1
|
Li L, Xie S, Zhou J, Ran J. Utilizing aptamers in targeted protein degradation strategies for disease therapy. J Pathol 2025; 266:134-143. [PMID: 40207978 DOI: 10.1002/path.6422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 02/26/2025] [Indexed: 04/11/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy, offering the potential to reduce disease-causing proteins that have traditionally been challenging to target using conventional small molecules. Despite significant advances made with TPD technologies, challenges such as high molecular weight, difficulties in identifying suitable ligands, suboptimal absorption, and metabolic instability remain unresolved. Recently, aptamers - single-stranded DNA or RNA oligonucleotides known for their high specificity and affinity for protein targets - have introduced novel opportunities to expand the scope of TPD, a strategy now referred to as aptamer-based TPD. This approach has demonstrated considerable promise in treating various diseases, such as cancer and ocular disorders. For example, an aptamer-proteolysis-targeting chimera (PROTAC) conjugate (APC) improved tumor targeting and reduced toxicity in a breast cancer model, and a vascular endothelial growth factor-degrading (VED)-lysosome-targeting chimera (LYTAC) molecule effectively inhibited abnormal vascular growth in vascular retinal diseases. These examples highlight the practical relevance and potential in advancing drug discovery efforts. In this review we provide a comprehensive overview of the latest advances in aptamer-based TPD strategies, including proteolysis-targeting and lysosome-targeting chimeras, emphasizing their applications, potential therapeutic benefits, as well as the challenges that must be overcome to fully harness their clinical potential. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, PR China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, PR China
| |
Collapse
|
2
|
Cheng B, Liu T, Cao H, Liu J, Ren Y, Huang J, Kong D, Chen T, Liu Y, Chen J. Discovery of Small Molecule PD-L1 Inhibitors via Optimization of Solvent-Interaction Region for Cancer Immunotherapy. Chem Biol Drug Des 2025; 105:e70141. [PMID: 40490909 DOI: 10.1111/cbdd.70141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/19/2025] [Accepted: 05/30/2025] [Indexed: 06/11/2025]
Abstract
Despite extensive research, the topic of anti-PD-L1 small-molecule inhibitors remains elusive. Herein, we report the design, synthesis, and bioevaluation of a series of small molecule PD-L1 inhibitors via optimization of the solvent-interaction region. Among them, compound GJ19 showed the most potent anti-PD-L1 effects with an IC50 of 32.06 nM in the HTRF (homogenous time-resolved fluorescence) assay, better than BMS-202 (IC50 = 62.1 nM). In addition, the SPR (surface plasmon resonance) assay revealed that GJ19 can effectively bind to human/murine PD-L1 protein with KD values of 171 and 290 nM, respectively. Furthermore, GJ19 concentration-dependently promoted HepG2 cell mortality in a co-culture model of HepG2/hPD-L1 and Jurkat T/hPD-1 cells. In the in vivo efficacy studies, GJ19 (intraperitoneal injection, 15 mg/kg) effectively suppressed tumor growth with a TGI of 56.8% in a B16-F10 melanoma mouse model by activating antitumor immunity. In conclusion, GJ19 represents a potential small molecule inhibitor of PD-L1, deserving further investigation for tumor immunotherapy.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Ting Liu
- Longhua District People's Hospital of Shenzhen, Shenzhen, China
| | - Hao Cao
- Department of Medicine, People's Hospital of Xiangzhou District, Zhuhai, Guangdong, P. R. China
| | - Jin Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Dulin Kong
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmaceutical Sciences, Hainan Medical University, Haikou, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Department of Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Liu Y, Wang T, Wang W. Photopharmacology and photoresponsive drug delivery. Chem Soc Rev 2025. [PMID: 40309857 DOI: 10.1039/d5cs00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Light serves as an excellent external stimulus due to its high spatial and temporal resolution. The use of light to regulate biological processes has evolved into a vibrant field over the past decade. Employing light on chemical substances such as bioactive molecules and drug delivery systems offers a promising therapeutic approach to achieve precise control over biological processes. In this review, we provide an overview of the advancements in optochemical technologies for controlling bioactive molecules (photopharmacology) and drug delivery systems (photoresponsive drug delivery), with an emphasis on their relationship and biomedical applications. Gaining a deeper understanding of the underlying mechanisms and emerging research will facilitate the development of optochemically controlled bioactive molecules and photoresponsive drug delivery systems, further enhancing light technologies in biomedical applications.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Tianyi Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Moazzeni A, Kheirandish M, Khamisipour G, Rahbarizadeh F, Pourfathollah AA. Leukoreduction filter derived NK cells offer a promising source for off the shelf CAR NK cell immunotherapy. Sci Rep 2025; 15:12755. [PMID: 40223011 PMCID: PMC11994799 DOI: 10.1038/s41598-025-97584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Immunotherapy employing natural killer (NK) cells has emerged as a transformative approach to treating hematological malignancies. The reprogramming of NK cells by incorporating a chimeric antigen receptor (CAR) equipped with potent signaling domains has demonstrated efficacy in enhancing NK cell responses and improving specificity in recognizing cancerous cells. Despite these advancements, the primary challenge in implementing allogeneic NK cell therapy requiring a viable donor source for clinically relevant doses remains unresolved. This study tested NK cells obtained from leukoreduction filters (LRF) post-blood donation to address the need for an efficient and scalable supply of NK cells for generating anti-BCMA CAR NK cells. LRF-NK cells were isolated under sterile conditions and compared with peripheral blood (PB)-derived NK cells in terms of immunophenotype, proliferation capacity, and functional characteristics. Notably, no significant differences in inherent characteristics were observed between LRF-NK and PB-NK cells. Subsequently, both NK cell populations were employed to generate anti-BCMA CAR-NK cells. The data revealed a high specific cytotoxicity of Anti-BCMA CAR LRF-NK cells during co-culture with U266-B1 cells (70.3 ± 4.78%), surpassing that observed with CCRF-CEM cells (31.3 ± 2.35%) and similar to Anti-BCMA CAR PB-NK cells. Furthermore, the expression of IFN-γ and Granzyme B, following the co-culture of Anti-BCMA CAR LRF-NK cells with target cells, mirrored that observed in Anti-BCMA CAR PB-NK cells. This study provides the rationale and feasibility of utilizing LRF-NK cells as a safe, high-yield, accessible, and optimal cost-effective source for cancer immunotherapy.
Collapse
Affiliation(s)
- Ali Moazzeni
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Hemmat Highway Next to Milad Tower, P.O. Box: 14665-1157, Tehran, Iran
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, P.O. Box: 7518759577, Bushehr, Iran
| | - Maryam Kheirandish
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Hemmat Highway Next to Milad Tower, P.O. Box: 14665-1157, Tehran, Iran.
| | - Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, P.O. Box: 7518759577, Bushehr, Iran.
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Iranian Blood Transfusion Organization, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
5
|
Guo C, Lin L, Wang Y, Jing J, Gong Q, Luo K. Nano drug delivery systems for advanced immune checkpoint blockade therapy. Theranostics 2025; 15:5440-5480. [PMID: 40303342 PMCID: PMC12036873 DOI: 10.7150/thno.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been widely utilized in the first-line therapy of various types of cancer. However, immune-related adverse events (irAEs) and resistance to ICIs remain intractable challenges for immune checkpoint blockade (ICB) therapy during clinic treatment. Nano drug delivery systems (NDDSs) have shown promising potential to improve anticancer efficacy and reduce side effects of small molecular drugs. The combination of nanotechnology and ICB provides new opportunities to overcome the challenges of immunotherapy. Nanoplatforms have been employed for direct delivery of ICIs, and they are preferred vehicles for combination therapy of ICIs and other therapeutic agents. In this review, the strategies of using NDDSs for advancing ICB therapy in recent years are surveyed, emphasizing the employment of NDDSs for combination treatment by ICIs and other agents to manipulate antitumor immunity. Analysis of current strategies for applying NDDSs for ICB leads to future research directions and development trends.
