1
|
Ghariani O, Elleuch J, Ferretti AM, Econdi S, Bisio C, Michaud P, Fendri I, Guidotti M, Abdelkafi S. Toxicological Effects of Silver-Modified Bentonite Nanocomposites on Microalgae: Impact on Cell Growth, Antioxidant Enzymes, and Gene Expression. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:629. [PMID: 40278494 PMCID: PMC12029818 DOI: 10.3390/nano15080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
The increasing use of nanostructured silver-containing inorganic materials raises concerns about their impact on aquatic organisms. This study assessed the toxicity of silver-modified bentonite composites on Chlamydomonas sp. Two materials were tested: silver-exchanged bentonite (Ben-Ag) and its reduced form (Ben-Ag (H2)).Microalgae were exposed to 0.5 IC50, 1.5 IC50, and 2 IC50. Ben-Ag showed higher toxicity than Ben-Ag (H2), which even promoted algal growth at low doses. Fluorescence microscopy revealed morphological shrinkage in treated cells. Increased phenol content, elevated malondialdehyde (MDA) levels, and altered antioxidant enzyme activities further confirmed Ben-Ag toxicity, along with reduced growth and photosynthetic pigments. Transcriptomic analysis revealed significant changes in gene expression under Ben-Ag exposure. Genes involved in photosynthesis (petB, psbL), caspase activity (casp), and carotenoid metabolism (Q2CHY) were down-regulated, indicating stress-induced damage. In contrast, genes encoding stress response enzymes (SOD, peroxidase), carbon metabolism enzymes (rbcL, PGQ1), and β-carotene biosynthesis (Q2BKT) were up-regulated, reflecting cellular defense mechanisms. Overall, the study highlights the high toxicity of Ben-Ag to Chlamydomonas sp., emphasizing the importance of evaluating environmental risks before using such materials in aquatic environments.
Collapse
Affiliation(s)
- Oumayma Ghariani
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Unit, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (O.G.); (J.E.); (S.A.)
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy; (S.E.); (M.G.)
| | - Jihen Elleuch
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Unit, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (O.G.); (J.E.); (S.A.)
| | - Anna Maria Ferretti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via G. Fantoli 16/15, 20138 Milano, Italy;
| | - Stefano Econdi
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy; (S.E.); (M.G.)
| | - Chiara Bisio
- Department of Science and Technological Innovation, DISIT, University of Eastern Piedmont, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Matteo Guidotti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy; (S.E.); (M.G.)
| | - Slim Abdelkafi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Unit, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (O.G.); (J.E.); (S.A.)
| |
Collapse
|
2
|
Khandelwal M, Soni K, Misra KP, Bagaria A, Rathore DS, Pemawat G, Singh R, Khangarot RK. Facile fabrication of a novel chitosan/carboxymethyl cellulose/bentonite/CuO nanocomposite for enhanced photocatalytic and antibacterial applications. RSC Adv 2025; 15:3365-3377. [PMID: 39902111 PMCID: PMC11788891 DOI: 10.1039/d4ra08437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
In this study, an eco-friendly chitosan/carboxymethyl cellulose/bentonite/CuO nanocomposite (CS/CMC/BN/CuO NC) was synthesized utilizing algal-mediated copper oxide nanoparticles (CuO NPs). The resulting hybrid nanocomposite was thoroughly characterized using advanced techniques, including XRD, FTIR, UV-vis, FE-SEM, HR-TEM, and BET analysis. The photocatalytic activity of the hybrid nanocomposite was assessed by the degradation of brilliant cresyl blue (BCB) dye under visible light irradiation, while the antibacterial activity of the hybrid nanocomposite was evaluated against both Gram-positive and Gram-negative bacterial strains. XRD analysis confirmed the successful synthesis of the hybrid nanocomposite (CS/CMC/BN/CuO NC) with a crystallite size of 9.66 nm. The UV-vis analysis and Tauc plot revealed that the hybrid nanocomposite exhibited an absorbance peak at 249 nm and a band gap of 2.81 eV, respectively. FE-SEM and HR-TEM analysis highlighted its unique broken-tile structure. Furthermore, the hybrid nanocomposite exhibited outstanding photocatalytic performance, achieving 98.38% degradation of BCB dye within 60 min under optimal conditions. The scavenging experiments showed that electrons (e-) and superoxide anion radicals (O2˙-) are the major reactive species involved in the degradation of BCB dye. Additionally, it demonstrated remarkable antibacterial efficacy, showing a 40 mm zone of inhibition (ZOI) against the Gram-negative Pseudomonas aeruginosa strain. The findings indicate that the synthesized CS/CMC/BN/CuO NC holds significant promise for the photodegradation of organic dyes. Furthermore, it exhibits strong antibacterial properties, making it a potential disinfectant for treating wastewater contaminated with pathogenic bacteria.
