression levels in cotyledons and non-cotyledons. In addition, both MeJA and NaCl treatments inhibited peanut sprout growth, as evidenced by shorter sprout length, increased malondialdehyde content, and accumulation of reactive oxygen species in cotyledons and non-cotyledons. Both treatments' germinated peanuts responded to the environmental stimuli by raising the activities of antioxidant enzymes and controlling the levels of their gene' expression. Meanwhile, MeJA and NaCl treatments promoted Ca2+ aggregation in the root tips. Therefore, it can be deduced that Ca2+ may help improve the plant's resistance to adversity. In conclusion, treatment with MeJA (150 μM) or NaCl (150 mM) during germination is an effective way to enrich the resveratrol content of peanuts. Germinated peanuts enhance adaptation to the external environment by promoting resveratrol biosynthesis and enhancing antioxidant systems.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Jingjing Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225000, People's Republic of China.
| |
Collapse
|
14
|
Study of Inducing Factors on Resveratrol and Antioxidant Content in Germinated Peanuts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175700. [PMID: 36080467 PMCID: PMC9458182 DOI: 10.3390/molecules27175700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
When peanuts germinate, bioactive compounds such as resveratrol (RES), γ-aminobutyric acid (GABA), isoflavones, and polyphenol compounds are generated. Peanut kernels were germinated in the dark for two days, and stimuli including soaking liquid, rice koji, high-pressure processing (HPP), and ultrasonic treatment were tested for their ability to activate the defense mechanisms of peanut kernels, thus increasing their bioactive compound content. The results of this study indicate that no RES was detected in ungerminated peanuts, and only 5.58 μg/g of GABA was present, while unstimulated germinated peanuts contained 4.03 µg/g of RES and 258.83 μg/g of GABA. The RES content of the germinated peanuts increased to 13.64 μg/g after soaking in 0.2% phenylalanine solution, whereas a higher GABA content of 651.51 μg/g was observed after the peanuts were soaked in 0.2% glutamate. Soaking peanuts in 5% rice koji produced the highest RES and GABA contents (28.83 µg/g and 506.34 μg/g, respectively). Meanwhile, the RES and GABA contents of HPP-treated germinated peanuts (i.e., treated with HPP at 100 MPa for 10 min) increased to 7.66 μg/g and 497.09 μg/g, respectively, whereas those of ultrasonic-treated germinated peanuts (for 20 min) increased to 13.02 μg/g and 318.71 μg/g, respectively. After soaking peanuts in 0.5% rice koji, followed by HPP treatment at 100 MPa for 10 min, the RES and GABA contents of the germinated peanuts increased to 37.78 μg/g and 1196.98 μg/g, while the RES and GABA contents of the germinated peanuts treated with rice koji followed by ultrasonic treatment for 20 min increased to 46.53 μg/g and 974.52 μg/g, respectively. The flavonoid and polyphenol contents of the germinated peanuts also increased after exposure to various external stimuli, improving their DPPH free radical-scavenging ability and showing the good potential of germinated peanuts as functional products.
Collapse
|
15
|
Modulatory Effects of Arctostaphylos uva-urs Extract In Ovo Injected into Broiler Embryos Contaminated by Aflatoxin B1. Animals (Basel) 2022; 12:ani12162042. [PMID: 36009632 PMCID: PMC9404454 DOI: 10.3390/ani12162042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In ovo injection of nutrients can modulate the embryo’s physiological responses against aflatoxin B1 (AFB1) embryotoxicity. This hypothesis was tested using in ovo injection of Arctostaphylos uva-ursi (Ar. uu.) methanolic extract. The total polyphenols, total flavonoids, total antioxidant capacity, and GC-MS analysis were all assessed in the Ar. uu. methanolic extract. A total of 180 ten-day-old embryonated eggs were distributed into six groups of 30 replicates each. The first group was used as a control (non-injected), and the second, third, fourth, fifth, and sixth groups were injected with 10 µ double-distilled water (DDW), 500 µL methanol, 0.01 g Ar. uu./500 µL methanol, 50 ng AFB1/10 µL DDW, and 50 ng AFB1 in 10 µ DDW + 0.01 g Ar. uu./500 µL methanol, respectively. The relative embryo weight, residual yolk sac weight, tibia length and weight, and survival were recorded. Total and differential leukocytes, oxidative stress, and humoral immune responses were observed. The residual yolk sac was lower (p < 0.05) in the Ar. uu. group than other groups. The embryonic growth (tibia weight and length) was enhanced in AFB1 + Ar. uu.-injected embryos compared with those injected with AFB1 alone. In conclusion, in ovo injection of Arctostaphylos uva-ursi could modulate AFB1-induced toxicity in chicken embryos.
