1
|
Almohareb RA, Barakat RM, Eid EE, Aldaws A, Alhagbani N, Almubayi R, Alsuwaid D, Algahtani FN. Assessing the efficacy of frankincense extract as a root canal irrigant against Enterococcus faecalis. PLoS One 2025; 20:e0321458. [PMID: 40202962 PMCID: PMC11981206 DOI: 10.1371/journal.pone.0321458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Frankincense resin exhibits antibacterial potential against various microorganisms, but little is available on its effectiveness against dental root canal biofilm. This study aimed to assess its efficacy as a root canal irrigant against Enterococcus faecalis biofilm. A standard E. faecalis strain underwent antibacterial sensitivity testing with frankincense derived from Boswellia sacra Flück and Boswellia frereana Birdw trees. Frankincense, demonstrating inhibition of bacterial growth, was further evaluated as an irrigant. Root canals of 50 single-canalled human teeth were prepared, then contaminated with E. faecalis and placed into three groups: Group A was irrigated with saline (negative control), Group B was irrigated with 5.25% sodium hypochlorite (NaClO), and Group C was irrigated with frankincense. Microbial sampling pre- and post-irrigation was conducted under aseptic conditions. Colony count reduction percentages were calculated, and the data was analyzed using one-way analyses of variance followed by Tukey's post-hoc test (significance level set at 5%). The antibacterial susceptibility test revealed that only Boswellia sacra Flück frankincense was effective against E. faecalis. Both NaClO and frankincense significantly reduced colony counts compared to saline (p < 0.0001), with no difference between frankincense and NaClO irrigation. Therefore, root canal irrigation with B. sacra frankincense proved as effective against E. faecalis biofilm as NaClO. Further exploration of its potential as a root canal irrigant is recommended.
Collapse
Affiliation(s)
- Rahaf A. Almohareb
- Department of Clinical Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reem M. Barakat
- Dental Clinics Department, King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eltayeb E.M. Eid
- Research Department, Health Science Research center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Research & Development Theme, Biotischen Industerial Inc., Riyadh, Saudi Arabia
| | - Albandari Aldaws
- Dental Intern, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nourah Alhagbani
- Dental Intern, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham Almubayi
- Dental Intern, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dhuha Alsuwaid
- Academic Researcher, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahda N. Algahtani
- Department of Clinical Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Nazakat L, Ali S, Summer M, Nazakat F, Noor S, Riaz A. Pharmacological modes of plant-derived compounds for targeting inflammation in rheumatoid arthritis: A comprehensive review on immunomodulatory perspective. Inflammopharmacology 2025; 33:1537-1581. [PMID: 40074996 DOI: 10.1007/s10787-025-01664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is one of the most prevalent autoimmune, chronic, inflammatory disease characterized by joint inflammation, synovial swelling, loss of articular structures, swelling, and pain. RA is a major cause of discomfort and disability worldwide, associated with infectious agents, genetic determinants, epigenetic factors, advancing age, obesity, and smoking. Although conventional therapies for RA alleviate the symptoms, but their long-term use is associated with significant side effects. This necessitates the urge to discover complementary and alternative medicine from natural products with minimum side effects. PURPOSE In this review, natural product's potential mechanism of action against RA has been documented in the setting of in-vivo, in-vitro and pre-clinical trials, which provides new treatment opportunities for RA patients. The bioefficacy of these natural product's bioactive compounds must be further studied to discover novel natural medications for RA with high selectivity, improved effectiveness, and economic replacement with minimum side effects. STUDY DESIGN AND METHODS The current review article was designed systematically in chronological order. Plants and their phytochemicals are discussed in an order concerning their mode of action. All the mechanisms of action are depicted in diagrams which are thoroughly generated by the Chembiodraw to maintain the integrity of the work. Moreover, by incorporating the recent data with simple language which is not incorporated previously, we tried to provide a molecular insight to the readers of every level and ethnicity. Moreover, Google Scholar, PubMed, ResearchGate, and Science Direct databases were used to collect the data. SOLUTION Traditionally, various plant extracts and bioactive compounds are effectively used against RA, but their comprehensive pharmacological mechanistic actions are rarely discussed. Therefore, the objective of this study is to systematically review the efficacy and proposed mechanisms of action of different plants and their bioactive compounds including Tripterygium wilfordii Hook F (celastrol and triptolide), Nigella sativa (thymoquinone), Zingiber officinale (shogaols, zingerone), Boswellia serrata (boswellic acids), Curcuma longa (curcumin), and Syzygium aromaticum (eugenol) against rheumatoid arthritis. CONCLUSION These plants have strong anti-inflammatory, anti-oxidant, and anti-arthritic effects in different study designs of rheumatoid arthritis with negligible side effects. Phytomedicines could revolutionize pharmacology as they act through alternative pathways hence seeming biocompatible.
Collapse
Affiliation(s)
- Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Fakiha Nazakat
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Chaudhary S, Sharma S, Fuloria S. A Panoramic Review on the Management of Rheumatoid Arthritis through Herbalism. Curr Rheumatol Rev 2025; 21:4-24. [PMID: 38591212 DOI: 10.2174/0115733971279100240328063232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 04/10/2024]
Abstract
Arthritis is a chronic inflammatory condition that affects millions of individuals worldwide. The conventional treatment options for arthritis often come with limitations and potential side effects, leading to increased interest in herbal plants as alternative therapies. This article provides a comprehensive overview of the use of herbal plants in arthritis treatment, focusing on their traditional remedies, active components, mechanisms of action, and pharmaceutical approaches for enhancing their delivery. Various herbal plants, including turmeric, ginger, Boswellia, and willow bark, have shown anti-inflammatory and analgesic properties, making them valuable options for managing arthritis symptoms. The active components of these herbal plants, such as curcumin, gingerols, and boswellic acids, contribute to their therapeutic effects. To enhance the delivery of herbal medicines, pharmaceutical approaches like nanoparticle-based drug delivery systems, liposomes, polymeric nanoparticles, nanoemulsions, microneedles, and inhalation systems have been explored. These approaches aim to improve bioavailability, targeted delivery, and controlled release of herbal compounds. Safety considerations, including potential interactions with medications and the risk of allergic reactions, are also discussed. Future perspectives for this field involve conducting well-designed clinical studies, enhancing standardization and quality control measures, exploring novel drug delivery systems, and fostering collaborations between traditional medicine practitioners and healthcare professionals. Continued research and development in these areas will help unlock the full potential of herbal plants in arthritis treatment, offering personalized and effective care for affected individuals.
Collapse
Affiliation(s)
- Shikha Chaudhary
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling Campus, Bedong, Kedah Aman, Malaysia
| |
Collapse
|
4
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
5
|
Kumar V, Sharma C, Taleuzzaman M, Nagarajan K, Haque A, Bhatia M, Khan S, Salkini MA, Bhatt P. Neuroprotective Effect of Boswellia serrata against 3-NP Induced Experimental
Huntington’s Disease. CURRENT BIOACTIVE COMPOUNDS 2024; 20. [DOI: 10.2174/0115734072272233231119161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2025]
Abstract
Objectives:
The study aimed to assess the neuroprotective effect of Boswellia serrata
against 3-NP-induced experimental Huntington’s disease.
Background:
Previous studies have shown Boswellia to have sedative, analgesic, and anti-tumour
effects. Boswellia serrata yields four pentacyclic triterpene acids and boswellic acid, a bioactive
substance that prevents leukotriene biogenesis.
Methods:
The potential neuroprotective effect of Boswellia serrata against 3-nitro propionic acid
(3-NP)-induced Huntington's disease (HD) was examined at oral doses of 45 mg/kg, 90 mg/kg,
and 180 mg/kg. In this study, HD was induced by 3-NP at a dose of 10 mg/kg in Wistar rats. The
study used 56 Wistar rats (8 per group) for biochemical (inflammatory markers, acetylcholinesterase
activity) and behavioural (elevated plus maze, Y-maze, open-field, tail suspension tests,
etc.) assessments. Additionally, a histological examination of the brain was carried out. In addition,
the analysis of Boswellia serrata extract was performed by different analytical techniques,
like UV spectrophotometer, FTIR, and HPLC methods.
Results:
In the brain, succinate dehydrogenase is a mitochondrial enzyme irreversibly inhibited
by 3-NP. Administration of 3-NP resulted in HD with altered behavioural and motor changes
in rats. Treatment with Boswellia serrata resulted in remarkable protection of rats against
3-NP-induced behaviour and motor deficits in a dose-dependent manner. Moreover, in rats
administered with 3-NP, Boswellia serrata improved memory performance and lowered levels of
inflammatory biomarkers. These results have also been supported by histopathological analysis.
Acetyl-11-keto-p-boswellic acid was found to be the main active component of Boswellia serrata
extract.
Conclusion:
Boswellia serrata at a dose of 180 mg/kg exhibited better protection compared to the
other doses against HD induced by 3-NP. More detailed studies based on molecular targets are
needed for the Boswellia serrata to transition from the bench to the bedside for use as an adjuvant
in HD patients.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Pharmacology, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-Meerut
Road (NH-58), Ghaziabad, 201206 (UP), India
| | - Chanchal Sharma
- Department of Pharmacology, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-Meerut
Road (NH-58), Ghaziabad, 201206 (UP), India
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana
Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342008, Rajasthan, India
| | - Kandasamy Nagarajan
- Department of Pharmaceutical
Chemistry, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-Meerut Road (NH-58),
Ghaziabad, 201206 (UP), India
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Dentistry and Pharmacy, P.O.
Box, 31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Mamta Bhatia
- Department of Pharmacognosy, Faculty of Pharmacy, Maulana Azad
University, Village Bujhawar, Tehsil Luni, Jodhpur 342008, Rajasthan, India
| | - Sumayya Khan
- Department of Pharmacology, Faculty
of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342008, Rajasthan, India
| | - Mohamad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 1194, Saudi
Arabia
| | - Pankaj Bhatt
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad-
Meerut Road (NH-58), Ghaziabad, 201206 (UP), India
| |
Collapse
|
6
|
Kosolapov D, Jáč P, Riasová P, Poušková J, Polášek M, Nováková L. Advances and Challenges in the Analysis of Boswellic Acids by Separation Methods. Crit Rev Anal Chem 2024:1-27. [PMID: 38462842 DOI: 10.1080/10408347.2024.2312502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Boswellia resin is an exudate from the cut bark of Boswellia trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, β-boswellic acid, 3-O-acetyl-α-boswellic acid, 3-O-acetyl-β-boswellic acid, 11-keto-β-boswellic acid, and 3-O-acetyl-11-keto-β-boswellic acid. Nowadays, dietary supplements with Boswellia serrata extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of Boswellia resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in Boswellia resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.