Collapse
Affiliation(s)
- Manisha Khandelwal
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Kanchan Soni
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Kamakhya Prakash Misra
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Ashima Bagaria
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Devendra Singh Rathore
- Department of Environmental Sciences, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Gangotri Pemawat
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-graduate College Bharatpur 321001 Rajasthan India
| | - Rama Kanwar Khangarot
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| |
Collapse
|
3
|
Singh KR, Poluri KM. Facile synthesis and physicochemical characterization of κ-Carrageenan-silver-bentonite based nanocatalytic platform for efficient degradation of anionic azo dyes. ENVIRONMENTAL RESEARCH 2023; 231:116145. [PMID: 37217127 DOI: 10.1016/j.envres.2023.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Water pollution due to textile industry effluents is a global concern that warrants versatile research solutions for degrading them, and for a sustainable environment. In the present work, by using the imperative role of nanotechnology, a facile one-pot synthesis has been devised to generate κ-carrageenan capped silver nanocatalyst (CSNC), and was immobilized on 2D bentonite (BT) sheets to generate nanocatalytic platform (BTCSNC) for the degradation of anionic azo dyes. The nanocomposite(s) were physicochemically characterized using UV-Vis, DLS, TEM, FESEM, PXRD, ATR-FTIR, TGA, BET and XPS etc., to obtain insights into the nanocomposite composition, structure, stability, morphology and mechanism of interaction. The obtained CNSC are monodispersed, spherical with a size of 4 ± 2 nm, and were stabilized by the functional groups (-OH, COO‾, and SO3‾) of κ-Crg. The broadening of peak corresponding to basal plane (001) of BT montmorillonite in PXRD spectra established its exfoliation upon addition of CSNC. XPS and ATR-FTIR data evidenced the absence of covalent interactions between CSNC and BT. The catalytic efficiency of CSNC and BTCSNC composites were compared for the degradation of methyl orange (MO) and congo red (CR). The reaction followed a pseudo first order kinetics, and immobilization of CSNC on BT resulted in a 3-4 fold enhancement in degradation rates. The rates achieved for the degradation kinetics are: MO degradation within 14 s (Ka 9.86 ± 2.00 min-1), and CR degradation within 120 s (Ka of 1.24 ± 0.13 min-1). Further, a degradation mechanism has been proposed by analyzing the products identified through LC-MS. The reusability studies of the BTCSNC evidenced the complete activity of the nanocatalytic platform for six cycles, and gravitational separation method for catalyst recycling. In a nutshell, the current study provided an environmentally friendly, sizable, and sustainable nano catalytic platform" for the remediation of industrial wastewater contaminated with hazardous azo dyes".
Collapse
Affiliation(s)
- Khushboo Rani Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Brzozowska W, Wojtczak I, Railean V, Bekissanova Z, Trykowski G, Buszewski B, Sprynskyy M. Pyrolized Diatomaceous Biomass Doped with Epitaxially Growing Hybrid Ag/TiO 2 Nanoparticles: Synthesis, Characterisation and Antibacterial Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4345. [PMID: 37374528 DOI: 10.3390/ma16124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
In the pursuit of innovative solutions for modern technologies, particularly in the design and production of new micro/nanostructured materials, microorganisms acting as "natural microtechnologists" can serve as a valuable source of inspiration. This research focuses on harnessing the capabilities of unicellular algae (diatoms) to synthesize hybrid composites composed of AgNPs/TiO2NPs/pyrolyzed diatomaceous biomass (AgNPs/TiO2NPs/DBP). The composites were consistently fabricated through metabolic (biosynthesis) doping of diatom cells with titanium, pyrolysis of the doped diatomaceous biomass, and chemical doping of the pyrolyzed biomass with silver. To characterize the synthesized composites, their elemental and mineral composition, structure, morphology, and photoluminescent properties were analysed using techniques such as X-ray diffraction, scanning and transmission electron microscopy, and fluorescence spectroscopy. The study revealed the epitaxial growth of Ag/TiO2 nanoparticles on the surface of pyrolyzed diatom cells. The antimicrobial potential of the synthesized composites was evaluated using the minimum inhibitory concentration (MIC) method against prevalent drug-resistant microorganisms, including Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, both from laboratory cultures and clinical isolates.
