1
|
Zhou C, Yang S, Wang J, Pan W, Yao H, Li G, Niu M. Recent advances in PROTAC-based antiviral and antibacterial therapeutics. Bioorg Chem 2025; 160:108437. [PMID: 40215946 DOI: 10.1016/j.bioorg.2025.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 05/04/2025]
Abstract
By harnessing the ubiquitin proteasome system, proteolysis targeting chimeras (PROTACs) have emerged as a highly promising strategy in drug design for degrading pathogenic proteins. The extensive benefits of PROTAC technology have facilitated its swift and extensive adoption, resulting in numerous PROTACs advancing to clinical trials, and most of them was used for cancers, neurodegenerative diseases, and immune disorders in clinical trials. A number of antiviral PROTACs and antibacterial PROTACs have been developed, exhibiting encouraging bioactivities against various pathogenic viruses and bacterial. Herein, this review summarizes recent advances in PROTAC technology for antiviral and antibacterial drugs, we also provided an overview of the current state of PROTAC clinical trials and detailed the crystal structures of PROTAC in complex with its target protein. Hopefully, this review will contribute to the development of novel antiviral and antibacterial drugs through the utilization of PROTAC technology.
Collapse
Affiliation(s)
- Can Zhou
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518000, China
| | - Shiwei Yang
- Shenzhen Second People's Hospital, Shenzhen 518000, China
| | - Jun Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Wei Pan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Minhong Niu
- Shenzhen Second People's Hospital, Shenzhen 518000, China.
| |
Collapse
|
2
|
Lin H, Zhang CJ. Discovery of Fluorescent Naturally-Occurring Inhibitor of SARS-CoV-2 Main Protease by AIE Fluorescent Probe. ChemMedChem 2024; 19:e202400311. [PMID: 38973697 DOI: 10.1002/cmdc.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Target-based high-throughput screening (HTS) is an efficient way to identify potent drugs. However, the accuracy of HTS could be affected by Pan-Assay Interference Compounds (PAINS). One reason for the generation of PAINS is that the inherent photophysical property of screened compounds could interfere with typically used assay signals including absorption and fluorescence. Our previous studies indicate that the fluorescent probe based on the fluorophore with characteristics of aggregation-induced emission (AIE) could provide high accuracy of HTS, especially for the fluorescent natural products. Herein, we report an AIE-based fluorescent probe for the main protease (Mpro) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We designed and synthesized an AIE fluorescent probe ZLHG5, which has a site that can be specifically cleaved by Mpro to produce a light-up fluorescence. Thanks to the large Stokes shift of AIE fluorophore (~200 nm), the probe could be effectively used for HTS of Mpro inhibitors. After screening a library of fluorescent natural products with ZLHG5, we obtained two coumarin-originated natural compounds with potent inhibitory activity towards Mpro protease. This study provides both useful fluorescent HTS probe and potent inhibitors for Mpro protease.
Collapse
Affiliation(s)
- Hao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical sciences, Beijing, 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical sciences, Beijing, 100050, China
| |
Collapse
|
3
|
Zhou J, Sun P, Yang Z, Wang T, Guo J, Qiu R, Li Z, Wei D, Zheng J, Peng G, Fang L, Xiao S. The S2 Pocket Governs the Genus-Specific Substrate Selectivity of Coronavirus 3C-Like Protease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407766. [PMID: 39377200 PMCID: PMC11600255 DOI: 10.1002/advs.202407766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Indexed: 10/09/2024]
Abstract
Coronavirus 3C-like protease (CoV 3CLpro) is essential for viral replication, providing an attractive target for monitoring the evolution of CoV and developing anti-CoV drugs. Here, the substrate-binding modes of 3CLpros from four CoV genera are analyzed and found that the S2 pocket in 3CLpro is highly conserved within each genus but differs between genera. Functionally, the S2 pocket, in conjunction with S4 and S1' pockets, governs the genus-specific substrate selectivity of 3CLpro. Resurrected ancestral 3CLpros from four CoV genera validate the genus-specific divergence of S2 pocket. Drawing upon the genus-specific S2 pocket as evolutionary marker, eight newly identified 3CLpros uncover the ancestral state of modern 3CLpro and elucidate the possible evolutionary process for CoV. It is also demonstrated that the S2 pocket is highly correlated with the genus-specific inhibitory potency of PF-07321332 (an FDA-approved drug against COVID-19) on different CoV 3CLpros. This study on 3CLpro provides novel insights to inform evolutionary mechanisms for CoV and develop genera-specific or broad-spectrum drugs against CoVs.
Collapse
Affiliation(s)
- Junwei Zhou
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Peng Sun
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Zhixiang Yang
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Taiquan Wang
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Jiahui Guo
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Runhui Qiu
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Zhuang Li
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Dengguo Wei
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Guiqing Peng
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Liurong Fang
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural MicrobiologyCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei ProvinceCooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| |
Collapse
|
4
|
Yang M, Lee MK, Gao S, Song L, Jang H, Jo I, Yang C, Sylvester K, Ko C, Wang S, Ye B, Tang K, Li J, Gu M, Müller CE, Sträter N, Liu X, Kim M, Zhan P. Miniaturized Modular Click Chemistry-enabled Rapid Discovery of Unique SARS-CoV-2 M pro Inhibitors With Robust Potency and Drug-like Profile. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404884. [PMID: 39319611 PMCID: PMC11578313 DOI: 10.1002/advs.202404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The COVID-19 pandemic has required an expeditious advancement of innovative antiviral drugs. In this study, focused compound libraries are synthesized in 96- well plates utilizing modular click chemistry to rapidly discover potent inhibitors targeting the main protease (Mpro) of SARS-CoV-2. Subsequent direct biological screening identifies novel 1,2,3-triazole derivatives as robust Mpro inhibitors with high anti-SARS-CoV-2 activity. Notably, C5N17B demonstrates sub-micromolar Mpro inhibitory potency (IC50 = 0.12 µM) and excellent antiviral activity in Calu-3 cells determined in an immunofluorescence-based antiviral assay (EC50 = 0.078 µM, no cytotoxicity: CC50 > 100 µM). C5N17B shows superior potency to nirmatrelvir (EC50 = 1.95 µM) and similar efficacy to ensitrelvir (EC50 = 0.11 µM). Importantly, this compound displays high antiviral activities against several SARS-CoV-2 variants (Gamma, Delta, and Omicron, EC50 = 0.13 - 0.26 µM) and HCoV-OC43, indicating its broad-spectrum antiviral activity. It is worthy that C5N17B retains antiviral activity against nirmatrelvir-resistant strains with T21I/E166V and L50F/E166V mutations in Mpro (EC50 = 0.26 and 0.15 µM, respectively). Furthermore, C5N17B displays favorable pharmacokinetic properties. Crystallography studies reveal a unique, non-covalent multi-site binding mode. In conclusion, these findings substantiate the potential of C5N17B as an up-and-coming drug candidate targeting SARS-CoV-2 Mpro for clinical therapy.