Collapse
Affiliation(s)
- Dmytro Kosolapov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Jáč
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Riasová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jitka Poušková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Miroslav Polášek
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
8
|
Interdonato L, Marino Y, Impellizzeri D, D’Amico R, Siracusa R, Fusco R, Cammilleri G, Pantano L, Modafferi S, Abdelhameed AS, Fritsch T, Rashan LJ, Cuzzocrea S, Calabrese V, Cordaro M, Di Paola R. Autophagy machinery plays an essential role in traumatic brain injury-induced apoptosis and its related behavioral abnormalities in mice: focus on Boswellia Sacra gum resin. Front Physiol 2024; 14:1320960. [PMID: 38250661 PMCID: PMC10797063 DOI: 10.3389/fphys.2023.1320960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is described as a structural damage or physiological disturbance of brain function that occurs after trauma and causes disability or death in people of all ages. New treatment targets for TBI are being explored because current medicines are frequently ineffectual and poorly tolerated. There is increasing evidence that following TBI, there are widespread changes in autophagy-related proteins in both experimental and clinical settings. The current study investigated if Boswellia Sacra Gum Resin (BSR) treatment (500 mg/kg) could modulate post-TBI neuronal autophagy and protein expression, as well as whether BSR could markedly improve functional recovery in a mouse model of TBI. Taken together our results shows for the first time that BSR limits histological alteration, lipid peroxidation, antioxidant, cytokines release and autophagic flux alteration induced by TBI.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ylenia Marino
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D’Amico
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gaetano Cammilleri
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, Italy
| | - Licia Pantano
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Luay J. Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah, Oman
| | - Salvatore Cuzzocrea
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Joseph A, Abhilash MB, Mulakal JN, Madhavamenon KI. Pharmacokinetics of a Natural Self-emulsifying Reversible Hybrid-Hydrogel (N'SERH) Formulation of Full-Spectrum Boswellia serrata Oleo-Gum Resin Extract: Randomised Double-Blinded Placebo-Controlled Crossover Study. Biol Pharm Bull 2024; 47:1583-1593. [PMID: 39343544 DOI: 10.1248/bpb.b24-00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The oleo-gum-resin of Boswellia serrata, an Ayurvedic herb for the treatment of chronic inflammatory diseases, contains both volatile (terpenes) and nonvolatile (boswellic acids) molecules as responsible for its bioactivity. The present randomized, double-blinded, placebo-controlled, crossover study evaluated the human pharmacokinetics of a 'natural' hybrid-hydrogel formulation of a unique full-spectrum boswellia extract (BFQ-20) (standardized for both volatile and nonvolatile bioactives) in comparison with unformulated extract (U-BE), for the first time. Mass spectrometry coupled with LC (UPLC-MS/MS) and gas chromatography (GC-MS/MS) measurements of the plasma concentration of boswellic acids and α-thujene at different post-administration time points followed by a single dose (400 mg) of U-BE and BFQ-20, to healthy volunteers (n = 16), offered 4-fold enhancement in the overall bioavailability of boswellic acids from BFQ-20, [area under the curve (AUC) (BFQ-20) = 9484.17 ± 767.82 ng * h/mL vs. AUC (U-BE) = 2365.87 ± 346.89 ng * h/mL], with the absorption maximum (Tmax) at 6.3 h post-administration and elimination half-life (T1/2) of 15.5 h (p < 0.001). While plasma α-thujene was not detectable upon U-BE administration, BFQ-20 provided significant absorption, [AUC (BFQ-20): 298.60 ± 35.48 ng * h/mL; Cmax: 68.80 ± 18.60 ng/mL; Tmax: 4.12 ± 0.38 h; T1/2: 16.24 ± 1.12 h]. Further investigation of the anti-inflammatory effect revealed 70.5% inhibition of paw edema in rats compared to 38.0% for U-BE. In summary, the natural self-emulsifying reversible hybrid-hydrogel (N'SERH) formulation of boswellia extract using fenugreek mucilage (FenuMat®) significantly increased the solubility (58-fold), stability, and bioavailability of both the volatile and non-volatile bioactives which in turn improved the anti-inflammatory efficacy of Boswellia extract.
Collapse
Affiliation(s)
- Ashil Joseph
- R&D Centre, Akay Bioactives, Akay Natural Ingredients Private Limited
| | | | | | | |
Collapse
|
10
|
Trivedi MK, Branton A, Trivedi D, Sharma T, Mondal S, Jana S. Simultaneous identification and quantification of pentacyclic triterpenoids and phenolic compounds from the leaves of Boswellia serrata using LC-MS/MS tandem mass spectrometry. ANAL SCI 2023; 39:1741-1756. [PMID: 37386278 DOI: 10.1007/s44211-023-00389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
Boswellia serrata (B. serrata) is an important medicinal plant widely used as dietary supplements to provide a support for osteoarthritic and inflammatory diseases. The occurrence of triterpenes in leaves of B. serrata is very little or none. Therefore, the qualitative and quantitative determination of phytoconstituents (triterpenes and phenolics) present in the leaves of B. serrata is very much needed. The aim of this study was to develop an easy, rapid, efficient and simultaneous liquid chromatography-mass spectrometry (LC-MS/MS) method for the identification and quantification of the compounds present in the leaves extract of B. serrata. The purification of ethyl acetate extracts of B. serrata was performed by solid phase extraction method, followed by HPLC-ESI-MS/MS analysis. Chromatographic parameters of the analytical method included negative electrospray ionization (ESI-) with a flow of 0.5 mL/min in gradient mode consisting of acetonitrile (A) and water (B) containing 0.1% formic acid, at 20 °C. Total 19 compounds (13 triterpenes and 6 phenolic compounds) were separated, and simultaneously quantified using a validated LC-MS/MS method with high accuracy and sensitivity. Good linearity was obtained with r2 > 0.973 in the calibration range. The overall recoveries were in a range between 95.78 and 100.2% with relative standard deviations (RSD) below 5% for the entire procedure of matrix spiking experiments. Overall, there was no ion suppression from the matrix. The quantification data showed that the total amount of triterpenes and phenolic compounds in the leaves of B. serrata ethyl acetate extract samples ranged from 14.54 to 102.14 mg/g and 2.14 to 93.12 mg/g of dry extract, respectively. This work provides, for the first time, a chromatographic fingerprinting analysis on the leaves of B. serrata. A rapid, efficient, and simultaneous liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and used for the both identification and quantification of triterpenes and phenolic compounds in the leaves extracts of B. serrata. The method established in this work can be used as quality-control method for other market formulations or dietary supplements containing leaf extract of B. serrata.
Collapse
Affiliation(s)
| | | | | | | | - Sambhu Mondal
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, Maharashtra, India
| | - Snehasis Jana
- Trivedi Science Research Laboratory Pvt. Ltd., Thane, Maharashtra, India.
| |
Collapse
|
11
|
Obiștioiu D, Hulea A, Cocan I, Alexa E, Negrea M, Popescu I, Herman V, Imbrea IM, Heghedus-Mindru G, Suleiman MA, Radulov I, Imbrea F. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants (Basel) 2023; 12:1807. [PMID: 37891886 PMCID: PMC10603989 DOI: 10.3390/antiox12101807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The research aimed to determine the chemical composition, the antioxidant and anti-inflammatory activity as well as the antimicrobial activity against Gram-positive, Gram-negative and two fungal Candida ATCC strains of a commercial Boswellia essential oil (BEO) containing Boswellia carteri, Boswellia sacra, Boswellia papryfera, and Boswellia frereana. Additionally, molecular docking was carried out to show the molecular dynamics of the compounds identified from the essential oil against three bacterial protein targets and one fungal protein target. The major components identified by GC-MS (Gas Chromatography-Mass Spectrometry) were represented by α-pinene, followed by limonene. Evaluation of antioxidant activity using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) method showed high inhibition comparable to the synthetic antioxidant used as a control. Oxidative stability evaluation showed that BEO has the potential to inhibit primary and secondary oxidation products with almost the same efficacy as butylated hydroxyanisole (BHA). The use of BEO at a concentration of 500 ppm provided the best protection against secondary oxidation during 30 days of storage at room temperature, which was also evident in the peroxide value. Regarding the in vitro anti-inflammatory activity, the membrane lysis assay and the protein denaturation test revealed that even if the value of protection was lower than the value registered in the case of dexamethasone, the recommendation of using BEO as a protective agent stands, considering the lower side effects. Gram-positive bacteria proved more sensitive, while Pseudomonas aeruginosa presented different sensitivity, with higher MICs (minimal inhibitory concentration). Haemophilus influenzae demonstrated a MIC at 2% but with consecutive inhibitory values in a negative correlation with the increase in concentration, in contrast to E. coli, which demonstrated low inhibitory rates at high concentrations of BEO. The computational tools employed revealed interesting binding energies with compounds having low abundance. The interaction of these compounds and the proteins (tyrosyl-tRNA synthetase, DNA gyrase, peptide deformylase, 1,3-β-glucan synthase) predicts hydrogen bonds with amino acid residues, which are reported in the active sites of the proteins. Even so, compounds with low abundance in BEO could render the desired bioactive properties to the overall function of the oil sustained by physical factors such as storage and temperature. Interestingly, the findings from this study demonstrated the antioxidant and antimicrobial potential of Boswellia essential oil against food-related pathogens, thus making the oil a good candidate for usage in food, feed or food-safety-related products.