Collapse
Affiliation(s)
- Weronika Brzozowska
- Institute of Marine and Environmental Sciences, Doctoral School, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland
| | - Izabela Wojtczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Zhanar Bekissanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
- Center of Physical-Chemical Methods of Research and Analysis, 050012 Almaty, Kazakhstan
| | - Grzegorz Trykowski
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| |
Collapse
|
5
|
Moradi H, Sabbaghi S, Mirbagheri NS, Chen P, Rasouli K, Kamyab H, Chelliapan S. Removal of chloride ion from drinking water using Ag NPs-Modified bentonite: Characterization and optimization of effective parameters by response surface methodology-central composite design. ENVIRONMENTAL RESEARCH 2023; 223:115484. [PMID: 36775091 DOI: 10.1016/j.envres.2023.115484] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The presence of chloride ion as an environmental pollutant is having a devastating and irreversible effect on aquatic and terrestrial ecosystems. To ensure safe and clean drinking water, it is vital to remove this substance using non-toxic and eco-friendly methods. This study presents a novel and highly efficient Ag NPs-modified bentonite adsorbent for removing chloride ion, a common environmental pollutant, from drinking water using a facile approach. The surface chemical properties and morphology of the pristine Na-bentonite and Ag NPs-Modified bentonite were characterized by field emission scanning electron microscopy (FESEM) and X-ray spectroscopy (EDX), X-Ray diffraction (XRD), Fourier transform infrared (FTIR), and zeta potential (ζ). To achieve maximum chloride ion removal, the effects of experimental parameters, including adsorbent dosage (1-9 g/L), chloride ion concentration (100-900 mg/L), and reaction time (5-25 h), were examined using the Response Surface Methodology (RSM). The chloride ion removal of 90% was obtained at optimum conditions (adsorbent dosage: 7 g/L, chloride ion concentration: 500 mg/L, and reaction time: 20 h). The adsorption isotherm and kinetics results indicated that the Langmuir isotherm model and pseudo-second-order kinetics were found suitable to chloride ion removal. Additionally, the regeneration and reusability of the Ag NPs-modified bentonite were further studied. In the regeneration and reusability study, the Ag NPs-modified bentonite has shown consistently ≥90% and ≥87% chloride ion removal even up to 2 repeated cycles, separately. Thus, the findings in this study provided convincing evidence for using Ag-NPs modified bentonite as a high-efficiency and promising adsorbent to remove chloride ion from drinking water.
Collapse
Affiliation(s)
- Hamidreza Moradi
- Department of Nano Chemical Engineering, School of Advanced Technologies, Shiraz University, Shiraz, Iran
| | - Samad Sabbaghi
- Department of Nano Chemical Engineering, School of Advanced Technologies, Shiraz University, Shiraz, Iran; Drilling Nano Fluid Laboratory, Shiraz University, Shiraz, Iran.
| | - Naghmeh Sadat Mirbagheri
- Drilling Nano Fluid Laboratory, Shiraz University, Shiraz, Iran; Nanotechnology Research Institute, Shiraz University, Shiraz, Iran
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Kamal Rasouli
- Drilling Nano Fluid Laboratory, Shiraz University, Shiraz, Iran; Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India; Malaysia-Japan International Institute of Technology Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mahjoore M, Honarmand M, Aryafar A. Plant-based green fabrication of CuO-CdO-bentonite S-scheme heterojunction with enhanced photocatalytic performance for the degradation of levofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44439-44456. [PMID: 36692716 DOI: 10.1007/s11356-023-25277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
In this research, for the first time, CuO and CdO nanoparticles (NPs) were synthesized using Ferula persica and anchored on layered bentonite as a novel S-scheme nano-heterojunction (denoted as CuO-CdO-BT). Ferula persica acted as a naturally-sourced reducing agent and stabilizer for the synthesis of NPs. The performance of CuO-CdO-BT was evaluated for the degradation of levofloxacin from an aqueous solution under sunlight. The characterization results clarified that the bentonite as a support not only reduced the agglomeration of CuO and CdO NPs but also decreased the size of biosynthesized NPs, which increased the active surface of NPs and the photodegardation efficiency. The effect of operational reaction system variables was examined to optimize the photocatalytic capability of CuO-CdO-BT. Under optimum conditions (catalyst dosage = 0.4 g/L, LVF concentration = 10 mg/L and pH = 8), 96.11% of levofloxacin was degraded using CuO-CdO-BT after 30 min with degradation kinetic of 0.108 min-1, which was about 2.4 and 4.2 times higher than those of bare CuO and CdO NPs, respectively. The improvement of the photocatalytic degradation efficiency of CuO-CdO-BT compared to CuO and CdO NPs was due to preventing the recombination of charge carriers in the S-scheme system. The radical quenching experiments ascertained the generation of [Formula: see text]·OH, and [Formula: see text] species in the CuO-CdO-BT system, indicating that ·OH radicals have a more prominent role than [Formula: see text] and [Formula: see text] in the photocatalytic reaction. The six possible levofloxacin pathways of LVF degradation were suggested based on HPLC-MS analysis. Over 88.5% LVF was removed using CuO-CdO-BT after three catalyst reuse cycles, indicating a cost-effectiveness potential of the biosynthesized photocatalyst reusability. Almost complete mineralization of LVF was obtained by the CuO-CdO-BT photocatalyst after 180 min of reaction. Based on findings, the S-scheme mechanism of photo-generated electron-hole pairs transfer in the CuO-CdO-BT system was found. The unique structural features of the new generation of S-scheme heterojunction and green synthesis of NPs using plants provide promising photocatalysts to improve wastewater treatment.
