1
|
Gao X, Li Y, Shen J, Huang Y, Wang Y, Niu X. LC-MS untargeted metabolomics reveals metabolic disturbance and ferroptosis in MWCNTs-induced hepatotoxicity of Cyprinus carpio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107078. [PMID: 39241468 DOI: 10.1016/j.aquatox.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
In recent years, there is a great concern about the potential adverse effects of carbon nanotubes (CNTs) on the aquatic systems due to their increasingly extensive application. In this study, juvenile Cyprinus carpio were exposed to multi-walled CNTs (MWCNTs) at concentrations of 0, 0.25, and 2.5 mg L-1 for 28 days. Then, oxidative stress indicators and metabolite profile of the livers were assessed. Results showed the significant increase of malondialdehyde (MDA) content and decrease of glutathione (GSH) activities in fish treated with 2.5 mg L-1 MWCNTs. LC-MS untargeted metabolomics demonstrated that 406 and 274 metabolites in fish treated with 2.5 mg L-1 MWCNTs were significantly up- and down-regulated, respectively. KEGG functional annotation analysis showed the disturbance of amino acid metabolism, lipid metabolism, and nucleotide metabolism. In addition, ferroptosis signaling pathway was detected. Therefore, iron content analysis and quantitative real-time RT-PCR assay were performed furtherly to validate the contribution of ferroptosis to MWCNTs-induced hepatotoxicity. The iron content increased significantly and the mRNA levels of ferroptosis-related genes including STEAP3, ACSL4, NCOA4, TFR1, NRF2, SLC3A2, SLC7A11, GPX4, and FPN1 were also obviously changed. Taken together, our study suggested that MWCNTs exposure-induced ferroptosis were associated with iron overload and lipid peroxidation via NRF2/SLC7A11/GSH/GPX4 axis. Our findings provide essential information to understand the mechanism of CNTs-induced hepatotoxicity in fish and explore potential biomarkers.
Collapse
Affiliation(s)
- Xiaochan Gao
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Yimin Li
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jiaqi Shen
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yashuai Wang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xuehan Niu
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
2
|
Carneiro KDS, Franchi LP, Rocha TL. Carbon nanotubes and nanofibers seen as emerging threat to fish: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169483. [PMID: 38151128 DOI: 10.1016/j.scitotenv.2023.169483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Since the discovery of the third allotropic carbon form, carbon-based one-dimensional nanomaterials (1D-CNMs) became an attractive and new technology with different applications that range from electronics to biomedical and environmental technologies. Despite their broad application, data on environmental risks remain limited. Fish are widely used in ecotoxicological studies and biomonitoring programs. Thus, the aim of the current study was to summarize and critically analyze the literature focused on investigating the bioaccumulation and ecotoxicological impacts of 1D-CNMs (carbon nanotubes and nanofibers) on different fish species. In total, 93 articles were summarized and analyzed by taking into consideration the following aspects: bioaccumulation, trophic transfer, genotoxicity, mutagenicity, organ-specific toxicity, oxidative stress, neurotoxicity and behavioral changes. Results have evidenced that the analyzed studies were mainly carried out with multi-walled carbon nanotubes, which were followed by single-walled nanotubes and nanofibers. Zebrafish (Danio rerio) was the main fish species used as model system. CNMs' ecotoxicity in fish depends on their physicochemical features, functionalization, experimental design (e.g. exposure time, concentration, exposure type), as well as on fish species and developmental stage. CNMs' action mechanism and toxicity in fish are associated with oxidative stress, genotoxicity, hepatotoxicity and cardiotoxicity. Overall, fish are a suitable model system to assess the ecotoxicity of, and the environmental risk posed by, CNMs.
Collapse
Affiliation(s)
- Karla da Silva Carneiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo Pereira Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Gao X, Ma C, Wang H, Zhang C, Huang Y. Multi-walled carbon nanotube induced liver injuries possibly by promoting endoplasmic reticulum stress in Cyprinus carpio. CHEMOSPHERE 2023; 325:138383. [PMID: 36907489 DOI: 10.1016/j.chemosphere.2023.138383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The mass production and discharge of carbon nanotubes (CNTs) to the water environment are of great concern since they threaten the health of organisms in the aquatic ecosystem. CNTs induce multi-organ injuries in fish, but limited literature is available regarding the mechanisms involved. In the present study, juvenile common carp (Cyprinus carpio) were exposed to multi-walled carbon nanotubes (MWCNTs) (0.25 mg L-1 and 2.5 mg L-1) for four weeks. MWCNTs caused dose-dependent alterations in the pathological morphology of liver tissues. Ultrastructural changes manifested as nuclear deformation, chromatin condensation, endoplasmic reticulum (ER) disorderly arrangement, mitochondria vacuolation, and mitochondrial membrane destruction. TUNEL analysis indicated that the apoptosis rate in hepatocytes markedly increased upon exposure to MWCNTs. Moreover, the apoptosis was confirmed by significant upregulation of mRNA levels of apoptosis-related genes (Bcl-2, XBP1, Bax, and caspase3) in MWCNTs-exposure groups, except for Bcl-2 expression which was not significantly changed in HSC groups (2.5 mg L-1 MWCNTs). Furthermore, real-time PCR assay indicated the increased expression of ER stress (ERS) marker genes (GRP78, PERK, and eIF2α) in the exposure groups compared to the control groups, suggesting that the PERK/eIF2α signaling pathway involved in the injuries of the liver tissue. Overall, the results above indicate that MWCNTs induce ERS by activating the PERK/eIF2α pathway in the liver of common carp, and resulted in the initiation of apoptosis procedure.