Collapse
Affiliation(s)
- Chenqi Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Lin
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yihan Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Chengdu 610041, China
| | - Jing Jing
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Rehabilitation Therapy, Breast Center, Institute of Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Lu T, Zhang J, Chen Q, Ni M, Zhang J, Wu Y, Jia R, Wang Y. Design, Synthesis, Evaluation, and SAR of 5-Phenylisoindoline Derivatives, a Potent Class of Small-Molecule Inhibitors Targeting the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 (PD-1/PD-L1) Interaction. J Med Chem 2025; 68:7291-7312. [PMID: 40153736 DOI: 10.1021/acs.jmedchem.4c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
A novel series of 5-phenylisoindoline derivatives were designed, synthesized, and evaluated for their activity to inhibit the interaction of PD-1/PD-L1 through the homogeneous time-resolved fluorescence assay. Meanwhile, structure-activity relationships were discussed according to both experiments and calculations. Several compounds exhibited potent activity with an IC50 value less than 10 nM, especially D6 (4.8 nM). D6 could promote IFN-γ secretion and reduce the proportion of PD-L1 late apoptosis at 100 nM in the coculture model of peripheral blood mononuclear cells and hPD-L1-FC. Beyond this, the in vitro model showed D6 could lead to the weakening of migration caused by the PD-1/PD-L1 axis. Furthermore, D6 also displayed dose-dependent and low-toxic efficacy in the MC38 mouse tumor model with the tumor growth inhibition of 52.8% (20 mg/kg, ip) and 64.4% (160 mg/kg, i.g.). Mechanistic investigations suggested that D6 could activate the immune microenvironment in the tumor. Thus, D6 is a promising small molecule lead for blocking PD-1/PD-L1.
Collapse
Affiliation(s)
- Tian Lu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Key Laboratory of Drug Innovation for Neuro-Oncology, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jiyi Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiyu Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Mengyue Ni
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingwen Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yufei Wu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Ruining Jia
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Key Laboratory of Drug Innovation for Neuro-Oncology, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
7
|
Yin W, Xu Z, Ma F, Deng B, Zhao Y, Zuo X, Wang H, Lu Y. Nano-adjuvant based on lipo-imiquimod self-assembly for enhanced foot-and-mouth disease virus vaccine immune responses via intradermal immunization. Mater Today Bio 2025; 31:101567. [PMID: 40040795 PMCID: PMC11876772 DOI: 10.1016/j.mtbio.2025.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
Excellent adjuvants and proper immunization routes play pivotal roles in activating a robust immune response. Nano-adjuvants have the advantages of enhancing immunogenicity, targeting delivery, and improving stability to provide a new solution for vaccine delivery. In this work, we designed and synthesized a pro-immunostimulant of liposolubility imiquimod derivative IMQP, which was synthesized by reaction of palmitoyl chloride with parent imiquimod (IMQ). Using an inactivated foot-and-mouth disease virus (FMDV) as antigen, and the as-synthesized IMQP containing long carbon chain as nano-adjuvant, we formulated a self-assembled foot-and-mouth disease nano-vaccine (IMQP@FMDV) by re-precipitation method for intradermal (I.D.) immunity vaccination. Because of its small size (∼131.75 ± 41.70 nm) and fat-soluble, the as-fabricated lipid nanoparticles (LNPs) showed promising potential for efficient delivery of antigens to immune cells. Also, lysosomal escape was confirmed by co-localization dendritic cells (DCs). Our findings demonstrated that IMQP nano-adjuvant greatly promoted the expression and secretion of cytokines and chemokines with a balance Th1/Th2 immune response via the I.D. administration. Meanwhile, due to the slowly releasing of IMQ by the hydrolysis of IMQP, IMQP persistently stimulated antigen-presenting cells (APCs) maturation and promoted antigen presentation, and subsequently induced the activation of the related downstream NF-кB and MAPK pathways of the TLR7 signaling pathway, thereby stimulated a robust both humoral and cellular immune response.
Collapse
Affiliation(s)
- Wenzhu Yin
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Zeyu Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Yanhong Zhao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxin Zuo
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Lovewell RR, Langermann S, Flies DB. Immune inhibitory receptor agonist therapeutics. Front Immunol 2025; 16:1566869. [PMID: 40207220 PMCID: PMC11979287 DOI: 10.3389/fimmu.2025.1566869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The immune system maintains the health of an organism through complex sensing and communication mechanisms. Receptors on the surface of immune cells respond to stimuli resulting in activity described at its most basic as inhibitory or stimulatory. Significant progress in therapeutic intervention has occurred by modulating these pathways, yet much remains to be accomplished. Therapeutics that antagonize, or block, immune inhibitory receptor (IIR) pathways, such as checkpoint inhibitors in cancer are a key example. Antagonism of immune stimulatory receptors (ISRs) for dysregulated inflammation and autoimmunity have received significant attention. An alternative strategy is to agonize, or induce signaling, in immune pathways to treat disease. Agonism of ISRs has been employed with some success in disease settings, but agonist therapeutics of IIRs have great, untapped potential. This review discusses and highlights recent advances in pre-clinical and clinical therapeutics designed to agonize IIR pathways to treat diseases. In addition, an understanding of IIR agonists based on activity at a cellular level as either agonist suppression of stimulatory cells (SuSt), or a new concept, agonist suppression of suppressive cells (SuSu) is proposed.
Collapse
|
9
|
Cheng B, Li H, Hong Y, Zhou Y, Chen J, Shao C, Kong Z. Research progress in bifunctional small molecules for cancer immunotherapy. Eur J Med Chem 2025; 286:117289. [PMID: 39919914 DOI: 10.1016/j.ejmech.2025.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Immunotherapy has become one of the most revolutionary modalities for cancer treatment with the approval of many anti-PD-L1 (programmed cell death-ligand 1)/PD-1 (programmed cell death-1) monoclonal antibodies (mAbs). However, anti-PD-L1/PD-1 mAbs suffer from several drawbacks including limited clinical efficacy (∼20 %), poor pharmacokinetics, and the development of immune resistance. Hence, the search for PD-1/PD-L1-based combination therapies and other PD-L1-based bifunctional small molecule modulators [e.g. PD-L1/HDAC (Histone Deacetylase), PD-L1/CXCL12 (C-X-C chemokine ligand 12), PD-L1/Tubulin, PD-L1/IDO1 (Indoleamine 2,3 dioxygenase 1), PD-L1/PARP (Poly(ADP-ribose) polymerase), PD-L1/STING (Stimulator of interferon genes), and PD-L1/NAMPT (Nicotinamide phosphoribosyltransferase)-targeting dual inhibitors] has been intensified with considerable strides achieved in the past couple of years. Herein, we summarize the latest development of bifunctional small molecules as immunotherapy for tumor treatment, including those PD-L1-based, A2AR (Adenosine 2A receptor)-based, IDO1-based, Toll-like receptor (TLR)-based, SHP2 (Src homology 2 domain-containing phosphatase 2)-based, and HPK1 (Hematopoietic progenitor kinase 1)-based dual-acting compounds. In addition, we also summarize the tumorigenesis and synergy mechanism of various targets. Finally, the challenges and future directions for bifunctional small molecules for cancer immunotherapy are also discussed in detail.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Hongqiao Li
- The Central Hospital of Huangshi, Huangshi, 435000, China
| | - Yimeng Hong
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Yingxing Zhou
- Hubei Polytechnic University, Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| | - Zhihua Kong
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, FoShan, 528200, China.
| |
Collapse
|
10
|
Hu Z, Li S, He H, Pan W, Liu T, Liang H, Xu C, Lu B, Tao C, Qi Z, Cheng B, Hu Y, Jiang F, Chen J, Peng X. Discovery of Novel and Highly Potent Dual PD-L1/Histone Deacetylase 6 Inhibitors with Favorable Pharmacokinetics for Cancer Immunotherapy. J Med Chem 2025; 68:5426-5454. [PMID: 39979078 DOI: 10.1021/acs.jmedchem.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A series of novel PD-L1/HDAC6 dual inhibitors were designed and synthesized, and compound HP29 was identified as the most potent candidate, which demonstrated excellent and selective HDAC6 inhibitory activity (IC50 = 78 nM, SI > 1282), and high anti-PD-1/PD-L1 activity (IC50 = 26.8 nM). Further studies showed that HP29 could bind with high affinity to PD-L1 and HDAC6 protein. Furthermore, HP29 possessed favorable in vivo pharmacokinetic properties, such as decent oral bioavailability (F = 15.3%). Moreover, HP29 exhibited significant in vivo antitumor efficacy in a melanoma tumor model with a greater tumor growth inhibition (TGI) (65.5%) than that of NP19 (43.2%), ACY-1215 (45.6%), and the combination group (53.9%). Mechanistically, the percentages of tumor-infiltrating lymphocytes (TILs) in the HP29-treated tumor tissues were significantly higher than the combination group or PD-L1 inhibitor monotherapy group, suggesting potential synergistic antitumor immune effects. Collectively, HP29 represents a novel PD-L1/HDAC6 dual inhibitor deserving further investigation as a potential cancer immunomodulating agent.