Collapse
Affiliation(s)
- Majid Mahjoore
- Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Moones Honarmand
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran.
| | - Ahmad Aryafar
- Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| |
Collapse
|
7
|
Hossain SI, Kukushkina EA, Izzi M, Sportelli MC, Picca RA, Ditaranto N, Cioffi N. A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:848. [PMID: 36903726 PMCID: PMC10005688 DOI: 10.3390/nano13050848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/10/2023]
Abstract
One of the crucial challenges of our time is to effectively use metal and metal oxide nanoparticles (NPs) as an alternative way to combat drug-resistant infections. Metal and metal oxide NPs such as Ag, Ag2O, Cu, Cu2O, CuO, and ZnO have found their way against antimicrobial resistance. However, they also suffer from several limitations ranging from toxicity issues to resistance mechanisms by complex structures of bacterial communities, so-called biofilms. In this regard, scientists are urgently looking for convenient approaches to develop heterostructure synergistic nanocomposites which could overcome toxicity issues, enhance antimicrobial activity, improve thermal and mechanical stability, and increase shelf life. These nanocomposites provide a controlled release of bioactive substances into the surrounding medium, are cost effective, reproducible, and scalable for real life applications such as food additives, nanoantimicrobial coating in food technology, food preservation, optical limiters, the bio medical field, and wastewater treatment application. Naturally abundant and non-toxic Montmorillonite (MMT) is a novel support to accommodate NPs, due to its negative surface charge and control release of NPs and ions. At the time of this review, around 250 articles have been published focusing on the incorporation of Ag-, Cu-, and ZnO-based NPs into MMT support and thus furthering their introduction into polymer matrix composites dominantly used for antimicrobial application. Therefore, it is highly relevant to report a comprehensive review of Ag-, Cu-, and ZnO-modified MMT. This review provides a comprehensive overview of MMT-based nanoantimicrobials, particularly dealing with preparation methods, materials characterization, and mechanisms of action, antimicrobial activity on different bacterial strains, real life applications, and environmental and toxicity issues.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Ekaterina A. Kukushkina
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Margherita Izzi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | | | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- CSGI (Center for Colloid and Surface Science) c/o, Department of Chemistry, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
8
|
Vanlalhmingmawia C, Tiwari D, Kim DJ. Novel nanocomposite thin film in the efficient removal of antibiotics using visible light: Insights of photocatalytic reactions and stability of thin film in real water implications. ENVIRONMENTAL RESEARCH 2023; 218:115007. [PMID: 36493806 DOI: 10.1016/j.envres.2022.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Novel clay (bentonite) supported Ag0 nanoparticles (NPs) doped TiO2 nanocomposite (Clay/TiO2/Ag0(NPs)) thin film was obtained by using template synthesis method. The nanocomposite material is decorated with cubical Ag0(NPs) and utilised successfully in the photocatalytic degradation of tetracycline (TC) and sulfamethazine (SMZ) from aqueous solutions utilizing visible light and UV-A radiations. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) analyses were used to characterise the nanocomposite materials. Diffusion reflectance spectroscopy (DRS) was utilised to determine the bandgap energies of the materials and also to confirm that Ag0(NPs) was successfully doped with TiO2. The nanocomposite material showed highly efficient photocatalytic activity for the breaking down of TC/SMZ under visible light irradiation by the enhanced electron-hole separation and adsorption of antibiotics at the vicinity of the catalyst. The oxidative degradation of TC/SMZ were shown to be highly dependent on the pH, initial concentration of TC/SMZ, and various co-existing ions. Reusability test of Clay/Ag0(NPs)/TiO2 nanocomposite revealed that the activity did not decline with repeated use. Treatment of TC and SMZ in real water system further enhanced the application potential of the novel catalysts for the treatment of full-scale wastewater polluted with these antibiotics.
Collapse
Affiliation(s)
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl-796004, India.
| | - Dong-Jin Kim
- Department of Environmental Sciences and Biotechnology & Institute of Energy and Environment, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
9
|
Masoumi H, Ghaemi A, Ghanadzadeh Gilani H. Surveying the elimination of hazardous heavy metal from the multi-component systems using various sorbents: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1047-1087. [PMID: 36406597 PMCID: PMC9672201 DOI: 10.1007/s40201-022-00832-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
In this review, several adsorbents were studied for the elimination of heavy metal ions from multi-component wastewaters. These utilized sorbents are mineral materials, microbes, waste materials, and polymers. It was attempted to probe the structure and chemistry characteristics such as surface morphology, main functional groups, participated elements, surface area, and the adsorbent charges by SEM, FTIR, EDX, and BET tests. The uptake efficiency for metal ions, reusability studies, isotherm models, and kinetic relations for recognizing the adsorbent potentials. Besides, the influential factors such as acidity, initial concentration, time, and heat degree were investigated for selecting the optimum operating conditions in each of the adsorbents. According to the results, polymers especially chitosan, have displayed a higher adsorption capacity relative to the other common adsorbents owing to the excellent surface area and more functional groups such as amine, hydroxyl, and carboxyl species. The high surface area generates the possible active sites for trapping the particles, and the more effective functional groups can complex more metal ions from the polluted water. Also, it was observed that the uptake capacity of each metal ion in the multi-component solutions was different because the ionic radii of each metal ion were different, which influence the competition of metal ions for filling the active sites. Finally, the reusability of the polymers was suitable, because they can use several cycles which proves the economic aspect of the polymers as the adsorbent.