Collapse
|
16
|
Karaman K, Kardeş YM, Doran T, Akçura M, Kaplan M. T‐Biplot analysis of some biochemical characteristics and mineral composition of different sorghum (
Sorghum bicolor
L.) sprouts. Cereal Chem 2022. [DOI: 10.1002/cche.10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kevser Karaman
- Erciyes UniversityFaculty of Agriculture, Agricultural Biotechnology DepartmentKayseriTurkey
| | - Yusuf Murat Kardeş
- Bilecik Seyh Edebali UniversityFaculty of Agriculture, Field Crops DepartmentBilecikTurkey
| | - Turhan Doran
- Erciyes UniversityFaculty of Agriculture, Field Crops DepartmentKayseriTurkey
| | - Mevlüt Akçura
- Çanakkale Onsekiz Mart UniversityFaculty of Agriculture, Field Crops DepartmentÇanakkaleTurkey
| | - Mahmut Kaplan
- Erciyes UniversityFaculty of Agriculture, Field Crops DepartmentKayseriTurkey
| |
Collapse
|
17
|
Chayjarung P, Phonherm M, Inmano O, Kongbangkerd A, Wongsa T, Limmongkon A. Influence of peanut hairy root cultivars on prenylated stilbenoid production and the response mechanism for combining the elicitors of chitosan, methyl jasmonate, and cyclodextrin. PLANTA 2022; 256:32. [PMID: 35794498 DOI: 10.1007/s00425-022-03946-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Peanut cultivars are known to produce stilbene compounds. Transcriptional control plays a key role in the early stages of the stress response mechanism, involving both PR-proteins and stilbene compounds. In this study, the production of stilbenoid compounds, especially prenylated, was investigated in two cultivars of peanut hairy root lines, designated as K2-K599 and T9-K599 elicited with a combination of chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD): CHT + MeJA + CD. The antioxidant activities and stilbenoid content of both K2-K599 and T9-K599 hairy root lines increased significantly during the elicitation period. The T9-K599 hairy root line expressed higher ABTS and FRAP antioxidant activities than the K2-K599 line while the latter exhibited greater total phenolic content than the former at all-time points. Additionally, the K2-K599 line exhibited more stilbene compounds, including trans-resveratrol, trans-arachidin-1, and trans-arachidin-3 than the T9-K599 line, which showed statistically significant differences at all-time points. Gene expression of the enzyme involved in the stilbene biosynthesis pathway (PAL, RS, RS3) was observed, responding early to elicitor treatment and the metabolic production of a high level of stilbenoid compounds at a later stage. The antioxidant enzyme (CuZn-SOD, APX, GPX) and pathogenesis-related protein (PR; PR4A, PR5, PR10, chitinase) genes were strongly expressed after elicitor treatment at 24 h and decreased with an increasing elicitation time. Investigation of the response mechanism illustrates that the elicitor treatment can affect various plant responses, including plant cell wall structure and integrity, antioxidant system, PR-proteins, and secondary plant metabolites at different time points after facing external environmental stimuli.
Collapse
Affiliation(s)
- Phadtraphorn Chayjarung
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Montinee Phonherm
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Onrut Inmano
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanakorn Wongsa
- Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng phet, 62000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
18
|
Bitew Z, Kassa A, Misgan B. Poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode for voltammetric determination of gallic acid in honey and peanut samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
19
|
Xie M, Yu M, Zhang L, Shi T. Transcriptome and proteome analysis of ultrasound pretreated peanut sprouts. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100102. [PMID: 35637930 PMCID: PMC9142848 DOI: 10.1016/j.fochms.2022.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/03/2022]
Abstract
It was first time to combined transcriptomic and proteome analyses to investigate the ultrasound pretreated peanut sprouts. A total of 1104 DEGs and 399 DEPs between ultrasound pretreated and nontreated peanut sprouts. Ultrasound upregulated three key genes that could have increased the content of resveratrol via phenylpropanoid biosynthesis. The genes and proteins related to phenylpropanoid biosynthesis, flavonoids biosynthesis, and lipid metabolism.
