1
|
Dobutr T, Jangpromma N, Patramanon R, Daduang J, Kulchat S, Areemit J, Lomthaisong K, Daduang S. Screening of aqueous plant extracts for immunomodulatory effects on immune cells and cytokine production: In vitro and in vivo analyses. Heliyon 2025; 11:e42692. [PMID: 40034324 PMCID: PMC11872543 DOI: 10.1016/j.heliyon.2025.e42692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
This study investigates the immunomodulatory effects of various aqueous plant extracts on immune cells and cytokine production. In vitro, several extracts, including holy basil (Ocimum sanctum), patawali (Tinospora crispa), and Indian borage (Plectranthus amboinicus L.), significantly increased CD3+ T-cell populations, while soap pod (Acacia concinna), garlic (Allium sativum L.), and neem (Azadirachta indica) also boosted CD45RA+ B-cells. In vivo, the extracts had subtle effects on spleen morphology and Peyer's Patches, with milk bush (Euphorbia tirucalli L.) and Indian borage enhancing T-cell responses, while soap pod stimulated B-cells. Additionally, we observed that Neem and milk bush significantly suppressed B-cell populations. Furthermore, cytokine analysis showed that garlic and patawali reduced IL-2, while soap pod, holy basil, and patawali increased TNF-alpha levels. Soap pod also elevated IL-10 and IL-17A, indicating both anti-inflammatory and pro-inflammatory signaling, while patawali induced an increase in IL-4. In conclusion, Thai medicinal plants show strong potential as both immunostimulants and immunosuppressants. They can enhance lymphocyte proliferation, particularly in T-cells, and modulate B-cell populations. Their aqueous extracts play a key role in regulating Th1, Th2, and Th17 cytokine production. Thus, these plants could serve as natural agents and alternative medicines for boosting or modulating immune function.
Collapse
Affiliation(s)
- Theerawat Dobutr
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90000, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jringjai Areemit
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Komsorn Lomthaisong
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Kgosiemang IKR, Lefojane R, Adegoke AM, Ogunyemi O, Mashele SS, Sekhoacha MP. Pharmacological Significance, Medicinal Use, and Toxicity of Extracted and Isolated Compounds from Euphorbia Species Found in Southern Africa: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:469. [PMID: 39943031 PMCID: PMC11821031 DOI: 10.3390/plants14030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/16/2025]
Abstract
This study documents the Euphorbiaceae family of plants in Southern Africa, with a focus on their traditional medicinal applications, pharmacological properties, toxicity, and active secondary metabolites. A review of the literature from scientific journals, books, dissertations, and conference papers spanning from 1962 to 2023 was conducted for 15 Euphorbia species. Recent findings indicate that specific compounds found in Euphorbia plants exhibit significant biological and pharmacological properties. However, the white sticky latex sap they contain is highly toxic, although it may also have medicinal applications. Phytochemical analyses have demonstrated that these plants exhibit beneficial effects, including antibacterial, antioxidant, antiproliferative, anticancer, anti-inflammatory, antiviral, antifungal, and anti-HIV activities. Key phytochemicals such as euphol, cycloartenol, tirucallol, and triterpenoids contribute to their therapeutic efficacy, along with various proteins like lectin and lysozyme. Despite some Euphorbiaceae species undergoing screening for medicinal compounds, many remain insufficiently examined, highlighting a critical gap in the research literature. Given their historical usage, further investigations are essential to evaluate the medicinal significance of Euphorbia species through detailed studies of isolated compounds and their pharmacokinetics and pharmacodynamics. This research will serve as a valuable resource for future inquiries into the benefits of lesser-studied Euphorbia species.