Collapse
Affiliation(s)
- Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Haiqi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailiu Liang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Congcong Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Benyan Lu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Chengpeng Tao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zetao Qi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Ying Hu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 314000, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Jiangxi Provincial Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
11
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
12
|
Chen X, Wang Y, Xu T, Liu H, Ye X, Wang P, Qin X, Yang S, Ning W, Zeng H, Xu L, Fang M, Tang J, Ren Y, Chen Y, Xia N, Liu C, Liu X, Luo W. A bioengineered antibody conjugate reshape dendritic cell viability for immune-tolerance modulation. CHEMICAL ENGINEERING JOURNAL 2025; 507:160431. [DOI: 10.1016/j.cej.2025.160431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
13
|
Dai J, Fang L, Wang X, Hua J, Tu Y, Li S, He K, Hang L, Xu Y, Fang J, Wang L, Wang J, Ma P, Jiang G. Configuration-Mediated Efficient Non-Radiative Transition for R848-Assisted Photothermal Immunotherapy to Inhibit Tumor Growth and Metastasis by An In Situ Tumor Vaccine Strategy. Angew Chem Int Ed Engl 2025; 64:e202417871. [PMID: 39625062 DOI: 10.1002/anie.202417871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 12/12/2024]
Abstract
Cancer metastasis remains a critical factor contributing to the current limitations in cancer treatment. Photothermal immunotherapy has emerged as a safe and potent therapeutic approach, demonstrating the capability to suppress tumor growth and metastasis. While researchers have extensively investigated various structural modifications to enhance photothermal conversion performance, the influence of molecular configuration has received comparatively limited attention. In this study, we synthesized two isomers, CZTBT and LVTBT, which possessed distinct configurations. LVTBT, characterized by a flatter molecular configuration, exhibited an extended absorption wavelength and a higher molar extinction coefficient. Its excited state facilitated stronger rotation for non-radiative transitions, leading to a high photothermal conversion efficiency (PCE) of 36.3 %. When combined with R848, LVTBT@R848 nanoparticles (NPs)-mediated photothermal immunotherapy functioned as an in situ tumor vaccine, promoting the maturation of dendritic cells (DCs), T cell infiltration, and the differentiation of natural killer (NK) cells and memory T cells, thereby activating the strong immune response. Consequently, it significantly inhibited the growth of both primary and distant tumors, while also limiting lung metastasis. In summary, this study proposed a configuration-mediated non-radiative transition strategy for efficient photothermal immunotherapy, advancing the frontiers of organic photothermal agents (OPTAs) design and synthesis.
Collapse
Affiliation(s)
- Jianan Dai
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Laiping Fang
- Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, 518037, P. R. China
| | - Xuan Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Jie Hua
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Yike Tu
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Shufang Li
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Kuo He
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Yuan Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Jin Fang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Lina Wang
- Medical Ethics Office, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| | - Jin Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping, 136000, P. R. China
- Jilin Provincial Key Laboratory of Wide Bandgap Semiconductor Material Growth and Device Applications, Jilin Normal University, Changchun, 130103, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, P. R. China
| | - Guihua Jiang
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 518037, P. R. China
| |
Collapse
|
14
|
Hosseini SA, Nasab NK, Kargozar S, Wang AZ. Advanced biomaterials and scaffolds for cancer immunotherapy. BIOMATERIALS FOR PRECISION CANCER MEDICINE 2025:377-424. [DOI: 10.1016/b978-0-323-85661-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Lai C, Chen W, Qin Y, Xu D, Lai Y, He S. Innovative Hydrogel Design: Tailoring Immunomodulation for Optimal Chronic Wound Recovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412360. [PMID: 39575827 PMCID: PMC11727140 DOI: 10.1002/advs.202412360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 01/14/2025]
Abstract
Despite significant progress in tissue engineering, the full regeneration of chronic wounds persists as a major challenge, with the immune response to tissue damage being a key determinant of the healing process's quality and duration. Post-injury, a crucial aspect is the transition of macrophages from a pro-inflammatory state to an anti-inflammatory. Thus, this alteration in macrophage polarization presents an enticing avenue within the realm of regenerative medicine. Recent advancements have entailed the integration of a myriad of cellular and molecular signals into hydrogel-based constructs, enabling the fine-tuning of immune cell activities during different phases. This discussion explores modern insights into immune cell roles in skin regeneration, underscoring the key role of immune modulation in amplifying the overall efficacy of wounds. Moreover, a comprehensive review is presented on the latest sophisticated technologies employed in the design of immunomodulatory hydrogels to regulate macrophage polarization. Furthermore, the deliberate design of hydrogels to deliver targeted immune stimulation through manipulation of chemistry and cell integration is also emphasized. Moreover, an overview is provided regarding the influence of hydrogel properties on immune traits and tissue regeneration process. Conclusively, the accent is on forthcoming pathways directed toward modulating immune responses in the milieu of chronic healing.
Collapse
Affiliation(s)
- Chun‐Mei Lai
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Wei‐Ji Chen
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yuan Qin
- College of Life SciencesFujian Provincial Key laboratory of Haixia applied plant systems biologyFujian Agriculture and Forestry UniversityFuzhouFujian350002P. R. China
| | - Di Xu
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| | - Yue‐Kun Lai
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC‐CFC)College of Chemical EngineeringFuzhou UniversityFuzhou350116P. R. China
| | - Shao‐Hua He
- Shengli Clinical Medical College of Fujian Medical UniversityDepartment of Pediatrics surgery, Fujian Provincial Hospital University Affiliated Provincial Hospital, Fuzhou University Affiliated Provincial Hospital134 Dongjie RoadFuzhouFujian350001P. R. China
| |
Collapse
|
16
|
Li S, An M, Zhao Y, Zhao W, Li P, Du B. Immunomodulatory peptides from sturgeon cartilage: Isolation, identification, molecular docking and effects on RAW264.7 cells. Food Chem X 2024; 24:101863. [PMID: 39431208 PMCID: PMC11488438 DOI: 10.1016/j.fochx.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Sturgeons (Acipenseridae), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2-7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (P < 0.001).Additionally, western blotting confirmed that F2-7 enhances immune response by increasing the expression of P-IKKα/β, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (P < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (-2.75 and -1.64; -6.04 and -4.75 kcal/mol), thus establishing their role as key immune peptides in F2-7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.
Collapse
Affiliation(s)
- Shuchan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Miaoqing An
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxuan Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024; 7:8059-8075. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
18
|
Goel K, Chawla I, Garima, Dhanawat M, Chaubey P. Progress in modifying and delivering mRNA therapies for cancer immunotherapy. Adv Immunol 2024; 165:89-115. [PMID: 40449976 DOI: 10.1016/bs.ai.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2025]
Abstract
Advancements in mRNA-based therapeutics have greatly enhanced cancer immunotherapy by using the immune system to specifically target and eradicate cancer cells. There has been notable advancement in tailoring and administering mRNA to treat cancer. Codon optimization, chemical alterations, and sequence manipulation are complex design methodologies employed in the production of mRNA vaccines and treatments. The goal is to improve the ability of the chemicals to stimulate an immune response, increase their ability to be translated into practical applications, and boost their stability. Lipid nanoparticles (LNPs) are currently the most efficient means of delivering mRNA because they can withstand degradation, enhance cellular uptake, and facilitate endosomal escape. Scientists are currently investigating the possibility of using alternate methods of delivering substances, including as exosomes, lipoplexes, and polymeric nanoparticles, to enhance the ability to target specific tissues and minimize unwanted negative consequences. In addition, recent clinical trials and preclinical investigations have demonstrated encouraging findings in terms of the advancement of strong anti-tumor immune responses, long-lasting tumor shrinkage, and enhanced patient outcomes. The remaining challenges involve optimizing the equilibrium between tolerance and immunological activation, addressing systemic toxicity, and expanding manufacturing techniques. The upcoming study seeks to improve the design and dissemination of mRNA, include it in combination drugs, and investigate its therapeutic uses outside cancer. The advancement in cancer treatment represents a change in the current approach, highlighting the significant impact of mRNA technology in revolutionizing immunotherapy and enabling tailored cancer treatments.