Combined transcriptomic and proteome analyses were carried out to investigate the influence of ultrasound pretreatment on peanut sprouts. In total, 1104 differentially expressed genes (upregulated:538, downregulated:521) and 399 differentially accumulated proteins (upregulated: 197, downregulated: 202) were identified between ultrasound pretreated and nontreated peanut sprouts. These genes and proteins were related to a series of crucial biomolecular processes, including the metabolism of carbohydrates, terpenoids, and polyketides. The most enriched pathways were further analyzed in each category. Importantly, ultrasound upregulated three key genes namely the arahy. Tifrunner. gnm1.ann1.DXZI51, arahy.Tifrunner.gnm1.ann1.VGN2GE, and arahy.Tifrunner.gnm1.ann1.Y23DM6 that could have increased the content of resveratrol via phenylpropanoid biosynthesis. Furthermore, this study shows that B3, MYB transcription factor-like families play a significant role in response to ultrasound treatment. Overall, this study provides useful transcriptomics and proteomics information highlighting the molecular mechanisms that influence nutritional differences in peanut sprouts.
Collapse
|
20
|
Chiu KY. Effect of selenium fortification during sprouting of peanut seeds receiving
HVEF
and selenium soaking combination on yield, selenium and resveratrol contents, anti‐oxidative properties, and microbial control. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai Ying Chiu
- Department of Post‐Modern Agriculture MingDao University Pitou Changhua County 52345 Taiwan
| |
Collapse
|
21
|
Rao H, Xue F, Ma S, Zhao M, Zhao D, Hao J. Contribution of slightly acidic electrolytic water (
SAEW
) to food safety, nutrients enrichment and allergenicity reduction of peanut sprouts. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Rao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
- Tongfu Group Co., Ltd Wuhu Anhui PR China
| | - Feng Xue
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Shuhong Ma
- Hebei Tongfu Health Industry Co., Ltd Shijiazhuang Hebei PR China
| | - Meng Zhao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Dandan Zhao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| | - Jianxiong Hao
- College of Food Science and Biology Hebei University of Science and Technology Shijiazhuang Hebei PR China
| |
Collapse
|
22
|
Khaksar G, Cheevarungnapakul K, Boonjing P, Sirikantaramas S. Sprout Caffeoylquinic Acid Profiles as Affected by Variety, Cooking, and Storage. Front Nutr 2021; 8:748001. [PMID: 34966767 PMCID: PMC8710737 DOI: 10.3389/fnut.2021.748001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Various health-promoting properties inherent to plant-based foods have been attributed to their rich bioactive compounds, including caffeoylquinic acids (CQAs). The potential health benefits of CQAs have been well-documented. While sprouts are widely recognized as health-promoting foods owing to their high phytonutrient content, our knowledge regarding the effect of cooking and storage, commonly practiced by consumers, on the CQA content remains limited. First, sunflower sprouts were found to have the highest total CQA content (~ 22 mg/g dry weight) out of 11 commonly available sprouts. Then, the effect of variety, cooking, and low-temperature storage on the CQA profile of sunflower sprouts was investigated. Among the four different varieties of sunflower sprouts, variety 1 harbored the highest total CQA content. Notably, cooking adversely affected the CQA content of sunflower sprouts relative to the uncooked samples in a time-dependent manner, possibly due to the heat sensitivity of CQAs. Under simulated home-refrigeration storage conditions, we observed a significant decline in the content of major CQA compounds (5-monoCQA and 3,5-diCQA) at days 10 and 13 of storage. The results obtained herein provide consumers and food industrialists with increased insight into the effect of cooking and refrigeration on the CQA content of sunflower sprouts.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ketthida Cheevarungnapakul
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patwira Boonjing