Collapse
Affiliation(s)
- Ipeleng Kopano Rosinah Kgosiemang
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Relebohile Lefojane
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Ayodeji Mathias Adegoke
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
- Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Oludare Ogunyemi
- Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Samson Sitheni Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Mamello Patience Sekhoacha
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
| |
Collapse
|
3
|
Ismail M, Hassan MHA, Mohamed EIA, Azmy AF, Moawad A, Mohammed R, Zaki MA. New insights into the anti-inflammatory and anti-melanoma mechanisms of action of azelaic acid and other Fusarium solani metabolites via in vitro and in silico studies. Sci Rep 2024; 14:14370. [PMID: 38909081 PMCID: PMC11193793 DOI: 10.1038/s41598-024-63958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/04/2024] [Indexed: 06/24/2024] Open
Abstract
Metabolites exploration of the ethyl acetate extract of Fusarium solani culture broth that was isolated from Euphorbia tirucalli root afforded five compounds; 4-hydroxybenzaldehyde (1), 4-hydroxybenzoic acid (2), tyrosol (3), azelaic acid (4), malic acid (5), and fusaric acid (6). Fungal extract as well as its metabolites were evaluated for their anti-inflammatory and anti-hyperpigmentation potential via in vitro cyclooxygenases and tyrosinase inhibition assays, respectively. Azelaic acid (4) exhibited powerful and selective COX-2 inhibition followed by fusaric acid (6) with IC50 values (2.21 ± 0.06 and 4.81 ± 0.14 μM, respectively). As well, azelaic acid (4) had the most impressive tyrosinase inhibitory effect with IC50 value of 8.75 ± 0.18 μM compared to kojic acid (IC50 = 9.27 ± 0.19 μM). Exclusive computational studies of azelaic acid and fusaric acid with COX-2 were in good accord with the in vitro results. Interestingly, this is the first time to investigate and report the potential of compounds 3-6 to inhibit cyclooxygenase enzymes. One of the most invasive forms of skin cancer is melanoma, a molecular docking study using a set of enzymes related to melanoma suggested pirin to be therapeutic target for azelaic acid and fusaric acid as a plausible mechanism for their anti-melanoma activity.
Collapse
Affiliation(s)
- Mona Ismail
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Marwa H A Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Enas I A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed F Azmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Abeer Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohamed A Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
4
|
Merchán-Gaitán JB, Mendes JHL, Nunes LEC, Buss DS, Rodrigues SP, Fernandes PMB. The Role of Plant Latex in Virus Biology. Viruses 2023; 16:47. [PMID: 38257746 PMCID: PMC10819414 DOI: 10.3390/v16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
At least 20,000 plant species produce latex, a capacity that appears to have evolved independently on numerous occasions. With a few exceptions, latex is stored under pressure in specialized cells known as laticifers and is exuded upon injury, leading to the assumption that it has a role in securing the plant after mechanical injury. In addition, a defensive effect against insect herbivores and fungal infections has been well established. Latex also appears to have effects on viruses, and laticifers are a hostile environment for virus colonization. Only one example of successful colonization has been reported: papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2) in Carica papaya. In this review, a summary of studies that support both the pro- and anti-viral effects of plant latex compounds is provided. The latex components represent a promising natural source for the discovery of new pro- and anti-viral molecules in the fields of agriculture and medicine.
Collapse
Affiliation(s)
| | - João H. L. Mendes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - Lucas E. C. Nunes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - David S. Buss
- School of Life Sciences, Keele University, Newcastle ST5 5BG, UK;
| | - Silas P. Rodrigues
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | | |
Collapse
|
5
|
Konozy EHE, Osman MEM, Dirar AI. A Comprehensive Review on Euphorbiaceae lectins: Structural and Biological Perspectives. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1956-1969. [PMID: 38105212 DOI: 10.1134/s0006297923110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
Euphorbiaceae, also known as the spurge family, is a large group of flowering plants. Despite being tropical natives, they are now widespread. Due to its medicinal and commercial importance, this family of plants attracted a lot of attention in the scientific community. The distinctive characteristic of the family is production of milky latex, which is a rich source of several lectins, the proteins that bind carbohydrates. Although their function is unclear, they are believed to defend plants against damaging phytopathogenic microorganisms, insects, and predatory animals. Additionally, they serve as crucial metabolic regulators under a variety of stressors. Detection, separation, purification, and characterization of lectins from the Euphorbiaceae family - mostly from the latex of plants - began over 40 years ago. This effort produced over 35 original research papers that were published. However, no systematic review that compiles these published data has been presented yet. This review summarizes and describes several procedures and protocols employed for extraction and purification of lectins belonging to this family. Physicochemical properties and biological activities of the lectins, along with their medicinal and pharmacological properties, have also been analyzed. Additionally, using examples of ricin and ricin agglutinin, we have structurally analyzed characteristics of the lectin known as Ribosome Inactivating Protein Type II (RIP-Type II) that belongs to this family. We anticipate that this review article will offer a useful compendium of information on this important family of lectins, show the scientists involved in lectin research the gaps in our knowledge, and offer insights for future research.