Collapse
Affiliation(s)
- Xiaochan Gao
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chaoran Ma
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Hongjun Wang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chunnuan Zhang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yong Huang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
4
|
Boyle D, Clark NJ, Handy RD. Toxicities of copper oxide nanomaterial and copper sulphate in early life stage zebrafish: Effects of pH and intermittent pulse exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:109985. [PMID: 31841893 DOI: 10.1016/j.ecoenv.2019.109985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Effort has been made to standardise regulatory ecotoxicity tests for engineered nanomaterials (ENMs), but the environmental realism of altered water quality and/or pulse exposure to these pollutants should be considered. This study aimed to investigate the relative toxicity to early life-stage zebrafish of CuO ENMs at acid pH and then under pulse exposure conditions, all compared to CuSO4. At all pH values, CuSO4 was more toxic to zebrafish than CuO ENMs. Additions of H+ were protective of CuSO4 toxicity, with median lethal concentrations LC50 (with 95% confidence intervals) of: 0.36 (0.33-0.40), 0.22 (0.20-0.24) and 0.27 (0.25-0.29) mg L-1 at pH 5, pH 6 and pH 7, respectively. In contrast, the toxicity of CuO ENMs increased with acidity; LC50 values were: 6.6 (4.5-8.5), 19.4 (11.6-27.2) and >100 mg L-1 at pH 5, pH 6 and pH 7, respectively. The increased toxicity of the CuO ENMs in acid water corresponded with greater dissolution of dissolved Cu from the particles at low pH, suggesting free Cu2+ ion delivery to the zebrafish was responsible for the pH-effect. In continuous 96 h exposures to the substances at the LC10 values and at pH 6, both CuSO4 and CuO ENMs caused Cu accumulation, inhibition of Na+/K+-ATPase and depletion of total glutathione in zebrafish. However, two 24 h pulses of CuSO4 or CuO ENMs at the same peak concentration caused similar effects to the continuous 96 h exposure, despite the shorter exposure durations of the former; suggesting that the pulses were more hazardous than the continuous exposure. In conclusion, the current water quality correction for pH with respect to Cu toxicity to freshwater fish should not be applied to the nano form. Crucially, CuO ENMs are more toxic in pulse than continuous exposure and new corrections for both water pH and the Cu exposure profile are needed for environmental risk assessment.
Collapse
Affiliation(s)
- David Boyle
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK
| | - Richard D Handy
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
5
|
Tatsi K, Shaw BJ, Hutchinson TH, Handy RD. Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:462-473. [PMID: 30296611 DOI: 10.1016/j.ecoenv.2018.09.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 05/21/2023]
Abstract
Engineered nanomaterials (ENMs) may be functionalised with a surface coating to enhance their properties, but the ecotoxicity of the coatings and how hazard changes with ageing in soil is poorly understood. This study determined the toxic effect of CuO ENMs with different chemical coatings on the earthworm (Eisenia fetida) in fresh soil, and then after one year in aged soil. In both experiments, earthworms were exposed for 14 days to the CuO materials at nominal concentrations of 200 and 1000 mg Cu kg-1 dry weight and compared to CuSO4. In the fresh soil experiment, CuO-COOH was found to be the most acutely toxic of the nanomaterials (survival, 20 ± 50%), with tenfold increase of total Cu in the earthworms compared to controls. Sodium pump activity was reduced in most CuO ENM treatments, although not in the CuSO4 control. There was no evidence of glutathione depletion or the induction of superoxide dismutase (SOD) activity in any treatment. Histology showed a mild hypoplasia of mucous cells in the epidermis with some nanomaterials. In the aged soil, the CuO-NH4+ was the most acutely toxic ENM (survival 45 ± 3%) and Cu accumulation was lower in the earthworms than in the fresh soil study. Depletion of tissue Mn and Zn concentrations were seen in earthworms in aged soil, while no significant effects on sodium pump or total glutathione were observed. Overall, the study showed some coating-dependent differences in ENM toxicity to earthworms which also changed after a year of ageing the soil.