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Xiao Y, Liu H, Li H, Liu Q, Lu Q, Varshney RK, Chen X, Hong Y. Widely targeted metabolomics characterizes the dynamic changes of chemical profile in postharvest peanut sprouts grown under the dark and light conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Tlhapi DB, Ramaite IDI, Anokwuru CP. Metabolomic Profiling and Antioxidant Activities of Breonadia salicina Using 1H-NMR and UPLC-QTOF-MS Analysis. Molecules 2021; 26:molecules26216707. [PMID: 34771114 PMCID: PMC8587154 DOI: 10.3390/molecules26216707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Breonadia salicina (Vahl) Hepper and J.R.I. Wood is widely used in South Africa and some other African countries for treatment of various infectious diseases such as diarrhea, fevers, cancer, diabetes and malaria. However, little is known about the active constituents associated with the biological activities. This study is aimed at exploring the metabolomics profile and antioxidant constituents of B. salicina. The chemical profiles of the leaf, stem bark and root of B. salicina were comprehensively characterized using proton nuclear magnetic resonance (1H-NMR) spectroscopy and ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). The antioxidant activities of the crude extracts, fractions and pure compounds were determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays. A total of 25 compounds were tentatively identified using the UPLC-QTOF-MS. Furthermore, the 1H-NMR fingerprint revealed that the different parts of plant had differences and similarities among the different crude extracts and fractions. The crude extracts and fractions of the root, stem bark and leaf showed the presence of α-glucose, β-glucose, glucose and fructose. However, catechin was not found in the stem bark crude extracts but was found in the fractions of the stem bark. Lupeol was present only in the root crude extract and fractions of the stem bark. Furthermore, 5-O-caffeoylquinic acid was identified in the methanol leaf extract and its respective fractions, while the crude extracts and fractions from the root and dichloromethane leaf revealed the presence of hexadecane. Column chromatography and preparative thin-layer chromatography were used to isolate kaempferol 3-O-(2″-O-galloyl)-glucuronide, lupeol, d-galactopyranose, bodinioside Q, 5-O-caffeoylquinic acid, sucrose, hexadecane and palmitic acid. The crude methanol stem bark showed the highest antioxidant activity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity with an IC50 value of 41.7263 ± 7.6401 μg/mL, whereas the root crude extract had the highest reducing power activity with an IC0.5 value of 0.1481 ± 0.1441 μg/mL. Furthermore, the 1H-NMR and UPLC-QTOF-MS profiles showed the presence of hydroxycinnamic acids, polyphenols and flavonoids. According to a literature survey, these phytochemicals have been reported to display antioxidant activities. Therefore, the identified hydroxycinnamic acid (caffeic acid), polyphenol (ellagic acid) and flavonoids (catechin and (epi) gallocatechin) significantly contribute to the antioxidant activity of the different parts of plant of B. salicina. The results obtained in this study provides information about the phytochemistry and phytochemical compositions of Breonadia salicina, confirming that the species is promising in obtaining constituents with medicinal potential primarily antioxidant potential.
Collapse
Affiliation(s)
- Dorcas B. Tlhapi
- Department of Chemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa;
| | - Isaiah D. I. Ramaite
- Department of Chemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa;
- Correspondence: ; Tel.: +27-(0)-15-962-8262
| | - Chinedu P. Anokwuru
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa;
| |
Collapse
|
25
|
Impact of Germination Time on Resveratrol, Phenolic Acids, and Antioxidant Capacities of Different Varieties of Peanut ( Arachis hypogaea Linn.) from China. Antioxidants (Basel) 2021; 10:antiox10111714. [PMID: 34829585 PMCID: PMC8614862 DOI: 10.3390/antiox10111714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
In China, peanut sprouts are popular among consumers as functional vegetables. This study reports the change in total phenolic content (TPC), total flavonoid content (TFC), monomeric anthocyanin content (MAC), vitamin C, trans-resveratrol content, antioxidant capacities, and phenolic profile of three different varieties of peanut during 8 days of germination. The TPC, TFC, and antioxidant capacity of peanut samples were reduced and then increased with an increase in germination time. TFC values were highly correlated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) values. MAC values of peanuts were first increased and then decreased during 8 days of germination. The TFC, DPPH, and FRAP values of germinated peanuts were lower compared to the non-germinated peanut. Germination of peanut samples enhanced the total phenolic acids and trans-resveratrol content, but the vitamin C content of peanut sprouts was lower than ungerminated peanuts.
