1
|
Li J, Qin Y, Li M, Shang J, Chen H, Liu Y, Liu B, Zhou P, Zhao T, Wang G, Ge C, Zhang Y, Jia H, Ren F. Bio-SS-TS as a Targeted Antitumor Drug Exerts an Anti-Liver Cancer Effect by Enhancing Mitochondria-Dependent Apoptosis. Biol Proced Online 2025; 27:11. [PMID: 40155811 PMCID: PMC11951608 DOI: 10.1186/s12575-025-00272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
Developing targeted therapeutic drugs for liver cancer remains a significant scientific and clinical challenge. Previous research by the authors showed that taraxasterol (TS) can enhance the antitumor immune response of T-lymphocytes, inhibiting the growth of liver cancer cells both in vivo and in vitro. To improve the targeting ability and efficacy of TS, the authors synthesized a novel compound, Bio-SS-TS, which utilizes the high expression of biotin receptors on tumor cell membranes to link biotin to TS for increased targeting to hepatocellular carcinoma cells, and its disulfide bond can be specifically hydrolyzed by high - level glutathione (GSH) in tumor cells to release the active component TS. In vitro, Bio-SS-TS reduced liver cancer cell (HepG2 and Huh7) proliferation, impaired mitochondrial membrane potential, decreased intracellular GSH content in tumor cells, increased the reactive oxygen species level, and promoted the release of cytochrome c. Endogenous GSH in cancer cells reduced the disulfide bond in Bio-SS-TS, releasing active TS components. In vivo, treatment with Bio-SS-TS caused no significant change in mouse body weight and no toxicity to the main organs. The present study comprehensively demonstrates that Bio-SS-TS exerts a potent anti - liver cancer effect by enhancing mitochondria-dependent apoptosis, which may provide a new candidate for targeted liver cancer therapy.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yuanhua Qin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Mengjuan Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jingli Shang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Hang Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yadi Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Bingjie Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Pingxin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Chunpo Ge
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yu Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Huijie Jia
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Research Center for Engineering Technology in Digestive Tract Tumor Immune Digital Decoding and Cell Therapy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Ma J, Pang X, Xue W, Wang J, Huo H, Zhao M, Huang Y, Yin Z, Gao Y, Zhao Y, Li J, Zheng J. Sesquiterpene-enriched extract of Chinese agarwood (Aquilaria sinensis) alleviates bile reflux gastritis through suppression of gastric mucosal cell apoptosis via the Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119037. [PMID: 39510422 DOI: 10.1016/j.jep.2024.119037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese agarwood (Aquilaria sinensis) has been a traditional treatment for digestive disorders in South and East Asia. While sesquiterpenes are recognized as the key active constituents of Chinese agarwood, the efficacy and mechanism of the sesquiterpene-enriched extract of Chinese agarwood (PEE) on bile reflux gastritis (BRG) remain unclear. AIM OF THE STUDY To explore the protective impact of PEE against BRG and unveil its underlying mechanism in suppressing apoptosis of gastric mucosal cells. MATERIALS AND METHODS A taurocholic acid (TCA)-induced BRG mouse model was used to assess PEE's protective effects on gastric mucosa histopathology. Transcriptomic analysis was conducted to identify the key signaling pathways affected by PEE. The impact of PEE on apoptosis modulation and Wnt/β-catenin signaling in GES-1 cells was examined. Additionally, the influence of PEE on the Wnt/β-catenin pathway in BRG mouse gastric mucosa was evaluated. RESULTS PEE substantially improved gastric tissue damage and inflammation in BRG mice. Transcriptomic analysis revealed that PEE modulates genes linked to apoptosis and the Wnt/β-catenin pathway. In TCA-induced GES-1 cells, PEE enhanced cell viability and mitigated apoptosis via the Wnt/β-catenin pathway, a process potentially mediated by IWP-2, an antagonist of this pathway. Similar regulatory effects were noted in the gastric mucosa of BRG mice. CONCLUSION Our research suggests that PEE exerts a protective effect on the gastric tissue through modulating the Wnt/β-catenin pathway to combat apoptosis, which highlights the potential of PEE as a natural remedy for BRG and warrants further investigation into its therapeutic benefits.
Collapse
Affiliation(s)
- Jiale Ma
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xueping Pang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weigang Xue
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junjiao Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huixia Huo
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Maoyuan Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yangli Huang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ziyu Yin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun Gao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfang Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiao Zheng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Yang Y, Ling W. Health Benefits and Future Research of Phytochemicals: A Literature Review. J Nutr 2025; 155:87-101. [PMID: 39536969 DOI: 10.1016/j.tjnut.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Phytochemicals are nonnutritive substances found in plant foods that contribute significantly to the flavor and color of foods. These substances are usually classified as polyphenols, terpenes, sulfur-containing compounds, nitrogen-containing compounds, and others. Numerous studies over the last decades have demonstrated these substances play an immeasurable role in physiological regulation, health care, and disease prevention through their actions in antioxidation, anti-inflammation, antiaging, antivirus, anticancer, antithrombosis, lipid profile regulation, cardiovascular protection, neuroprotection, immunity regulation, and improvement of metabolic functions. This article reviews the chemistry and biochemistry of phytochemicals, their classification and chemical structure, occurrence and biosynthesis in plants, and biological activities and implications for human health and various diseases. The discussions are focused on the most recent important advances in these phytochemical researches. In addition, some future research directions of phytochemicals are set forth regarding dose-response, their mechanism and targets, interactions with gut microbiota, and impact on human health and different stages of chronic diseases.
Collapse
Affiliation(s)
- Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Zhu Y, He Y, Gan R. Wnt Signaling in Hepatocellular Carcinoma: Biological Mechanisms and Therapeutic Opportunities. Cells 2024; 13:1990. [PMID: 39682738 PMCID: PMC11640042 DOI: 10.3390/cells13231990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), characterized by significant morbidity and mortality rates, poses a substantial threat to human health. The expression of ligands and receptors within the classical and non-classical Wnt signaling pathways plays an important role in HCC. The Wnt signaling pathway is essential for regulating multiple biological processes in HCC, including proliferation, invasion, migration, tumor microenvironment modulation, epithelial-mesenchymal transition (EMT), stem cell characteristics, and autophagy. Molecular agents that specifically target the Wnt signaling pathway have demonstrated significant potential for the treatment of HCC. However, the precise mechanism by which the Wnt signaling pathway interacts with HCC remains unclear. In this paper, we review the alteration of the Wnt signaling pathway in HCC, the mechanism of Wnt pathway action in HCC, and molecular agents targeting the Wnt pathway. This paper provides a theoretical foundation for identifying molecular agents targeting the Wnt pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Runliang Gan
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.Z.); (Y.H.)
| |
Collapse
|
5
|
El-Saadony MT, Saad AM, Korma SA, Salem HM, Abd El-Mageed TA, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mosa WFA, Ahmed AE, Mathew BT, Albastaki NA, Alkuwaiti AA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review. Front Immunol 2024; 15:1277074. [PMID: 38915405 PMCID: PMC11194342 DOI: 10.3389/fimmu.2024.1277074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noor A. Albastaki
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha A. Alkuwaiti
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
6
|
Xue W, Zhu B, Zhao K, Huang Q, Luo H, Shou Y, Huang Z, Guo H. Targeting LRP6: A new strategy for cancer therapy. Pharmacol Res 2024; 204:107200. [PMID: 38710241 DOI: 10.1016/j.phrs.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.