Collapse
Affiliation(s)
- Karan Goel
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Isha Chawla
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Garima
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana, India.
| | - Pramila Chaubey
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| |
Collapse
|
19
|
Shi L, Chen Z, Ou J, Liang E, Chen Z, Fu Q, Huang L, Cheng K. Pretheranostic agents with extraordinaryNIRF/photoacoustic imaging performanceand photothermal oncotherapy efficacy. Acta Pharm Sin B 2024; 14:5370-5381. [PMID: 39807319 PMCID: PMC11725032 DOI: 10.1016/j.apsb.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 01/16/2025] Open
Abstract
Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue. Connecting a biothiol detection group to PTT-sensitive molecules can improve tumor targeting and further minimize potential side effects. In this study, we developed a near-infrared fluorescence (NIRF)/photoacoustic (PA) dual-mode probe, S-NBD, which demonstrated robust PTT performance. This innovative probe is capable of activating NIRF/PA signals to enable the detection of biothiols with high emission wavelength (838 nm) and large Stokes shift (178 nm), allowing for in vivo monitoring of cancer cells. Additionally, the probe achieved an outstanding photothermal conversion efficiency of 67.1%. The application of laser irradiation (660 nm, 1.0 W/cm2, 5 min) was able to achieve complete tumor ablation without recurrence. In summary, this seminal study presents a pioneering NIRF/PA dual-mode dicyanoisophorone-based probe for biothiol imaging, incorporating features from PTT for the first time. This pioneering approach achieves the dual objectives of improving tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Liu Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhou Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Jieyang Medical Research Center, Jieyang People’s Hospital, Jieyang 522000, China
| | - Jiaxin Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiuyue Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Zeng Z, Yang Z, Li C, Liu S, Wei W, Zhou Y, Wang S, Sui M, Li M, Lin S, Cheng Y, Hou P. Advancing Cancer Immunotherapy through Engineering New PD-L1 Degraders: A Comprehensive Study from Small Molecules to PD-L1-Specific Peptide-Drug Conjugates. J Med Chem 2024; 67:19216-19233. [PMID: 39420825 PMCID: PMC11571110 DOI: 10.1021/acs.jmedchem.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Despite the considerable achievements of antibodies targeting PD-1/PD-L1 in cancer immunotherapy, limitations in antitumor immune response and pharmacokinetics hinder their clinical adoption. Small molecules toward PD-L1 degradation signifies an innovative avenue to modulate PD-1/PD-L1 axis. Herein, we unveil a comprehensive engineering involving the development of new PD-L1 degraders based on the berberine (BBR) and palmatine (PMT) bioactive frameworks and explore their translational potential for cancer immunotherapy using a peptide-drug conjugate strategy. Chemical modifications at the O-9 position of PMT dramatically enhance the PD-L1 degradation capacity. Further conjugation of PMT degraders with an anti-PD-L1 peptide featuring disulfide linkers enables efficient GSH-specific prodrug activation, yielding synergistic immunotherapeutic benefits through both external PD-L1 blockade and internal PD-L1 degradation mechanisms. This work elucidates the compelling charm of the discovery and application of PD-L1 degraders, offering solutions to the challenges in advancing cancer immunotherapy in widespread clinics.
Collapse
Affiliation(s)
- Zekun Zeng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Zhiwei Yang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an 710049, P. R. China
| | - Chenghao Li
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shujing Liu
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Wei Wei
- Department
of Ultrasound Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P. R. China
| | - Ye Zhou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Simeng Wang
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengjun Sui
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengdan Li
- Department
of Cardiology, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shumei Lin
- Department
of Infectious Disease Medicine, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Yangyang Cheng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Peng Hou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| |
Collapse
|
21
|
Chuang ST, Alcazar O, Watts B, Abdulreda MH, Buchwald P. Small-molecule inhibitors of the CD40-CD40L costimulatory interaction are effective in pancreatic islet transplantation and prevention of type 1 diabetes models. Front Immunol 2024; 15:1484425. [PMID: 39606229 PMCID: PMC11599200 DOI: 10.3389/fimmu.2024.1484425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Oscar Alcazar
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon Watts
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Midhat H. Abdulreda
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
22
|
Zhu Y, Lv X, Li R, Gao Z, Lei C, Wang L, Li S. Saikosaponin-b2 Regulates the Proliferation and Apoptosis of Liver Cancer Cells by Targeting the MACC1/c-Met/Akt Signalling Pathway. Adv Pharmacol Pharm Sci 2024; 2024:2653426. [PMID: 39544485 PMCID: PMC11561180 DOI: 10.1155/2024/2653426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Saikosaponin-b2 (SS-b2), an active ingredient derived from the root of Radix Bupleuri, possesses antitumour, anti-inflammatory, antioxidative and hepatoprotective properties. We investigated the inhibition of tumour proliferation by SS-b2 and the underlying molecular mechanisms, including the MACC1/p-c-Met/p-Akt pathway expression in HepG2 liver cancer cells and H22 tumour-bearing mice. Animal experiments showed that SS-b2 significantly decreased the levels of MACC1, p-c-MET and p-Akt in tumour tissue transplanted with H22 liver cancer cells in mice, while it increased the expression of p-BAD. The results also revealed a concentration-dependent suppression of MACC1, p-c-Met and p-Akt expression in the SS-b2 treatment group compared with the control group. Additionally, the suppression of MACC1 activation by SS-b2 resulted in a reduction in the viability and proliferation of HepG2 liver cancer cells, and this reduction was comparable to that by doxorubicin (DOX). This suggests that SS-b2 has significant efficacy in liver cancer, comparable to DOX. Meanwhile, Annexin V-FITC/PI staining and western blot analysis of cleaved caspase 9 and cleaved caspase 3 demonstrated that SS-b2 induced apoptosis of HepG2 liver cancer cells. These findings provide experimental evidence suggesting that SS-b2 is a promising anticancer agent for liver cancer.
Collapse
Affiliation(s)
- Yanxue Zhu
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Xingzhi Lv
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Ruifang Li
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Zihan Gao
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Chanhao Lei
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Lan Wang
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Sanqiang Li
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| |
Collapse
|
23
|
Qi Y, Yan Y, Tang D, Han J, Zhu X, Cui M, Wu H, Tao Y, Fan F. Inflammatory and Immune Mechanisms in COPD: Current Status and Therapeutic Prospects. J Inflamm Res 2024; 17:6603-6618. [PMID: 39318994 PMCID: PMC11421452 DOI: 10.2147/jir.s478568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) currently ranks among the top three causes of mortality worldwide, presenting as a prevalent and complex respiratory ailment. Ongoing research has underscored the pivotal role of immune function in the onset and progression of COPD. The immune response in COPD patients exhibits abnormalities, characterized by diminished anti-infection capacity due to immune senescence, heightened activation of neutrophils and macrophages, T cell infiltration, and aberrant B cell activity, collectively contributing to airway inflammation and lung injury in COPD. Objective This review aimed to explore the pivotal role of the immune system in COPD and its therapeutic potential. Methods We conducted a review of immunity and COPD published within the past decade in the Web of Science and PubMed databases, sorting through and summarizing relevant literature. Results This article examines the pivotal roles of the immune system in COPD. Understanding the specific functions and interactions of these immune cells could facilitate the development of novel therapeutic strategies and interventions aimed at controlling inflammation, enhancing immune function, and mitigating the impact of respiratory infections in COPD patients.