Collapse
Affiliation(s)
- Diana Obiștioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Gabriel Heghedus-Mindru
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| |
Collapse
|
12
|
Cometa S, Busto F, Castellaneta A, Cochis A, Najmi Z, Rizzi R, Losito I, De Giglio E. Development, Analytical Characterization, and Bioactivity Evaluation of Boswellia serrata Extract-Layered Double Hydroxide Hybrid Composites. Molecules 2023; 28:6449. [PMID: 37764225 PMCID: PMC10537998 DOI: 10.3390/molecules28186449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Boswellia serrata Roxb. extract (BSE), rich in boswellic acids, is well known as a potent anti-inflammatory natural drug. However, due to its limited aqueous solubility, BSE inclusion into an appropriate carrier, capable of improving its release in the biological target, would be highly desirable. Starting with this requirement, new hybrid composites based on the inclusion of BSE in a lamellar solid layered double hydroxide (LDH), i.e., magnesium aluminum carbonate, were developed and characterized in the present work. The adopted LDH exhibited a layered crystal structure, comprising positively charged hydroxide layers and interlayers composed of carbonate anions and water molecules; thus, it was expected to embed negatively charged boswellic acids. In the present case, a calcination process was also adopted on the LDH to increase organic acid loading, based on the replacement of the original inorganic anions. An accurate investigation was carried out by TGA, PXRD, FT-IR/ATR, XPS, SEM, and LC-MS to ascertain the nature, interaction, and quantification of the active molecules of the vegetal extract loaded in the developed hybrid materials. As a result, the significant disruption of the original layered structure was observed in the LDH subjected to calcination (LDHc), and this material was able to include a higher amount of organic acids when its composite with BSE was prepared. However, in vitro tests on the composites' bioactivity, expressed in terms of antimicrobial and anti-inflammatory activity, evidenced LDH-BSE as a better material compared to BSE and to LDHc-BSE, thus suggesting that, although the embedded organic acid amount was lower, they could be more available since they were not firmly bound to the clay. The composite was able to significantly decrease the number of viable pathogens such as Escherichia coli and Staphylococcus aureus, as well as the internalization of toxic active species into human cells imposing oxidative stress, in comparison to the BSE.
Collapse
Affiliation(s)
| | - Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (F.B.); (A.C.); (I.L.)
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Andrea Castellaneta
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (F.B.); (A.C.); (I.L.)
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (A.C.); (Z.N.)
| | - Ziba Najmi
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (A.C.); (Z.N.)
| | - Rosanna Rizzi
- Institute of Crystallography, National Research Council (CNR), Via G. Amendola, 122/o, 70126 Bari, Italy;
| | - Ilario Losito
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (F.B.); (A.C.); (I.L.)
- SMART Inter-Department Research Center, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; (F.B.); (A.C.); (I.L.)
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
- SMART Inter-Department Research Center, University of Bari, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
13
|
Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, Setzer WN, Faizal Abdull Razis A, Modu B, Butnariu M, Sharifi-Rad J. Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol 2023; 14:1187181. [PMID: 37601048 PMCID: PMC10434769 DOI: 10.3389/fphar.2023.1187181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of highly effective plant-based medications with few or no side effects, the use of phytomedicines against complex diseases such as cancer is becoming more widespread. The broadly recognized pentacyclic triterpenes known as boswellic acids (BAs) are derived from the oleogum resin, or frankincense, extracted from the plant species of the genus Boswellia. The frankincense mixture contains various BA types, each having a different potential and helping treat certain cancers. This review focuses on details regarding the traits of the BAs, their roles as anti-cancer agents, the mechanism underlying their activities, and the function of their semi-synthetic derivatives in managing and treating certain cancers. The review also explores the biological sources of BAs, how they are conserved, and how biotechnology might help preserve and improve in vitro BA production. The review concludes that the BAs and their semi-synthetic derivatives are effective against a broad spectrum of cancer cell lines. The detailed information in the review can be helpful for researchers to gain more information about BAs and BA-based medications for efficient and cost-effective cancer treatments.
Collapse
Affiliation(s)
- Vijay Laxmi Trivedi
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Ruchi Soni
- Regional Centre for Organic and Natural Farming, Ghaziabad, Uttar Pradesh, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni Sureda
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, Palma de Mallorca, Spain
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” From Timisoara, Timis, Romania
| | | |
Collapse
|
14
|
Elhaddad HM, Hammoda HM, Ghareeb DA, Mahmoud FA, Hussein A, Yousef MI, Darwish RS, Shawky E. Investigating the effect of extraction procedure on the anti-inflammatory metabolites of olibanum resin from different Boswellia species through LC–MS/MS-based metabolomics. FOOD BIOSCI 2023; 53:102668. [DOI: 10.1016/j.fbio.2023.102668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
15
|
Badr P, Afsharypuor S, Tohidinik HR, Mohammadi AA, Daneshamouz S. Burn Wound Healing Effect of a Sterilized Traditional Formulation of Boswellia carteri vs. Silver Sulfadiazine Cream 1% in Patients Presenting Second-degree Burn Wounds: A Randomized, Double-blind Clinical Trial. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:137-145. [PMID: 36895452 PMCID: PMC9989234 DOI: 10.30476/ijms.2022.91853.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/01/2021] [Accepted: 01/30/2022] [Indexed: 03/11/2023]
Abstract
Background Burn wounds rank among the most serious healthcare issues. Many studies reported the effectiveness of natural products in the wound-healing process. The present study compared the effects of a standardized herbal formulation derived from Boswellia carteri (B. carteri) and silver sulfadiazine (SSD) cream 1% on the healing of burn wounds. Methods This randomized double-blind clinical trial was conducted at Shiraz Burn Hospital (Shiraz, Iran) between July 2012 to August 2013. A sterilized formulation comprising B. carteri 40% was prepared. 54 second-degree burn patients of both sexes with age ranges of 20 to 60 were invited to participate in this double-blind, randomized clinical trial. They were randomly divided into two groups and given either the Boswellia formulation or SSD cream. The healing index was determined based on the wound area assessment using the planimetry technique. The Kaplan-Meier survival analysis was used to assess the primary outcome, which was the amount of time until complete healing. Results The trial was completed by 17 patients from the SSD group and 15 patients from the Boswellia group. During the study period, both groups showed a progressive healing trend. The mean (95% CI) healing time in the SSD group was 10.94 (9.03-12.85) days and 10.73 (9.23-12.23) days in the Boswellia group (P=0.71), indicating no significant difference. On the 17th day, the healing index of all patients in the Boswellia group reached 1. Conclusion Boswellia topical formulation had a burn wound healing effect comparable to that of the standard SSD 1% treatment. Based on the findings of this study, the likelihood of contact dermatitis with Boswellia should be taken into consideration.
Collapse
Affiliation(s)
- Parmis Badr
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Suleiman Afsharypuor
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Tohidinik
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Rehman NU, Ullah S, Alam T, Halim SA, Mohanta TK, Khan A, Anwar MU, Csuk R, Avula SK, Al-Harrasi A. Discovery of New Boswellic Acid Hybrid 1 H-1,2,3-Triazoles for Diabetic Management: In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:229. [PMID: 37259377 PMCID: PMC9960759 DOI: 10.3390/ph16020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 07/25/2023] Open
Abstract
A series of 24 new 1H-1,2,3-triazole hybrids of 3-O-acetyl-11-keto-β-boswellic acid (β-AKBA (1)) and 11-keto-β-boswellic acid (β-KBA (2)) was designed and synthesized by employing "click" chemistry in a highly efficient manner. The 1,3-dipolar cycloaddition reaction between β-AKBA-propargyl ester intermediate 3 or β-KBA-propargyl ester intermediate 4 with substituted aromatic azides 5a-5k in the presence of copper iodide (CuI) and Hünig's base furnished the desired products-1H-1,2,3-triazole hybrids of β-AKBA (6a-6k) and β-KBA (7a-7k)-in high yields. All new synthesized compounds were characterized by 1H-, 13C-NMR spectroscopy, and HR-ESI-MS spectrometry. Furthermore, their α-glucosidase-inhibitory activity was evaluated in vitro. Interestingly, the results obtained from the α-glucosidase-inhibitory assay revealed that all the synthesized derivatives are highly potent inhibitors, with IC50 values ranging from 0.22 to 5.32 µM. Among all the compounds, 6f, 7h, 6j, 6h, 6g, 6c, 6k, 7g, and 7k exhibited exceptional inhibitory potency and were found to be several times more potent than the parent compounds 1 and 2, as well as standard acarbose. Kinetic studies of compounds 6g and 7h exhibited competitive and mixed types of inhibition, with ki values of 0.84 ± 0.007 and 1.18 ± 0.0012 µM, respectively. Molecular docking was carried out to investigate the binding modes of these compounds with α-glucosidase. The molecular docking interactions indicated that that all compounds are well fitted in the active site of α-glucosidase, where His280, Gln279, Asp215, His351, Arg442, and Arg315 mainly stabilize the binding of these compounds. The current study demonstrates the usefulness of incorporating a 1H-1,2,3-triazole moiety into the medicinally fascinating boswellic acids skeleton.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saeed Ullah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Tanveer Alam
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sobia Ahsan Halim
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Tapan Kumar Mohanta
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad U. Anwar
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Satya Kumar Avula
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
17
|
Karlapudi V, Sunkara KB, Konda PR, Sarma KV, Rokkam MP. Efficacy and Safety of Aflapin®, a Novel Boswellia Serrata Extract, in the Treatment of Osteoarthritis of the Knee: A Short-Term 30-Day Randomized, Double-Blind, Placebo-Controlled Clinical Study. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:159-168. [PMID: 35512759 DOI: 10.1080/07315724.2021.2014370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Aflapin®, also known as AprèsFlex® was developed as an enhanced bioavailable extract of Boswellia serrata gum resin, standardized to 20% 3-O-acetyl-11-keto-β-boswellic acid. This randomized, double-blind, placebo-controlled clinical trial confirms the efficacy of Aflapin in ameliorating the symptoms of osteoarthritis (OA) of the knee. METHODS Based on the inclusion/exclusion criteria of the American College of Rheumatology, seventy subjects were recruited and randomized into Placebo (n = 35) and Aflapin (n = 35) groups. Subjects received either 100 mg Aflapin or a placebo for 30 days. All subjects were evaluated for pain and physical function using the standard tools i.e., Visual Analog Scale (VAS), Lequesne Functional Index (LFI), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) at the baseline (Day 0), 5, and 30 days of treatment. Additionally, several inflammatory and cartilage biomarkers, including matrix metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNFα), high-sensitive C-reactive protein (hsCRP), Cartilage Oligomeric Matrix Protein (COMP), and collagen type II cleavage (C2C) were evaluated. Total blood chemistry analyses were conducted to affirm the safety of Aflapin. RESULTS Sixty-seven subjects completed the study. Aflapin conferred significant improvements in pain scores as early as five days of treatment. Post-trial, VAS, LFI, WOMAC pain, WOMAC stiffness, WOMAC function, and total WOMAC scores decreased in the Aflapin group by 45%, 40.9%, 44.4%, 66.3%, 44.4%, and 48%, respectively. Aflapin supplementation also reduced circulating MMP-3, TNFα, hsCRP, and C2C. CONCLUSION This investigation affirms that Aflapin is clinically efficacious, fast-acting, and safe in the management of osteoarthritis. No significant adverse effects were observed.