Collapse
Affiliation(s)
- Wei Xue
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Bo Zhu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Kaili Zhao
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiuju Huang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region of China
| | - Yiwen Shou
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhaoquan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Muñoz-Aguirre P, Denova-Gutiérrez E, Pérez-Saldivar ML, Espinoza-Hernández LE, Dorantes-Acosta EM, Torres-Nava JR, Solís-Labastida KA, Paredes-Aguilera R, Velázquez-Aviña MM, Espinosa-Elizondo RM, Miranda-Madrazo MR, González-Ávila AI, Rodríguez-Villalobos LR, Dosta-Herrera JJ, Mondragón-García JA, Castañeda-Echevarría A, López-Caballero MG, Martínez-Silva SI, Rivera-González J, Hernández-Pineda NA, Flores-Botello J, Pérez-Gómez JA, Rodríguez-Vázquez MA, Torres-Valle D, Olvera-Durán JÁ, Martínez-Ríos A, García-Cortés LR, Almeida-Hernández C, Flores-Lujano J, Núñez-Enriquez JC, Mata-Rocha M, Rosas-Vargas H, Duarte-Rodríguez DA, Jiménez-Morales S, Mejía-Aranguré JM, López-Carrillo L. Maternal dietary patterns and acute leukemia in infants: results from a case control study in Mexico. Front Nutr 2023; 10:1278255. [PMID: 38024345 PMCID: PMC10680405 DOI: 10.3389/fnut.2023.1278255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Childhood cancer is the leading cause of disease-related mortality among children aged 5-14 years in Mexico, with acute leukemia being the most common cancer among infants. Examining the overall dietary patterns allows for a comprehensive assessment of food and nutrient consumption, providing a more predictive measure of disease risk than individual foods or nutrients. This study aims to evaluate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in Mexican infants. Methods A hospital-based case-control study was conducted, comparing 109 confirmed acute leukemia cases with 152 age-matched controls. All participants (≤24 months) were identified at hospitals in Mexico City between 2010 and 2019. Data on a posteriori dietary patterns and other relevant variables were collected through structured interviews and dietary questionnaires. Multivariate logistic regression was employed to estimate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in infants. Results The "Balanced & Vegetable-Rich" pattern, characterized by a balanced consumption of various food groups and higher vegetable intake, exhibited a negative association with acute leukemia when compared to the "High Dairy & Cereals" Pattern (adjusted odds ratio [OR] = 0.51; 95% confidence interval [CI]: 0.29, 0.90). We observed that mothers who gave birth to girls and adhered to a healthy dietary pattern during pregnancy exhibited significantly lower odds of their children developing AL compared to those who gave birth to boys [OR = 0.32 (95% CI 0.11, 0.97)]. Our results underscore the significance of maternal nutrition as a modifiable factor in disease prevention and the importance of prenatal health education.
Collapse
Affiliation(s)
- Paloma Muñoz-Aguirre
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City, Mexico
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Edgar Denova-Gutiérrez
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Laura E. Espinoza-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, CMN “La Raza”, IMSS, Mexico City, Mexico
| | - Elisa M. Dorantes-Acosta
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez, Secretaria de Salud (SSA), Mexico City, Mexico
| | - José R. Torres-Nava
- Servicio de Oncología, Hospital Pediátrico Moctezuma, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | | | | | | | | | - M. Raquel Miranda-Madrazo
- Servicio de Hematología Pediátrica, CMN “20 de noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Ana Itamar González-Ávila
- Servicio de Hematología Pediátrica, HGR No. 1 “Dr. Carlos Mac Gregor Sánchez Navarro” IMSS, Mexico City, Mexico
| | | | - Juan José Dosta-Herrera
- Servicio de Cirugía Pediátrica, Hospital General “Gaudencio González Garza”, CMN “La Raza”, IMSS, Mexico City, Mexico
| | - Javier A. Mondragón-García
- Servicio de Cirugía Pediátrica, Hospital General Regional (HGR) No. 1 “Dr. Carlos Mac Gregor Sánchez Navarro” IMSS, Mexico City, Mexico
| | | | | | | | - Juan Rivera-González
- Hospital General “Dr. Gustavo Baz Prada”, Instituto de Salud del Estado de México (ISEM), Estado de México, Mexico
| | | | - Jesús Flores-Botello
- Coordinación Clínica y Pediatría, Hospital General “La Perla” ISEM, Estado de México, Mexico
| | | | | | - Delfino Torres-Valle
- Coordinación Clínica y Pediatría del Hospital General de Zona 71, IMSS, Mexico City, Mexico
| | | | | | | | | | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Juan Carlos Núñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Laboratorio de Biología Molecular de las Leucemias, Unidad de Investigación en Genética Humana, UMAE, Hospital de Pediatría, CMN “Siglo XXI”, IMSS, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Laboratorio de Genética, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Innovación y Medicina de Precisión, Núcleo A, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Laboratorio de Innovación y Medicina de Precisión, Núcleo A, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
8
|
Saeed RA, Maqsood M, Saeed RA, Muzammil HS, Khan MI, Asghar L, Nisa SU, Rabail R, Aadil RM. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit Rev Food Sci Nutr 2023; 63:11750-11783. [PMID: 35796706 DOI: 10.1080/10408398.2022.2095974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regardless of etiology, hepatocarcinogenesis is frequently preceded by a distinctive sequence of chronic necroinflammation, compensatory hepatic regeneration, development of hepatic fibrosis, and ultimately cirrhosis. The liver being central immunomodulators, closely maintains immunotolerance. Any dysregulation in this management of immunotolerance is a hallmark of chronic hepatic disease and hepatocellular carcinoma (HCC). Apart from other malignancies, hepatocellular carcinoma accounts for 90% of liver cancers. Several emerging evidences have recognized diet as lifestyle associated risk factor in HCC development. However, natural compounds have the potential to fight hepatoma aggressiveness via inhibition of cellular proliferation and modulation of oncogenic pathways. This review aimed to identify the several plant-based foods for their protective role in HCC prevention by understating the molecular mechanisms involved in inhibition of progression and proliferation of cancer. Information from relevant publications in which several plant-based foods demonstrated protective potential against HCC has been integrated as well as evaluated. For data integration, Science direct, Google scholar, and Scopus websites were used. Nutrition-based approaches in the deterrence of several cancers offer a substantial benefit to currently used medical therapies and should be implemented more often as an adjunct to first-line medical therapy. Furthermore, the inclusion of these plant-based foods (vegetables, fruits, herbs, and spices) may improve general health and decline cancer incidence.