Collapse
Affiliation(s)
- Mianling Yang
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Shenghua Gao
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Letian Song
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Hye‐Yeon Jang
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Inseong Jo
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Chun‐Chiao Yang
- Institute of Bioanalytical ChemistryLeipzig UniversityDeutscher Platz 504103LeipzigGermany
| | - Katharina Sylvester
- PharmaCenter Bonn & Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453113BonnGermany
| | - Chunkyu Ko
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Shuo Wang
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Bing Ye
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Kai Tang
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Junyi Li
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Manyu Gu
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Christa E. Müller
- PharmaCenter Bonn & Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453113BonnGermany
| | - Norbert Sträter
- Institute of Bioanalytical ChemistryLeipzig UniversityDeutscher Platz 504103LeipzigGermany
| | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
| | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical BiologyMinistry of EducationSchool of Pharmaceutical SciencesShandong UniversityJi'nan250012China
| |
Collapse
|
5
|
Gao S, Song L, Ye B, Yang M, Li J, Gu M, Tollefson AE, Toth K, Zhan P, Liu X. Miniaturized click chemistry and direct screening facilitate the discovery of triazole piperazine SARS-CoV-2 M pro inhibitors with improved metabolic stability. RSC Med Chem 2024; 16:d4md00555d. [PMID: 39493225 PMCID: PMC11528906 DOI: 10.1039/d4md00555d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
The continuous mutational nature of SARS-CoV-2 and its inter-species' similarities emphasize the urgent need to design and develop more direct-acting antiviral agents against highly infectious variants. Herein, we report on the efficient discovery of potent non-covalent non-peptide-derived Mpro inhibitors using miniaturized click chemistry and direct screening. Based on the privileged piperazine scaffold, 68 triazole-containing derivatives were assembled and screened. Notably, representative compound C1N46 (IC50 = 1.87 μM, EC50 = 6.99 μM, CC50 > 100 μM) displayed potent inhibition activity against Mpro and showed promising anti-SARS-CoV-2 properties in vitro. Additionally, C1N46 exhibited improved liver microsome stability compared to lead compound GC-14. Docking studies predicted a multi-site binding mode of the triazole-based compounds. In conclusion, our studies validate the efficacy and feasibility of click chemistry in rapidly discovering antiviral agents.
Collapse
Affiliation(s)
- Shenghua Gao
- Shenzhen Research Institute of Shandong University A301 Virtual University Park in South District of Shenzhen Guangdong PR China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Ji'nan 250012 China +86 531 88382005 +86 531 88380270
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Ji'nan 250012 China +86 531 88382005 +86 531 88380270
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Ji'nan 250012 China +86 531 88382005 +86 531 88380270
| | - Junyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Ji'nan 250012 China +86 531 88382005 +86 531 88380270
| | - Manyu Gu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Ji'nan 250012 China +86 531 88382005 +86 531 88380270
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine 63103 St. Louis Missouri USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine 63103 St. Louis Missouri USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Ji'nan 250012 China +86 531 88382005 +86 531 88380270
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Ji'nan 250012 China +86 531 88382005 +86 531 88380270
| |
Collapse
|
6
|
Du S, Liu X, Hu X, Zhan P. Viral Protein Dimerization Quality Control: A Design Strategy for a Potential Viral Inhibitor. J Med Chem 2024; 67:16951-16966. [PMID: 39303015 DOI: 10.1021/acs.jmedchem.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The global pharmaceutical market has been profoundly impacted by the coronavirus pandemic, leading to an increased demand for specific drugs. Consequently, drug resistance has prompted continuous innovation in drug design strategies to effectively combat resistant pathogens or disease variants. Protein dimers play crucial roles in vivo, including catalytic reactions, signal transduction, and structural stability. The site of action for protein dimerization modulators typically does not reside within the active site of the protein, thereby potentially impeding resistance development. Therefore, harnessing viral protein dimerization modulators could represent a promising avenue for combating viral infections. In this Perspective, we provide a detailed introduction to the design principles and applications of dimerization modulators in antiviral research. Furthermore, we analyze various representative examples to elucidate their modes of action while presenting our perspective on dimerization modulators along with the opportunities and challenges associated with this groundbreaking area of investigation.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
7
|
Huynh PNH, Khamplong P, Phan MH, Nguyen TP, Vu PNL, Tang QV, Chamsodsai P, Seetaha S, Tuong TL, Vu TY, Vo DD, Choowongkomon K, Vo CVT. Asymmetric imidazole-4,5-dicarboxamide derivatives as SARS-CoV-2 main protease inhibitors: design, synthesis and biological evaluation. RSC Med Chem 2024:d4md00414k. [PMID: 39345712 PMCID: PMC11423687 DOI: 10.1039/d4md00414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The SARS-CoV-2 main protease, a vital enzyme for virus replication, is a potential target for developing drugs in COVID-19 treatment. Until now, three SARS-CoV-2 main protease inhibitors have been approved for COVID-19 treatment. This study explored the inhibitory potency of asymmetric imidazole-4,5-dicarboxamide derivatives against the SARS-CoV-2 main protease. Fourteen derivatives were designed based on the structure of the SARS-CoV-2 main protease active site, the hydrolysis mechanism, and the experience gained from the reported inhibitor structures. They were synthesized through a four-step procedure from benzimidazole and 2-methylbenzimidazole. SARS-CoV-2 main protease inhibition was evaluated in vitro by fluorogenic assay with lopinavir, ritonavir, and ebselen as positive references. N-(4-Chlorophenyl)-2-methyl-4-(morpholine-4-carbonyl)-1H-imidazole-5-carboxamide (5a2) exhibited the highest potency against the SARS-CoV-2 main protease with an IC50 of 4.79 ± 1.37 μM relative to ebselen with an IC50 of 0.04 ± 0.013 μM. Enzyme kinetic and molecular docking studies were carried out to clarify the inhibitory mechanism and to prove that the compound interacts at the active site. We also performed cytotoxicity assay to confirm that these compounds are not toxic to human cells.