Collapse
Affiliation(s)
- Vasu Karlapudi
- Department of Orthopedics, Pujitha Hospital, Vijayawada, India
| | | | | | - Kadainti V Sarma
- Department of Statistics, Sri. Venkateswara University, Tirupati, India
| | | |
Collapse
|
18
|
Seepe HA, Raphoko L, Amoo SO, Nxumalo W. Lantadene A and boswellic acid isolated from the leaves of Lantana camara L. have the potential to control phytopathogenic Fusarium species. Heliyon 2022; 8:e12216. [PMID: 36582687 PMCID: PMC9792760 DOI: 10.1016/j.heliyon.2022.e12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/04/2022] [Accepted: 11/30/2022] [Indexed: 12/16/2022] Open
Abstract
Phytopathogenic Fusarium species are restricting factors causing diseases and yield loss in crop production. As part of exploration for pesticides from medicinal plants, this study aimed to isolate and characterize bioactive compounds from Lantana camara L. and evaluate their efficiency against Fusarium phytopathogens. Phytochemical investigation of ethyl acetate leaf extract led to separation of lantadene A (22-angeloyloxy-9-hydroxy-3-oxo-olean-12-en-28-oic acid) and boswellic acid (11-keto-β-boswellic acid). The chemical structures of the aforementioned compounds were confirmed using physical properties, spectroscopic analysis, and published data. Lantadene A exhibited significant antifungal activity against F. subglutinans, F. proliferatum, F. solani, F. graminearum, and F. semitectum with minimum inhibitory concentration (MIC) less than or equal to 0.63 mg/mL. Boswellic acid exhibited strong activity (MIC = 0.63 mg/mL) against F. subglutinans and F. semitectum. In terms of their toxicity towards Raw 264.7 cells, lantadene A and boswellic acid recorded half-maximal inhibitory concentration values of 84.2 μg/mL and 186.6 μg/mL, respectively. Both lantadene A and boswellic acid had no phytotoxic effect against seed germination and seedling root length. Lantadene A and boswellic acid have strong potential to be further investigated as lead natural fungicides (biopesticides) to control Fusarium crop diseases.
Collapse
Affiliation(s)
- Hlabana Alfred Seepe
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa,Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa,Döhne Agricultural Development Institute, Plant and Crops Production Research, Private Bag X 15, Stutterheim, 4930, South Africa,Corresponding author.
| | - Lerato Raphoko
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa,Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa,Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Winston Nxumalo
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| |
Collapse
|
19
|
Albekairi TH, Kamra A, Bhardwaj S, Mehan S, Giri A, Suri M, Alshammari A, Alharbi M, Alasmari AF, Narula AS, Kalfin R. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington's Disease. Biomedicines 2022; 10:2866. [PMID: 36359390 PMCID: PMC9687177 DOI: 10.3390/biomedicines10112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 10/01/2023] Open
Abstract
Huntington's disease (HD) is distinguished by a triple repeat of CAG in exon 1, an increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated that beta Boswellic acid (β-BA), a naturally occurring phytochemical, has several neuroprotective properties that can reduce pathogenic factors associated with various neurological disorders. The current investigation aimed to investigate the neuroprotective potential of β-BA at oral doses of 5, 10, and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally) in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP, at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1 and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical, and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity, and neurochemical alterations. β-BA, when taken with vitamin E, improved behavioural dysfunctions such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities. Pharmacological treatments with β-BA improved and restored ETC complexes enzymes I, II, and V levels in brain homogenates. β-BA treatment also restored neurotransmitter levels in the brain while lowering inflammatory cytokines and oxidative stress biomarkers. β-BA's neuroprotective potential in reducing neuronal death was supported by histopathological findings in the striatum and cortex. As a result, the findings of this research contributed to a better understanding of the potential role of natural phytochemicals β-BA in preventing neurological illnesses such as HD.
Collapse
Affiliation(s)
- Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arzoo Kamra
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sudeep Bhardwaj
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
20
|
Suther C, Devon L, Daddi L, Matson A, Panier H, Yuan H, Saar K, Bokoliya S, Dorsett Y, Sela DA, Beigelman A, Bacharier LB, Moore MD, Zhou Y. Dietary Indian frankincense (Boswellia serrata) ameliorates murine allergic asthma through modulation of the gut microbiome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
21
|
Fekry M, Elmesallamy SM, El-Rahman NRA, Bekhit M, Elsaied HA. Eco-friendly adsorbents based on abietic acid, boswellic acid, and chitosan/magnetite for removing waste oil from the surface of the water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64633-64646. [PMID: 35474426 PMCID: PMC9481516 DOI: 10.1007/s11356-022-20169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Petroleum oil leakage and industrial oily waste on the water surface are sustainable pollutions. The removal process by eco-friendly adsorbents is a critical challenge. It also requires sustainable treatment. The natural hydrophobic material such as abietic acid, boswellic acid, and chitosan was added to magnetite nanoparticles with different concentrations of 10, 15, and 20% on its surface. The magnetite acquires partially hydrophobic properties. The prepared natural adsorbents were analyzed by employing wide-angle X-ray diffraction (WAXD), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), particle size and zeta potential, and contact angle measurements. Chitosan adsorbs at the outer surface of magnetite nanoparticles while boswellic and abietic absorb in bulk. All prepared adsorbents are effective in adsorbing waste oil from the water surface. The contact angle of MB20 (magnetite/20 percent boswellic) is greater than that of MA20 and MC20 (magnetite/20% abietic or chitosan, respectively), indicating that it has more hydrophobic characteristics. The oil removal efficiency and adsorption capacity of MB20 are the highest values 57.6%, and 24 g/g, respectively. All eco-friendly adsorbents are nontoxic with low-cost production and are used many times.
Collapse
Affiliation(s)
- Mohamed Fekry
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.
| | - Salwa M Elmesallamy
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Nasser R Abd El-Rahman
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Mahmoud Bekhit
- Surfactant Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Hend Alaidy Elsaied
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| |
Collapse
|
22
|
Repression of inflammatory pathways with Boswellia for alleviation of liver injury after renal ischemia reperfusion. Life Sci 2022; 306:120799. [PMID: 35863426 DOI: 10.1016/j.lfs.2022.120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
AIM Acute kidney injury (AKI) is a sudden incident that is linked with a high lethality rate commonly due to distant organ injury. This study aims to explore the role of standardized Boswellia serrata (containing 35 % boswellic acid) in attenuating kidney and liver damage in a model of rats with renal insult. MAIN METHODS Sprague-Dawley rats, exposed to renal injury via ischemia-reperfusion model, were administered a daily regimen of 1000 or 2000 mg/kg Boswellia for seven days then rats were sacrificed on day eight. Alanine aminotransferase, aspartate aminotransferase, serum creatinine and blood urea nitrogen, were assayed. TLR9, oxidative stress markers; namely MDA and GSH, inflammatory cytokines; namely, IL-6, IL-1β, and TNF-α, as well as NF-κB were also measured. KEY FINDINGS Renal ischemia-reperfusion injury (IRI) impaired renal and liver function significantly, but Boswellia attenuated this impairment in a dose-dependent fashion. Histopathological assessment of kidney and liver confirmed that Boswellia decreased damage severity. A marked increase in TLR9, NF-κB, IL-6, IL-1β, TNF-α, and MDA besides decreased GSH levels were observed in the kidney and liver after renal IRI. Boswellia attenuated increases in TLR9, NF-κB, IL-1β, TNF-α, and IL-6 and boosted antioxidant defences via decreasing MDA and increasing GSH in kidney and liver. Anti-inflammatory and antioxidant effects of Boswellia were mostly comparable to those of silymarin. SIGNIFICANCE We conclude that the anti-inflammatory and antioxidant effects of Boswellia could be beneficial in ameliorating kidney and liver damage after AKI and that TLR9 might be the connection that signals liver injury in response to renal damage.
Collapse
|
23
|
Kirdeeva Y, Fedorova O, Daks A, Barlev N, Shuvalov O. How Should the Worldwide Knowledge of Traditional Cancer Healing Be Integrated with Herbs and Mushrooms into Modern Molecular Pharmacology? Pharmaceuticals (Basel) 2022; 15:868. [PMID: 35890166 PMCID: PMC9320176 DOI: 10.3390/ph15070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional herbal medicine (THM) is a "core" from which modern medicine has evolved over time. Besides this, one third of people worldwide have no access to modern medicine and rely only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine, vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included in most chemotherapeutic regimes. To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities have not been studied in detail. In this review, we systematized the information about plants and mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms are divided based on the regions where they are used in ethnomedicine to treat malignancies. The majority of their active compounds with antineoplastic properties and mechanisms of action are described. Furthermore, on the basis of the available information, we divided them into two priority groups for research and for their potential of use in antitumor therapy. As there are many prerequisites and some examples how THM helps and strengthens modern medicine, finally, we discuss the positive points of THM and the management required to transform and integrate THM into the modern medicine practice.
Collapse
Affiliation(s)
- Yulia Kirdeeva
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
| | - Nikolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.K.); (O.F.); (A.D.)