Collapse
Affiliation(s)
- Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raafia Anam Saeed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Laiba Asghar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sahar Un Nisa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22:333-345. [PMID: 36448560 DOI: 10.1016/j.hbpd.2022.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern associated with significant morbidity and mortality. NAFLD is a spectrum of diseases originating from simple steatosis, progressing through nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis that may lead to hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is mediated by the triglyceride accumulation followed by proinflammatory cytokines expression leading to inflammation, oxidative stress, and mitochondrial dysfunction denoted as "two-hit hypothesis", advancing with a "third hit" of insufficient hepatocyte proliferation, leading to the increase in hepatic progenitor cells contributing to fibrosis and HCC. Wnt/β-catenin signaling is responsible for normal liver development, regeneration, hepatic metabolic zonation, ammonia and drug detoxification, hepatobiliary development, etc., maintaining the overall liver homeostasis. The key regulators of canonical Wnt signaling such as LRP6, Wnt1, Wnt3a, β-catenin, GSK-3β, and APC are abnormally regulated in NAFLD. Many experimental studies have shown the aberrated Wnt/β-catenin signaling during the NAFLD progression and NASH to hepatic fibrosis and HCC. Therefore, in this review, we have emphasized the role of Wnt/β-catenin signaling and its modulators that can potentially aid in the inhibition of NAFLD.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
10
|
Zhao J, Sun Y, Gao P, Zhao Z, Wei G. S-allylmercaptocysteine promotes anti-tumor immunity by suppressing PD-L1 expression. Biomed Pharmacother 2023; 161:114446. [PMID: 37002570 DOI: 10.1016/j.biopha.2023.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
SAMC (S-allylmercaptocysteine) possesses significant anti-tumor effects and is proven to inhibit inflammation in chronic obstructive pulmonary disease. The potential to regulate the immune system of SAMC inspired us to detect whether SAMC can promote anti-tumor immunity. Here we found that SAMC inhibits tumor development and progression by boosting CD8+ T cell and NK cell infiltration and decreasing the frequency of immune suppressing Treg cells in tumor tissue and enhancing the systemic immune function. Mechanistically, we found that SAMC suppresses PD-L1 expression at transcriptional level to increase the activation of anti-tumor cytotoxic T cells. Finally, we proved that SAMC inhibits PD-L1 transcription by suppressing the phosphorylation activation of STAT3. In conclusion, our findings reveal that SAMC is a potent immunity regulator and a potential agent for immune checkpoint inhibition in tumor therapy.
Collapse
|
11
|
Lin S, Xu H, Qin L, Pang M, Wang Z, Gu M, Zhang L, Zhao C, Hao X, Zhang Z, Ding W, Ren J, Huang J. UHRF1/DNMT1–MZF1 axis-modulated intragenic site-specific CpGI methylation confers divergent expression and opposing functions of PRSS3 isoforms in lung cancer. Acta Pharm Sin B 2023; 13:2086-2106. [DOI: 10.1016/j.apsb.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 02/05/2023] [Indexed: 04/09/2023] Open
|
12
|
Lu J, Li N, Li S, Liu W, Li M, Zhang M, Chen H. Biochemical Composition, Antioxidant Activity and Antiproliferative Effects of Different Processed Garlic Products. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020804. [PMID: 36677862 PMCID: PMC9864549 DOI: 10.3390/molecules28020804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Garlic (Allium sativum L.) is a type of agricultural product that is widely used as a food spice, herb and traditional medicine. White garlic (WG) can be processed into several kinds of products, such as green garlic (GG), Laba garlic (LAG) and black garlic (BG), which have multiple health effects. In this study, GC-MS (gas chromatography-mass spectrometry), DPPH (1,1'-diphenyl-2-propionyl hydrazide) radical scavenging, hydroxyl radical scavenging and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) in vitro assays were used to compare the composition, antioxidant and antiproliferation effects of different processed garlic extracts. The relationship between the constituents and the bioactivities was analyzed using the principal components analysis (PCA) and heatmap analysis. BG showed the highest antioxidant activity (IC50 = 0.63 ± 0.02 mg/mL) in DPPH radical assays and the highest antioxidant activity (IC50 = 0.80 ± 0.01 mg/mL) by hydroxyl radical assay. Moreover, GC-MS results showed that 12 organosulfur compounds were detected in the extracts of four garlic products, and allyl methyl trisulfide showed a positive relation with the anticancer activity on SMMC-7721 cells (hepatocellular carcinoma cells). The results suggested that the processing of garlic had a significant influence on the constituents and antioxidant effects and that GG, LAG and BG might be better candidates for the related functional food products compared to WG.
Collapse
Affiliation(s)
- Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Correspondence: ; Tel.: +86-22-27401483
| |
Collapse
|
13
|
Che Z, Song Y, Xu C, Li W, Dong Z, Wang C, Ren Y, So KF, Tipoe GL, Wang F, Xiao J. Melatonin alleviates alcoholic liver disease via EGFR-BRG1-TERT axis regulation. Acta Pharm Sin B 2023; 13:100-112. [PMID: 36815038 PMCID: PMC9939303 DOI: 10.1016/j.apsb.2022.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic alcohol consumption causes liver steatosis, cell death, and inflammation. Melatonin (MLT) is reported to alleviate alcoholic liver disease (ALD)-induced injury. However, its direct regulating targets in hepatocytes are not fully understood. In the current study, a cell-based screening model and a chronic ethanol-fed mice ALD model were used to test the protective mechanisms of MLT. MLT ameliorated ethanol-induced hepatocyte injury in both cell and animal models (optimal doses of 10 μmol/L and 5 mg/kg, respectively), including lowered liver steatosis, cell death, and inflammation. RNA-seq analysis and loss-of-function studies in AML-12 cells revealed that telomerase reverse transcriptase (TERT) was a key downstream effector of MLT. Biophysical assay found that epidermal growth factor receptor (EGFR) on the hepatocyte surface was a direct binding and regulating target of MLT. Liver specific knock-down of Tert or Egfr in the ALD mice model impaired MLT-mediated liver protection, partly through the regulation of nuclear brahma-related gene-1 (BRG1). Long-term administration (90 days) of MLT in healthy mice did not cause evident adverse effect. In conclusion, MLT is an efficacious and safe agent for ALD alleviation. Its direct regulating target in hepatocytes is EGFR and downstream BRG1-TERT axis. MLT might be used as a complimentary agent for alcoholics.
Collapse
Affiliation(s)
- Zhaodi Che
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yali Song
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Chengfang Xu
- Department of Obstetrics, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 2748510, Japan
| | - Zhiyong Dong
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Kwok-Fai So
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - George L. Tipoe
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Elegbeleye JA, Krishnamoorthy S, Bamidele OP, Adeyanju AA, Adebowale OJ, Agbemavor WSK. Health-promoting foods and food crops of West-Africa origin: The bioactive compounds and immunomodulating potential. J Food Biochem 2022; 46:e14331. [PMID: 36448596 DOI: 10.1111/jfbc.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022]
Abstract
The rural communities of the sub-Sahara regions in Africa are rich in diverse indigenous culinary knowledge and foods, food crops, and condiments such as roots/tubers, cereal, legumes/pulses, locust beans, and green leafy vegetables. These food crops are rich in micronutrients and phytochemicals, which have the potentials to address hidden hunger as well as promote health when consumed. Some examples of these are fermented foods such as ogi and plants such as Vernonia amygdalina (bitter leaf), Zingiber officinales (garlic), Hibiscus sabdariffa (Roselle), and condiments. Food crops from West Africa contain numerous bioactive substances such as saponins, alkaloids, tannins, phenolics, flavonoids, and monoterpenoid chemicals among others. These bioresources have proven biological and pharmacological activities due to diverse mechanisms of action such as immunomodulatory, anti-inflammatory, antipyretic, and antioxidant activities which made them suitable as candidates for nutraceuticals and pharma foods. This review seeks to explore the different processes such as fermentation applied during food preparation and food crops of West-African origin with health-promoting benefits. The different bioactive compounds present in such food or food crops are discussed extensively as well as the diverse application, especially regarding respiratory diseases. PRACTICAL APPLICATIONS: The plants and herbs summarized here are more easily accessible and affordable by therapists and others having a passion for promising medicinal properties of African-origin plants.The mechanisms and unique metabolic potentials of African food crops discussed in this article will promote their applicability as a template molecule for novel drug discoveries in treatment strategies for emerging diseases. This compilation of antiviral plants will help clinicians and researchers bring new preventive strategies in combating COVID-19 like viral diseases, ultimately saving millions of affected people.