Collapse
Affiliation(s)
- Phuong Nguyen Hoai Huynh
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phatcharin Khamplong
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Minh-Hoang Phan
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thanh-Phuc Nguyen
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phuong Ngoc Lan Vu
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Quang-Vinh Tang
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Phumin Chamsodsai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Supaphorn Seetaha
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Truong Lam Tuong
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Duc-Duy Vo
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- Department of Chemistry, Biomedical Centre, Uppsala University Husargatan 3 75237 Uppsala Sweden
- School of Applied Chemistry, Tra Vinh University 126 Nguyen Thien Thanh Street, Ward 5 Tra Vinh City Vietnam
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University Bangkok 10900 Thailand
| | - Cam-Van T Vo
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Xiao YQ, Long J, Zhang SS, Zhu YY, Gu SX. Non-peptidic inhibitors targeting SARS-CoV-2 main protease: A review. Bioorg Chem 2024; 147:107380. [PMID: 38636432 DOI: 10.1016/j.bioorg.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.
Collapse
Affiliation(s)
- Ya-Qi Xiao
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
9
|
Voget R, Breidenbach J, Claff T, Hingst A, Sylvester K, Steinebach C, Vu LP, Weiße RH, Bartz U, Sträter N, Müller CE, Gütschow M. Development of an active-site titrant for SARS-CoV-2 main protease as an indispensable tool for evaluating enzyme kinetics. Acta Pharm Sin B 2024; 14:2349-2357. [PMID: 38799620 PMCID: PMC11121168 DOI: 10.1016/j.apsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024] Open
Abstract
A titrant for the SARS-CoV-2 main protease (Mpro) was developed that enables, for the first time, the exact determination of the concentration of the enzymatically active Mpro by active-site titration. The covalent binding mode of the tetrapeptidic titrant was elucidated by the determination of the crystal structure of the enzyme-titrant complex. Four fluorogenic substrates of Mpro, including a prototypical, internally quenched Dabcyl-EDANS peptide, were compared in terms of solubility under typical assay conditions. By exploiting the new titrant, key kinetic parameters for the Mpro-catalyzed cleavage of these substrates were determined.
Collapse
Affiliation(s)
- Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Julian Breidenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Alexandra Hingst
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Lan Phuong Vu
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Renato H. Weiße
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach 53359, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig 04103, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
10
|
Wang F, Liu D, Gao D, Yuan J, Zhao J, Yuan S, Cen Y, Lin GQ, Zhao J, Tian P. Discovery of natural catechol derivatives as covalent SARS-CoV-2 3CL pro inhibitors. Int J Biol Macromol 2024; 264:130377. [PMID: 38395279 DOI: 10.1016/j.ijbiomac.2024.130377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a threat to public health, and extensive research by scientists worldwide has also prompted the development of antiviral therapies. The 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and acts as an effective target for drug development. To date, numerous of natural products have been reported to exhibit inhibitory effects on 3CLpro, which encourages us to identify other novel inhibitors and elucidate their mechanism of action. In this study, we first screened an in-house compound library of 101 natural products using FRET assay, and found that oleuropein showed good inhibitory activity against SARS CoV-2 3CLpro with an IC50 value of 4.18 μM. Further studies revealed that the catechol core is essential for activity and can covalently bind to SARS-CoV-2 3CLpro. Among other 45 catechol derivatives, wedelolactone, capsazepine and brazilin showed better SARS-CoV-2 3CLpro inhibitory activities with IC50 values of 1.35 μM, 1.95 μM and 1.18 μM, respectively. These catechol derivatives were verified to be irreversible covalent inhibitors by time-dependent experiments, enzymatic kinetic studies, dilution and dialysis assays. It also exhibited good selectivity towards different cysteine proteases (SARS-CoV-2 PLpro, cathepsin B and cathepsin L). Subsequently, the binding affinity between brazilin and SARS-CoV-2 3CLpro was determined by SPR assay with KD value of 0.80 μM. Molecular dynamic (MD) simulations study showed the binding mode of brazilin in the target protein. In particular, brazilin displayed good anti-SARS-CoV-2 activity in A549-hACE2-TMPRSS2 cells with EC50 values of 7.85 ± 0.20 μM and 5.24 ± 0.21 μM for full time and post-infection treatments, respectively. This study provides a promising lead compound for the development of novel anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinwei Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Shuai Yuan
- Health and Quarantine Laboratory, Guangzhou Customs District Technology Center, Guangzhou 510700, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong 510320, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges. Drug Resist Updat 2024; 73:101053. [PMID: 38301487 DOI: 10.1016/j.drup.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.
Collapse
Affiliation(s)
- Shaoqing Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, PR China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
12
|
Dou X, Sun Q, Liu Y, Lu Y, Zhang C, Xu G, Xu Y, Huo T, Zhao X, Su L, Xing Y, Lai L, Jiao N. Discovery of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as SARS-CoV-2 main protease inhibitors through virtual screening and biological evaluation. Bioorg Med Chem Lett 2024; 97:129547. [PMID: 37944867 DOI: 10.1016/j.bmcl.2023.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The COVID-19 caused by SARS-CoV-2 has led to a global pandemic that continues to impact societies and economies worldwide. The main protease (Mpro) plays a crucial role in SARS-CoV-2 replication and is an attractive target for anti-SARS-CoV-2 drug discovery. Herein, we report a series of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as non-peptidomimetic inhibitors targeting SARS-CoV-2 Mpro through structure-based virtual screening and biological evaluation. Further similarity search and structure-activity relationship study led to the identification of compound M56-S2 with the enzymatic IC50 value of 4.0 μM. Moreover, the molecular simulation and predicted ADMET properties, indicated that non-peptidomimetic inhibitor M56-S2 might serve as a useful starting point for the further discovery of highly potent inhibitors targeting SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Sun
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Yangbin Lu
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Caifang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guofeng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lingyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yihong Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China.
| |
Collapse
|
13
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Barchielli G, Capperucci A, Tanini D. Therapeutic cysteine protease inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:17-49. [PMID: 38445468 DOI: 10.1080/13543776.2024.2327299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Cysteine proteases are involved in a broad range of biological functions, ranging from extracellular matrix turnover to immunity. Playing an important role in the onset and progression of several diseases, including cancer, immune-related and neurodegenerative disease, viral and parasitic infections, cysteine proteases represent an attractive drug target for the development of therapeutic tools. AREAS COVERED Recent scientific and patent literature focusing on the design and study of cysteine protease inhibitors with potential therapeutic application has been reviewed. EXPERT OPINION The discovery of a number of effective structurally diverse cysteine protease inhibitors opened up new challenges and opportunities for the development of therapeutic tools. Mechanistic studies and the availability of X-ray crystal structures of some proteases, alone and in complex with inhibitors, provide crucial information for the rational design and development of efficient and selective cysteine protease inhibitors as preclinical candidates for the treatment of different diseases.