- Orekhovich Institute of Biomedical Chemistry, 119435 Moscow, Russia
| |
Collapse
|
24
|
Almeida-da-Silva CLC, Sivakumar N, Asadi H, Chang-Chien A, Qoronfleh MW, Ojcius DM, Essa MM. Effects of Frankincense Compounds on Infection, Inflammation, and Oral Health. Molecules 2022; 27:molecules27134174. [PMID: 35807419 PMCID: PMC9268443 DOI: 10.3390/molecules27134174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Boswellia trees, found throughout the Middle East and parts of Africa and Asia, are the source of frankincense oil. Since antiquity, frankincense has been traded as a precious commodity, but it has also been used for the treatment of chronic disease, inflammation, oral health, and microbial infection. More recently, the bioactive components of Boswellia trees have been identified and characterized for their effects on cancer, microbial infection (especially infection by oral pathogens), and inflammation. Most studies have focused on cell lines, but more recent research has also investigated effects in animal models of disease. As natural products are considered to be safer than synthetic drugs, there is growing interest in further developing the use of substances such as frankincense oil for therapeutic treatment.
Collapse
Affiliation(s)
- Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
| | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman;
| | - Homer Asadi
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
| | - Anna Chang-Chien
- Dental Surgery Program, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA;
| | - M. Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha 0974, Qatar;
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA 94103, USA; (C.L.C.A.-d.-S.); (H.A.)
- Correspondence:
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
| |
Collapse
|
25
|
Pudziuvelyte L, Siauruseviciute A, Morkuniene R, Lazauskas R, Bernatoniene J. Influence of Technological Factors on the Quality of Chitosan Microcapsules with Boswellia serata L. Essential Oil. Pharmaceutics 2022; 14:pharmaceutics14061259. [PMID: 35745831 PMCID: PMC9227605 DOI: 10.3390/pharmaceutics14061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Essential oils contain many volatile compounds that are not stable and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect Boswellia serrata L. essential oil from environmental factors by encapsulation and determine the influence of chitosan concentration and types (2%, 4%; medium and high molecular weights), essential oil concentration, different emulsifiers (Tween and Span), and technological factors (stirring time, launch height, drip rate) on the physical parameters, morphology, texture, and other parameters of the generated gels, emulsions, and microcapsules. For the first time, Boswellia serrata L. essential oil microcapsules with chitosan were prepared by coacervation. Hardness, consistency, stickiness, viscosity, and pH of chitosan gels were tested. Freshly obtained microcapsules were examined for moisture, hardness, resistance to compression, size, and morphology. Results show that different molecular weights and concentrations of chitosan affected gel hardness, consistency, stickiness, viscosity, mobility, and adhesion. An increase in chitosan concentration from 2% to 4% significantly changed the appearance of the microcapsules. It was found that spherical microcapsules were formed when using MMW and HMW 80/1000 chitosan. Chitosan molecular weight, concentration, essential oil concentration, and stirring time all had an impact on the hardness of the microcapsules and their resistance to compression.
Collapse
Affiliation(s)
- Lauryna Pudziuvelyte
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Aiste Siauruseviciute
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Ramune Morkuniene
- Department of Drug Chemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Robertas Lazauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickeviciaus 7, LT-44307 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
- Correspondence:
| |
Collapse
|
26
|
Thabet NM, Abdel-Rafei MK, Moustafa EM. Boswellic acid protects against Bisphenol-A and gamma radiation induced hepatic steatosis and cardiac remodelling in rats: role of hepatic PPAR-α/P38 and cardiac Calcineurin-A/NFATc1/P38 pathways. Arch Physiol Biochem 2022; 128:767-785. [PMID: 32057248 DOI: 10.1080/13813455.2020.1727526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA) and gamma-radiation are two risky environmental pollutants that human beings are exposed to in everyday life and consequently they threaten human health via inducing oxidative stress, inflammation, and eventually tissue damage. This study aims at appraising the protective effect of Boswellic Acid (BA) (250 mg/kg/day, orally) administration on BPA (150 mg/kg/day, i.p) and γ-irradiation (IR) (3 Gy/week for 4 weeks up to cumulative dose of 12 Gy/experimental course) for 4 weeks-induced damage to liver and heart tissues of rats. The present results indicated a significant improvement against damage induced by BPA and IR revealed in biochemical investigations (hepatic PPAR-α/P38 and cardiac ET-1/Calcineurin-A/NFATc1/P38) and histopathological examination of liver and heart. It could be concluded that BA possesses a protective effect against these two deleterious environmental pollutants which attracted major global concerns due to their serious toxicological impact on human health.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
27
|
Deswal M, Deswal P, Laura J. Study on heavy metals in some Ayurvedic herbal products and risk assessment of their calculated average daily dose intake in humans. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Acetyl-11-Keto- β-Boswellic Acid (AKBA) Prevents Lipopolysaccharide-Induced Inflammation and Cytotoxicity on H9C2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2620710. [PMID: 35399644 PMCID: PMC8986374 DOI: 10.1155/2022/2620710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Acetyl-11-keto-beta-boswellic acid (AKBA), the major component of Boswellia serrata, exhibits anti-inflammatory activities. This in vitro study investigated the protective effects of AKBA against lipopolysaccharide (LPS)-induced cardiac dysfunction. In this study, the H9C2 cardiomyocytes were pretreated with AKBA (2.5, 5, and 10 μM for 24 h), and then cotreated with LPS for another 24 h. The MTT assay, ELISA test kits, and quantitative real-time PCR analysis assessed the cell viability, levels of proinflammatory factors (IL-β, IL-6, TNF- α, and PGE2), and the gene expression of IL-β, IL-6, TNF- α, iNOS, and COX-2, respectively. The nitric oxide (NO) and thiol levels were also measured using a biochemical assay. The results indicated that LPS exposure markedly reduced cell viability and total thiol content, but increased the inflammatory cytokines, NO metabolites, and gene expression of proinflammatory mediators in H9C2 cells. AKBA pretreatment significantly altered the mentioned factors induced by LPS. Our results demonstrated that AKBA might be a promising therapeutic agent for treating sepsis-related cardiac dysfunction in the future.
Collapse
|
29
|
In Vivo Antiinflammatory Activity of Facile Boswellic Acid Silver Nanoparticles and In Vitro Drug Release Kinetics. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Alasbahi RH, Groot MJ. Ethnoveterinary Uses of Certain Yemeni Plants: A Review of the Scientific Evidence. PLANTA MEDICA 2022; 88:237-253. [PMID: 34598289 DOI: 10.1055/a-1612-4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Livestock is an important and integral component of agriculture production in Yemen and contributes 28% of the total agricultural production income. Research in the field of Yemeni ethnoveterinary medicine is limited to a few studies. Therefore, our work aims to substantiate scientifically the ethnoveterinary use of some documented plant species based on a literature review of their bioactivities and toxicological properties. Searching the scientific literature has revealed various pharmacological activities that may support the claimed healing activities of 11 out of 14 plant species for some of their ethnoveterinary utilization. This comprises the use of Aloe spp. latex for constipation, worms, boils, and wounds; Boswellia sacra underbark for wounds and its oleo-gum resin for mastitis; Soqotraen Boswellia species as an insect repellent; Cissus rotundifolia for stomach pain; Cyphostemma digitatum as an appetite stimulant; Psiadia punctulate for bone fracture; Pulicaria undulata as an insect repellent; combinations of Aristolochia bracteolate with Sorghum bicolor grains for bloating; Rumex nervosus and salt for eye pimples; and Trigonella foenum-graecum seeds with Hordeum vulgare grains for constipation. Some plants were found to demonstrate various toxic effects in in vivo and in vitro experimental studies. The local administration of Calotropis procera latex was also reported to induce an intense inflammatory response. It can be concluded that our work has provided valuable scientific information on the biological and toxic activities of some Yemeni ethnoveterinary remedies that could be utilized for the benefit of farmers to ration the use of these remedies and avoiding their toxicity.
Collapse
Affiliation(s)
- Rawiya H Alasbahi
- Department of Pharmacognosy, Faculty of Pharmacy, Aden University, Khormaksar, Aden, Yemen
| | - Maria J Groot
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
31
|
Gupta M, Mishra V, Gulati M, Kapoor B, Kaur A, Gupta R, Tambuwala MM. Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology 2022; 30:397-434. [PMID: 35212849 PMCID: PMC8948151 DOI: 10.1007/s10787-022-00931-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology. Several conventional treatments for UC such as corticosteroids, immunosuppressive agents, tumor necrosis factor antagonist, integrin blockers, and interleukin antagonist, and salicylates are available but are associated with the various limitations and side-effects. None of the above treatments helps to achieve the ultimate goal of the therapy, i.e., maintenance of remission in the long-term. Natural remedies for the treatment of UC show comparatively less side effects as compared to conventional approaches, and affordable. The current review presents details on the role of herbal drugs in the treatment and cure of UC. Google, PubMed, Web of Science, and Scopus portals have been searched for potentially relevant literature to get the latest developments and updated information related to use of natural drugs in the treatment of UC. Natural products have been used over centuries to treat UC. Some of the essential herbal constituents exhibiting antiulcerogenic activity include gymnemic acid (Gymnema sylvestre), shagoal (Zingiber officinale), catechin (Camellia sinensis), curcumin (Curcuma longa), arctigenin (Arctium lappa), and boswellic acid (Boswellia serrata). Although many plant-derived products have been recommended for UC, further research to understand the exact molecular mechanism is still warranted to establish their usefulness clinically.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Amrinder Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| |
Collapse
|
32
|
Khajehdehi M, Khalaj-Kondori M, Baradaran B. Molecular evidences on anti-inflammatory, anticancer, and memory-boosting effects of frankincense. Phytother Res 2022; 36:1194-1215. [PMID: 35142408 DOI: 10.1002/ptr.7399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
Chemical diversity of natural products with drug-like features has attracted much attention from medicine to develop more safe and effective drugs. Their anti-inflammatory, antitumor, analgesic, and other therapeutic properties are sometimes more successful than chemical drugs in controlling disease due to fewer drug resistance and side effects and being more tolerable in a long time. Frankincense, the oleo gum resin extracted from the Boswellia species, contains some of these chemicals. The anti-inflammatory effect of its main ingredient, boswellic acid, has been traditionally used to treat many diseases, mainly those target memory functions. In this review, we have accumulated research evidence from the beneficial effect of Frankincense consumption in memory improvement and the prevention of inflammation and cancer. Besides, we have discussed the molecular pathways mediating the therapeutic effects of this natural supplement.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Bahmanpour S, Keshavarz M, Koohpeyma F, Badr P, Noori A, Dabbaghmanesh MH, Poordast T, Najib FS, Zare N, Namazi N, Jahromi BN. Preserving effect of Loboob (a traditional multi-herbal formulation) on sperm parameters of male rats with busulfan-induced subfertility. JBRA Assist Reprod 2022; 26:574-582. [PMID: 34995049 PMCID: PMC9635600 DOI: 10.5935/1518-0557.20210099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Male infertility secondary to exposure to gonadotoxic agents during reproductive age is a concerning issue. The aim of this experimental study was to determine the effect of Loboob on sperm parameters. METHODS 55 healthy rats were selected, weighted and divided into five groups consisting of 11 rats each. The control group received no medication. Rats in Treatment Group 1 received 10mg/kg Busulfan and rats in Treatment Groups 2, 3, and 4 received 35,70 and 140 mg/kg Loboob respectively in addition to 10mg/kg Busulfan. Finally, the sperm parameters and weights of the rats were compared using the Kolmogorov-Smirnov, non-parametric Kruskal-Wallis, and Dunn-Bonferroni tests. RESULTS All sperm parameters and weights were significantly decreased among rats receiving Busulfan. All dosages of Loboob were effective to enhance the motility of slow spermatozoa, while only in the rats given 70 and 140 mg/kg of Loboob saw improvements in progressively motile sperm percentages (0.024 and 0.01, respectively). Loboob at a dosage of 140mg/kg improved sperm viability. It did not improve normal morphology sperm or decrease immotile sperm counts. Loboob did not affect mean rat weight. CONCLUSIONS Loboob offered a dose-dependent protective effect on several sperm parameters in rats with busulfan-induced subfertility.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Anatomy Department, School of Medicine, Shiraz University of
Medical Sciences, Shiraz, Iran , Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran
| | - Mojtaba Keshavarz
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran , Phytopharmaceutical Technology and Traditional Medicine Incubator,
Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adel Noori
- Student Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Tahereh Poordast
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Najib
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Najaf Zare
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Biostatistics, School of Medicine, Shiraz University
of Medical Sciences, Shiraz, Iran
| | - Niloofar Namazi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran ,Corresponding author: Bahia Namavar Jahromi Department
of OB-GYN School of Medicine Shiraz University of Medical Sciences Shiraz, Iran.