Collapse
Affiliation(s)
| | - Srinivasan Krishnamoorthy
- Department of Technology Dissemination, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | | | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | | | - Wisdom Selorm Kofi Agbemavor
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon Accra, Ghana
| |
Collapse
|
15
|
Tudu CK, Dutta T, Ghorai M, Biswas P, Samanta D, Oleksak P, Jha NK, Kumar M, Radha, Proćków J, Pérez de la Lastra JM, Dey A. Traditional uses, phytochemistry, pharmacology and toxicology of garlic ( Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front Nutr 2022; 9:949554. [PMID: 36386956 PMCID: PMC9650110 DOI: 10.3389/fnut.2022.929554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 10/29/2023] Open
Abstract
Allium sativum L. (Garlic) is a fragrant herb and tuber-derived spice that is one of the most sought-after botanicals, used as a culinary and ethnomedicine for a variety of diseases around the world. An array of pharmacological attributes such as antioxidant, hypoglycemic, anti-inflammatory, antihyperlipidemic, anticancer, antimicrobial, and hepatoprotective activities of this species have been established by previous studies. A. sativum houses many sulfur-containing phytochemical compounds such as allicin, diallyl disulfide (DADS), vinyldithiins, ajoenes (E-ajoene, Z-ajoene), diallyl trisulfide (DATS), micronutrient selenium (Se) etc. Organosulfur compounds are correlated with modulations in its antioxidant properties. The garlic compounds have also been recorded as promising immune-boosters or act as potent immunostimulants. A. sativum helps to treat cardiovascular ailments, neoplastic growth, rheumatism, diabetes, intestinal worms, flatulence, colic, dysentery, liver diseases, facial paralysis, tuberculosis, bronchitis, high blood pressure, and several other diseases. The present review aims to comprehensively enumerate the ethnobotanical and pharmacological aspects of A. sativum with notes on its phytochemistry, ethnopharmacology, toxicological aspects, and clinical studies from the retrieved literature from the last decade with notes on recent breakthroughs and bottlenecks. Future directions related to garlic research is also discussed.
Collapse
Affiliation(s)
| | - Tusheema Dutta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska, Poland
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC). Avda, Astrofísico Francisco Sánchez, San Cristóbal de la Laguna, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
16
|
Ozma MA, Abbasi A, Ahangarzadeh Rezaee M, Hosseini H, Hosseinzadeh N, Sabahi S, Noori SMA, Sepordeh S, Khodadadi E, Lahouty M, Kafil HS. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s ( Allium sativum L.) Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sama Sepordeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas—Fayetteville, Fayetteville, AR, USA
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Zhou Y, Li X, Luo W, Zhu J, Zhao J, Wang M, Sang L, Chang B, Wang B. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front Pharmacol 2022; 13:903259. [PMID: 35770084 PMCID: PMC9234177 DOI: 10.3389/fphar.2022.903259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Allicin is the main active ingredient in freshly-crushed garlic and some other allium plants, and its anticancer effect on cancers of digestive system has been confirmed in many studies. The aim of this review is to summarize epidemiological studies and in vitro and in vivo investigations on the anticancer effects of allicin and its secondary metabolites, as well as their biological functions. In epidemiological studies of esophageal cancer, liver cancer, pancreatic cancer, and biliary tract cancer, the anticancer effect of garlic has been confirmed consistently. However, the results obtained from epidemiological studies in gastric cancer and colon cancer are inconsistent. In vitro studies demonstrated that allicin and its secondary metabolites play an antitumor role by inhibiting tumor cell proliferation, inducing apoptosis, controlling tumor invasion and metastasis, decreasing angiogenesis, suppressing Helicobacter pylori, enhancing the efficacy of chemotherapeutic drugs, and reducing the damage caused by chemotherapeutic drugs. In vivo studies further demonstrate that allicin and its secondary metabolites inhibit cancers of the digestive system. This review describes the mechanisms against cancers of digestive system and therapeutic potential of allicin and its secondary metabolites.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Xingxuan Li
- The Second Clinical College, China Medical University, Shenyang, China
| | - Wenyu Luo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Bing Chang,
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Zhang Q, Zhao Q, Shen Y, Zhao F, Zhu Y. Allium Vegetables, Garlic Supplements, and Risk of Cancer: A Systematic Review and Meta-Analysis. Front Nutr 2022; 8:746944. [PMID: 35402472 PMCID: PMC8985597 DOI: 10.3389/fnut.2021.746944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
PurposeThe role of allium vegetables or garlic supplements on reducing cancer risk was inconsistent between laboratory study findings and related epidemiologic studies.MethodsStudies assessing the effect of allium vegetables and garlic supplement consumption on cancer risk were included in our meta-analysis. We used fixed- or random-effects models to pool effect measures to evaluate the highest and lowest consumption. A dose-response regression analysis was used to assess the association between allium vegetables, garlic supplements, and cancer risk.ResultsIn a pooled analysis of 22 studies with 25 reports on allium vegetables, a high consumption of allium vegetables showed no significant association with cancer risk (relative risk [RR] = 0.97, 95% confidence interval [CI] 0.92–1.03) in a fixed-effects model. Similarly, garlic supplements were not found to be significantly associated with an increased risk of cancer (RR = 0.97, 95% CI 0.84–1.12) in a random-effects model involving a pooled analysis of 10 studies with 11 reports. Consumption of allium vegetables did not significantly correspond with cancer risk (P for nonlinearity = 0.958, P for linearity = 0.907).ConclusionIn this meta-analysis, we found no evidence that higher consumption of allium vegetables or garlic supplements reduced the risk of cancer; however, this finding requires further validation.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/#recordDetails, identifier: CRD42021246947.
Collapse
Affiliation(s)
- Qifan Zhang
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qing Zhao
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yan Shen
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fuping Zhao
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yan Zhu
- Department of Pulmonary and Critical Care Medicine, Xi'an No.3 Hospital, Xi'an, China
- *Correspondence: Yan Zhu
| |
Collapse
|
19
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
20
|
Layered Double Hydroxides as a Drug Delivery Vehicle for S-Allyl-Mercapto-Cysteine (SAMC). Processes (Basel) 2021. [DOI: 10.3390/pr9101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The intercalations of anionic molecules and drugs in layered double hydroxides (LDHs) have been intensively investigated in recent years. Due to their properties, such as versatility in chemical composition, good biocompatibility, high density and protection of loaded drugs, LDHs seem very promising nanosized systems for drug delivery. In this work, we report the intercalation of S-allyl-mercapto-cysteine (SAMC), which is a component of garlic that is well-known for its anti-tumor properties, inside ZnAl-LDH (hereafter LDH) nanostructured crystals. In order to investigate the efficacy of the intercalation and drug delivery of SAMC, the intercalated compounds were characterized using X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The increase in the interlayer distance of LDH from 8.9 Å, typical of the nitrate phase, to 13.9 Å indicated the intercalation of SAMC, which was also confirmed using FT-IR spectra. Indeed, compared to that of the pristine LDH precursor, the spectrum of LDH-SAMC was richly structured in the fingerprint region below 1300 cm−1, whose peaks corresponded to those of the functional groups in the SAMC molecular anion. The LDH-SAMC empirical formula, obtained from UV-Vis spectrophotometry and thermogravimetric analysis, was [Zn0.67Al0.33(OH)2]SAMC0.15(NO3)0.18·0.6H2O. The morphology of the sample was investigated using SEM: LDH-SAMC exhibited a more irregular size and shape of the flake-like crystals in comparison with the pristine LDH, with a reduction in the average crystallite size from 3 µm to about 2 µm. In vitro drug release studies were performed in a phosphate buffer solution at pH 7.2 and 37 °C and were analyzed using UV-Vis spectrophotometry. The SAMC release from LDH-SAMC was initially characterized by a burst effect in the first four hours, during which, 32% of the SAMC is released. Subsequently, the release percentage increased at a slower rate until 42% after 48 h; then it stabilized at 43% and remained constant for the remaining period of the investigation. The LDH-SAMC complex that was developed in this study showed the improved efficacy of the action of SAMC in reducing the invasive capacity of a human hepatoma cell line.