Collapse
Affiliation(s)
- Emadeldin Hassan E Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan.
- Pharmaceutical Research and Development Centre, Faculty of Pharmacy, Karary University, Omdurman, Khartoum State, Sudan
| | | | - Amina I Dirar
- Medicinal, Aromatic Plants, and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Khartoum, Sudan
| |
Collapse
|
6
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
7
|
Nugroho D, Chanthai S, Oh WC, Benchawattananon R. Fluorophores -rich natural powder from selected medicinal plants for detection latent fingerprints and cyanide. Sci Prog 2023; 106:368504231156217. [PMID: 36890788 PMCID: PMC10450322 DOI: 10.1177/00368504231156217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Forensic science is currently fast-growing for the development detection of the latent fingerprint. Currently, chemical dust quickly enters the body through touch or inhalation and will be affected by the user. In this research, a study on the comparison of natural powder from four species of medicinal plants (Zingiber montanum, Solanum Indicum L., Rhinacanthus nasutus, and Euphorbia tirucall) for the detection of latent fingerprints is carried out that has fewer adverse effects on the user's body by using such natural substances instead. In addition, the fluorescence properties of the dust have been found in some natural powder for sample detection and appear on multi-colored surfaces to show that the latent fingerprints are more pronounced than ordinary dust. In this study, medicinal plants have also been applied to detect cyanide, as it has been known that it is hazardous for humans and can be used as a poisonous compound to kill someone. The characteristics of each powder have also been analyzed using naked-eye detection under UV light, Fluorescence spectrophotometer, FIB-SEM, and FTIR. All the powder obtained can then be used for high potential detection of latent fingerprints on the non-porous surface with their specific characteristics and trace amounts of cyanide using turn-on-off fluorescent sensing method.
Collapse
Affiliation(s)
- David Nugroho
- Forensic Division, Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Saksit Chanthai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si, South Korea
| | - Rachadaporn Benchawattananon
- Forensic Division, Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
8
|
Rodrigues ML, Gomes ADJ, Funez MI, Marques MADS, Lunardi CN. Euphorbia tirucalli latex loaded polymer nanoparticles: Synthesis, characterization, in vitro release and in vivo antinociceptive action. PLoS One 2022; 17:e0274432. [PMID: 36445864 PMCID: PMC9707765 DOI: 10.1371/journal.pone.0274432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/28/2022] [Indexed: 12/03/2022] Open
Abstract
The encapsulation of drugs in micro and nanocarriers has helped to resolve mechanisms of cellular resistance and decrease drug side effects as well. In this study, poly(D,L-lactide-co-glycolide) (PLGA) was used to encapsulate the Euphol active substance-containing latex from Euphorbia tirucalli (E-latex). The nanoparticles (NP) were prepared using the solvent evaporation method and the physical and chemical properties were evaluated using spectrophotometric techniques. FTIR was used to prove the formation of the ester bond between the E-latex and PLGA-NP. The UV-Vis spectroscopic technique was used to show that more than 75% of the latex was encapsulated; the same technique was used to determine the release profile of the compound at different pH values, as well as determining the speed with which the process occurs through kinetic models, and it was observed that the best adjustments occurred for the Korsmeyer-Peppas model and the Higuchi model. The DLS technique was used to determine the diameter of the particles produced as well as their zeta potential (ZP). The sizes of the particles varied from 497 to 764 nm, and it was observed that the increase in E-latex concentration causes a reduction in the diameter of the NP and an increase in the ZP (-1.44 to -22.7 mV), due to more functional groups from latex film being adsorbed to the NPs surfaces. The thermogravimetric experiments exhibit the glass transition temperatures (Tg) that is appropriate for the use of formulated NPs as a stable drug delivery device before use. The in vivo activity of E-NPs (30 and 100 mg/Kg/p.o.) was tested against carrageenan-induced mechanical hypernociception. The data demonstrated a significantly antinociceptive effect for E-NPs, suggesting that E-latex nanoencapsulation preserved its desired properties.