E-mail:
| |
Collapse
|
34
|
Gayathri S, Raghu CH, Fayaz SM. Phytotherapeutics against Alzheimer's Disease: Mechanism, Molecular Targets and Challenges for Drug Development. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:409-426. [PMID: 34544351 DOI: 10.2174/1871527320666210920120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is inflating worldwide and is combatted by only a few approved drugs. At best, these drugs treat symptomatic conditions by targeting cholinesterase and N-methyl- D-aspartate receptors. Most of the clinical trials in progress are focused on developing disease-modifying agents that aim at single targets. The 'one drug-one target' approach is failing in the case of Alzheimer's disease due to its labyrinth etiopathogenesis. Traditional medicinal systems like Ayurveda use a holistic approach encompassing the legion of medicinal plants exhibiting multimodal activity. Recent advances in high-throughput technologies have catapulted the research in the arena of Ayurveda, specifically in identifying plants with potent anti-Alzheimer's disease properties and their phytochemical characterization. Nonetheless, clinical trials of very few herbal medicines are in progress. This review is a compendium of Indian plants and ayurvedic medicines against Alzheimer's disease and their paraphernalia. A record of 230 plants that are found in India with anti-Alzheimer's disease potential and about 500 phytochemicals from medicinal plants have been solicited with the hope of exploring the unexplored. Further, the molecular targets of phytochemicals isolated from commonly used medicinal plants, such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifolia and Withania somnifera, have been reviewed with respect to their multidimensional property, such as antioxidant, anti-inflammation, anti-aggregation, synaptic plasticity modulation, cognition, and memory-enhancing activity. In addition, the strengths and challenges in ayurvedic medicine that limit its use as mainstream therapy are discussed, and a framework for the development of herbal medicine has been proposed.
Collapse
Affiliation(s)
- S Gayathri
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| | - Chandrashekar H Raghu
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka- 576104, India
| |
Collapse
|
35
|
Meshram MA, Bhise UO, Makhal PN, Kaki VR. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: Structural aspects and SAR. Eur J Med Chem 2021; 225:113804. [PMID: 34479036 DOI: 10.1016/j.ejmech.2021.113804] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Inflammation is a most complex pathological process that gives birth to different diseases. Different inflammatory mediators are released during an inflammation responsible for acute pain and chronic inflammatory diseases like cancer, asthma, rheumatoid arthritis, osteoarthritis, neurodegenerative diseases, metabolic and cardiovascular disorders. The arachidonic acid pathway, which results in the production of inflammatory mediators, provides several targets for anti-inflammatory intervention. The most popularly used medications for inflammation are non-steroidal anti-inflammatory agents (NSAIDs) but it has some limitations, in particular traditional NSAIDs which inhibit the COX pathway non-selectively, producing gastrointestinal side effects, and other adverse effects like stroke and renal failure. On the other hand, selective COX-2 inhibitors commonly known as 'coxibs' produce cardiovascular side effects. Frequent inhibition of either cyclooxygenase or lipoxygenase enzyme switches the metabolism of arachidonic acid from one to another which could lead to serious consequences. Therefore, a need to develop novel, effective and safe anti-inflammatory agents which can inhibit the release of both prostaglandins and leukotrienes from the respective cyclooxygenase and lipoxygenase pathways has emerged. This resulted in the discovery of new anti-inflammatory agents derived from natural and synthetic sources as dual COX-2/5-LOX inhibitors. To further contribute towards the discovery in this field, we have attempted to summarize structural features and pharmacological activities of heterocyclic scaffolds and natural products explored as dual COX-2/5-LOX inhibitors. We have emphasized the designing of the dual inhibitors inspired by the previously reported COX-2 and 5-LOX inhibitors. This outline could render us to identify the best pharmacophores catering to dual COX-2/5-LOX inhibitory activity while improving their efficiency as anti-inflammatory agents.
Collapse
Affiliation(s)
- Minakshi A Meshram
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Utkarsha O Bhise
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India.
| |
Collapse
|
36
|
Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y. Mechanistic role of boswellic acids in Alzheimer's disease: Emphasis on anti-inflammatory properties. Biomed Pharmacother 2021; 144:112250. [PMID: 34607104 DOI: 10.1016/j.biopha.2021.112250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-β boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Aisha Siddiqui
- Neurological disorder and aging research group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo 43614, OH, USA
| | - Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological disorder and aging research group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
37
|
Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, Alshehri AA. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics 2021; 13:pharmaceutics13091475. [PMID: 34575551 PMCID: PMC8465302 DOI: 10.3390/pharmaceutics13091475] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of phytosome nanotechnology has a potential impact in the field of drug delivery and could revolutionize the current state of topical bioactive phytochemicals delivery. The main challenge facing the translation of the therapeutic activity of phytochemicals to a clinical setting is the extremely low absorption rate and poor penetration across biological barriers (i.e., the skin). Phytosomes as lipid-based nanocarriers play a crucial function in the enhancement of pharmacokinetic and pharmacodynamic properties of herbal-originated polyphenolic compounds, and make this nanotechnology a promising tool for the development of new topical formulations. The implementation of this nanosized delivery system could enhance the penetration of phytochemicals across biological barriers due to their unique physiochemical characteristics, improving their bioavailability. In this review, we provide an outlook on the current knowledge of the biological barriers of phytoconstituents topical applications. The great potential of the emerging nanotechnology in the delivery of bioactive phytochemicals is reviewed, with particular focus on phytosomes as an innovative lipid-based nanocarrier. Additionally, we compared phytosomes with liposomes as the gold standard of lipid-based nanocarriers for the topical delivery of phytochemicals. Finally, the advantages of phytosomes in topical applications are discussed.
Collapse
Affiliation(s)
- Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.)
| | - Fahad A. Almughem
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.)
| | - Somayah J. Jarallah
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Wijdan K. Alsharif
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Nouf M. Alzahrani
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (S.J.J.); (W.K.A.); (N.M.A.)
- Correspondence: ; Tel.: +966-509-896-863
| |
Collapse
|
38
|
Amri IA, Mabood F, Kadim IT, Alkindi A, Al-Harrasi A, Al-Hashmi S, Abbas G, Hamaed A, Ahmed B, Al-Shuhaimi J, Khalaf S, Shaikh J. Evaluation of the solubility of 11-keto-β-boswellic acid and its histological effect on the diabetic mice liver using a novel technique. Vet World 2021; 14:1797-1803. [PMID: 34475700 PMCID: PMC8404125 DOI: 10.14202/vetworld.2021.1797-1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: The literature is scant on the effect of 11-keto-β-boswellic acid (KBA) on the liver of diabetes-induced mice. This study was designed to develop a rapid, sensitive, accurate, and inexpensive detection technique for evaluating the solubility of KBA obtained from the gum resin of Omani frankincense (Boswellia sacra) in the liver of streptozotocin-induced diabetic mice using Fourier transform infrared (FTIR) reflectance spectroscopy coupled with principal components analysis (PCA). It also aimed to investigate the effect of KBA on histological changes in the hepatocytes of diabetic mice. Materials and Methods: Eighteen mice were assigned to the healthy control group, the diabetic control group, or the KBA-treated diabetic group. Liver tissue samples from all groups were scanned using an FTIR reflectance spectrophotometer in reflection mode. FTIR reflectance spectra were collected in the wavenumber range of 400-4000 cm−1 using an attenuated total reflectance apparatus. Results: FTIR reflectance spectra were analyzed using PCA. The PCA score plot, which is an exploratory multivariate data set, revealed complete segregation among the three groups’ liver samples based on changes in the variation of wavenumber position in the FTIR reflectance spectra, which indicated a clear effect of KBA solubility on treatments. Histological analysis showed an improvement in the liver tissues, with normal structures of hepatocytes exhibiting mild vacuolation in their cytoplasm. Conclusion: KBA improved the morphology of liver tissues in the diabetic mice and led to complete recovery of the damage observed in the diabetic control group. FTIR reflectance spectroscopy coupled with PCA could be deployed as a rapid, low-cost, and non-destructive detection method for evaluating treatment effects in diseased liver tissue based on the solubility of KBA.