Collapse
Affiliation(s)
- Yanan Qi
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Yuanyuan Yan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Dawei Tang
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Jingjing Han
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Xinyi Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Mengting Cui
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, People’s Republic of China
| | - Yu Tao
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, People’s Republic of China
| |
Collapse
|
24
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
25
|
Shahinyan GA, Markarian SA. The Study of the Effect of Dimethylsulfoxide (or Diethylsulfoxide) on Quinine Sulfate-DNA Binding by UV-Vis and Steady-State Fluorescence Spectroscopies. J Fluoresc 2024; 34:2197-2208. [PMID: 37725205 DOI: 10.1007/s10895-023-03442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The effect of dimethylsulfoxide (DMSO) and diethylsulfoxide (DESO) on binding between quinine sulfate (QS) and DNA was studied by virtue of UV-Vis absorption, steady-state fluorescence spectroscopies, and fluorescence polarization measurements. The binding constant was determined at three different temperatures and the values of standard Gibbs energy change, enthalpy and entropy of binding were determined. The mechanism of binding and the effect of sulfoxides on this process was revealed. The values of binding constant, fluorescence polarization and iodide quenching studies confirmed that the main binding mode in QS-DNA system is groove binding. Addition of sulfoxides does not change the binding mechanism. Moreover, with addition of sulfoxides binding constant increases due to the removal of water molecules from DNA grooves making them more available for QS molecules. To explain the effect of DMSO and DESO on QS-DNA binding the photophysical properties of QS in aqueous solutions of DMSO and DESO were also studied. On the basis of quantum yield of QS in water, DMSO and DESO the types of intermolecular interactions were discussed. The obtained results show that quantum yield of QS in sulfoxides is lower compared with that in water and aqueous solution of 0.1 M H2SO4. QS forms ground state complexes with both DMSO and DESO that are stronger fluorophores compared with free QS molecules.
Collapse
Affiliation(s)
- Gohar A Shahinyan
- Deparment of Inorganic and Analytical Chemistry, Yerevan State University, 0025, Yerevan, Armenia
| | - Shiraz A Markarian
- Department of Physical and Colloid Chemistry, Yerevan State University, 0025, Yerevan, Armenia.
| |
Collapse
|
26
|
Zhang WY, Zheng XL, Coghi PS, Chen JH, Dong BJ, Fan XX. Revolutionizing adjuvant development: harnessing AI for next-generation cancer vaccines. Front Immunol 2024; 15:1438030. [PMID: 39206192 PMCID: PMC11349682 DOI: 10.3389/fimmu.2024.1438030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
With the COVID-19 pandemic, the importance of vaccines has been widely recognized and has led to increased research and development efforts. Vaccines also play a crucial role in cancer treatment by activating the immune system to target and destroy cancer cells. However, enhancing the efficacy of cancer vaccines remains a challenge. Adjuvants, which enhance the immune response to antigens and improve vaccine effectiveness, have faced limitations in recent years, resulting in few novel adjuvants being identified. The advancement of artificial intelligence (AI) technology in drug development has provided a foundation for adjuvant screening and application, leading to a diversification of adjuvants. This article reviews the significant role of tumor vaccines in basic research and clinical treatment and explores the use of AI technology to screen novel adjuvants from databases. The findings of this review offer valuable insights for the development of new adjuvants for next-generation vaccines.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiao-Li Zheng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Paolo Saul Coghi
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun-Hui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Bing-Jun Dong
- Gynecology Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Xing-Xing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
27
|
Rogovskii V. Tumor-produced immune regulatory factors as a therapeutic target in cancer treatment. Front Immunol 2024; 15:1416458. [PMID: 39206193 PMCID: PMC11349530 DOI: 10.3389/fimmu.2024.1416458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
28
|
Wang M, Fan B, Lu W, Ryde U, Chang Y, Han D, Lu J, Liu T, Gao Q, Chen C, Xu Y. Unraveling the Binding Mode of Cyclic Adenosine-Inosine Monophosphate (cAIMP) to STING through Molecular Dynamics Simulations. Molecules 2024; 29:2650. [PMID: 38893524 PMCID: PMC11173896 DOI: 10.3390/molecules29112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The stimulator of interferon genes (STING) plays a significant role in immune defense and protection against tumor proliferation. Many cyclic dinucleotide (CDN) analogues have been reported to regulate its activity, but the dynamic process involved when the ligands activate STING remains unclear. In this work, all-atom molecular dynamics simulations were performed to explore the binding mode between human STING (hSTING) and four cyclic adenosine-inosine monophosphate analogs (cAIMPs), as well as 2',3'-cGMP-AMP (2',3'-cGAMP). The results indicate that these cAIMPs adopt a U-shaped configuration within the binding pocket, forming extensive non-covalent interaction networks with hSTING. These interactions play a significant role in augmenting the binding, particularly in interactions with Tyr167, Arg238, Thr263, and Thr267. Additionally, the presence of hydrophobic interactions between the ligand and the receptor further contributes to the overall stability of the binding. In this work, the conformational changes in hSTING upon binding these cAIMPs were also studied and a significant tendency for hSTING to shift from open to closed state was observed after binding some of the cAIMP ligands.
Collapse
Affiliation(s)
- Meiting Wang
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
- Department of Computational Chemistry, Chemical Centre, Lund University, SE-221 00 Lund, Sweden;
| | - Baoyi Fan
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
| | - Wenfeng Lu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
| | - Ulf Ryde
- Department of Computational Chemistry, Chemical Centre, Lund University, SE-221 00 Lund, Sweden;
| | - Yuxiao Chang
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
| | - Di Han
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
| | - Jiarui Lu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
| | - Taigang Liu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China;
| | - Changpo Chen
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yongtao Xu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China; (M.W.); (D.H.); (J.L.); (T.L.)
| |
Collapse
|
29
|
Han R, He H, Lu Y, Lu H, Shen S, Wu W. Oral targeted drug delivery to post-gastrointestinal sites. J Control Release 2024; 370:256-276. [PMID: 38679163 DOI: 10.1016/j.jconrel.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
As an essential branch of targeted drug delivery, oral targeted delivery is attracting growing attention in recent years. In addition to site-specific delivery for the treatment of locoregional diseases in the gastrointestinal tract (GIT), oral targeted delivery to remote sites beyond the GIT emerges as a cutting-edge research topic. This review aims to provide an overview of the fundamental concepts and most recent advances in this field. Owing to the physiological barriers existing in the GIT, carrier systems should be transported across the enteric epithelia to target remote sites. Recently, pioneer investigations have validated the transport of intact micro- or nanocarriers across gastrointestinal barriers and subsequently to various distal organs and tissues. The microfold (M) cell pathway is the leading mechanism underlying the oral absorption of particulates, but the contribution of the transcellular and paracellular pathways should not be neglected either. In addition to well-acknowledged physicochemical and biological factors, the formation of a protein corona may also influence the biological fate of carrier systems. Although in an early stage of conceptualization, oral targeted delivery to remote diseases has demonstrated promising potential for the treatment of inflammation, tumors, and diseases inflicting the lymphatic and mononuclear phagocytosis systems.
Collapse
Affiliation(s)
- Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Huiping Lu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
30
|
Ma Y, Jiang T, Zhang R, Liu F, Song S, Zhang H, Huang J, He Z. The Application of 2d Mxene Nanosheet -Based Thermosensitive Gel Delivery System Loaded with Cisplatin and Imiquimod for Lung Cancer. Int J Nanomedicine 2024; 19:4719-4733. [PMID: 38813391 PMCID: PMC11135572 DOI: 10.2147/ijn.s449541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Lung cancer's high incidence and dismal prognosis with traditional treatments like surgery and radiotherapy necessitate innovative approaches. Despite advancements in nanotherapy, the limitations of single-treatment modalities and significant side effects persist. To tackle lung cancer effectively, we devised a temperature-sensitive hydrogel-based local injection system with near-infrared triggered drug release. Utilizing 2D MXene nanosheets as carriers loaded with R837 and cisplatin (DDP), encapsulated within a temperature-sensitive hydrogel-forming PEG-MXene@DDP@R837@SHDS (MDR@SHDS), we administered in situ injections of MDR@SHDS into tumor tissues combined with photothermal therapy (PTT). The immune adjuvant R837 enhances dendritic cell (DC) maturation and tumor cell phagocytosis, while PTT induces tumor cell apoptosis and necrosis by converting light energy into heat energy. Methods Material characterization employed transmission electron microscopy, X-ray photoelectron spectroscopy, phase transition temperature, and near-infrared thermography. In vitro experiments assessed Lewis cell proliferation and apoptosis using CCK-8, Edu, and TUNEL assays. In vivo experiments on C57 mouse Lewis transplant tumors evaluated the photothermal effect via near-infrared thermography and assessed DC maturation and CD4+/CD8+ T cell ratios using flow cytometry. The in vivo anti-tumor efficacy of MDR@SHDS was confirmed by tumor growth curve recording and HE and TUNEL staining of tumor sections. Results The hydrogel exhibited excellent temperature sensitivity, controlled release properties, and high biocompatibility. In vitro experiments revealed that MDR@SHDS combined with PTT had a greater inhibitory effect on tumor cell proliferation compared to MDR@SHD alone. Combining local immunotherapy, chemotherapy, and PTT yielded superior anti-tumor effects than individual treatments. Conclusion MDR@SHDS, with its simplicity, biocompatibility, and enhanced anti-tumor effects in combination with PTT, presents a promising therapeutic approach for lung cancer treatment, offering potential clinical utility.