Collapse
Affiliation(s)
- Kristi Tatsi
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Thomas H Hutchinson
- School of Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
6
|
Vassallo J, Besinis A, Boden R, Handy RD. The minimum inhibitory concentration (MIC) assay with Escherichia coli: An early tier in the environmental hazard assessment of nanomaterials? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:633-646. [PMID: 30033160 DOI: 10.1016/j.ecoenv.2018.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
There are now over a thousand nano-containing products on the market and the antibacterial properties of some nanomaterials has created interest in their use as cleaning agents, biocides and disinfectants. Engineered nanomaterials (ENMs) are being released into the environment and this raises concerns about their effects on microbes in the receiving ecosystems. This study evaluated the bacterial toxicity of a wide range of nanomaterials with different surface coatings on Escherichia coli K-12 MG1655. The minimum inhibitory concentration (MIC) assay, which quantifies the threshold for growth inhibition in suspensions of bacteria, was used to rank the toxicity of silver (Ag), cupric oxide (CuO), cadmium telluride (CdTe) quantum dots, titanium dioxide (TiO2), nanodiamonds and multi-walled carbon nanotubes (MWCNTs). Bacteria were exposed for 12 h at 37 °C to a dilution series of the test suspensions in 96-well plates. The precision and accuracy of the method was good with coefficients of variation < 10%. In terms of the measured MIC values, the toxicity order of the ENMs was as follows: CdTe quantum dots ammonium-coated, 6 mg L-1 > Ag nanoparticles, 12 mg L-1 > CdTe quantum dots carboxylate-coated, 25 mg L-1 > CdTe quantum dots polyethylene glycol-coated, 100 mg L-1. The MIC values were above the highest test concentration used (100 mg L-1) for CuO, TiO2, nanodiamonds and MWCNTs, indicating low toxicity. The MIC assay can be a useful tool for the initial steps of ENMs hazard assessment.
Collapse
Affiliation(s)
- J Vassallo
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - A Besinis
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; School of Engineering, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Plymouth University Peninsula Schools of Medicine and Dentistry, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth PL6 8BU, UK
| | - R Boden
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - R D Handy
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
7
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Boyle D, Sutton PA, Handy RD, Henry TB. Intravenous injection of unfunctionalized carbon-based nanomaterials confirms the minimal toxicity observed in aqueous and dietary exposures in juvenile rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:191-199. [PMID: 28941714 DOI: 10.1016/j.envpol.2017.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Numerous ecotoxicology studies of carbon-based nanomaterials (CNMs) have been conducted in fishes; however, different approaches have been used to make CNM dispersions and dose tanks for aqueous exposures, and to prepare food containing CNMs for dietary studies. This diversity of experimental methods has led to conflicting results and difficulties in comparing studies. The objective of the present study was to evaluate intravenous injection of unfunctionalized CNMs in rainbow trout (Oncorhynchus mykiss), as a means of delivering a known internal dose, on tissue biochemistry and histopathological lesions; then, subsequently, to compare the results with our previous work on aqueous and dietary exposures of rainbow trout to CNMs. Rainbow trout were injected in the caudal vein with corn oil dispersions of 200 μg (approximately 1 μg g-1) of either the fullerene C60, single-walled carbon nanotubes (SWCNTs), or amorphous carbon black. After 96 h, injected fish were euthanized and tissue samples collected for biochemistry and histology. Histological examination of the kidney of fish injected intravenously indicated the presence of black material consistent with the injected carbon treatments. However, there were no additional lesions associated with CNM exposure compared to controls. There were also no significant changes in haematology, or ionoregulatory disturbance in blood plasma among the intravenously injected fish. Significant elevation in lipid peroxidation (thiobarbituric acid reactive substances TBARS) was detected only in kidney and spleen of fish injected with SWCNTs, but not the other carbon treatments. The elevated TBARS following injection contrasted with CNMs delivered via aqueous or dietary routes in our previous studies, suggesting that the latter exposure routes may not lead to absorption and toxicity in the internal tissues. Comparison of the effects of injected CNMs with aqueous and dietary CNMs exposures indicates that these materials are of minimal environmentally-relevant toxicity in rainbow trout.