Collapse
Affiliation(s)
- Hadiseh Masoumi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 13114-16846 Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 13114-16846 Iran
| | | |
Collapse
|
10
|
Fabrication of Green Synthesized SnO2–ZnO/Bentonite Nanocomposite for Photocatalytic Degradation of Organic Dyes. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Younis AB, Haddad Y, Kosaristanova L, Smerkova K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1860. [PMID: 36205103 DOI: 10.1002/wnan.1860] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
For decades, the antimicrobial applications of nanoparticles (NPs) have attracted the attention of scientists as a strategy for controlling the ever-increasing threat of multidrug-resistant microorganisms. The photo-induced antimicrobial properties of titanium dioxide (TiO2 ) NPs by ultraviolet (UV) light are well known. This review elaborates on the modern methods and antimicrobial mechanisms of TiO2 NPs and their modifications to better understand and utilize their potential in various biomedical applications. Additional compounds can be grafted onto TiO2 nanomaterial, leading to hybrid metallic or non-metallic materials. To improve the antimicrobial properties, many approaches involving TiO2 have been tested. The results of selected studies from the past few years covering the most recent trends in this field are discussed in this review. There is extensive evidence to show that TiO2 NPs can exhibit certain antimicrobial features with disputable roles of UV light. Hence, they are effective in treating bacterial infections, although the majority of these conclusions came from in vitro studies and in the presence of some additional nanomaterials. The methods of evaluation varied depending on the nature of the research while researchers incorporated different techniques, including determining the minimum inhibitory concentration, cell count, and using disk and well diffusion methods, with a noticeable indication that cell count was the most and dominant criterion used to evaluate the antimicrobial activity. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Almotasem Bellah Younis
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
- Central European Institute of Technology Brno University of Technology Brno Czech Republic
| |
Collapse
|
12
|
Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications. ENERGIES 2022. [DOI: 10.3390/en15155607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although they are of significant importance for environmental applications, the industrialization of photocatalytic techniques still faces many difficulties, and the most urgent concern is cost control. Natural minerals possess abundant chemical inertia and cost-efficiency, which is suitable for hybridizing with various effective photocatalysts. The use of natural minerals in photocatalytic systems can not only significantly decrease the pure photocatalyst dosage but can also produce a favorable synergistic effect between photocatalyst and mineral substrate. This review article discusses the current progress regarding the use of various mineral classes in photocatalytic applications. Owing to their unique structures, large surface area, and negatively charged surface, silicate minerals could enhance the adsorption capacity, reduce particle aggregation, and promote photogenerated electron-hole pair separation for hybrid photocatalysts. Moreover, controlling the morphology and structure properties of these materials could have a great influence on their light-harvesting ability and photocatalytic activity. Composed of silica and alumina or magnesia, some silicate minerals possess unique orderly organized porous or layered structures, which are proper templates to modify the photocatalyst framework. The non-silicate minerals (referred to carbonate and carbon-based minerals, sulfate, and sulfide minerals and other special minerals) can function not only as catalyst supports but also as photocatalysts after special modification due to their unique chemical formula and impurities. The dye-sensitized minerals, as another natural mineral application in photocatalysis, are proved to be superior photocatalysts for hydrogen evolution and wastewater treatment. This work aims to provide a complete research overview of the mineral-supported photocatalysts and summarizes the common synergistic effects between different mineral substrates and photocatalysts as well as to inspire more possibilities for natural mineral application in photocatalysis.
Collapse
|
13
|
Zhang H, Lu Y, Zhang Q, Yang F, Hui A, Wang A. Structural evolution of palygorskite-rich clay as the nanocarriers of silver nanoparticles for efficient improving antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Green synthesis of bentonite/cellulose@lead oxide bio-nanocomposite with assistance of Pistacia Atlantica extract for efficient photocatalytic degradation of ciprofloxacin. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Curcumin functionalized TiO2 modified bentonite clay nanostructure for colorimetric Aflatoxin B1 detection in peanut and corn. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Sohini Chakraborty, Mathew MM, Simon R, George N, Vadakkekara A, Mary NL. Antibacterial Activity of Polymer Blend Nanocomposites with the Incorporation of Bentonite and Gold Nanorods. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Shamsi T, Amoozadeh A. Glucose‐assisted preparation of n‐TiO
2
‐P25/Ag: An efficient and robust photocatalyst for enhancing visible‐light photo‐oxidation of benzyl alcohol. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Taiebeh Shamsi
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| |
Collapse
|
18
|
Mucha M, Maršálek R, Bukáčková M, Zelenková G. Interaction among clays and bovine serum albumin. RSC Adv 2020; 10:43927-43939. [PMID: 35517170 PMCID: PMC9058406 DOI: 10.1039/d0ra01430c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022] Open
Abstract
Interactions between bovine serum albumin and various clays including pure clay minerals and bentonite were studied with the aim to describe the interaction process. The adsorption of albumin on the clays is strongly affected by the behavior of clays in the aquatic environment (hydrolysis and release of cations). A sufficient amount of albumin was adsorbed on the acid-activated montmorillonite K10 (0.067 mg mg-1) and on the illite-smectite (0.086 mg mg-1). These clay minerals do not strongly affect the sorption solution parameters such as pH value and content of cations. Practically no adsorption was observed on the bentonite and vermiculite. Bentonite and vermiculite are subject to stronger interactions with water which cause the increase of pH value of the sorption solution and release of cations to the solution and thus they cause conformational changes of albumin, which was confirmed by circular dichroism measurements. Obtained results were confirmed by infrared spectroscopy and thermal analysis as well. Interaction of studied materials with bovine serum albumin causes the reduction of particle size in the case of all studied clays except vermiculite. Albumin probably attacks the clay structure during the adsorption, which causes the decrease of particle size. The presented work contributes to the knowledge about interaction of bovine serum albumin with clays in the field of influence of physico-chemical behaviour of clays in the solution on the interaction with albumin.