Collapse
Affiliation(s)
- Yuwei Ma
- The First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
| | - Tao Jiang
- The First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
| | - Rong Zhang
- The First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
| | - Fei Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, People’s Republic of China
| | - Shilong Song
- The First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, 200040, People’s Republic of China
| | - Jingwen Huang
- The First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
| | - Zelai He
- The First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical University & Tumor Hospital Affiliated to Bengbu Medical University, Bengbu, 233004, People’s Republic of China
| |
Collapse
|
31
|
Yang Z, Liu Z, Wan S, Xu J, Huang Y, He H, Liu T, Li L, Ren Y, Zhang J, Chen J. Discovery of Novel Small-Molecule-Based Potential PD-L1/EGFR Dual Inhibitors with High Druggability for Glioblastoma Immunotherapy. J Med Chem 2024; 67:7995-8019. [PMID: 38739112 DOI: 10.1021/acs.jmedchem.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Based on the close relationship between programmed death protein ligand 1 (PD-L1) and epidermal growth factor receptor (EGFR) in glioblastoma (GBM), we designed and synthesized a series of small molecules as potential dual inhibitors of EGFR and PD-L1. Among them, compound EP26 exhibited the highest inhibitory activity against EGFR (IC50 = 37.5 nM) and PD-1/PD-L1 interaction (IC50 = 1.77 μM). In addition, EP26 displayed superior in vitro antiproliferative activities and in vitro immunomodulatory effects by promoting U87MG cell death in a U87MG/Jurkat cell coculture model. Furthermore, EP26 possessed favorable pharmacokinetic properties (F = 22%) and inhibited tumor growth (TGI = 92.0%) in a GBM mouse model more effectively than Gefitinib (77.2%) and NP19 (82.8%). Moreover, EP26 increased CD4+ cells and CD8+ cells in tumor microenvironment. Collectively, these results suggest that EP26 represents the first small-molecule-based PD-L1/EGFR dual inhibitor deserving further investigation as an immunomodulating agent for cancer treatment.
Collapse
Affiliation(s)
- Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziqing Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiqi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- The Eighth Affiliated Hospital, Sun Yat sen University, Shenzhen 518033, China
| | - Yichang Ren
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
33
|
Wang L, Zhang J, Zhang W, Zheng M, Guo H, Pan X, Li W, Yang B, Ding L. The inhibitory effect of adenosine on tumor adaptive immunity and intervention strategies. Acta Pharm Sin B 2024; 14:1951-1964. [PMID: 38799637 PMCID: PMC11119508 DOI: 10.1016/j.apsb.2023.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024] Open
Abstract
Adenosine (Ado) is significantly elevated in the tumor microenvironment (TME) compared to normal tissues. It binds to adenosine receptors (AdoRs), suppressing tumor antigen presentation and immune cell activation, thereby inhibiting tumor adaptive immunity. Ado downregulates major histocompatibility complex II (MHC II) and co-stimulatory factors on dendritic cells (DCs) and macrophages, inhibiting antigen presentation. It suppresses anti-tumor cytokine secretion and T cell activation by disrupting T cell receptor (TCR) binding and signal transduction. Ado also inhibits chemokine secretion and KCa3.1 channel activity, impeding effector T cell trafficking and infiltration into the tumor site. Furthermore, Ado diminishes T cell cytotoxicity against tumor cells by promoting immune-suppressive cytokine secretion, upregulating immune checkpoint proteins, and enhancing immune-suppressive cell activity. Reducing Ado production in the TME can significantly enhance anti-tumor immune responses and improve the efficacy of other immunotherapies. Preclinical and clinical development of inhibitors targeting Ado generation or AdoRs is underway. Therefore, this article will summarize and analyze the inhibitory effects and molecular mechanisms of Ado on tumor adaptive immunity, as well as provide an overview of the latest advancements in targeting Ado pathways in anti-tumor immune responses.
Collapse
Affiliation(s)
- Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| |
Collapse
|
34
|
Mastrangelo A, Gama L, Cinque P. Strategies to target the central nervous system HIV reservoir. Curr Opin HIV AIDS 2024; 19:133-140. [PMID: 38457227 DOI: 10.1097/coh.0000000000000847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF THE REVIEW The central nervous system (CNS) is an hotspot for HIV persistence and may be a major obstacle to overcome for curative strategies. The peculiar anatomical, tissular and cellular characteristics of the HIV reservoir in the CNS may need to be specifically addressed to achieve a long-term HIV control without ART. In this review, we will discuss the critical challenges that currently explored curative strategies may face in crossing the blood-brain barrier (BBB), targeting latent HIV in brain-resident myeloid reservoirs, and eliminating the virus without eliciting dangerous neurological adverse events. RECENT FINDINGS Latency reversing agents (LRA), broadly neutralizing monoclonal antibodies (bNabs), chimeric antigen receptor (CAR) T-cells, and adeno-associated virus 9-vectored gene-therapies cross the BBB with varying efficiency. Although brain penetration is poor for bNAbs, viral vectors for in vivo gene-editing, certain LRAs, and CAR T-cells may reach the cerebral compartment more efficiently. All these approaches, however, may encounter difficulties in eliminating HIV-infected perivascular macrophages and microglia. Safety, including local neurological adverse effects, may also be a concern, especially if high doses are required to achieve optimal brain penetration and efficient brain cell targeting. SUMMARY Targeting the CNS remains a potential problem for the currently investigated HIV curing strategies. In vivo evidence on CNS effectiveness is limited for most of the investigated strategies, and additional studies should be focused on evaluating the interplay between the cerebral HIV reservoir and treatment aiming to achieve an ART-free cure.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Department of Allergy and Clinical Immunology, Centre Hopitalier Universitaire Vaudoise (CHUV), Lausanne, Switzerland
| | - Lucio Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Paola Cinque
- Unit of Infectious Diseases and Neurovirology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
35
|
Wang Z, Yuan L, Liao X, Guo X, Chen J. Reducing PD-L1 Expression by Degraders and Downregulators as a Novel Strategy to Target the PD-1/PD-L1 Pathway. J Med Chem 2024; 67:6027-6043. [PMID: 38598179 DOI: 10.1021/acs.jmedchem.3c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Targeting the programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has evolved into one of the most promising strategies for tumor immunotherapy. Thus far, multiple monoclonal antibody drugs have been approved for treating a variety of tumors, while the development of small-molecule PD-1/PD-L1 inhibitors has lagged far behind, with only a few small-molecule inhibitors entering clinical trials. In addition to antibody drugs and small-molecule inhibitors, reducing the expression levels of PD-L1 has attracted extensive research interest as another promising strategy to target the PD-1/PD-L1 pathway. Herein, we analyze the structures and mechanisms of molecules that reduce PD-L1 expression and classify them as degraders and downregulators according to whether they directly bind to PD-L1. Moreover, we discuss the potential prospects for developing PD-L1-targeting drugs based on these molecules. It is hoped that this perspective will provide profound insights into the discovery of potent antitumor immunity drugs.
Collapse
Affiliation(s)
- Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Theivendran S, Xian H, Qu J, Song Y, Sun B, Song H, Yu C. A Pioglitazone Nanoformulation Designed for Cancer-Associated Fibroblast Reprogramming and Cancer Treatment. NANO LETTERS 2024; 24:4354-4361. [PMID: 38563599 DOI: 10.1021/acs.nanolett.3c04706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The recent focus of cancer therapeutics research revolves around modulating the immunosuppressive tumor microenvironment (TME) to enhance efficacy. The tumor stroma, primarily composed of cancer-associated fibroblasts (CAFs), poses significant obstacles to therapeutic penetration, influencing resistance and tumor progression. Reprogramming CAFs into an inactivated state has emerged as a promising strategy, necessitating innovative approaches. This study pioneers the design of a nanoformulation using pioglitazone, a Food and Drug Administration-approved anti-diabetic drug, to reprogram CAFs in the breast cancer TME. Glutathione (GSH)-responsive dendritic mesoporous organosilica nanoparticles loaded with pioglitazone (DMON-P) are designed for the delivery of cargo to the GSH-rich cytosol of CAFs. DMON-P facilitates pioglitazone-mediated CAF reprogramming, enhancing the penetration of doxorubicin (Dox), a therapeutic drug. Treatment with DMON-P results in the downregulation of CAF biomarkers and inhibits tumor growth through the effective delivery of Dox. This innovative approach holds promise as an alternative strategy for enhancing therapeutic outcomes in CAF-abundant tumors, particularly in breast cancer.