Collapse
Affiliation(s)
- Issa Al Amri
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat KP, Pakistan
| | - Isam T Kadim
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Abdulaziz Alkindi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - A Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Sulaiman Al-Hashmi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Ghulam Abbas
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Ahmed Hamaed
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Basant Ahmed
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Jawaher Al-Shuhaimi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Samera Khalaf
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Jamaluddin Shaikh
- School of Pharmacy, College of Pharmacy and Nursing, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| |
Collapse
|
39
|
Jameel QY, Mohammed NK. Protective rules of natural antioxidants against gamma-induced damage-A review. Food Sci Nutr 2021; 9:5263-5278. [PMID: 34532033 PMCID: PMC8441341 DOI: 10.1002/fsn3.2469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals accessible in food have demonstrated efficiency against impairment by gamma radiation. The review presented here is an attempt to show the pharmacological outline of the activity of the natural antioxidants and its primary action of molecular mechanism against the damage induced by gamma rays. This research focused on the results of the in vitro dosage of natural antioxidants relationship, and on the correlation of this information with the statistical variables. Moreover, it deliberated the natural compounds which could decrease the unwelcome impacts of gamma radiation and safeguard biological systems from radiation-stimulated genotoxicity. The outcomes indicated that natural compounds can be utilized as an adjunct to orthodox radiotherapy and cultivate it as an effectual drug for the clinical administration of ailments.
Collapse
Affiliation(s)
- Qaswaa Y. Jameel
- Department of Food ScienceColleges of Agricultural and ForestryMosul UniversityMosulIraq
| | - Nameer K. Mohammed
- Department of Food ScienceCollege of AgricultureTikrit UniversityTikritIraq
| |
Collapse
|
40
|
Hajhashemi V, Safaei S. Effect of a Selection of Skin Penetration Enhancers on Topical Anti-Inflammatory Effect of Boswellic Acids in Carrageenan-Induced Paw Edema in Rats. Adv Biomed Res 2021; 10:18. [PMID: 34476226 PMCID: PMC8378444 DOI: 10.4103/abr.abr_222_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Boswellia species have been used for treatment of chronic inflammatory disease. Several studies have documented the anti-inflammatory effect of Boswellic acids (BAs) after systemic administration. This study was aimed to evaluate the effect of some skin penetration enhancers on topical anti-inflammatory effect of BAs in rats. MATERIALS AND METHODS Male Wistar rats weighting 180-220 were used. Anti-inflammatory activity was assessed using carrageenan test. BAs dissolved in ethanol, propylene glycol 2%, 5%, olive oil and applied topically. Menthol, D-limonene, or eucalyptus oil 0.5%, 1% were also tested as other skin penetration enhancers and applied topically 30 min prior to subplantar injection of carrageenan into the right hind paw of rats. The volume of the paw was measured at 0 and 4 h after carrageenan with a digital plethysmometer and the difference was used as an index of inflammation. Piroxicam gel was used as a standard drug. RESULTS A 4% ethanolic solution of BAs showed significant anti-inflammatory effect. Propylene glycol (2% and 5%) in alcohol did not change the effect. Olive oil also enhanced penetration of BAs. Menthol 0.5%, 1% and D-limonene 0.5%, 1% did not show any significant change compared to olive oil alone. In the present study, eucalyptus oil 1% in olive oil was known as the best carrier for transdermal delivery of BAs. CONCLUSION BAs have considerable topical anti-inflammatory effects and olive oil alone or especially in combination with eucalyptus oil can be promising vehicles for skin penetration of topical BAs.
Collapse
Affiliation(s)
- Valiollah Hajhashemi
- Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sadaf Safaei
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Minj E, Upadhayay S, Mehan S. Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS. Neurochem Res 2021; 46:2867-2884. [PMID: 34075522 DOI: 10.1007/s11064-021-03366-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) is a potent neurotoxin that causes neurotoxicity and neuronal cell death. MeHg exposure also leads to oligodendrocyte destruction, glial cell overactivation, and demyelination of motor neurons in the motor cortex and spinal cord. As a result, MeHg plays an important role in the progression of amyotrophic lateral sclerosis (ALS)-like neurocomplications. ALS is a fatal neurodegenerative disorder in which neuroinflammation is the leading cause of further CNS demyelination. Nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway was thought to be a potential target for neuroprotection in ALS. Acetyl-11-keto-beta-boswellic acid (AKBA) is a multi-component pentacyclic triterpenoid mixture derived from Boswellia serrata with anti-inflammatory and antioxidant properties. The research aimed to investigate whether AKBA, as a Nrf2 / HO-1 activator, can provide protection against ALS. Thus, we explored the role of AKBA on the Nrf2/HO-1 signaling pathway in a MeHg-induced experimental ALS model. In this study, ALS was induced in Wistar rats by oral gavage of MeHg 5 mg/kg for 21 days. An open field test, force swim test, and grip strength were performed to observe experimental rats' motor coordination behaviors. In contrast, a morris water maze was performed for learning and memory. Administration of AKBA 50 mg/kg and AKBA 100 mg/kg continued from day 22 to 42. Neurochemical parameters were evaluated in the rat's brain homogenate. In the meantime, post-treatment with AKBA significantly improved behavioral, neurochemical, and gross pathological characteristics in the brain of rats by increasing the amount of Nrf2/HO-1 in brain tissue. Collectively, our findings indicated that AKBA could potentially avoid demyelination and encourage remyelination.
Collapse
Affiliation(s)
- Elizabeth Minj
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
42
|
Chemical Composition, Antibacterial Activity, and Antibiotic Potentiation of Boswellia sacra Flueck. Oleoresin Extracts from the Dhofar Region of Oman. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9918935. [PMID: 34122610 PMCID: PMC8169251 DOI: 10.1155/2021/9918935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
The emergence of MDR bacterial pathogens has directed antibiotic discovery research towards alternative therapies and traditional medicines. Boswellia sacra oleoresin (frankincense) was used to treat bacterial infections in traditional Arabian and Asian healing systems for at least 1000 years. Despite this, B. sacra extracts have not been rigorously tested for inhibitory activity against gastrointestinal pathogens or bacterial triggers of autoimmune diseases. Solvent extracts were prepared from Boswellia sacra oleoresins obtained from three regions near Salalah, Oman. MIC values were quantified against gastrointestinal pathogens and bacterial triggers of selected autoimmune diseases by disc diffusion and broth dilution methods. The antibacterial activity was also evaluated in combination with conventional antibiotics, and the class of interaction was determined by ΣFIC analysis. Isobolograms were used to determine the optimal ratios for synergistic combinations. Toxicity was evaluated by ALA and HDF cell viability bioassays. The phytochemical composition of the volatile components of all extracts was identified by nontargeted GC-MS headspace analysis. All methanolic extracts inhibited the growth of all of the bacteria tested, although the extracts prepared using Najdi oleoresin were generally more potent than the Sahli and Houjari extracts. Combinations of the methanolic B. sacra extracts and conventional antibiotics were significantly more effective in inhibiting the growth of several bacterial pathogens. In total, there were 38 synergistic and 166 additive combinations. Approximately half of the synergistic combinations contained tetracycline. All B. sacra extracts were nontoxic in the ALA and HDF cell viability assays. Nonbiased GC-MS headspace analysis of the methanolic extracts putatively identified a high diversity of monoterpenoids, with particularly high abundances of α-pinene. The antibacterial activity and lack of toxicity of the B. sacra extracts indicate their potential in the treatment and prevention of gastrointestinal and autoimmune diseases. Furthermore, the extracts potentiated the activity of several conventional antibiotics, indicating that they may contain resistance-modifying compounds.