Collapse
Affiliation(s)
- Martin Mucha
- Department of Chemistry, Faculty of Science, University of Ostrava 30. dubna 22 70103 Ostrava Czech Republic
| | - Roman Maršálek
- Department of Chemistry, Faculty of Science, University of Ostrava 30. dubna 22 70103 Ostrava Czech Republic
| | - Marta Bukáčková
- Department of Chemistry, Faculty of Science, University of Ostrava 30. dubna 22 70103 Ostrava Czech Republic
| | - Gabriela Zelenková
- Department of Chemistry, Faculty of Science, University of Ostrava 30. dubna 22 70103 Ostrava Czech Republic
| |
Collapse
|
19
|
Jaber M, Mushtaq A, Zhang K, Wu J, Luo D, Yi Z, Iqbal MZ, Kong X. Gram-scale synthesis of splat-shaped Ag-TiO 2 nanocomposites for enhanced antimicrobial properties. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1119-1125. [PMID: 32802714 PMCID: PMC7404300 DOI: 10.3762/bjnano.11.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
The control over contagious diseases caused by pathogenic organisms has become a serious health issue. The extensive usage of antibiotics has led to the development of multidrug-resistant bacterial strains. In this regard, metal-oxide-based antibacterial nanomaterials have received potential research interest due to the efficient prevention of microorganism growth. In this study, splat-shaped Ag-TiO2 nanocomposites (NCs) were synthesized on the gram scale and the enhanced antibacterial properties of TiO2 in the presence of silver were examined. The formation of Ag-TiO2 NCs was analyzed through various characterization techniques. The cell viability experimental results demonstrated that the Ag-TiO2 NCs have good biocompatibility. The antibacterial activity of the prepared Ag-TiO2 NCs was tested against the Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacterial strains. The Ag-TiO2 NCs exhibited promising and superior antibacterial properties compared to TiO2 nanospheres as confirmed by the bacterial growth and inhibition zone. The improvement in the antibacterial activity was attributed to the synergistic effect of the hybrid nature of TiO2 nanoparticles in the presence of Ag.
Collapse
Affiliation(s)
- Mohammad Jaber
- School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Asim Mushtaq
- School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Kebiao Zhang
- School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Jindan Wu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dandan Luo
- School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Zihan Yi
- School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - M Zubair Iqbal
- School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Xiangdong Kong
- School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| |
Collapse
|
20
|
Arora N, Thangavelu K, Karanikolos GN. Bimetallic Nanoparticles for Antimicrobial Applications. Front Chem 2020; 8:412. [PMID: 32671014 PMCID: PMC7326054 DOI: 10.3389/fchem.2020.00412] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
Highly effective antimicrobial agents are needed to control the emergence of new bacterial strains, their increased proliferation capability, and antibacterial resistance that severely impact public health, and several industries including water, food, textiles, and oil and gas. Recently, bimetallic nanoparticles, formed via integration of two different metals, have appeared particularly promising with antibacterial efficiencies surpassing that of monometallic counterparts due to synergistic effects, broad range of physiochemical properties, and diverse mechanisms of action. This work aims to provide a review on developed bimetallic and supported bimetallic systems emphasizing in particular on the relation between synthesis routes, properties, and resulting efficiency. Bimetallic nanostructures on graphene, zeolites, clays, fibers, polymers, as well as non-supported bimetallic nanoparticles are reviewed, their synthesis methods and resulting properties are illustrated, along with their antimicrobial activity and potential against different strains of microbes.