Collapse
|
21
|
Anti-Hepatocellular Carcinoma Biomolecules: Molecular Targets Insights. Int J Mol Sci 2021; 22:ijms221910774. [PMID: 34639131 PMCID: PMC8509806 DOI: 10.3390/ijms221910774] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This report explores the available curative molecules directed against hepatocellular carcinoma (HCC). Limited efficiency as well as other drawbacks of existing molecules led to the search for promising potential alternatives. Understanding of the cell signaling mechanisms propelling carcinogenesis and driven by cell proliferation, invasion, and angiogenesis can offer valuable information for the investigation of efficient treatment strategies. The complexity of the mechanisms behind carcinogenesis inspires researchers to explore the ability of various biomolecules to target specific pathways. Natural components occurring mainly in food and medicinal plants, are considered an essential resource for discovering new and promising therapeutic molecules. Novel biomolecules normally have an advantage in terms of biosafety. They are also widely diverse and often possess potent antioxidant, anti-inflammatory, and anti-cancer properties. Based on quantitative structure-activity relationship studies, biomolecules can be used as templates for chemical modifications that improve efficiency, safety, and bioavailability. In this review, we focus on anti-HCC biomolecules that have their molecular targets partially or completely characterized as well as having anti-cancer molecular mechanisms that are fairly described.
Collapse
|
22
|
Khakbaz P, Panahizadeh R, Vatankhah MA, Najafzadeh N. Allicin Reduces 5-fluorouracil-resistance in Gastric Cancer Cells through Modulating MDR1, DKK1, and WNT5A Expression. Drug Res (Stuttg) 2021; 71:448-454. [PMID: 34261152 DOI: 10.1055/a-1525-1499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND & OBJECTIVE 5-fluorouracil (5-FU) is approved for the treatment of gastric carcinoma (GC), but chemo-resistance limits the application of it for GC. Thus, the combination of 5-FU with adjuvants such as allicin may overcome multidrug resistance (MDR). METHODS The anticancer effects of allicin, 5-FU, and allicin/5-FU on the 5-FU resistant MKN-45 cells were evaluated by MTT assay and DAPi staining. The expression of the P-glycoprotein (P-gp) and CD44 protein were determined using immunocytochemistry. We also quantified mRNA expression levels of WNT5A, Dickkopf-1 (DKK1), and MDR1 in the GC cells. RESULTS Here, we found that the combination of allicin with 5-FU significantly increased apoptosis compared to 5-FU alone (P<0.05). We showed that WNT5A, MDR1, and DKK1 mRNA expression levels were down-regulated in the allicin- and allicin/5-FU-treated cells. Indeed, the combination of allicin and 5-FU significantly decreased the expression of the P-gp and CD44 proteins (P<0.05). CONCLUSION Our findings indicate that the combination of allicin with 5-FU could reverse multidrug resistance in the GC cells by reducing the expression of WNT5A, DKK1, MDR1, P-gp, and CD44 levels.
Collapse
Affiliation(s)
- Parya Khakbaz
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amin Vatankhah
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
23
|
Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2021; 175:105837. [PMID: 34450316 DOI: 10.1016/j.phrs.2021.105837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.
Collapse
|
24
|
Lu X, Wang C, Zhao M, Wu J, Niu Z, Zhang X, Simal-Gandara J, Süntar I, Jafari SM, Qiao X, Tang X, Han Z, Xiao J, Ningyang L. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit Rev Food Sci Nutr 2021; 62:8467-8496. [PMID: 34058922 DOI: 10.1080/10408398.2021.1929058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights main bioactive compounds and important biological functions especially anticancer effects of the garlic. In addition, we review current literature on the stability and bioavailability of garlic components. Finally, this review aims to provide a potential strategy for using nanotechnology to increase the stability and solubility of garlic components, providing guidelines for the qualities of garlic products to improve their absorption and prevent their early degradation, and extend their circulation time in the body. The application of nanotechnology to improve the bioavailability and targeting of garlic compounds are expected to provide a theoretical basis for the functional components of garlic to treat human health. We review the improvement of bioavailability and bioactivity of garlic bioactive compounds via nanotechnology, which could promisingly overcome the limitations of conventional garlic products, and would be used to prevent and treat cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinxiang Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Ipek Süntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Li Ningyang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
25
|
Luo P, Zheng M, Zhang R, Zhang H, Liu Y, Li W, Sun X, Yu Q, Tipoe GL, Xiao J. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling. Acta Pharm Sin B 2021; 11:668-679. [PMID: 33777674 PMCID: PMC7982498 DOI: 10.1016/j.apsb.2020.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Alcoholic liver disease (ALD) causes insulin resistance, lipid metabolism dysfunction, and inflammation. We investigated the protective effects and direct regulating target of S-allylmercaptocysteine (SAMC) from aged garlic on liver cell injury. A chronic ethanol-fed ALD in vivo model (the NIAAA model) was used to test the protective functions of SAMC. It was observed that SAMC (300 mg/kg, by gavage method) effectively ameliorated ALD-induced body weight reduction, steatosis, insulin resistance, and inflammation without affecting the health status of the control mice, as demonstrated by histological, biochemical, and molecular biology assays. By using biophysical assays and molecular docking, we demonstrated that SAMC directly targeted insulin receptor (INSR) protein on the cell membrane and then restored downstream IRS-1/AKT/GSK3β signaling. Liver-specific knock-down in mice and siRNA-mediated knock-down in AML-12 cells of Insr significantly impaired SAMC (250 μmol/L in cells)-mediated protection. Restoration of the IRS-1/AKT signaling partly recovered hepatic injury and further contributed to SAMC's beneficial effects. Continuous administration of AKT agonist and recombinant IGF-1 in combination with SAMC showed hepato-protection in the mice model. Long-term (90-day) administration of SAMC had no obvious adverse effect on healthy mice. We conclude that SAMC is an effective and safe hepato-protective complimentary agent against ALD partly through the direct binding of INSR and partial regulation of the IRS-1/AKT/GSK3β pathway.