Collapse
Affiliation(s)
- Giulia Barchielli
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino FI, Italy
| | - Antonella Capperucci
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino FI, Italy
| | | |
Collapse
|
15
|
Zhang H, Li J, Toth K, Tollefson AE, Jing L, Gao S, Liu X, Zhan P. Identification of Ebselen derivatives as novel SARS-CoV-2 main protease inhibitors: Design, synthesis, biological evaluation, and structure-activity relationships exploration. Bioorg Med Chem 2023; 96:117531. [PMID: 37972434 DOI: 10.1016/j.bmc.2023.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The main protease (Mpro) represents one of the most effective and attractive targets for designing anti-SARS-CoV-2 drugs. In this study, we designed and synthesized a novel series of Ebselen derivatives by incorporating privileged fragments from different pockets of the Mpro active site. Among these compounds, 11 compounds showed submicromolar activity in the FRET-based SARS-CoV-2 Mpro inhibition assay, with IC50 values ranging from 233 nM to 550 nM. Notably, compound 3a displayed submicromolar Mpro activity (IC50 = 364 nM) and low micromolar antiviral activity (EC50 = 8.01 µM), comparable to that of Ebselen (IC50 = 339 nM, EC50 = 3.78 µM). Time-dependent inhibition assay confirmed that these compounds acted as covalent inhibitors. Taken together, our optimization campaigns thoroughly explored the structural diversity of Ebselen and verified the impact of specific modifications on potency against Mpro.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Jing Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States; Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri 63104, United States
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States; Saint Louis University Institute for Drug and Biotherapeutic Innovation, St. Louis, Missouri 63104, United States
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
16
|
Shehzadi K, Yu M, Liang J. De Novo Potent Peptide Nucleic Acid Antisense Oligomer Inhibitors Targeting SARS-CoV-2 RNA-Dependent RNA Polymerase via Structure-Guided Drug Design. Int J Mol Sci 2023; 24:17473. [PMID: 38139312 PMCID: PMC10744289 DOI: 10.3390/ijms242417473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Global reports of novel SARS-CoV-2 variants and recurrence cases continue despite substantial vaccination campaigns, raising severe concerns about COVID-19. While repurposed drugs offer some treatment options for COVID-19, notably, nucleoside inhibitors like Remdesivir stand out as curative therapies for COVID-19 that are approved by the US Food and Drug Administration (FDA). The emergence of highly contagious SARS-CoV-2 variants underscores the imperative for antiviral drugs adaptable to evolving viral mutations. RNA-dependent RNA polymerase (RdRp) plays a key role in viral genome replication. Currently, inhibiting viral RdRp function remains a pivotal strategy to tackle the notorious virus. Peptide nucleic acid (PNA) therapy shows promise by effectively targeting specific genome regions, reducing viral replication, and inhibiting infection. In our study, we designed PNA antisense oligomers conjugated with cell-penetrating peptides (CPP) aiming to evaluate their antiviral effects against RdRp target using structure-guided drug design, which involves molecular docking simulations, drug likeliness and pharmacokinetic evaluations, molecular dynamics simulations, and computing binding free energy. The in silico analysis predicts that chemically modified PNAs might act as antisense molecules in order to disrupt ribosome assembly at RdRp's translation start site, and their chemically stable and neutral backbone might enhance sequence-specific RNA binding interaction. Notably, our findings demonstrate that PNA-peptide conjugates might be the most promising inhibitors of SARS-CoV-2 RdRp, with superior binding free energy compared to Remdesivir in the current COVID-19 medication. Specifically, PNA-CPP-1 could bind simultaneously to the active site residues of RdRp protein and sequence-specific RdRp-RNA target in order to control viral replication.
Collapse
Affiliation(s)
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| |
Collapse
|
17
|
Gao S, Song L, Sylvester K, Mercorelli B, Loregian A, Toth K, Weiße RH, Useini A, Sträter N, Yang M, Ye B, Tollefson AE, Müller CE, Liu X, Zhan P. Design, Synthesis, and Biological Evaluation of Trisubstituted Piperazine Derivatives as Noncovalent Severe Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors with Improved Antiviral Activity and Favorable Druggability. J Med Chem 2023; 66:16426-16440. [PMID: 37992202 DOI: 10.1021/acs.jmedchem.3c01876] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The ongoing transmission of SARS-CoV-2 necessitates the development of additional potent antiviral agents capable of combating the current highly infectious variants and future coronaviruses. Here, we present the discovery of potent nonpeptide main protease (Mpro) inhibitors with prominent antiviral activity and improved pharmacokinetic properties. Three series of 1,2,4-trisubstituted piperazine derivatives were designed and synthesized, and the optimal GC-78-HCl demonstrated high enzyme-inhibitory potency (IC50 = 0.19 μM) and exhibited excellent antiviral activity (EC50 = 0.40 μM), reaching the same level as Nirmatrelvir (EC50 = 0.38 μM). Additionally, GC-78-HCl displayed potent antiviral activities against various SARS-CoV-2 variants as well as HCoV-OC43 and HCoV-229E, indicating its potential broad-spectrum anticoronaviral activity. Notably, the pharmacokinetic properties of GC-78-HCl were somewhat enhanced compared to those of the lead compound. Furthermore, the cocrystal and molecular docking elucidated the mechanism of action. In conclusion, we discovered a novel nonpeptidic Mpro inhibitor with promising antiviral activity and a favorable pharmacokinetic profile.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, Shenzhen, Guangdong 518057, PR China
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Katharina Sylvester
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53113 Bonn, Germany
| | - Beatrice Mercorelli
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63103, United States
| | - Renato H Weiße
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Abibe Useini
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig 04103, Germany
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63103, United States
| | - Christa E Müller
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53113 Bonn, Germany
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
18
|
Zhou S, Wang K, Hu Z, Chen T, Dong Y, Gao R, Wu M, Li Y, Ji X. Design, synthesis, and structure-activity relationships of a novel class of quinazoline derivatives as coronavirus inhibitors. Eur J Med Chem 2023; 261:115831. [PMID: 37813064 DOI: 10.1016/j.ejmech.2023.115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
There remain great unmet needs to treat coronavirus infections in clinic, and the development of novel antiviral agents is highly demanded. In this work, a phenotypic screening against our in-house compound library identified several cajanine derivatives with moderate antiviral activity against HCoV-OC43. Based on the scaffold of cajanine, a series of quinazoline derivatives were designed employing a scaffold-hopping strategy. After an iterative structural optimization campaign, several quinazoline derivatives with potent antiviral efficacy (EC50: ∼0.1 μM) and high selectivity (SI > 1000) were successfully identified. The preliminary mechanism of action study indicated that such quinazoline derivatives functioned at the early stage of infection. In aggregate, this work delivered a new chemical type of coronavirus inhibitors, which could be employed not only for further development of antiviral drugs but also as important chemical tools to delineate the target of action.