Collapse
Affiliation(s)
- Marina Lima Rodrigues
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Ceilandia, Brasília, Federal District, Brazil
- Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasília, Federal District, Brazil
| | - Anderson de Jesus Gomes
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Ceilandia, Brasília, Federal District, Brazil
- Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasília, Federal District, Brazil
- Sciences and Technologies in Health Program, University of Brasilia, Campus Ceilandia, Brasilia, Federal District, Brazil
| | - Mani Indiana Funez
- Sciences and Technologies in Health Program, University of Brasilia, Campus Ceilandia, Brasilia, Federal District, Brazil
| | | | - Claure Nain Lunardi
- Laboratory of Photochemistry and Nanobiotechnology, University of Brasilia, Campus Ceilandia, Brasília, Federal District, Brazil
- Program in Nanoscience and Nanobiotechnology, University of Brasilia, Brasília, Federal District, Brazil
- Sciences and Technologies in Health Program, University of Brasilia, Campus Ceilandia, Brasilia, Federal District, Brazil
- * E-mail:
| |
Collapse
|
9
|
Alves ALV, da Silva LS, Faleiros CA, Silva VAO, Reis RM. The Role of Ingenane Diterpenes in Cancer Therapy: From Bioactive Secondary Compounds to Small Molecules. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221105691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diterpenes are a class of critical taxonomic markers of the Euphorbiaceae family, representing small compounds (eg, molecules) with a wide range of biological activities and multi-target therapeutic potential. Diterpenes can exert different activities, including antitumor and multi-drug resistance-reversing activities, and antiviral, immunomodulatory, and anti-inflammatory effects, mainly due to their great structural diversity. In particular, one polycyclic skeleton has been highlighted: ingenane. Besides this natural diterpene, promising polycyclic skeletons may be submitted to chemical modification—by in silico approaches, chemical reactions, or biotransformation—putatively providing more active analogs (eg, ingenol derivatives), which are currently under pre-clinical investigation. This review outlines the current mechanisms of action and potential therapeutic implications of ingenol diterpenes as small cancer molecules.
Collapse
Affiliation(s)
- Ana Laura V. Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Luciane S. da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Camila A. Faleiros
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Viviane A. O. Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui M. Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
10
|
Oliveira SS, Braga GC, Cordeiro NK, Stangarlin JR, Alves HJ. Green synthesis of silver nanoparticles with Euphorbia tirucalli extract and its protection against microbial decay of strawberries during storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2025-2034. [PMID: 35531407 PMCID: PMC9046494 DOI: 10.1007/s13197-021-05217-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/18/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022]
Abstract
Silver nanoparticles (AgNPs) can be produced through an easy and safe process called green synthesis and have been considered an efficient antimicrobial agent. The antimicrobial effect of silver nanoparticles green synthesized with E. tirucalli (aveloz) can be a promising technique for preserving stored strawberries. The objective of this work was to perform a green synthesis of AgNPs with aveloz extract (Av) and evaluate its effect on the physiology and preservation of stored strawberries. Silver nitrate was reduced with Av to produce Av-AgNPs. The Av-AgNPs were characterized by Scanning Electron Microscope, Energy Dispersive X-ray Spectrometry, and laser diffraction. The in vitro antifungal activity of Av-AgNPs was evaluated against Botrytis cinerea and Rhizopus stolonifer. Strawberries were treated with Av-AgNPs and stored (5 °C) for 12 days. Respiratory rate, decay, fresh mass loss, firmness, total phenolics and antioxidant activity of the strawberries were evaluated. According to the results, Av-AgNPs synthesis was performed, and it presented sizes between 40 and 90 nm. Av-AgNPs inhibited B. cinerea but was less effective for R. stolonifer. Total phenolic compounds, antioxidant activity, fresh mass loss and firmness of strawberries were not influenced by Av-AgNPs. Treated strawberries had a lower respiratory rate than the control and showed no symptoms of microbiological deterioration until 9 days of storage, while in the control the deterioration symptoms started after 3 days. This study showed that the green synthesis of AgNPs with Av produced nanoparticles smaller than 100 nm, and that they were effective against strawberries decay during storage, indicating to be a promising protection technique against decay.