Collapse
|
26
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
27
|
Evaluation and identification of antioxidative components of Radix Rhodomyrti by DPPH–UPLC–PDA coupled with UPLC–QTOF-MS/MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Berton SBR, Bonafé EG, de Jesus GAM, da Silveira R, Visentainer JV, Martins AF, Matsushita M. Sensitivity of phenolic compounds evaluated by a new approach of analytical methods. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Atazadegan MA, Bagherniya M, Askari G, Tasbandi A, Sahebkar A. The Effects of Medicinal Plants and Bioactive Natural Compounds on Homocysteine. Molecules 2021; 26:3081. [PMID: 34064073 PMCID: PMC8196702 DOI: 10.3390/molecules26113081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Among non-communicable diseases, cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity in global communities. By 2030, CVD-related deaths are projected to reach a global rise of 25 million. Obesity, smoking, alcohol, hyperlipidemia, hypertension, and hyperhomocysteinemia are several known risk factors for CVDs. Elevated homocysteine is tightly related to CVDs through multiple mechanisms, including inflammation of the vascular endothelium. The strategies for appropriate management of CVDs are constantly evolving; medicinal plants have received remarkable attention in recent researches, since these natural products have promising effects on the prevention and treatment of various chronic diseases. The effects of nutraceuticals and herbal products on CVD/dyslipidemia have been previously studied. However, to our knowledge, the association between herbal bioactive compounds and homocysteine has not been reviewed in details. Thus, the main objective of this study is to review the efficacy of bioactive natural compounds on homocysteine levels according to clinical trials and animal studies. RESULTS Based on animal studies, black and green tea, cinnamon, resveratrol, curcumin, garlic extract, ginger, and soy significantly reduced the homocysteine levels. According to the clinical trials, curcumin and resveratrol showed favorable effects on serum homocysteine. In conclusion, this review highlighted the beneficial effects of medicinal plants as natural, inexpensive, and accessible agents on homocysteine levels based on animal studies. Nevertheless, the results of the clinical trials were not uniform, suggesting that more well-designed trials are warranted.
Collapse
Affiliation(s)
- Mohammad Amin Atazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
30
|
Medrano-Padial C, Puerto M, Richard T, Cantos-Villar E, Pichardo S. Protection and reversion role of a pure stilbene extract from grapevine shoot and its major compounds against an induced oxidative stress. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
31
|
Clerodendrum volubile Ethanol Leaf Extract: A Potential Antidote to Doxorubicin-Induced Cardiotoxicity in Rats. J Toxicol 2020; 2020:8859716. [PMID: 32714390 PMCID: PMC7355376 DOI: 10.1155/2020/8859716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Doxorubicin is widely applied in hematological and solid tumor treatment but limited by its off-target cardiotoxicity. Thus, cardioprotective potential and mechanism(s) of CVE in DOX-induced cardiotoxicity were investigated using cardiac and oxidative stress markers and histopathological endpoints. 50–400 mg/kg/day CVE in 5% DMSO in distilled water were investigated in Wistar rats intraperitoneally injected with 2.5 mg/kg DOX on alternate days for 14 days, using serum troponin I and LDH, complete lipid profile, cardiac tissue oxidative stress marker assays, and histopathological examination of DOX-treated cardiac tissue. Preliminary qualitative and quantitative assays of CVE's secondary metabolites were also conducted. Phytochemical analyses revealed the presence of flavonoids (34.79 ± 0.37 mg/100 mg dry extract), alkaloids (36.73 ± 0.27 mg/100 mg dry extract), reducing sugars (07.78 ± 0.09 mg/100 mg dry extract), and cardiac glycosides (24.55 ± 0.12 mg/100 mg dry extract). 50–400 mg/kg/day CVE significantly attenuated increases in the serum LDH and troponin I levels. Similarly, the CVE dose unrelatedly decreased serum TG and VLDL-c levels without significant alterations in the serum TC, HDL-c, and LDL-c levels. Also, CVE profoundly attenuated alterations in the cardiac tissue oxidative stress markers' activities while improving DOX-associated cardiac histological lesions that were possibly mediated via free radical scavenging and/or antioxidant mechanisms. Overall, CVE may play a significant therapeutic role in the management of DOX-induced cardiotoxicity in humans.