Collapse
Affiliation(s)
- Shengchao Zhou
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 15021, China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziwei Hu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 15021, China
| | - Tao Chen
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 15021, China
| | - Yao Dong
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 15021, China
| | - Rongmei Gao
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyuan Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 15021, China.
| |
Collapse
|
19
|
Jiang X, Li J, Viayna A, Luque FJ, Woodson M, Jing L, Gao S, Zhao F, Xie M, Toth K, Tavis J, Tollefson AE, Liu X, Zhan P. Identification of novel 1,2,3-triazole isatin derivatives as potent SARS-CoV-2 3CLpro inhibitors via click-chemistry-based rapid screening. RSC Med Chem 2023; 14:2068-2078. [PMID: 37859715 PMCID: PMC10583828 DOI: 10.1039/d3md00306j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) is considered an attractive target for the development of anti-COVID-19 agents due to its vital function. The N-substituted isatin derivative L-26 is a potential SARS-CoV-2 3CLpro inhibitor, but it has poor cell-based antiviral activity and high cytotoxicity. With L-26 as the lead compound, 58 isatin derivatives were prepared using click-chemistry-based miniaturized synthesis and their 3CLpro inhibitory activities were determined by a fluorescence resonance energy transfer-based enzymatic assay. Compounds D1N8 (IC50 = 0.44 ± 0.12 μM) and D1N52 (IC50 = 0.53 ± 0.21 μM) displayed excellent inhibitory potency against SARS-CoV-2 3CLpro, being equivalent to that of L-26 (IC50 = 0.30 ± 0.14 μM). In addition, the cytotoxicity of D1N8 (CC50 >20 μM) and D1N52 (CC50 >20 μM) decreased significantly compared with L-26 (CC50 <2.6 μM). Further molecular dynamics simulations revealed the potential binding interactions between D1N52 and SARS-CoV-2 3CLpro. These efforts lay a solid foundation for the research of novel anti-SARS-CoV-2 agents targeting 3CLpro.
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Jing Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Antonio Viayna
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB) Av. Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB) Barcelona Spain
| | - F Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB) Av. Prat de la Riba 171 08921 Santa Coloma de Gramenet Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB) Barcelona Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB) Barcelona Spain
| | - Molly Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - John Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine St. Louis Missouri 63104 USA
- Saint Louis University Institute for Drug and Biotherapeutic Innovation St. Louis Missouri 63104 USA
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
20
|
Lin CM, Chen HH, Lung CW, Chen HJ. Antiviral and Immunomodulatory Activities of Clinacanthus nutans (Burm. f.) Lindau. Int J Mol Sci 2023; 24:10789. [PMID: 37445964 PMCID: PMC10342181 DOI: 10.3390/ijms241310789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Clinacanthus nutans (Burm. f.) Lindau has been used as a traditional herbal medicine for treating snake bites, scalds, burns, and viral and bacterial infections. It has been attracting an increasing amount of attention because of its biological activities, including its antidiabetic, antioxidant, antibacterial, anticancer, anti-inflammatory, antiviral, and immunoregulatory activities. Here, we conducted a panoramic survey of the literature regarding the immunoregulatory, anti-inflammatory, and antiviral activities of C. nutans. We discovered that C. nutans extracts have virucidal activities against herpes simplex virus types 1 and 2, varicella-zoster virus, cyprinid herpesvirus 3, porcine reproductive and respiratory syndrome virus, mosquito-borne chikungunya virus, and potentially SARS-CoV-2; such activities likely result from C. nutans interfering with the entry, penetration, infection, and replication of viruses. We also reviewed the phytochemicals in C. nutans extracts that exhibit anti-inflammatory and immunoregulatory activities. This updated review of the antiviral, anti-inflammatory, and immunoregulatory activities of C. nutans may guide future agricultural practices and reveal clinical applications of C. nutans.
Collapse
Affiliation(s)
- Chung-Ming Lin
- Department of Biotechnology, School of Health Technology, Ming Chuan University, Taoyuan 33348, Taiwan;
| | - Hsin-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, Taichung 413305, Taiwan;
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
21
|
Valipour M, Di Giacomo S, Di Sotto A, Irannejad H. Discovery of Chalcone-Based Hybrid Structures as High Affinity and Site-Specific Inhibitors against SARS-CoV-2: A Comprehensive Structural Analysis Based on Various Host-Based and Viral Targets. Int J Mol Sci 2023; 24:ijms24108789. [PMID: 37240149 DOI: 10.3390/ijms24108789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies indicated that natural-based chalcones have significant inhibitory effects on the coronavirus enzymes 3CLpro and PLpro as well as modulation of some host-based antiviral targets (HBATs). In this study, a comprehensive computational and structural study was performed to investigate the affinity of our compound library consisting of 757 chalcone-based structures (CHA-1 to CHA-757) for inhibiting the 3CLpro and PLpro enzymes and against twelve selected host-based targets. Our results indicated that CHA-12 (VUF 4819) is the most potent and multi-target inhibitor in our chemical library over all viral and host-based targets. Correspondingly, CHA-384 and its congeners containing ureide moieties were found to be potent and selective 3CLpro inhibitors, and benzotriazole moiety in CHA-37 was found to be a main fragment for inhibiting the 3CLpro and PLpro. Surprisingly, our results indicate that the ureide and sulfonamide moieties are integral fragments for the optimum 3CLpro inhibition while occupying the S1 and S3 subsites, which is fully consistent with recent reports on the site-specific 3CLpro inhibitors. Finding the multi-target inhibitor CHA-12, previously reported as an LTD4 antagonist for the treatment of inflammatory pulmonary diseases, prompted us to suggest it as a concomitant agent for relieving respiratory symptoms and suppressing COVID-19 infection.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran 1545913487, Iran
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 4847116547, Iran
| |
Collapse
|
22
|