Collapse
Affiliation(s)
- Shirlene Souza Oliveira
- Center of Agricultural Sciences, State University of Western Paraná-UNIOESTE, Marechal Cândido Rondon, Paraná 85960-000 Brasil
| | - Gilberto Costa Braga
- Center of Agricultural Sciences, State University of Western Paraná-UNIOESTE, Marechal Cândido Rondon, Paraná 85960-000 Brasil
| | - Noélle Khristinne Cordeiro
- Center of Agricultural Sciences, State University of Western Paraná-UNIOESTE, Marechal Cândido Rondon, Paraná 85960-000 Brasil
| | - José Renato Stangarlin
- Center of Agricultural Sciences, State University of Western Paraná-UNIOESTE, Marechal Cândido Rondon, Paraná 85960-000 Brasil
| | - Helton José Alves
- Scanning Electron Microscopy Laboratory, Federal University of Paraná-UFPR, Palotina, Paraná 85950-000 Brasil
| |
Collapse
|
11
|
Milhm ACP, Bonet LFS, Aiub CAF, Siqueira Junior CL. Biochemical characterization and phytotoxic activity of protein extract from Euphorbia tirucalli L. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114903. [PMID: 34890731 DOI: 10.1016/j.jep.2021.114903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia tirucalli L., a tropical and subtropical plant, also known by the popular name avelós, has been used in folk medicine against many diseases as rheumatism, asthma, toothache, and cancer. Studies have shown that natural compounds contained in this plant species may be associated with these functions. However, little is known about its potential toxicity. AIM OF THE STUDY Several proteins conduct biological functions, in particular, proteinases, play a crucial role in many mechanisms of living beings, including plants, animals and microorganisms. However, when poorly regulated, they can generate consequences, such as the non-production of certain substances, or even the abnormal multiplication of cells, which leads to tumors. On the other hand, by regulating these enzymes, proteinase inhibitors act by reducing the activity of proteinases, thus preventing their malfunction. The objective of this work was to evaluate the toxicity of the protein extract of E. tirucalli and to purify a protease inhibitor that may be associated with the biological medicinal functions of the plant. MATERIALS AND METHODS The cytotoxic and mutagenic properties of the protein extract produced from the stem of avelós was investigated using the Ames test. The protein extract was also submitted to a protease inhibitor purification process using the gel filtration chromatography technique and the purified protein was biochemically characterized. RESULTS A protease inhibitor, called tirustatin, was isolated 1.84-fold by Biogel P100. The calculated molecular mass of the isolated protein is 25.97 kDa. The inhibitor was stable at pH 3-10, with pronounced activity at pH 6. Thermostability was observed even at elevated temperature (100 °C) with inhibitory activity increased by 1.14-fold compared to inhibitor activity at room temperature. Incubation at basic pH values for up to 60 min caused little reduction (0.25-fold) in the papain inhibitory activity of tirustatin. The stoichiometry of the papain-tirustatin interaction was 1.5: 1 and 28.8 pM of the inhibitor effected 50% inhibition. With an equilibrium dissociation constant of 8.74 x 10-8M for the papain enzyme, it is possible to evaluate the isolated protein as a non-competitive inhibitor. In addition, the protein extract of E. tirucalli even at the maximum concentration used (20 μg/mL), did not show a cytotoxic and mutagenic profile in a bacterial model. CONCLUSION The results presented in this work provide data that reinforce the idea of the potential use of proteins produced in E. tirucalli as pharmacological and biotechnological agents that can be exploited for the development of efficient drugs.
Collapse
Affiliation(s)
- Ana Carolina Pereira Milhm
- Laboratory of Biochemistry and Function of Plant Proteins, Department of Botany, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458, Urca, Brazil.
| | - Luiz Felippe Sarmento Bonet
- Laboratory of Biochemistry and Function of Plant Proteins, Department of Botany, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458, Urca, Brazil.
| | - Claudia Alessandra Fortes Aiub
- Laboratory of Genotoxicity, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro, R. Frei Caneca, 94 - Centro, Brazil.
| | - César Luis Siqueira Junior
- Laboratory of Biochemistry and Function of Plant Proteins, Research Center on Agricultural Systems, Department of Botany, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458, Urca, Brazil.
| |
Collapse
|
12
|
Elmesseri RA, Saleh SE, Elsherif HM, Yahia IS, Aboshanab KM. Staphyloxanthin as a Potential Novel Target for Deciphering Promising Anti- Staphylococcus aureus Agents. Antibiotics (Basel) 2022; 11:298. [PMID: 35326762 PMCID: PMC8944557 DOI: 10.3390/antibiotics11030298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.