Collapse
|
43
|
Huang XJ, Wang J, Muhammad A, Tong HY, Wang DG, Li J, Ihsan A, Yang GZ. Systems pharmacology-based dissection of mechanisms of Tibetan medicinal compound Ruteng as an effective treatment for collagen-induced arthritis rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113953. [PMID: 33610711 DOI: 10.1016/j.jep.2021.113953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Ruteng (CRT) is a prescribed formulation based on the theory of Tibetan medicine for the treatment of yellow-water-disease. It is consisted with 7 medicinal material include Boswellia carterii Birdw (named "Ruxiang" in Chinese); Tinospora sinensis (Lour.) Merr. (named "Kuan-Jin-Teng" in Chinese), Cassia obtusifolia L (named "Jue-Ming-Zi" in Chinese); Abelmoschus manihot (L.) Medic (named "Huang-Kui-Zi" in Chinese); Terminalia chebula Retz. (named "He-Zi" in Chinese); Lamiophlomis rotata (Benth.) Kudo (named "Du-Yi-Wei" in Chinese) and Pyrethrum tatsienense (Bur. et Franch.) Ling (named "Da-Jian-Ju" in Chinese). They are widely distributed in Tibet area of China and have been used to treat rheumatism, jaundice, and skin diseases for centuries. AIM OF THE STUDY The present study was conducted to investigate the anti-arthritis effect of CRT and to disclose the systems pharmacology-based dissection of mechanisms. MATERIALS AND METHODS The chemical constituents in CRT were identified using HPLC method, and CRT candidate targets against RA were screened by network pharmacology-based analysis and further experimentally validated based on collagen-induced arthritis (CIA) rat model. Furthermore, therapeutic mechanisms and pathways of CRT were investigated. RESULTS 391 potential targets (protein) were predicted against 92 active ingredients of 7 medicinal materials in CRT. Enrichment analysis and molecular docking studies also enforced the practiced results. X-ray based physiological imaging showed the attenuated effect of CRT on paw swelling, synovial joints and cartilage with improved inflammation in CIA rats. Moreover, the expression of biomarkers associated with RA such as MMP1, MMP3 and MMP13 and TNF-a, COX2 and iNOS are down-regulated in ankle joints, serum, or liver. CONCLUSION In conclusion, CRT compound could attenuate RA symptoms and active ingredients of this compound could be considered for drug designing to treat RA.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/chemistry
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Experimental/blood
- Arthritis, Experimental/diagnostic imaging
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Collagen/toxicity
- Cyclooxygenase 2/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Joints/diagnostic imaging
- Joints/drug effects
- Joints/pathology
- Male
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Medicine, Tibetan Traditional
- Molecular Docking Simulation
- Nitric Oxide Synthase Type II/metabolism
- Oxidative Stress/drug effects
- Protein Interaction Maps
- Rats, Wistar
- Triterpenes/chemistry
- Rats
Collapse
Affiliation(s)
- Xian-Ju Huang
- College of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, PR China
| | - Jing Wang
- College of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, PR China
| | - Azhar Muhammad
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Hai-Ying Tong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Da-Gui Wang
- College of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, PR China
| | - Jun Li
- College of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, PR China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Guang-Zhong Yang
- College of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|
44
|
Tohamy HG, El-Kazaz SE, Alotaibi SS, Ibrahiem HS, Shukry M, Dawood MAO. Ameliorative Effects of Boswellic Acid on Fipronil-Induced Toxicity: Antioxidant State, Apoptotic Markers, and Testicular Steroidogenic Expression in Male Rats. Animals (Basel) 2021; 11:1302. [PMID: 33946602 PMCID: PMC8147226 DOI: 10.3390/ani11051302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022] Open
Abstract
The study investigated the ability of boswellic acid (BA) to alleviate the testicular and oxidative injury FPN insecticide intoxication in the male rat model. Rats were randomly assigned to six equivalent groups (six rats each) as the following: control rats orally administered with 2 mL physiological saline/kg of body weight (bwt); boswellic acid (BA1) rats orally administered 250 mg BA/kg bwt; boswellic acid (BA2) rats orally administered 500 mg BA/kg bwt; fipronil (FPN) rats orally administered 20 mg FPN/kg bwt; (FPN + BA1) rats orally administered 20 mg FPN/kg bwt plus 250 mg BA/kg bwt, and (FPN + BA2) rats orally administered 20 mg FPN/kg bwt plus 500 mg BA/kg bwt. After 60 days, semen viability percentage and live spermatozoa percentage were decreased, and a considerably increased abnormality of the sperm cells in FPN-administered rats improved substantially with the co-administration of BA. BA had refinement of the histological architecture of testes and sexual glands. Quantitative analysis recorded a noticeable decline in the nuclear cell-proliferating antigen (PCNA) percentage area. FPN triggered cell damage, which was suggested by elevated malondialdehyde and interleukin 6, tumor necrosis factors alpha, and decreased glutathione level. Proapoptotic factor overexpression is mediated by FPN administration, while it decreased the antiapoptotic protein expression. Similarly, BA has shown significant upregulation in steroidogenic and fertility-related gene expression concerning the FPN group. Pathophysiological damages induced by FPN could be alleviated by BA's antioxidant ability and antiapoptotic factor alongside the upregulation of steroidogenic and fertility-related genes and regimented the detrimental effects of FPN on antioxidant and pro-inflammatory biomarkers.
Collapse
Affiliation(s)
- Hossam G. Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Sara E. El-Kazaz
- Animals and Poultry Behavior and Management, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hawary S. Ibrahiem
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
45
|
Al-Harrasi A, Khan AL, Rehman NU, Csuk R. Biosynthetic diversity in triterpene cyclization within the Boswellia genus. PHYTOCHEMISTRY 2021; 184:112660. [PMID: 33524859 DOI: 10.1016/j.phytochem.2021.112660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
This review is not intended to describe the triterpenes isolated from the Boswellia genus, since this information has been covered elsewhere. Instead, the aim is to provide insights into the biosynthesis of triterpenes in Boswellia. This genus, which has 24 species, displays fascinating structural diversity and produces a number of medicinally important triterpenes, particularly boswellic acids. Over 300 volatile components have been reported in the essential oil of Boswellia, and more than 100 diterpenes and triterpenes have been isolated from this genus. Given that no triterpene biosynthetic enzymes have yet been isolated from any members of the Boswellia genus, this review will cover the likely biosynthetic pathways as inferred from structures in nature and the probable types of biosynthetic enzymes based on knowledge of triterpene biosynthesis in other plant species. It highlights the importance of frankincense and the factors and threats affecting its production. It covers triterpene biosynthesis in the genus Boswellia, including dammaranes, tirucallic acids, lupanes, oleananes, ursanes and boswellic acids. Strategies for elucidating triterpene biosynthetic pathways in Boswellia are considered. Furthermore, the possible mechanisms behind wound-induced resin synthesis by the tree and related gene expression profiling are covered. In addition, the influence of the environment and the genotype on the biosynthesis of resin and on variations in the compositions and types of resins will also be reviewed.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
46
|
Koshak AE. Attitudes and Beliefs towards Herbal Medicines in Patients with Allergic Diseases: A pilot survey study in Western Saudi Arabia. J Herb Med 2021. [DOI: 10.1016/j.hermed.2020.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Vijayarani KR, Govindarajulu M, Ramesh S, Alturki M, Majrashi M, Fujihashi A, Almaghrabi M, Kirubakaran N, Ren J, Babu RJ, Smith F, Moore T, Dhanasekaran M. Enhanced Bioavailability of Boswellic Acid by Piper longum: A Computational and Pharmacokinetic Study. Front Pharmacol 2020; 11:551911. [PMID: 33384596 PMCID: PMC7770183 DOI: 10.3389/fphar.2020.551911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation is a key culprit factor in the onset and progression of several diseases. Novel and pharmacologically effective therapeutic approaches are needed for new treatment remedy or improved pharmacokinetics and pharmacodynamics for existing synthetic drugs, in particular natural products. Boswellic acids are well-known natural products, with capacity to effectively retard inflammation without severe adverse effects. However, the therapeutic use of Boswellic acids are greatly hindered by its poor pharmacokinetic properties. Co-administration strategies that facilitate the oral absorption and distribution of Boswellic acids should lead to a safe and more effective use of this product prophylactically and therapeutically in inflammatory disorders. In this study, we examined the effect of Piper longum extract on the absorption and bioavailability of Boswellic acid in rabbits. In addition, we further explored computational pharmacodynamic interactions between Piper longum and Boswellic acid. Piper longum extract at 2.5 and 10 mg/kg, increased the bioavailability of Boswellic acid (p < 0.05). Based on our drug-based computational modeling, cytochrome P450 (CYP450)-mediated mechanism was involved in increased bioavailability. These findings confirmed that Piper longum with Boswellic acid may be administered orally together for effective therapeutic efficacy. Thus, our studies support the application of Piper longum with Boswellic acid as a novel therapeutic avenue in diseases associated with inflammation.
Collapse
Affiliation(s)
- K. Reeta Vijayarani
- Department of Pharmaceutics, Periyar College of Pharmaceutical Sciences, Tiruchirappalli, India
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Mansour Alturki
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Medicinal Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - N. Kirubakaran
- Department of Pharmaceutics, Periyar College of Pharmaceutical Sciences, Tiruchirappalli, India
| | - Jun Ren
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Forrest Smith
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Timothy Moore
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
48
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
49
|
Use of Herbal Medications for Treatment of Osteoarthritis and Rheumatoid Arthritis. MEDICINES 2020; 7:medicines7110067. [PMID: 33126603 PMCID: PMC7693010 DOI: 10.3390/medicines7110067] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Arthritis is a chronic condition that affects nearly a quarter of the United States population. Osteoarthritis (OA) and rheumatoid arthritis (RA) are two major forms of arthritis associated with severe joint pain and reduced quality of life. Various pharmacological interventions may be utilized for arthritis treatment when non-pharmacological therapy is insufficient. However, pharmacological therapy can be associated with serious side effects and high costs. Therefore, alternative therapies have been under investigation. Herbal medications have shown the potential for safe and effective management of arthritis. For this review, we attempt to summarize the mechanisms, safety, and efficacy of herbal treatments for OA and RA. After searching electronic databases, we identified nine herbs among 23 clinical trials used for the treatment of OA or RA patients. Improvement of OA and RA symptoms, pain, and inflammation was demonstrated. The herbs exhibited strong anti-inflammatory and anti-oxidant activities, contributing to a reduction in inflammation and tissue damage. Several herbs elucidated new mechanisms for OA and RA treatment as well. Though these herbs have shown promise for OA and RA treatment, more studies and clinical trials are required for determining safety and efficacy, bioactivity, and optimal bioavailability.
Collapse
|
50
|
Al-Dhubiab BE, Patel SS, Morsy MA, Duvva H, Nair AB, Deb PK, Shah J. The Beneficial Effect of Boswellic Acid on Bone Metabolism and Possible Mechanisms of Action in Experimental Osteoporosis. Nutrients 2020; 12:nu12103186. [PMID: 33081068 PMCID: PMC7603128 DOI: 10.3390/nu12103186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen is instrumental in the pathological process of osteoporosis because a deficiency of this hormone increases the release of bone-resorbing cytokines. Acetyl-11-keto-β-boswellic acid (AKBA), a constituent from Boswellia serrata, has an anti-inflammatory effect by inhibiting tumor necrosis factor-α (TNF-α) expression, which leads to a decline in receptor activator of nuclear factor-kappa B (NF-κB) ligand, and consequently, a reduction in osteoclast activity. Hence, AKBA may be beneficial against bone loss during osteoporosis. Therefore, the current study intended to evaluate the beneficial effects of AKBA in ovariectomy-induced osteoporosis and to investigate its mechanism of action. Sham-operation or ovariectomy female Sprague Dawley rats were used for evaluating the antiosteoporotic effect of AKBA in this study. AKBA (35 mg/kg, p.o.) and estradiol (0.05 mg/kg, i.m.) were administered for 42 days. At the end of the experiment, body and uterus weights, serum and urine calcium and phosphorus, serum alkaline phosphatase, and urinary creatinine levels, besides serum levels of NF-κB and TNF-α were determined. Weight, length, thickness, hardness, calcium content, as well as the bone mineral density of femur bone and lumbar vertebra were measured. A histopathological examination was also carried out. AKBA ameliorated all tested parameters and restored a normal histological structure. Thus, AKBA showed good antiosteoporotic activity, which may be mediated through its suppression of the NF-κB-induced TNF-α signaling pathway.
Collapse
Affiliation(s)
- Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Correspondence: ; Tel.: +966-505-845-758
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Harika Duvva
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; (S.S.P.); (H.D.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| |
Collapse
|