Collapse
Affiliation(s)
- Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - He Xian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Jingjing Qu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Yaping Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
37
|
Sarkar Lotfabadi A, Abadi B, Rezaei N. Biomimetic nanotechnology for cancer immunotherapy: State of the art and future perspective. Int J Pharm 2024; 654:123923. [PMID: 38403091 DOI: 10.1016/j.ijpharm.2024.123923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Cancer continues to be a significant worldwide cause of mortality. This underscores the urgent need for novel strategies to complement and overcome the limitations of conventional therapies, such as imprecise targeting and drug resistance. Cancer Immunotherapy utilizes the body's immune system to target malignant cells, reducing harm to healthy tissue. Nevertheless, the efficacy of immunotherapy exhibits variation across individuals and has the potential to induce autoimmune responses. Biomimetic nanoparticles (bNPs) have transformative potential in cancer immunotherapy, promising improved accurate targeting, immune system activation, and resistance mechanisms, while also reducing the occurrence of systemic autoimmune side effects. This integration offers opportunities for personalized medicine and better therapeutic outcomes. Despite considerable potential, bNPs face barriers like insufficient targeting, restricted biological stability, and interactions within the tumor microenvironment. The resolution of these concerns is crucial in order to expedite the integration of bNPs from the research setting into clinical therapeutic uses. In addition, optimizing manufacturing processes and reducing bNP-related costs are essential for practical implementation. The present research introduces comprehensive classifications of bNPs as well as recent achievements in their application in cancer immunotherapies, emphasizing the need to address barriers for swift clinical integration.
Collapse
Affiliation(s)
- Alireza Sarkar Lotfabadi
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
39
|
Fan R, Lin R, Zhang S, Deng A, Hai Y, Zhuang J, Liu Y, Cheng M, Wei G. Novel Pt(IV) complex OAP2 induces STING activation and pyroptosis via mitochondrial membrane remodeling for synergistic chemo-immunotherapy. Acta Pharm Sin B 2024; 14:1742-1758. [PMID: 38572099 PMCID: PMC10985026 DOI: 10.1016/j.apsb.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 04/05/2024] Open
Abstract
Mitochondrial membrane remodeling can trigger the release of mitochondrial DNA (mtDNA), leading to the activation of cellular oxidative stress and immune responses. While the role of mitochondrial membrane remodeling in promoting inflammation in hepatocytes is well-established, its effects on tumors have remained unclear. In this study, we designed a novel Pt(IV) complex, OAP2, which is composed of oxaliplatin (Oxa) and acetaminophen (APAP), to enhance its anti-tumor effects and amplify the immune response. Our findings demonstrate that OAP2 induces nuclear DNA damage, resulting in the production of nuclear DNA. Additionally, OAP2 downregulates the expression of mitochondrial Sam50, to promote mitochondrial membrane remodeling and trigger mtDNA secretion, leading to double-stranded DNA accumulation and ultimately synergistically activating the intracellular cGAS-STING pathway. The mitochondrial membrane remodeling induced by OAP2 overcomes the limitations of Oxa in activating the STING pathway and simultaneously promotes gasdermin-D-mediated cell pyroptosis. OAP2 also promotes dendritic cell maturation and enhances the quantity and efficacy of cytotoxic T cells, thereby inhibiting cancer cell proliferation and metastasis. Briefly, our study introduces the first novel small-molecule inhibitor that regulates mitochondrial membrane remodeling for active immunotherapy in anti-tumor research, which may provide a creative idea for targeting organelle in anti-tumor therapy.
Collapse
Affiliation(s)
- Renming Fan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Ruizhuo Lin
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Shuo Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aohua Deng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yongrui Hai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Junyan Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gaofei Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
40
|
Chen J, Cortez-Jugo C, Kim CJ, Lin Z, Wang T, De Rose R, Xu W, Wang Z, Gu Y, Caruso F. Metal-Phenolic-Mediated Assembly of Functional Small Molecules into Nanoparticles: Assembly and Bioapplications. Angew Chem Int Ed Engl 2024; 63:e202319583. [PMID: 38282100 DOI: 10.1002/anie.202319583] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Small molecules, including therapeutic drugs and tracer molecules, play a vital role in biological processing, disease treatment and diagnosis, and have inspired various nanobiotechnology approaches to realize their biological function, particularly in drug delivery. Desirable features of a delivery system for functional small molecules (FSMs) include high biocompatibility, high loading capacity, and simple manufacturing processes, without the need for chemical modification of the FSM itself. Herein, we report a simple and versatile approach, based on metal-phenolic-mediated assembly, for assembling FSMs into nanoparticles (i.e., FSM-MPN NPs) under aqueous and ambient conditions. We demonstrate loading of anticancer drugs, latency reversal agents, and fluorophores at up to ~80 % that is mostly facilitated by π and hydrophobic interactions between the FSM and nanoparticle components. Secondary nanoparticle engineering involving coating with a polyphenol-antibody thin film or sequential co-loading of multiple FSMs enables cancer cell targeting and combination delivery, respectively. Incorporating fluorophores into FSM-MPN NPs enables the visualization of biodistribution at different time points, revealing that most of these NPs are retained in the kidney and heart 24 h post intravenous administration. This work provides a viable pathway for the rational design of small molecule nanoparticle delivery platforms for diverse biological applications.
Collapse
Affiliation(s)
- Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yuang Gu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
41
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
42
|
Huang H, Li N, Wei X, Li Q, Guo J, Yang G, Yang H, Cai L, Liu Y, Wu C. Biomimetic "Gemini nanoimmunoregulators" orchestrated for boosted photoimmunotherapy by spatiotemporally modulating PD-L1 and tumor-associated macrophages. Acta Pharm Sin B 2024; 14:1345-1361. [PMID: 38486995 PMCID: PMC10935025 DOI: 10.1016/j.apsb.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 03/17/2024] Open
Abstract
A novel strategy of not only stimulating the immune cycle but also modulating the immunosuppressive tumor microenvironment is of vital importance to efficient cancer immunotherapy. Here, a new type of spatiotemporal biomimetic "Gemini nanoimmunoregulators" was engineered to activate robust systemic photoimmunotherapy by integrating the triple-punch of amplified immunogenic cell death (ICD), tumor-associated macrophages (TAMs) phenotype reprogramming and programmed cell death ligand 1 (PD-L1) degradation. The "Gemini nanoimmunoregulators" PM@RM-T7 and PR@RM-M2 were constructed by taking the biocompatible mesoporous polydopamine (mPDA) as nanovectors to deliver metformin (Met) and toll-like receptor 7/8 agonist resiquimod (R848) to cancer cells and TAMs by specific biorecognition via wrapping of red blood cell membrane (RM) inlaid with T7 or M2 peptides. mPDA/Met@RM-T7 (abbreviated as PM@RM-T7) was constructed to elicit an amplified in situ ICD effect through the targeted PTT and effectively stimulated the anticancer immunity. Meanwhile, PD-L1 on the remaining cancer cells was degraded by the burst metformin to prevent immune evasion. Subsequently, mPDA/R848@RM-M2 (abbreviated as PR@RM-M2) specifically recognized TAMs and reset the phenotype from M2 to M1 state, thus disrupting the immunosuppressive microenvironment and further boosting the function of cytotoxic T lymphocytes. This pair of sister nanoimmunoregulators cooperatively orchestrated the comprehensive anticancer activity, which remarkably inhibited the growth of primary and distant 4T1 tumors and prevented malignant metastasis. This study highlights the spatiotemporal cooperative modalities using multiple nanomedicines and provides a new paradigm for efficient cancer immunotherapy against metastatic-prone tumors.