Collapse
|
32
|
Isolation of resveratrol from peanut sprouts, radioiodination and investigation of its bioactivity on neuroblastoma cell lines. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Benvenga S, Ferrari SM, Elia G, Ragusa F, Patrizio A, Paparo SR, Camastra S, Bonofiglio D, Antonelli A, Fallahi P. Nutraceuticals in Thyroidology: A Review of in Vitro, and in Vivo Animal Studies. Nutrients 2020; 12:nu12051337. [PMID: 32397091 PMCID: PMC7285044 DOI: 10.3390/nu12051337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals are defined as a food, or parts of a food, that provide medical or health benefits, including the prevention of different pathological conditions, and thyroid diseases, or the treatment of them. Nutraceuticals have a place in complementary medicines, being positioned in an area among food, food supplements, and pharmaceuticals. The market of certain nutraceuticals such as thyroid supplements has been growing in the last years. In addition, iodine is a fundamental micronutrient for thyroid function, but also other dietary components can have a key role in clinical thyroidology. Here, we have summarized the in vitro, and in vivo animal studies present in literature, focusing on the commonest nutraceuticals generally encountered in the clinical practice (such as carnitine, flavonoids, melatonin, omega-3, resveratrol, selenium, vitamins, zinc, and inositol), highlighting conflicting results. These experimental studies are expected to improve clinicians’ knowledge about the main supplements being used, in order to clarify the potential risks or side effects and support patients in their use.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina;
- Interdepartmental Program of Molecular & Clinical Endocrinology, and Women’s Endocrine Health, University Hospital, Policlinico Universitario G. Martino, 98125 Messina, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
34
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
35
|
Jitrangsri K, Chaidedgumjorn A, Satiraphan M. Supercritical fluid extraction (SFE) optimization of trans-resveratrol from peanut kernels ( Arachis hypogaea) by experimental design. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1486-1494. [PMID: 32180645 PMCID: PMC7054580 DOI: 10.1007/s13197-019-04184-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
The aim of this study was to develop the optimal conditions for supercritical fluid extraction (SFE) of bioactive trans-resveratrol from peanut kernels using an experimental design. The variables taken into account were extraction pressure, extraction temperature, extraction time and amount of modifier. The model was first set for significant factor screening by full factorial design, then, optimized by central composite designs. The optimal extraction parameters were a pressure of 7000 psi, temperature of 70 °C and time of 50 min while amount of modifier did not show significant effect. The quantity of trans-resveratrol was predictable by a full quadratic regression equation with R2(predict) = 95.56%. The predicted trans-resveratrol concentration in peanut samples was 0.7998 µg/g while the experimental concentration was 0.7884 ± 0.1553 µg/g. Conventional solvent extraction demonstrated less selectivity and needed more clean-up process prior to HPLC analysis. Our optimized SFE condition was effective to maximize trans-resveratrol extraction with less contaminants and gave the comparable amount of trans-resveratrol between actual and predicted values.
Collapse
Affiliation(s)
- Kritamorn Jitrangsri
- Faculty of Pharmacy, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000 Thailand
| | - Amornrut Chaidedgumjorn
- Faculty of Pharmacy, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000 Thailand
| | - Malai Satiraphan
- Faculty of Pharmacy, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000 Thailand
| |
Collapse
|
36
|
Li Y, Zou Q, Song S, Sun T, Li J. Effects of chitosan coatings combined with resveratrol and lysozyme on the quality of
Sciaenops ocellatus
during refrigerated storage. J Food Saf 2020. [DOI: 10.1111/jfs.12777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yingchang Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Qian Zou
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Suzhen Song
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic ProductsFood Safety Key Lab of Liaoning Province Jinzhou China
| |
Collapse
|
37
|
ZnCl 2 treatment improves nutrient quality and Zn accumulation in peanut seeds and sprouts. Sci Rep 2020; 10:2364. [PMID: 32047255 PMCID: PMC7012847 DOI: 10.1038/s41598-020-59434-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/27/2020] [Indexed: 11/08/2022] Open
Abstract
Peanut is a popular food due to its high nutrient content. The effects of ZnCl2 on peanut seed germination, fatty acid and sugar contents, vitamin biosynthesis, antioxidant content, and Zn assimilation were evaluated in this study. Treatment with ZnCl2 significantly improved the germination rate, enhanced reactive oxygen species production and reduced the content of total fatty acids in peanut seed and sprout. However, ZnCl2 treatment did not reduce total sugar or total protein relative to the control. Germination promoted the biosynthesis of phenolics and resveratrol and increased the antioxidant capacity, as evaluated by Fe3+ reducing power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability, especially under Zn stress conditions. The vitamin content decreased in the following order among treatments: germinated seeds with ZnCl2 treatment > germinated seeds without ZnCl2 treatment > dormant seeds. Interestingly, Zn content was approximately five times higher in the germinated ZnCl2-treated seeds compared to in the untreated germinated seeds and the dormant seeds. The results of this study provide a new method for producing healthy foods with enhanced vitamin content and antioxidant capacity.