Xu Z, Shi D, Han JB, Ling Y, Jiang X, Lu X, Li C, Gong L, Ge G, Zhang Y, Zang Y, Song TZ, Feng XL, Tian RR, Ji J, Zhu M, Wu N, Wu C, Wang Z, Xu Y, Peng C, Zheng M, Yang J, Du F, Wu J, Wang P, Shen J, Zhang J, Zheng YT, Yao H, Zhu W. Preventive and therapeutic benefits of nelfinavir in rhesus macaques and human beings infected with SARS-CoV-2. Signal Transduct Target Ther 2023; 8:169. [PMID: 37095086 PMCID: PMC10123561 DOI: 10.1038/s41392-023-01429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Effective drugs with broad spectrum safety profile to all people are highly expected to combat COVID-19 caused by SARS-CoV-2. Here we report that nelfinavir, an FDA approved drug for the treatment of HIV infection, is effective against SARS-CoV-2 and COVID-19. Preincubation of nelfinavir could inhibit the activity of the main protease of the SARS-CoV-2 (IC50 = 8.26 μM), while its antiviral activity in Vero E6 cells against a clinical isolate of SARS-CoV-2 was determined to be 2.93 μM (EC50). In comparison with vehicle-treated animals, rhesus macaque prophylactically treated with nelfinavir had significantly lower temperature and significantly reduced virus loads in the nasal and anal swabs of the animals. At necropsy, nelfinavir-treated animals had a significant reduction of the viral replication in the lungs by nearly three orders of magnitude. A prospective clinic study with 37 enrolled treatment-naive patients at Shanghai Public Health Clinical Center, which were randomized (1:1) to nelfinavir and control groups, showed that the nelfinavir treatment could shorten the duration of viral shedding by 5.5 days (9.0 vs. 14.5 days, P = 0.055) and the duration of fever time by 3.8 days (2.8 vs. 6.6 days, P = 0.014) in mild/moderate COVID-19 patients. The antiviral efficiency and clinical benefits in rhesus macaque model and in COVID-19 patients, together with its well-established good safety profile in almost all ages and during pregnancy, indicated that nelfinavir is a highly promising medication with the potential of preventative effect for the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jian-Bao Han
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiangrui Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Zhang Song
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xiao-Li Feng
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Ren-Rong Tian
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jia Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chunhui Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Junling Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feifei Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junliang Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianliang Zhang
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Yong-Tang Zheng
- Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Kronenberger T, Laufer SA, Pillaiyar T. COVID-19 therapeutics: small-molecule drug development targeting SARS-CoV-2 main protease. Drug Discov Today 2023; 28:103579. [PMID: 37028502 PMCID: PMC10074736 DOI: 10.1016/j.drudis.2023.103579] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative factor behind the 2019 global coronavirus pandemic (COVID-19). The main protease, known as Mpro, is encoded by the viral genome and is essential for viral replication. It has also been an effective target for drug development. In this review, we discuss the rationale for inhibitors that specifically target SARS-CoV-2 Mpro. Small molecules and peptidomimetic inhibitors are two types of inhibitor with various modes of action and we focus here on novel inhibitors that were only discovered during the COVID-19 pandemic highlighting their binding modes and structures.
Collapse
Affiliation(s)
- Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
24
|
Medicinal chemistry strategies in the discovery and optimization of HBV core protein allosteric modulators (2018–2022 update). CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
25
|
Zahid S, Ali Y, Rashid S. Structural-based design of HD-TAC7 PROteolysis TArgeting chimeras (PROTACs) candidate transformations to abrogate SARS-CoV-2 infection. J Biomol Struct Dyn 2023; 41:14566-14581. [PMID: 36841549 DOI: 10.1080/07391102.2023.2183037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for about 672 million infections and 6.85 million deaths worldwide. Upon SARS-CoV-2 infection, Histone deacetylases (HDACs) hyperactivate the pro-inflammatory response resulting in stimulation of Acetyl-Coenzyme A and cholesterol for viral entry. HDAC3 inhibition results in the anti-inflammatory activity and reduction of pro-inflammatory cytokines that may restrict COVID-19 progression. Here, we have designed 44 conformational ensembles of previously known HD-TAC7 by enumerating torsions of dihedral angles tested for their binding preferences against HDAC3. Through scrutinizing their placements at active site and binding affinities, three hits were isolated. Cereblon (CRBN) is a well-known E3 ligase that facilitates Proteolysis Targeting Chimeras (PROTACs) targeting. Three entities, including HDAC3-binding moiety (4-acetamido-N-(2-amino-4 fluorophenyl) benzamide), a 6-carbon linker, and CRBN binding ligand (pomalidomide) were assembled to design 4 PROTACs followed by energy minimization and docking against HDAC3 and CRBN, respectively. Subsequent molecular dynamics (MD) and free energy analyses corroborated similar binding trends and favorable energy values. Among all cases, Met88, GLu106, Pro352, Trp380 and Trp388 residues of CRBN, and Pro23, Arg28, Lys194, Phe199, Leu266, Thr299 and Ile346 residues of HDAC3 were engaged in PROTAC binding. Thus, conformational dynamics of both HDAC3 and CRBN moieties are essential for the placement of PROTAC, resulting in target degradation. Overall, the proposed bifunctional small molecules may effectively target HDAC3, stimulating innate immune response to restrict COVID-19 hyperinflammation. This study supports the basis for designing new PROTACs by limiting the conformational search space that may prove more efficient for targeting the protein of interest.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Zahid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
26
|
Ahmad H, Zia B, Husain H, Husain A. Recent Advances in PROTAC-Based Antiviral Strategies. Vaccines (Basel) 2023; 11:270. [PMID: 36851148 PMCID: PMC9958553 DOI: 10.3390/vaccines11020270] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Numerous mysteries of cell and molecular biology have been resolved through extensive research into intracellular processes, which has also resulted in the development of innovative technologies for the treatment of infectious and non-infectious diseases. Some of the deadliest diseases, accounting for a staggering number of deaths, have been caused by viruses. Conventional antiviral therapies have been unable to achieve a feat in combating viral infections. As a result, the healthcare system has come under tremendous pressure globally. Therefore, there is an urgent need to discover and develop newer therapeutic approaches against viruses. One such innovative approach that has recently garnered attention in the research world and can be exploited for developing antiviral therapeutic strategies is the PROteolysis TArgeting Chimeras (PROTAC) technology, in which heterobifunctional compounds are employed for the selective degradation of target proteins by the intracellular protein degradation machinery. This review covers the most recent advancements in PROTAC technology, its diversity and mode of action, and how it can be applied to open up new possibilities for creating cutting-edge antiviral treatments and vaccines.