Collapse
Affiliation(s)
- Naman Arora
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kavitha Thangavelu
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Ruiz-Hitzky E, Aranda P, Akkari M, Khaorapapong N, Ogawa M. Photoactive nanoarchitectures based on clays incorporating TiO 2 and ZnO nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1140-1156. [PMID: 31293852 PMCID: PMC6604728 DOI: 10.3762/bjnano.10.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Thought as raw materials clay minerals are often disregarded in the development of advanced materials. However, clays of natural and synthetic origin constitute excellent platforms for developing nanostructured functional materials for numerous applications. They can be easily assembled to diverse types of nanoparticles provided with magnetic, electronic, photoactive or bioactive properties, allowing to overcome drawbacks of other types of substrates in the design of functional nanoarchitectures. Within this scope, clays can be of special relevance in the production of photoactive materials as they offer an advantageous way for the stabilization and immobilization of diverse metal-oxide nanoparticles. The controlled assembly under mild conditions of titanium dioxide and zinc oxide nanoparticles with clay minerals to give diverse clay-semiconductor nanoarchitectures are summarized and critically discussed in this review article. The possibility to use clay minerals as starting components showing different morphologies, such as layered, fibrous, or tubular morphologies, to immobilize these types of nanoparticles mainly plays a role in i) the control of their size and size distribution on the solid surface, ii) the mitigation or suppression of the nanoparticle aggregation, and iii) the hierarchical design for selectivity enhancements in the catalytic transformation and for improved overall reaction efficiency. This article tries also to present new steps towards more sophisticated but efficient and highly selective functional nanoarchitectures incorporating photosensitizer elements for tuning the semiconductor-clay photoactivity.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28027 Madrid, Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28027 Madrid, Spain
| | - Marwa Akkari
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28027 Madrid, Spain
- Laboratory of Nanomaterials and Renewable Energy Systems. Research and Technology Center of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
22
|
Ruirui Liu, Wang J, Zhao Y, Ji Z, Zhang J. One-pot Synthesis of Ag–TiO2–Sepiolite Nanocomposites with Excellent Antibacterial Activity. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419030166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Preparation of AgNPs/saponite nanocomposites without reduction agents and study of its antibacterial activity. Colloids Surf B Biointerfaces 2019; 180:457-465. [PMID: 31100672 DOI: 10.1016/j.colsurfb.2019.04.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 01/21/2023]
Abstract
A simple method for preparing AgNPs/clay nanocomposites using an adsorption process without any reducing agent was developed in which saponite iron-rich clay was both the solid inorganic support and reducing agent. Silver adsorption by ion exchange of silver ions and saponite ferrous ions resulted in simultaneous silver reduction and silver nanoparticle formation. The maximum loading of silver was determined as 48 mg/g (4.8 mass %). Microscopy showed a homogeneous distribution of sphere-like silver nanoparticles which are composed from smaller crystallites in the form of twinned triangular prisms. The silver particle sizes ranged from 1 nm to 50 nm but predominantly between 8 and 10 nm. The optimum pH range for silver immobilization on saponite support was between 4 and 8. Characterization of the clay samples and synthesized AgNPs/saponite nanocomposites was performed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), porosimetry (low temperature nitrogen adsorption-desorption) and zeta potential measurements. The antibacterial activities of raw saponite and AgNPs/saponite nanocomposite samples were tested against clinical relevant Gram-positive Staphylococcus aureus, Staphylococcus epidermidis, and Gram-negative Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis bacteria by the well diffusion method.
Collapse
|
24
|
Novel Removal of Diazinon Pesticide by Adsorption and Photocatalytic Degradation of Visible Light-Driven Fe-TiO2/Bent-Fe Photocatalyst. J CHEM-NY 2019. [DOI: 10.1155/2019/2678927] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the study, Fe was used as a dopant to enhance photocatalytic activity of TiO2. Then, the Fe-doped TiO2 was deposited on bentonite, which was pillared by Fe. The synthesized materials were characterized by SEM, XRD, UV-Vis, BET, and point of zero charge (pHPZC). Then, the synthesized materials were used for diazinon removal under both dark and visible light conditions to investigate adsorption and photocatalytic degradation abilities of the synthesized materials. The maximum diazinon adsorption capacity of the synthesized Fe-TiO2/Bent-Fe was 27.03 mg/g. The obtained results indicated that the Fe-TiO2/Bent-Fe exhibited high photocatalytic degradation activity for removal of diazinon even under visible light. The diazinon removal experiments were also conducted using different photocatalyst dosages, under different pH and light sources to figure the optimal conditions for removal processes. The obtained results indicated that optimal photocatalyst dosage and pH were 0.5 g/L and 4.5, respectively. Finally, the natural light generated from solar could be suitable used for diazinon removal by the synthesized Fe-TiO2/Bent-Fe.