Collapse
|
38
|
Meira CLC, Novaes CG, Novais FC, de Jesus VDS, de Oliveira DM, Aguiar RM. Application of principal component analysis for the evaluation of the chemical constituents of Mimosa tenuiflora methanolic extract by DLLME/GC–MS. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Manoharlal R, Saiprasad GVS. Assessment of germination, phytochemicals, and transcriptional responses to ethephon priming in soybean [ Glycine max (L.) Merrill]. Genome 2019; 62:769-783. [PMID: 31479624 DOI: 10.1139/gen-2019-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work aims to dissect the underlying signaling pathways associated with soybean [Glycine max (L.) Merrill] seed hormo-priming with ethephon (Eth). Our results demonstrated that soybean germination improved significantly upon Eth priming (Ethp). Phytohormone quantification shows relative enhanced endogenous gibberellin A4 (GA4) levels concomitant with impaired biogenesis and signaling of auxin, viz., indole acetic acid (IAA) and abscisic acid (ABA). Phytochemical analysis revealed relative reduced levels of individual and total raffinose family oligosaccharide (RFO) components, starch, soluble sugars, and sucrose concomitant with enhanced levels of reducing sugars, glucose, cellular ATP, and acetyl-CoA pools. Secondary metabolite analysis revealed the activation of the mevalonate (MVA) pathway with a concomitant suppression of the plastidal 2-methyl-d-erythritol-4-phosphate/1-deoxy-d-xylulose-5-phosphate (MEP/DOX) and phenylpropanoid pathways, substantiated by relative reduced levels of total phenolics, tannins, and proanthocyanidin. Ethp also enhances the in vitro antioxidative activity (viz., 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability and ferric reducing antioxidant power (FRAP)) and endogenous antioxidants levels (viz., flavonoids, isoflavones, β-carotene, vitamin C, and vitamin E). Further quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed transcriptional pattern of representative genes in agreement with these metabolic alterations.
Collapse
Affiliation(s)
- Raman Manoharlal
- ITC Limited, ITC Life Sciences and Technology Centre (LSTC), Peenya Industrial Area, 1 Phase, Bengaluru-560058, Karnataka, India
- ITC Limited, ITC Life Sciences and Technology Centre (LSTC), Peenya Industrial Area, 1 Phase, Bengaluru-560058, Karnataka, India
| | - G V S Saiprasad
- ITC Limited, ITC Life Sciences and Technology Centre (LSTC), Peenya Industrial Area, 1 Phase, Bengaluru-560058, Karnataka, India
- ITC Limited, ITC Life Sciences and Technology Centre (LSTC), Peenya Industrial Area, 1 Phase, Bengaluru-560058, Karnataka, India
| |
Collapse
|
40
|
Benvenga S, Feldt-Rasmussen U, Bonofiglio D, Asamoah E. Nutraceutical Supplements in the Thyroid Setting: Health Benefits beyond Basic Nutrition. Nutrients 2019; 11:E2214. [PMID: 31540254 PMCID: PMC6770945 DOI: 10.3390/nu11092214] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been a growing interest in nutraceuticals, which may be considered as an efficient, preventive, and therapeutic tool in facing different pathological conditions, including thyroid diseases. Although iodine remains the major nutrient required for the functioning of the thyroid gland, other dietary components play important roles in clinical thyroidology-these include selenium, l-carnitine, myo-inositol, melatonin, and resveratrol-some of which have antioxidant properties. The main concern regarding the appropriate and effective use of nutraceuticals in prevention and treatment is due to the lack of clinical data supporting their efficacy. Another limitation is the discrepancy between the concentration claimed by the label and the real concentration. This paper provides a detailed critical review on the health benefits, beyond basic nutrition, of some popular nutraceutical supplements, with a special focus on their effects on thyroid pathophysiology and aims to distinguish between the truths and myths surrounding the clinical use of such nutraceuticals.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine-Endocrinology, University of Messina, via Consolare Valeria-Gazzi, 98125 Messina, Italy.
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, via Consolare Valeria-Gazzi, 98125 Messina, Italy.