Collapse
Affiliation(s)
- Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Bushra Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Hashir Husain
- Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
27
|
Anjani, Kumar S, Rathi B, Poonam. Recent updates on the biological efficacy of approved drugs and potent synthetic compounds against SARS-CoV-2. RSC Adv 2023; 13:3677-3687. [PMID: 36756584 PMCID: PMC9890797 DOI: 10.1039/d2ra06834f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, has triggered a global pandemic that has prompted severe public health concerns. Researchers worldwide are continuously trying to find options that could be effective against COVID-19. The main focus of research during the initial phase of the pandemic was to use the already approved drugs as supportive care, and efforts were made to find new therapeutic options. Nirmatrelvir (PF-07321332), a Pfizer chemical, recently received approval for usage in conjunction with ritonavir. This mini-review summarises the biological effectiveness of vital synthetic compounds and FDA-approved medications against SARS-CoV-2. Understanding how functional groups are included in the creation of synthetic compounds could help enhance the biological activity profile of those compounds to increase their efficacy against SARS-CoV-2. This opened the way for researchers to explore opportunities to develop better therapeutics by investigating synthetic analogs.
Collapse
Affiliation(s)
- Anjani
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana-125004 India
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi Delhi-110007 India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi Delhi-110007 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi Delhi-110007 India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi Delhi-110007 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi Delhi-110007 India
| |
Collapse
|
28
|
Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Bioorg Chem 2022; 130:106264. [PMCID: PMC9643332 DOI: 10.1016/j.bioorg.2022.106264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
29
|
Gao S, Sylvester K, Song L, Claff T, Jing L, Woodson M, Weiße RH, Cheng Y, Schäkel L, Petry M, Gütschow M, Schiedel AC, Sträter N, Kang D, Xu S, Toth K, Tavis J, Tollefson AE, Müller CE, Liu X, Zhan P. Discovery and Crystallographic Studies of Trisubstituted Piperazine Derivatives as Non-Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity and Low Toxicity. J Med Chem 2022; 65:13343-13364. [PMID: 36107752 PMCID: PMC9491405 DOI: 10.1021/acs.jmedchem.2c01146] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/08/2023]
Abstract
The continuous spread of SARS-CoV-2 calls for more direct-acting antiviral agents to combat the highly infectious variants. The main protease (Mpro) is an promising target for anti-SARS-CoV-2 drug design. Here, we report the discovery of potent non-covalent non-peptide Mpro inhibitors featuring a 1,2,4-trisubstituted piperazine scaffold. We systematically modified the non-covalent hit MCULE-5948770040 by structure-based rational design combined with multi-site binding and privileged structure assembly strategies. The optimized compound GC-14 inhibits Mpro with high potency (IC50 = 0.40 μM) and displays excellent antiviral activity (EC50 = 1.1 μM), being more potent than Remdesivir. Notably, GC-14 exhibits low cytotoxicity (CC50 > 100 μM) and excellent target selectivity for SARS-CoV-2 Mpro (IC50 > 50 μM for cathepsins B, F, K, L, and caspase 3). X-ray co-crystal structures prove that the inhibitors occupy multiple subpockets by critical non-covalent interactions. These studies may provide a basis for developing a more efficient and safer therapy for COVID-19.
Collapse
Affiliation(s)
- Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
- Shenzhen Research Institute of Shandong
University, A301 Virtual University Park in South District of Shenzhen,
Guangdong518057, P. R. China
| | - Katharina Sylvester
- PharmaCenter Bonn & Pharmaceutical Institute,
Department of Pharmaceutical & Medicinal Chemistry, University of
Bonn, An der Immenburg 4, Bonn53113, Germany
| | - Letian Song
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
| | - Tobias Claff
- PharmaCenter Bonn & Pharmaceutical Institute,
Department of Pharmaceutical & Medicinal Chemistry, University of
Bonn, An der Immenburg 4, Bonn53113, Germany
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
| | - Molly Woodson
- Department of Molecular Microbiology and Immunology,
Saint Louis University School of Medicine, St. Louis,
Missouri63103, United States
- Saint Louis University Institute for Drug
and Biotherapeutic Innovation, St. Louis, Missouri63103, United
States
| | - Renato H. Weiße
- Institute of Bioanalytical Chemistry, Center for
Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, Leipzig04103, Germany
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
| | - Laura Schäkel
- PharmaCenter Bonn & Pharmaceutical Institute,
Department of Pharmaceutical & Medicinal Chemistry, University of
Bonn, An der Immenburg 4, Bonn53113, Germany
| | - Marvin Petry
- PharmaCenter Bonn & Pharmaceutical Institute,
Department of Pharmaceutical & Medicinal Chemistry, University of
Bonn, An der Immenburg 4, Bonn53113, Germany
| | - Michael Gütschow
- PharmaCenter Bonn & Pharmaceutical Institute,
Department of Pharmaceutical & Medicinal Chemistry, University of
Bonn, An der Immenburg 4, Bonn53113, Germany
| | - Anke C. Schiedel
- PharmaCenter Bonn & Pharmaceutical Institute,
Department of Pharmaceutical & Medicinal Chemistry, University of
Bonn, An der Immenburg 4, Bonn53113, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for
Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, Leipzig04103, Germany
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology,
Saint Louis University School of Medicine, St. Louis,
Missouri63103, United States
- Saint Louis University Institute for Drug
and Biotherapeutic Innovation, St. Louis, Missouri63103, United
States
| | - John Tavis
- Department of Molecular Microbiology and Immunology,
Saint Louis University School of Medicine, St. Louis,
Missouri63103, United States
- Saint Louis University Institute for Drug
and Biotherapeutic Innovation, St. Louis, Missouri63103, United
States
| | - Ann E. Tollefson
- Department of Molecular Microbiology and Immunology,
Saint Louis University School of Medicine, St. Louis,
Missouri63103, United States
- Saint Louis University Institute for Drug
and Biotherapeutic Innovation, St. Louis, Missouri63103, United
States
| | - Christa E. Müller
- PharmaCenter Bonn & Pharmaceutical Institute,
Department of Pharmaceutical & Medicinal Chemistry, University of
Bonn, An der Immenburg 4, Bonn53113, Germany
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences,
Shandong University, Ji’nan250012,
China
| |
Collapse
|
30
|
Toumi A, Boudriga S, Mandour YM, Mekki AA, Knorr M, Strohmann C, Kirchhoff JL, Sobeh M. Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies. Molecules 2022; 27:molecules27123945. [PMID: 35745069 PMCID: PMC9228936 DOI: 10.3390/molecules27123945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the effectiveness of COVID-19 vaccines, there is still an urgent need for discovering new anti-viral drugs to address the awful spread and transmission of the rapidly modifiable virus. In this study, the ability of a small library of enantiomerically pure spirooxindolopyrrolidine-grafted piperidones to inhibit the main protease of SARS-CoV-2 (Mpro) is evaluated. These spiroheterocycles were synthesized by 1,3-dipolar cycloaddition of various stabilized azomethine ylides with chiral dipolarophiles derived from N-[(S)-(-)-methylbenzyl]-4-piperidone. The absolute configuration of contiguous carbons was confirmed by a single crystal X-ray diffraction analysis. The binding of these compounds to SARS-CoV-2 Mpro was investigated using molecular docking and molecular dynamics simulation. Three compounds 4a, 4b and 4e exhibited stable binding modes interacting with the key subsites of the substrate-binding pocket of SARS-CoV-2 Mpro. The synthesized compounds represent potential leads for the development of novel inhibitors of SARS-CoV-2 main protease protein for COVID-19 treatment.