Collapse
Key Words
- ADIPOQ, adiponectin
- AKT
- ALD, alcoholic liver disease
- ALDH2, aldehyde dehydrogenase 2
- ALT, alanine aminotransferase
- AMPK, adenosine 5′-monophosphate (AMP)-activated protein kinase
- AST, aspartate aminotransferase
- ATGL, adipose triglyceride lipase
- Alcoholic liver disease
- CPT1, carnitine palmitoyltransferase I
- CYP2E1, cytochrome P450 2E1
- FDA, U.S. Food and Drug Administration
- FFA, free fatty acids
- GRB14, growth factor receptor-bound protein 14
- GSK3β
- GSK3β, glycogen synthase kinase 3 beta
- GTT, glucose tolerance test
- HSL, hormone sensitive lipase
- IGF-1, insulin-like growth factors-1
- IL, interleukin
- INSR, insulin receptor
- IRS, insulin receptor substrate
- IRS-1
- IRTK, insulin receptor tyrosine kinase
- Insulin receptor
- Insulin resistance
- LDLR, low-density lipoprotein receptor
- LRP6, low-density lipoprotein receptor related protein 6
- MTT, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
- NAC, N-acetyl-cysteine
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NF-κB, nuclear factor kappa B
- NIAAA, National Institute on Alcohol Abuse and Alcoholism
- NRF2, nuclear factor erythroid 2-related factor 2
- ORF, open reading frame
- PA, palmitate acid
- PPARα, peroxisome proliferator-activated receptor alpha
- RER, respiratory exchange ratio
- S-Allylmercaptocysteine
- SAMC, S-allylmercaptocysteine
- SPR, surface plasmon resonance
- SREBP-1c, sterol regulatory element-binding protein 1c
- Safety
- TC, total cholesterol
- TCF/LEF, T-cell factor/lymphoid enhancer factor
- TG, triglyceride
- TNF, tumor necrosis factor
- TSA, thermal shift assay
- WAT, white adipose tissues
- WT, wild-type
Collapse
|
26
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
27
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
28
|
Niu J, Li W, Liang C, Wang X, Yao X, Yang RH, Zhang ZS, Liu HF, Liu FY, Pei SH, Li WQ, Sun H, Fang D, Xie SQ. EGF promotes
DKK1
transcription in hepatocellular carcinoma by enhancing the phosphorylation and acetylation of histone H3. Sci Signal 2020; 13:13/657/eabb5727. [DOI: 10.1126/scisignal.abb5727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wei Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ruo-Han Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Zhan-Sheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Han-Fang Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Fan-Ye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Shu-Hua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wen-Qi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Song-Qiang Xie
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| |
Collapse
|
29
|
Moreno-Ortega A, Pereira-Caro G, Ordóñez JL, Moreno-Rojas R, Ortíz-Somovilla V, Moreno-Rojas JM. Bioaccessibility of Bioactive Compounds of 'Fresh Garlic' and 'Black Garlic' through In Vitro Gastrointestinal Digestion. Foods 2020; 9:E1582. [PMID: 33142731 PMCID: PMC7693347 DOI: 10.3390/foods9111582] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have reported health benefits associated with the consumption of fresh and black garlic, which are characterized by the presence of polyphenols and organosulfur compounds (OS). This study aims to analyze the bioaccessibility of the bioactive compounds in fresh and black garlic after in vitro gastrointestinal digestion by monitoring the individual profile of these compounds by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). Polyphenols decreased from the beginning of the digestive process, is mainly affected during intestinal digestion. Regarding the OS, the S-alk(en)yl-L-cysteine (SACs) derivatives were more influenced by the acidic conditions of the gastric digestion, while the γ-glutamyl-S-alk(en)yl-L-cysteine (GSAk) derivatives were more susceptible to intestinal digestion conditions in both the fresh and black garlic samples. In conclusion, after in vitro gastrointestinal digestion, the compounds with the highest bioaccessibility were vanillic acid (69%), caffeic acid (52%), γ-glutamyl-S-methyl-L-cysteine sulfoxide (GSMCS) (77%), and S-allylmercapto-L-cysteine (SAMC) (329%) in fresh garlic. Meanwhile, in black garlic, the main bioaccessible compounds were caffeic acid (65%), GSMCS (89%), methionine sulfoxide (262%), trans-S-(1-propenyl)-L-cysteine (151%), and SAMC (106%). The treatment (heating + humidity) to obtain black garlic exerted a positive effect on the bioaccessibility of OS compounds, 55.3% of them remaining available in black garlic, but only 15% in fresh garlic. Polyphenols showed different behavior regarding bioaccessibility.
Collapse
Affiliation(s)
- Alicia Moreno-Ortega
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| | - José Luis Ordóñez
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| | - Rafael Moreno-Rojas
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Víctor Ortíz-Somovilla
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; (A.M.-O.); (G.P.-C.); (J.L.O.); (V.O.-S.)
| |
Collapse
|
30
|
Yu CX, Chen YS, Ge ZJ, Zhang YH, Xu X, Tian T, Wen Y, Zhu J, Song C, Chen JG, Hu ZB. Dietary habits and risk of hepatocellular carcinoma among hepatitis B surface antigen carriers: A prospective cohort study in China. J Dig Dis 2020; 21:406-415. [PMID: 32407579 DOI: 10.1111/1751-2980.12878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In this prospective cohort study, we aimed to evaluate the association between dietary habits and the risk of developing hepatocellular carcinoma (HCC) in hepatitis B surface antigen (HBsAg)-positive carriers in Qidong, an hepatitis B virus (HBV)-epidemic area in China. METHODS A total of 3199 HBsAg carriers aged 30-70 years in a prospective cohort in Qidong, China from 2007 to 2011 were included in the study. At baseline, all participants self-reported their dietary habits in a questionnaire interview. A follow-up check-up was performed every 6 months to identify HCC cases until November 2017. Cox's regression analysis and an interaction analysis were performed to estimate the relative risks of HCC in terms of baseline diet. RESULTS Among 3199 HBsAg-positive participants, 270 developed HCC (143.86/100 000 person-years [PYs]). Compared with participants who rarely consume garlic, the risk of HCC in those who consumed it ≥ once per week decreased along with the increase in frequency (HR = 1.00, 0.90 and 0.62 in those who consumed it rarely vs those who consumed it 1-6 times per week and ≥ 7 times per week, respectively). This study found a synergistic effect between garlic and tea consumption on the risk of HCC (P = 0.039 for a multiplicative interaction). CONCLUSIONS HBsAg carriers should improve their diet. Regular consumption of garlic and tea drinking may reduce the HCC incidence in HBsAg carriers.
Collapse
Affiliation(s)
- Cheng Xiao Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yong Sheng Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu Province, China
| | - Zi Jun Ge
- Department of Infection Management, Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu Province, China
| | - Yong Hui Zhang
- Qidong Liver Cancer Institute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu Province, China
| | - Xin Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ting Tian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yang Wen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jian Zhu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu Province, China
| | - Ci Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jian Guo Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, Jiangsu Province, China.,Affiliated Tumor Hospital/Institute, Nantong University, Nantong, Jiangsu Province, China
| | - Zhi Bin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
31
|
S-allylmercaptocysteine improves nonalcoholic steatohepatitis by enhancing AHR/NRF2-mediated drug metabolising enzymes and reducing NF-κB/IκBα and NLRP3/6-mediated inflammation. Eur J Nutr 2020; 60:961-973. [PMID: 32556446 DOI: 10.1007/s00394-020-02305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the novel molecular mechanisms of the antioxidant and anti-inflammatory properties of S-allylmercaptocysteine (SAMC) based on a transcriptomic study in a nonalcoholic steatohepatitis (NASH) rat model METHODS: NASH was induced in Sprague-Dawley rats by feeding with a high fat diet (HFD) for 12 weeks. 200 mg/kg SAMC was fed by oral gavage for 4 weeks from 9 to 12 week. RESULTS SAMC co-administration attenuated HFD-induced liver injury, including the increased serum ALT, hepatic oxidative stress and inflammation. Transcriptomic analysis revealed that SAMC dramatically induced the XRE- and ARE-driven drug metabolising enzymes (DMEs) including Akr7a3, Akr1b8, and Nqo1. The nuclear translocation of the upstream regulator of xenobiotics metabolism, AHR, and regulator of antioxidant responses, NRF2, were significantly increased by SAMC treatment. Furthermore, SAMC counteracted the effects of HFD on NF-κB/IκB and NLRP3/6 pathways with decreasing protein levels of ASC, cleaved caspase-1, IL-18, and IL-1β. These results were further verified in another mice NASH model induced by an MCD diet with SAMC co-administration. CONCLUSION We propose that SAMC triggers AHR/NRF2-mediated antioxidant responses which may further suppress the NLRP3/6 inflammasome pathway and NF-κB activation, contributing to the improvement of NASH.