- Interdepartmental Program on Molecular and Clinical Endocrinology and Women's Endocrine Health, AOU Policlinico G. Martino, via Consolare Valeria-Gazzi, 98125 Messina, Italy.
| | - Ulla Feldt-Rasmussen
- Medical Endocrinology and Metabolism PE 2132, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Ernest Asamoah
- Community Physicians Network, Diabetes & Endocrinology Care, 8435 Clearvista Place, Suite 101, Indianapolis, IN 46256, USA.
| |
Collapse
|
41
|
Limmongkon A, Pankam J, Somboon T, Wongshaya P, Nopprang P. Evaluation of the DNA damage protective activity of the germinated peanut (Arachis hypogaea) in relation to antioxidant and anti-inflammatory activity. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Li H, Xie L, Ma Y, Zhang M, Zhao Y, Zhao X. Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Bursal E, Aras A, Kılıç Ö, Taslimi P, Gören AC, Gülçin İ. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. J Food Biochem 2019; 43:e12776. [PMID: 31353544 DOI: 10.1111/jfbc.12776] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023]
Abstract
Many taxa of Salvia genus have been used in herbal beverages, food flavoring, cosmetics, and pharmaceutical industry. In this paper, chemical compounds of Salvia eriophora (S. eriophora) leaves were determined by LC-MS/MS (Liquid Chromatography tandem Mass Spectrometry). Salvigenin (158.64 ± 10.8 mg/kg), fumaric acid (123.09 ± 8.54 mg/kg), and quercetagetin-3.6-dimethylether (37.85 ± 7.09 mg/kg) were detected as major compounds in the ethanol extract, whereas fumaric acid (555.96 ± 38.56 mg/kg), caffeic acid (103.62 ± 20.51 mg/kg), and epicatechin (83.19 ± 8.43 mg/kg) were detected as major compounds in the water extract. Furthermore, enzyme inhibition of S. eriophora against acetylcholinesterase (AChE), α-amylase (AM), butyrylcholinesterase (BChE), and α-glycosidase (AG) enzymes were detected. AChE, BChE, AG, and AM enzymes were very strongly inhibited by S. eriophora water extract (WES) and S. eriophora methanol extract (MES). Additionally, antioxidant potential of S. eriophora was determined by in vitro analytical methods. IC50 values of WES and MES were performed for radicals. PRACTICAL APPLICATIONS: Metabolic enzymes have crucial functions on living systems due to inhibition or activation of them mainly attributed with some health disorders. AChE, BChE, AM, and AG enzymes have important roles on carbohydrate metabolism or cholinergic pathways. The relation between enzyme inhibition effect and phenolic compounds or antioxidant activity need to be confirmed. Thus, many studies tested to clarify this relation for pure samples or plant extracts. To the best of our knowledge, this is the first report about inhibition effects of Salvia eriophora extracts against AChE, BChE, AM, and AG enzymes as well as their phenolic contents and antioxidant activities.
Collapse
Affiliation(s)
- Ercan Bursal
- School of Health, Department of Nursing, Muş Alparslan University, Muş, Turkey
| | - Abdulmelik Aras
- Faculty of Science and Arts, Department of Biochemistry, Iğdır University, Iğdır, Turkey
| | - Ömer Kılıç
- Department of Park and Garden Plants, Technical Vocational College, Bingöl University, Bingöl, Turkey
| | - Parham Taslimi
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Ahmet C Gören
- Faculty of Pharmacy, Department of Basic Medicine, Bezmialem Vakif University, İstanbul, Turkey
| | - İlhami Gülçin
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
44
|
Germination results in reduced allergenicity of peanut by degradation of allergens and resveratrol enrichment. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Stefanucci A, Zengin G, Locatelli M, Macedonio G, Wang CK, Novellino E, Mahomoodally M, Mollica A. Impact of different geographical locations on varying profile of bioactives and associated functionalities of caper (Capparis spinosa L.). Food Chem Toxicol 2018; 118:181-189. [DOI: 10.1016/j.fct.2018.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 01/08/2023]
|
46
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2018; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
47
|
YABALAK E. Antioxidant Activity and Chemical Composition of Methanolic Extract from Arum Dioscoridis Sm. var. Dioscoridis and Determination of Mineral and Trace Elements. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.350370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
48
|
Aljuhaimi F, Özcan MM. Influence of oven and microwave roasting on bioproperties, phenolic compounds, fatty acid composition, and mineral contents of nongerminated peanut and germinated peanut kernel and oils. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fahad Aljuhaimi
- Department of Food Science & Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadh Saudi Arabia
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of AgricultureSelcuk UniversityKonya 42031 Turkey
| |
Collapse
|