Collapse
Affiliation(s)
- Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
- Correspondence: (S.B.); (M.S.)
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt; (Y.M.M.); (A.A.M.)
| | - Ahmed A. Mekki
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt; (Y.M.M.); (A.A.M.)
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France;
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (J.-L.K.)
| | - Jan-Lukas Kirchhoff
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (J.-L.K.)
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, Ben Guerir 43150, Morocco
- Correspondence: (S.B.); (M.S.)
| |
Collapse
|
31
|
|
32
|
Ma C, Tan H, Choza J, Wang Y, Wang J. Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharm Sin B 2022; 12:1636-1651. [PMID: 34745850 PMCID: PMC8558150 DOI: 10.1016/j.apsb.2021.10.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 main protease (Mpro) is one of the most extensively exploited drug targets for COVID-19. Structurally disparate compounds have been reported as Mpro inhibitors, raising the question of their target specificity. To elucidate the target specificity and the cellular target engagement of the claimed Mpro inhibitors, we systematically characterize their mechanism of action using the cell-free FRET assay, the thermal shift-binding assay, the cell lysate Protease-Glo luciferase assay, and the cell-based FlipGFP assay. Collectively, our results have shown that majority of the Mpro inhibitors identified from drug repurposing including ebselen, carmofur, disulfiram, and shikonin are promiscuous cysteine inhibitors that are not specific to Mpro, while chloroquine, oxytetracycline, montelukast, candesartan, and dipyridamole do not inhibit Mpro in any of the assays tested. Overall, our study highlights the need of stringent hit validation at the early stage of drug discovery.
Collapse
|
33
|
Haddad M, Gaudreault R, Sasseville G, Nguyen PT, Wiebe H, Van De Ven T, Bourgault S, Mousseau N, Ramassamy C. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity. Int J Mol Sci 2022; 23:2643. [PMID: 35269785 PMCID: PMC8910432 DOI: 10.3390/ijms23052643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-β-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohamed Haddad
- Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada;
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Roger Gaudreault
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Gabriel Sasseville
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Phuong Trang Nguyen
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada; (P.T.N.); (S.B.)
| | - Hannah Wiebe
- Département de Chimie, Université McGill, 3420 Rue University, Montréal, QC H3A 2A7, Canada; (H.W.); (T.V.D.V.)
| | - Theo Van De Ven
- Département de Chimie, Université McGill, 3420 Rue University, Montréal, QC H3A 2A7, Canada; (H.W.); (T.V.D.V.)
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada; (P.T.N.); (S.B.)
| | - Normand Mousseau
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada;
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
34
|
Newly Emerging Strategies in Antiviral Drug Discovery: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Anniversary. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030850. [PMID: 35164129 PMCID: PMC8839652 DOI: 10.3390/molecules27030850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Viral infections pose a persistent threat to human health. The relentless epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health problem, with millions of infections and fatalities so far. Traditional approaches such as random screening and optimization of lead compounds by organic synthesis have become extremely resource- and time-consuming. Various modern innovative methods or integrated paradigms are now being applied to drug discovery for significant resistance in order to simplify the drug process. This review provides an overview of newly emerging antiviral strategies, including proteolysis targeting chimera (PROTAC), ribonuclease targeting chimera (RIBOTAC), targeted covalent inhibitors, topology-matching design and antiviral drug delivery system. This article is dedicated to Prof. Dr. Erik De Clercq, an internationally renowned expert in the antiviral drug research field, on the occasion of his 80th anniversary.
Collapse
|
35
|
Santos Nascimento IJD, Aquino TMD, Silva-Júnior EFD. Repurposing FDA-approved Drugs Targeting SARS-CoV2 3CLpro: a study by applying Virtual Screening, Molecular Dynamics, MM-PBSA Calculations and Covalent Docking. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220106110133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Since the end of 2019, the etiologic agent SAR-CoV-2 responsible for one of the most significant epidemics in history has caused severe global economic, social, and health damages. The drug repurposing approach and application of Structure-based Drug Discovery (SBDD) using in silico techniques are increasingly frequent, leading to the identification of several molecules that may represent promising potential.
Method:
In this context, here we use in silico methods of virtual screening (VS), pharmacophore modeling (PM), and fragment-based drug design (FBDD), in addition to molecular dynamics (MD), molecular mechanics/Poisson-Boltzmann surface area (MM -PBSA) calculations, and covalent docking (CD) for the identification of potential treatments against SARS-CoV-2. We initially validated the docking protocol followed by VS in 1,613 FDA-approved drugs obtained from the ZINC database. Thus, we identified 15 top hits, of which three of them were selected for further simulations. In parallel, for the compounds with a fit score value ≤ of 30, we performed the FBDD protocol, where we designed 12 compounds
Result:
By applying a PM protocol in the ZINC database, we identified three promising drug candidates. Then, the 9 top hits were evaluated in simulations of MD, MM-PBSA, and CD. Subsequently, MD showed that all identified hits showed stability at the active site without significant changes in the protein's structural integrity, as evidenced by the RMSD, RMSF, Rg, SASA graphics. They also showed interactions with the catalytic dyad (His41 and Cys145) and other essential residues for activity (Glu166 and Gln189) and high affinity for MM-PBSA, with possible covalent inhibition mechanism.
Conclution:
Finally, our protocol helped identify potential compounds wherein ZINC896717 (Zafirlukast), ZINC1546066 (Erlotinib), and ZINC1554274 (Rilpivirine) were more promising and could be explored in vitro, in vivo, and clinical trials to prove their potential as antiviral agents.
Collapse
Affiliation(s)
- Igor José dos Santos Nascimento
- Laboratory of Computational Chemistry and Modeling of Biomolecules, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió-AL, Brazil.
- nstitute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Computational Chemistry and Modeling of Biomolecules, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió-AL, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|