Collapse
|
32
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
33
|
Tang C, Gong L, Lvzi Xu, Qiu K, Zhang Z, Wan L. Echinacoside inhibits breast cancer cells by suppressing the Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2020; 526:170-175. [PMID: 32201078 DOI: 10.1016/j.bbrc.2020.03.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Echinacoside, a small molecule derived from the natural herbs Cistanche and Echinacea, shows effective anticancer abilities, but the mechanism remains unclear. By using colony formation, scratch, and transwell assays in MDA-MB-231 breast cancer cells, we confirmed the anti-breast cancer ability of Echinacoside in vitro. In addition, we found that Echinacoside can dose-dependently reduce phosho-LRP6, total LRP6, phosho-Dvl2, active β-catenin, and total β-catenin protein expression level in MDA-MB-231 and MDA-MB-468 cells by western blot. We also detected well-known Wnt targets genes, including LEF1, CD44, and cyclin D1 by real-time PCR and western blot, and Echinacoside significantly shows inhibition effect in these two breast cancer cell lines. Furthermore, we investigated its anti-breast cancer ability in an MDA-MB-231 xenograft model in vivo. Echinacoside treatment significantly reduced tumor growth, which was accompanied by a reduction in Wnt/β-catenin signaling. In summary, our results demonstrate that Echinacoside can effectively inhibit Wnt/β-catenin signaling, and therefore, it may be a promising therapeutic target to treat breast cancer.
Collapse
Affiliation(s)
- Chenghuai Tang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liuping Gong
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lvzi Xu
- Forensic Identification Center, College of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Kaijin Qiu
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhong Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lihua Wan
- Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Medicinal Plants Used in Traditional Management of Cancer in Uganda: A Review of Ethnobotanical Surveys, Phytochemistry, and Anticancer Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3529081. [PMID: 32256639 PMCID: PMC7102457 DOI: 10.1155/2020/3529081] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/18/2020] [Indexed: 01/29/2023]
Abstract
The burden of neoplastic diseases is a significant global health challenge accounting for thousands of deaths. In Uganda, about 32,617 cancer cases were reported in 2018, accompanied by 21,829 deaths. In a view to identify some potential anticancer plant candidates for possible drug development, the current study was designed to compile the inventory of plants with reported anticancer activity used in rural Uganda and the evidences supporting their use in cancer therapy. An electronic survey in multidisciplinary databases revealed that 29 plant species belonging to 28 genera distributed among 24 families have been reported to be used in the management of cancer in Uganda. Anticancer plants were majorly from the families Bignoniaceae (7%), Caricaceae (7%), Fabaceae (7%), Moraceae (7%), and Rutaceae (7%). Most species occur in the wild (52%), though some are cultivated (48%). The growth habit of the plants is as trees (55%) or herbs (45%). Anticancer extracts are usually prepared from leaves (29%), bark (24%), roots (21%), and fruits (13%) through decoctions (53%), as food spices (23%) or pounded to produce ointments that are applied topically (10%). Prunus africana (Hook.f.) Kalkman, Opuntia species, Albizia coriaria (Welw. ex Oliver), Daucus carota L., Cyperus alatus (Nees) F. Muell., Markhamia lutea (Benth.) K. Schum., and Oxalis corniculata L. were the most frequently encountered species. As per global reports, Allium sativum L., Annona muricata L., Carica papaya L., Moringa oleifera Lam., Opuntia species, Prunus africana (Hook.f.) Kalkman, and Catharanthus roseus (L.) G. Don. are the most studied species, with the latter having vincristine and vinblastine anticancer drugs developed from it. Prostate, cervical, breast, and skin cancers are the top traditionally treated malignancies. There is a need to isolate and evaluate the anticancer potential of the bioactive compounds in the unstudied claimed plants, such as Cyperus alatus (Nees) F. Muell., Ficus dawei Hutch., Ficus natalensis Hochst., and Lovoa trichilioides Harms, and elucidate their mechanism of anticancer activity.
Collapse
|
35
|
Qin XY, Su T, Kojima S. Prevention of arachidonic acid-induced liver injury by controlling oxidative stress-mediated transglutaminase activation with garlic extracts. Exp Ther Med 2019; 19:1522-1527. [PMID: 32010333 PMCID: PMC6966192 DOI: 10.3892/etm.2019.8384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Garlic and its sulfur constituents have numerous biological functions, such as antioxidant, anti-inflammatory, anti-microbial, anticancer, antidiabetic and cardioprotective effects. Fatty liver diseases, such as non-alcoholic steatohepatitis, which is characterized by the accumulation of lipids and oxidative stress in hepatocytes and continual liver damage, has attracted much attention, and it is believed that it will become the leading etiology of liver cancer. We have previously reported that the growth-suppressive effects of arachidonic acid (AA), an unsaturated fatty acid known to be a pro-inflammatory precursor, is accompanied by the production of reactive oxygen species followed by the nuclear accumulation and activation of the protein crosslinking enzyme, transglutaminase (TG)2. In this study, we examined the potential role of garlic extracts in preventing the growth-suppressive effects of AA on human hepatic cells. We also aimed to provide a mechanistic insight regarding the association between the hepatoprotective effects of garlic extract and the inhibition of the TG-related crosslinking of nuclear proteins, which is not associated with hepatic lipid partitioning mediated by stearoyl-CoA desaturase-1. Given the critical roles of unsaturated fatty acids in the regulation of cancer cell stemness and immune surveillance in the context of chronic injury, we propose that garlic extracts may serve as a therapeutic option for the prevention of chronic liver injury and inflammation, as well as for the prevention of the carcinogenesis of fatty livers.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Wako, Saitama 351-0198, Japan
| | - Ting Su
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Wako, Saitama 351-0198, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Wako, Saitama 351-0198, Japan
| |
Collapse
|
36
|
Li JJ, Yan YY, Sun HM, Liu Y, Su CY, Chen HB, Zhang JY. Anti-Cancer Effects of Pristimerin and the Mechanisms: A Critical Review. Front Pharmacol 2019; 10:746. [PMID: 31354475 PMCID: PMC6640652 DOI: 10.3389/fphar.2019.00746] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
As a quinonemethide triterpenoid extracted from species of the Celastraceae and Hippocrateaceae, pristimerin has been shown potent anti-cancer effects. Specifically, it was found that pristimerin can affect many tumor-related processes, such as apoptosis, autophagy, migration and invasion, vasculogenesis, and drug resistance. Various molecular targets or signaling pathways are also involved, such as cyclins, reactive oxygen species (ROS), microRNA, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways. In this review, we will focus on the research about pristimerin-induced anti-cancer activities to achieve a deeper understanding of the targets and mechanisms, which offer evidences suggesting that pristimerin can be a potent anti-cancer drug.