Collapse
Affiliation(s)
- Honglin Huang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ningxi Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaodan Wei
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qingzhi Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junhan Guo
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lulu Cai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
43
|
Peng X, Hu Z, Zeng L, Zhang M, Xu C, Lu B, Tao C, Chen W, Hou W, Cheng K, Bi H, Pan W, Chen J. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm Sin B 2024; 14:533-578. [PMID: 38322348 PMCID: PMC10840439 DOI: 10.1016/j.apsb.2023.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 02/08/2024] Open
Abstract
Epigenetic pathways play a critical role in the initiation, progression, and metastasis of cancer. Over the past few decades, significant progress has been made in the development of targeted epigenetic modulators (e.g., inhibitors). However, epigenetic inhibitors have faced multiple challenges, including limited clinical efficacy, toxicities, lack of subtype selectivity, and drug resistance. As a result, the design of new epigenetic modulators (e.g., degraders) such as PROTACs, molecular glue, and hydrophobic tagging (HyT) degraders has garnered significant attention from both academia and pharmaceutical industry, and numerous epigenetic degraders have been discovered in the past decade. In this review, we aim to provide an in-depth illustration of new degrading strategies (2017-2023) targeting epigenetic proteins for cancer therapy, focusing on the rational design, pharmacodynamics, pharmacokinetics, clinical status, and crystal structure information of these degraders. Importantly, we also provide deep insights into the potential challenges and corresponding remedies of this approach to drug design and development. Overall, we hope this review will offer a better mechanistic understanding and serve as a useful guide for the development of emerging epigenetic-targeting degraders.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Zhihao Hu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou 314000, China
| | - Meizhu Zhang
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Congcong Xu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Benyan Lu
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Chengpeng Tao
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Weiming Chen
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Wen Hou
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Pan
- College of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 314000, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
44
|
Ling D, Jia X, Wang K, Yan Q, Yuan B, Du L, Li M, Jin Y. Cancer cell membrane-coated bacterial ghosts for highly efficient paclitaxel delivery against metastatic lung cancer. Acta Pharm Sin B 2024; 14:365-377. [PMID: 38261850 PMCID: PMC10792973 DOI: 10.1016/j.apsb.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 01/25/2024] Open
Abstract
Chemotherapy is one of the major approaches for the treatment of metastatic lung cancer, although it is limited by the low tumor delivery efficacy of anticancer drugs. Bacterial therapy is emerging for cancer treatment due to its high immune stimulation effect; however, excessively generated immunogenicity will cause serious inflammatory response syndrome. Here, we prepared cancer cell membrane-coated liposomal paclitaxel-loaded bacterial ghosts (LP@BG@CCM) by layer-by-layer encapsulation for the treatment of metastatic lung cancer. The preparation processes were simple, only involving film formation, electroporation, and pore extrusion. LP@BG@CCM owned much higher 4T1 cancer cell toxicity than LP@BG due to its faster fusion with cancer cells. In the 4T1 breast cancer metastatic lung cancer mouse models, the remarkably higher lung targeting of intravenously injected LP@BG@CCM was observed with the almost normalized lung appearance, the reduced lung weight, the clear lung tissue structure, and the enhanced cancer cell apoptosis compared to its precursors. Moreover, several major immune factors were improved after administration of LP@BG@CCM, including the CD4+/CD8a+ T cells in the spleen and the TNF-α, IFN-γ, and IL-4 in the lung. LP@BG@CCM exhibits the optimal synergistic chemo-immunotherapy, which is a promising medication for the treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Dandan Ling
- Anhui Medical University, Hefei 230032, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xueli Jia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ke Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qiucheng Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei 230032, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
45
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
46
|
Tabana Y, Lin CH, Babu D, Siva‐Piragasam R, Ponich AA, Moon TC, Siraki AG, Elahi S, Fahlman R, West FG, Barakat K. Proof of concept: Pull down assay using bovine serum albumin and an immunomodulator small molecule. Heliyon 2023; 9:e21408. [PMID: 38027705 PMCID: PMC10651465 DOI: 10.1016/j.heliyon.2023.e21408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
In the past decade, there has been increasing interest in use of small molecules for immunomodulation. The affinity-based pull-down purification is an essential tool for target identification of small molecules and drug discovery. This study presents our recent efforts to investigate the cellular target(s) of Compound A, a small molecule with demonstrated immunomodulatory properties in human peripheral blood mononuclear cells (PBMCs). While we have previously observed the immunomodulatory activity of Compound A in PBMCs, the specific molecular targets underlying its effects remains elusive. To address this challenge, we synthesized a trifluoromethyl phenyl diazirine (TPD)-bearing trifunctional Probe 1 based on the chemical structure of Compound A, which could be used in a pull-down assay to efficiently bind to putative cellular targets via photoaffinity labelling. In this report, we utilized bovine serum albumin (BSA) as a model protein to establish a proof-of-concept in order to assess the suitability of Probe 1 for binding to an endogenous target. By the successful synthesis of Probe 1 and demonstrating the efficient binding of Probe 1 to BSA, we propose that this method can be used as a tool for further identification of potential protein targets of small molecules in living cells. Our findings provide a valuable starting point for further investigations into the molecular mechanisms underlying the immunomodulatory effects of Compound A.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Chih-Hsuan Lin
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Dinesh Babu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | - Ashley A. Ponich
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Arno G. Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Frederick G. West
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
47
|
Schlicher L, Green LG, Romagnani A, Renner F. Small molecule inhibitors for cancer immunotherapy and associated biomarkers - the current status. Front Immunol 2023; 14:1297175. [PMID: 38022587 PMCID: PMC10644399 DOI: 10.3389/fimmu.2023.1297175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.
Collapse
Affiliation(s)
- Lisa Schlicher
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Luke G. Green
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Andrea Romagnani
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Florian Renner
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
48
|
Kashyap MK, Mangrulkar SV, Kushwaha S, Ved A, Kale MB, Wankhede NL, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kopalli SR. Recent Perspectives on Cardiovascular Toxicity Associated with Colorectal Cancer Drug Therapy. Pharmaceuticals (Basel) 2023; 16:1441. [PMID: 37895912 PMCID: PMC10610064 DOI: 10.3390/ph16101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.
Collapse
Affiliation(s)
- Monu Kumar Kashyap
- Goel Institute of Pharmaceutical Sciences, Faizabad Road, Lucknow 226028, Uttar Pradesh, India;
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Shubhada V. Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education and Research, Raebareli 229010, Uttar Pradesh, India
| | - Akash Ved
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Nitu L. Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Brijesh G. Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain Collge of Pharmacy, Neminagar, Chandwad, Nadik 423101, Maharashtra, India;
| | - Milind J. Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si 27478, Chungcheongbuk Do, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
49
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
50
|
Yang Z, Liu Z, Xu C, Xu J, Liu T, He H, Li L, Ren Y, Chen J. Discovery of novel resorcinol biphenyl ether-based macrocyclic small molecules as PD-1/PD-L1 inhibitors with favorable pharmacokinetics for cancer immunotherapy. Bioorg Chem 2023; 139:106740. [PMID: 37478546 DOI: 10.1016/j.bioorg.2023.106740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Programmed death protein 1 (PD-1)/programmed death protein ligand 1 (PD-L1) is one of the most promising immune checkpoints (ICs) in tumor immunology and has been actively pursued as a target for anticancer drug discovery. Based on our previous research in small molecule PD-1/PD-L1 modulators, we designed and synthesized a series of resorcinol biphenyl ether-bearing macrocyclic compounds and evaluated their anti-PD-1/PD-L1 activities. Among them, compound 8d exhibited the highest inhibitory activity against PD-1/PD-L1 interaction with IC50 of 259.7 nM in the homogenous time-resolved fluorescence (HTRF) assay. In addition, 8d displayed in vitro immunomodulatory effects by promoting HepG2 cell death in a HepG2/Jurkat cell co-culture model. Furthermore, 8d effectively inhibited tumor growth (TGI = 74.6% at 40 mg/kg) in a melanoma tumor model in mice without causing obvious toxicity. Moreover, 8d exhibited favorable pharmacokinetics [e.g. high stability, reasonable half-life, and good oral bioavailability (F = 21.5%)]. Finally, molecular modeling studies showed that 8d bound to PD-L1 with high affinity. These results suggest that 8d may serve as a starting point for further development of macrocyclic small molecule-based PD-1/PD-L1 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziqing Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiqi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- The Eighth Affiliated Hospital, Sun Yat sen University, Shenzhen 518033, China
| | - Yichang Ren
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|