Collapse
Affiliation(s)
- Rana A. Elmesseri
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Sarra E. Saleh
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| | - Heba M. Elsherif
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61441, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| |
Collapse
|
13
|
Weng HZ, Tian Y, Zhang JS, Huang JL, Tang GH, Yin S. A new tigliane-type diterpenoid from Euphorbia tirucalli. Nat Prod Res 2021; 36:5380-5386. [PMID: 34142618 DOI: 10.1080/14786419.2021.1938039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Five tigliane (1-5) and one ingenane (6) diterpenoids were isolated from the ethanol extract of Euphorbia tirucalli. The structures of these compounds were identified based on analysis of their spectroscopic data. Among them, compound 12-O-(2E,4E,6E,8E-tetradecatetraenoyl)-13-O-isobutyroyl-4β-deoxyphorbol (1) was a new tigliane. The Rho123 effluxion assay showed that tiglianes with a trans-fused 5/7 ring system such as compounds 1, 2, and 4 had potent inhibitory activity against P-glycoprotein in HepG2/ADR cells.
Collapse
Affiliation(s)
- Han-Zhuang Weng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yang Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun-Sheng Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Abstract
Background: The dawn of the year 2020 witnessed the spread of the highly infectious and communicable disease coronavirus disease 2019 (COVID-19) globally since it was first reported in 2019. Severe acute respiratory syndrome coronavirus-2 is the main causative agent. In total, 3,096,626 cases and 217,896 deaths owing to COVID-19 were reported by 30th April, 2020 by the World Health Organization. This means infection and deaths show an exponential growth globally. In order to tackle this pandemic, it is necessary to find possible easily accessible therapeutic agents till an effective vaccine is developed. Methods: In this study, we present the results of molecular docking processes through high throughput virtual screening to analyze drugs recommended for the treatment of COVID-19. Results: Atovaquone, fexofenadine acetate (Allegra), ethamidindole, baicalin, glycyrrhetic acid, justicidin D, euphol, and curine are few of the lead molecules found after docking 129 known antivirals, antimalarial, antiparasitic drugs and 992 natural products. Conclusions: These molecules could act as an effective inhibitory drug against COVID-19.
Collapse
Affiliation(s)
- Sweta Singh
- Savitribai Phule Pune University, Pune, India
| | - Hector Florez
- Universidad Distrital Francisco Jose de Caldas, Bogota, Colombia
| |
Collapse
|
15
|
Wu C, An B, Meng T, Chen M. The application of acupuncture and moxibustion in the treatments of gastralgia caused by deficient cold of spleen and stomach based on document analysis and data analysis (Preprint). JMIR Med Inform 2020. [DOI: 10.2196/19051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Salehi B, Iriti M, Vitalini S, Antolak H, Pawlikowska E, Kręgiel D, Sharifi-Rad J, Oyeleye SI, Ademiluyi AO, Czopek K, Staniak M, Custódio L, Coy-Barrera E, Segura-Carretero A, Cádiz-Gurrea MDLL, Capasso R, Cho WC, Seca AML. Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules 2019; 9:337. [PMID: 31382529 PMCID: PMC6723572 DOI: 10.3390/biom9080337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Euphorbia genus (Euphorbiaceae family), which is the third largest genus of angiosperm plants comprising ca. 2000 recognized species, is used all over the world in traditional medicine, especially in the traditional Chinese medicine. Members of this taxa are promptly recognizable by their specialized inflorescences and latex. In this review, an overview of Euphorbia-derived natural products such as essential oils, extracts, and pure compounds, active in a broad range of biological activities, and with potential usages in health maintenance, is described. The chemical composition of essential oils from Euphorbia species revealed the presence of more than 80 phytochemicals, mainly oxygenated sesquiterpenes and sesquiterpenes hydrocarbons, while Euphorbia extracts contain secondary metabolites such as sesquiterpenes, diterpenes, sterols, flavonoids, and other polyphenols. The extracts and secondary metabolites from Euphorbia plants may act as active principles of medicines for the treatment of many human ailments, mainly inflammation, cancer, and microbial infections. Besides, Euphorbia-derived products have great potential as a source of bioactive extracts and pure compounds, which can be used to promote longevity with more health.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Ewelina Pawlikowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Sunday I Oyeleye
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure 340252, Nigeria
| | - Adedayo O Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure 340252, Nigeria
| | - Katarzyna Czopek
- Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariola Staniak
- Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology, Building 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, Cajicá 250247, Colombia
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 188016 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Avenida del Conocimiento s/n, 188016 Granada, Spain.
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Ana M L Seca
- cE3c- Centre for Ecology, Evolution and Environmental Changes/ Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal.
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|