Collapse
Affiliation(s)
- Jia-Jun Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Medical College, Shanxi Datong University, Datong, China.,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | | | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chao-Yue Su
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Ye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, Mavumengwana V, Li HB. Bioactive Compounds and Biological Functions of Garlic ( Allium sativum L.). Foods 2019. [PMID: 31284512 DOI: 10.3390/foods807024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Garlic (Allium sativum L.) is a widely consumed spice in the world. Garlic contains diverse bioactive compounds, such as allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, and S-allyl-cysteine. Substantial studies have shown that garlic and its bioactive constituents exhibit antioxidant, anti-inflammatory, antibacterial, antifungal, immunomodulatory, cardiovascular protective, anticancer, hepatoprotective, digestive system protective, anti-diabetic, anti-obesity, neuroprotective, and renal protective properties. In this review, the main bioactive compounds and important biological functions of garlic are summarized, highlighting and discussing the relevant mechanisms of actions. Overall, garlic is an excellent natural source of bioactive sulfur-containing compounds and has promising applications in the development of functional foods or nutraceuticals for the prevention and management of certain diseases.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vuyo Mavumengwana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
38
|
Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, Mavumengwana V, Li HB. Bioactive Compounds and Biological Functions of Garlic ( Allium sativum L.). Foods 2019; 8:E246. [PMID: 31284512 PMCID: PMC6678835 DOI: 10.3390/foods8070246] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022] Open
Abstract
Garlic (Allium sativum L.) is a widely consumed spice in the world. Garlic contains diverse bioactive compounds, such as allicin, alliin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, ajoene, and S-allyl-cysteine. Substantial studies have shown that garlic and its bioactive constituents exhibit antioxidant, anti-inflammatory, antibacterial, antifungal, immunomodulatory, cardiovascular protective, anticancer, hepatoprotective, digestive system protective, anti-diabetic, anti-obesity, neuroprotective, and renal protective properties. In this review, the main bioactive compounds and important biological functions of garlic are summarized, highlighting and discussing the relevant mechanisms of actions. Overall, garlic is an excellent natural source of bioactive sulfur-containing compounds and has promising applications in the development of functional foods or nutraceuticals for the prevention and management of certain diseases.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vuyo Mavumengwana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
39
|
Liu F, Lou G, Zhang T, Chen S, Xu J, Xu L, Huang C, Liu Y, Chen Z. Anti-metastasis traditional Chinese medicine monomer screening system based on perinucleolar compartment analysis in hepatocellular carcinoma cells. Am J Transl Res 2019; 11:3555-3566. [PMID: 31312366 PMCID: PMC6614616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Hepatocellular Carcinoma (HCC) lacks effective anti-metastasis drugs. Traditional Chinese Medicine (TCM) monomers have shown anti-proliferation activity in HCC, but few of them are specifically anti-metastasis. Therefore, further clarifying the indicators of HCC metastasis and screening TCM monomers based on the indicators, will effectively guide the development of novel anti-HCC drugs. The perinucleolar compartment (PNC), existing in the nuclear of tumor cells, is closely correlated with metastasis of several tumors. In this study, we found positive correlation between higher PNC prevalence and metastasis in HCC tissue of patients. The PNC prevalence was also positively correlated with the malignancy of HCC cell lines. On this premise, we established a PNC-based screening system for anti-metastasis TCM monomers and obtained Camptothecin (CPT), Evodiamine and Isoglycyrrhizin, the three most effective TCM monomers from a TCM monomer library to reduce the PNC prevalence in Huh7 cells. The anti-metastasis effect of these TCM monomers was positively correlated with their PNC inhibitor effect. Our data further revealed that CPT reduced metastasis of Huh7 cells possibly by inhibiting Epithelial-Mesenchymal Transition by upregulating the expression of ZO-1, E-cadherin and Claudin-1. The PNC-based screening system is effective and it may provide an effective technical platform for the development of anti-metastasis drugs.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Tianbao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Senzhong Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Chunhong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310003, China
| |
Collapse
|
40
|
Yu Z, Zhao H, Feng X, Li H, Qiu C, Yi X, Tang H, Zhang J. Long Non-coding RNA FENDRR Acts as a miR-423-5p Sponge to Suppress the Treg-Mediated Immune Escape of Hepatocellular Carcinoma Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:516-529. [PMID: 31351327 PMCID: PMC6661302 DOI: 10.1016/j.omtn.2019.05.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been known to partake in the development and the immune escape of hepatocellular carcinoma (HCC). The initial microarray analysis of GSE115018 expression profile revealed differentially expressed lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) in HCC. Therefore, this study’s main purpose was to explore the mechanism of tumor suppressor lncRNA FENDRR in regulating the immune escape of HCC cells. Notably, it was further validated through this study that lncRNA FENDRR competitively bound to microRNA-423-5p (miR-423-5p), and miR-423-5p specifically targeted growth arrest and DNA-damage-inducible beta protein (GADD45B). The effects that lncRNA FENDRR and miR-423-5p have on the cell proliferation and apoptosis, the immune capacity of regulatory T cells (Tregs), and the tumorigenicity of HCC cells were examined through overexpressing or the knocking down of lncRNA FENDRR and miR-423-5p both in vitro and in vivo. Subsequently, lncRNA FENDRR and GADD45B were revealed to have poor expressions in HCC. Meanwhile, miR-423-5p was highly expressed in HCC. Importantly, overexpressed lncRNA FENDRR and downregulated miR-423-5p diminished cell proliferation and tumorigenicity, and promoted apoptosis in HCC cells, thus regulating the immune escape of HCC mediated by Tregs. Taken conjointly, lncRNA FENDRR inhibited the Treg-mediated immune escape of HCC cells by upregulating GADD45B by sponging miR-423-5p.
Collapse
Affiliation(s)
- Zhenyu Yu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Hui Zhao
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Xiao Feng
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Haibo Li
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Chunhui Qiu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China.
| | - Hui Tang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China.
| | - Jianwen Zhang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China.
| |
Collapse
|
41
|
Zhang Y, Wang Z, Ma X, Yang S, Hu X, Tao J, Hou Y, Bai G. Glycyrrhetinic acid binds to the conserved P-loop region and interferes with the interaction of RAS-effector proteins. Acta Pharm Sin B 2019; 9:294-303. [PMID: 30976491 PMCID: PMC6438844 DOI: 10.1016/j.apsb.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Members of the RAS proto-oncogene superfamily are indispensable molecular switches that play critical roles in cell proliferation, differentiation, and cell survival. Recent studies have attempted to prevent the interaction of RAS/GTP with RAS guanine nucleotide exchange factors (GEFs), impair RAS-effector interactions, and suppress RAS localization to prevent oncogenic signalling. The present study aimed to investigate the effect of the natural triterpenoic acid inhibitor glycyrrhetinic acid, which is isolated from the roots of Glycyrrhiza plant species, on RAS stability. We found that glycyrrhetinic acid may bind to the P-loop of RAS and alter its stability. Based on our biochemical tests and structural analysis results, glycyrrhetinic acid induced a conformational change in RAS. Meanwhile, glycyrrhetinic acid abolishes the function of RAS by interfering with the effector protein RAF kinase activation and RAS/MAPK signalling.
Collapse
Key Words
- Allosteric inhibitor
- CD, circular dichroism
- DTT, d,l-dithiothreitol
- FTIs, farnesyltransferase inhibitors
- FTS, fluorescence-based thermal shift
- GA, glycyrrhetinic acid
- GAPs, GTP hydrolysis by GTPase-activating proteins
- GEFs, guanine nucleotide exchange factors
- Glycyrrhetinic acid
- HOBt, hydroxybenzotrizole
- Kobe, Kobe0065
- N3-tag, 3-azido-7-hydroxycoumarin
- NH2-MMs, Fe3O4 amino magnetic microspheres
- RAS
- RAS, GTPases RAS
- RAS/MAPK signalling
- SPR, surface plasmon resonance
- Sulfo-SADP, sodium1-((3-((4-azidophenyl)disulfanyl)propanoyl)oxy)-2,5-dioxopyrrolidine-3-sulfonate
- Tip, tipifarnib
Collapse
|
42
|
|