Collapse
|
25
|
An affordable photocatalyst for pharmaceuticals and superior electrocatalyst for methanol oxidation – A dual role by CuWO4 anchored bentonite clay. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
S VK, P RD, E H. In vitro studies to analyze the stability and bioavailability of thymoquinone encapsulated in the developed nanocarrier. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1564672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vignesh Kumar S
- Department of Biotechnology, Anna University, Coimbatore, India
| | - Renuka Devi P
- Department of Biotechnology, Anna University, Coimbatore, India
| | - Hemananthan E
- Department of Biotechnology, Anna University, Coimbatore, India
| |
Collapse
|
27
|
Liang L, Yin J, Bao J, Cong L, Huang W, Lin H, Shi Z. Preparation of Au nanoparticles modified TiO2 nanotube array sensor and its application as chemical oxygen demand sensor. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.01.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Ponomarev VA, Sukhorukova IV, Sheveyko AN, Permyakova ES, Manakhov AM, Ignatov SG, Gloushankova NA, Zhitnyak IY, Lebedev OI, Polčak J, Kozmin AM, Shtansky DV. Antibacterial Performance of TiCaPCON Films Incorporated with Ag, Pt, and Zn: Bactericidal Ions Versus Surface Microgalvanic Interactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24406-24420. [PMID: 29969237 DOI: 10.1021/acsami.8b06671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is very important to prevent bacterial colonization at the early postoperative stages. There are four major strategies and their corresponding types of antibacterial surfaces specifically designed to fight infection: bactericide release, anti-adhesion, pH-sensitive, and contact-killing. Herein, we aimed at determining the antibacterial efficiency of different types of bactericidal ions and revealing the possible contribution of surface microgalvanic effects arising from a potential difference on heterogeneous surfaces. We considered five types of TiCaPCON films, with Ag, Zn, Pt, Ag + Zn, and Pt + Zn nanoparticles (NPs) on their surface. The Ag-modified film demonstrated a pronounced antibacterial effect at a very low Ag ion concentration of 0.11 ppb in physiological solution that was achieved already after 3 h of immersion in Escherichia coli ( E. coli) bacterial culture. The Zn-containing sample also showed a noticeable antibacterial effect against E. coli and Staphylococcus aureus ( S. aureus) strains, wherein the concentration of Zn ions was 2 orders of magnitude higher (15 ppb) compared with the Ag ions. The presence of Ag NPs accelerated the leaching of Zn ion out of the TiCaPCON-Ag-Zn film, but no synergistic effect of the simultaneous presence of the two bactericidal components was observed. After the incubation of the samples with Ag, Zn, and Ag + Zn NPs in E. coli and S. aureus suspensions for 24 and 8 h, respectively, all bacterial cells were completely inactivated. The Pt-containing film showed a very low Pt ion release, and therefore the contribution of this type of ions to the total bactericidal effect could be neglected. The results of the electrochemical studies and Kelvin probe force microscopy indicated that microgalvanic couples were formed between the Pt NPs and the TiCaPCON film, but no noticeable antibacterial effect against either E. coli or S. aureus strains was observed. All ion-modified samples provided good osteoblastic cell attachment, spreading, and proliferation and therefore were concluded to be nontoxic for cells. In addition, the TiCaPCON films with Ag, Pt, and Zn NPs on their surface demonstrated good osteoconductive characteristics.
Collapse
Affiliation(s)
- V A Ponomarev
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - I V Sukhorukova
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - A N Sheveyko
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - E S Permyakova
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - A M Manakhov
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| | - S G Ignatov
- State Research Center for Applied Microbiology and Biotechnology , Obolensk , Moscow Region 142279 , Russia
| | - N A Gloushankova
- N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russia , Kashirskoe shosse 24 , Moscow 115478 , Russia
| | - I Y Zhitnyak
- N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russia , Kashirskoe shosse 24 , Moscow 115478 , Russia
| | - O I Lebedev
- CRISMAT, UMR 6508, CNRS-ENSICAEN , 6Bd Marechal Juin , 14050 Caen , France
| | - J Polčak
- Brno University of Technology , Technicka 2896/2 , 616 69 Brno , Czech Republic
- CEITEC-Brno University of Technology , Technická 3058/10 , 61600 Brno , Czech Republic
| | - A M Kozmin
- National Research University of Electronic Technology "MIET" , Shokin Square 1 , Zelenograd , Moscow Region 124498 , Russia
| | - D V Shtansky
- National University of Science and Technology "MISIS" , Leninsky prospect 4 , Moscow 119049 , Russia
| |
Collapse
|
29
|
Ge P, Hou H, Li S, Huang L, Ji X. Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe 2@C Nanospheres for Ultrastable Sodium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14716-14726. [PMID: 29635915 DOI: 10.1021/acsami.8b01888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sodium-ion batteries (SIBs), as the promising commercial energy system, are restricted by their sluggish kinetics and low sodium-ion storage. Metal selenide possesses good conductivity and capacity but still suffers from the stacked problem and volume expansion. Significantly, CoSe2/C is successfully prepared with the assistance of citric acid as both a chelating agent and carbon precursor, displaying that cobblestone-like nanospheres with the radii (<25 nm) distribute uniformly in the carbon matrix. It is expected that the established Co-O-C bonds enhance the stability of the structure with faster ion shuttling. With the available electrolyte (NaCF3SO3/diethylene glycol dimethyl ether) in a potential window range from 0.5 to 3.0 V, the as-obtained sample shows the ultralong lifespan at 4.5 A g-1, retaining a capacity of 345 mA h g-1 after 10 000 cycles. From the detailed kinetic analysis, it is clear that the surface-controlled electrochemical behavior mainly contributes to the excellent large-current cycling stability and Na storage capacity. The ex situ results support that the crystal and morphological structure remains stable. This work is anticipated to enhance the in-depth understanding of the CoSe2/C anode and supply a facile manner to obtain electrode materials for SIBs.
Collapse
Affiliation(s)
| | - Hongshuai Hou
- Institute of Advanced Electrochemical Energy , Xi'an University of Technology , Xi'an 710048 , China
| | | | | | - Xiaobo Ji
- Institute of Advanced Electrochemical Energy , Xi'an University of Technology , Xi'an 710048 , China
| |
Collapse
|
30
|
M. S, K. B, G. S, M. RP. Ionic liquid-mediated: Enhanced surface morphology of silver/manganese oxide/bentonite nanocomposite for improved biological activities. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|