Collapse
Affiliation(s)
- David Boyle
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Paul A Sutton
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Richard D Handy
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Theodore B Henry
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK; School of Life Sciences, Heriot-Watt University, Edinburgh, EH10 5ES, UK; Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, Knoxville, TN, 37996, USA; Department of Forestry, Wildlife and Fisheries, Center for Environmental Biotechnology, 676 Dabney Hall, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Maunder RJ, Baron MG, Owen SF, Jha AN. Investigations to extend viability of a rainbow trout primary gill cell culture. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1314-1326. [PMID: 29127661 DOI: 10.1007/s10646-017-1856-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The primary culture of fish gill cells can provide functional, cell diverse, model in vitro platforms able to tolerate an aqueous exposure analogous to in vivo tissues. The utility of such models could be extended to a variety of longer term exposure scenarios if a method could be established to extend culture viability when exposed to water for longer periods. Here we report findings of a series of experiments to establish increased longevity, as monitored by culture transepithelial electrical resistance (TEER) and concurrent histological developments. Experimental cultures improved TEER during apical freshwater exposure for a mean of twelve days, compared to previous viabilities of up to 3 days. Cultures with larger surface areas and the use of trout serum rather than foetal bovine serum (FBS) contributed to the improvement, while perfusion of the intact gill prior to cell harvest resulted in a significantly faster preparation. Detailed scanning electron microscopy analysis of cultures revealed diverse surface structures that changed with culture age. Cultures grown on membranes with an increased porosity, collagen coating or 3D structure were of no benefit compared to standard membranes. Increased culture longevity, achieved in this study and reported for the first time, is a significant breakthrough and opens up a variety of future experimentation that has previously not been possible. The extended viability facilitates exploration of in vitro chronic or pulse-exposure test paradigms, longer term physiological and environmental monitoring studies and the potential for interactive co-culture with other organoid micro-tissues.
Collapse
Affiliation(s)
- Richard J Maunder
- School of Biological and Marine Sciences, University of Plymouth, Devon, PL4 8AA, UK
| | - Matthew G Baron
- School of Biological and Marine Sciences, University of Plymouth, Devon, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|
10
|
Hanna SK, Cooksey GA, Dong S, Nelson BC, Mao L, Elliott JT, Petersen EJ. Feasibility of using a standardized Caenorhabditis elegans toxicity test to assess nanomaterial toxicity. ENVIRONMENTAL SCIENCE. NANO 2016; 3:10.1039/c6en00105j. [PMID: 39544221 PMCID: PMC11561884 DOI: 10.1039/c6en00105j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Increasing production and use of engineered nanomaterials (ENMs) has generated widespread interest in measuring their environmental and human health effects. However, the lack of standardized methods for these measurements has often led to contradictory results. Our goal in this study was to examine the feasibility of using a standardized Caenorhabditis elegans growth and reproduction based toxicity test designed for use with dissolved chemicals to assess ENM toxicity. Sensitivity testing of seven key experimental factors identified by cause-and-effect analysis revealed that bacterial feed density and plate shaking had significant effects on growth inhibition by a reference toxicant, benzylcetyldimethylammonium chloride (BAC-C16). Bacterial density was inversely proportional to experimental EC50 values, while shaking the plates during the assay caused a substantial decrease in nematode growth and reproduction in control nematodes. Other factors such as bacterial viability, organism maintenance, and media type showed minimal effect on the test method. Using this assay with positively charged polystyrene nanoparticles (PSNPs) revealed that the variability in the PSNP EC50 values was larger compared to those of BAC-C16. Additionally, while media type and bacterial viability did not impact BAC-C16 toxicity, PSNP toxicity differed substantially when these parameters were changed. PSNPs were more toxic in K+ medium and S-basal compared to M9 and feeding nematodes with UV killed E. coli decreased toxicity of PSNPs. Test validity with ENMs and modifications that can be made to adapt the standard C. elegans toxicity assay for use with ENMs are discussed.
Collapse
Affiliation(s)
- S K Hanna
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8311
| | - G A Cooksey
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8311
| | - S Dong
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8311
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - B C Nelson
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8311
| | - L Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - J T Elliott
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8311
| | - E J Petersen
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8311
| |
Collapse
|
11
|
Revel M, Fournier M, Robidoux PY. Single-Walled Carbon Nanotubes Toxicity to the Freshwater Amphipod Hyalella Azteca: Influence of to the Freshwater Amphipod Sediment and Exposure Duration. J Xenobiot 2015; 5:5086. [PMID: 30701037 PMCID: PMC6324486 DOI: 10.4081/xeno.2015.5086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Carbon nanomaterials are present in various industrial applications and therefore their release into the environment including freshwater ecosystem is expected to increase. The aim of the present study was to investigate the influence of several parameters on the toxicity of single-walled carbon nanotubes (SWCNT) to the freshwater amphipod, Hyalella azteca. The effect of period of exposure, sediment presence and possible impurities released during SWCNT preparation on survival and/or growth of such organism was evaluated. We measured a reduction of survival at concentrations ranging from 10 to 40 mg/L after 96-h exposure, while no mortality was observed with the same concentrations and in the presence of artificial sediment after 14 days of exposure. It is possible that SWCNT are adsorbed on the organic matter from the artificial sediment leading to a decrease of SWCNT bioavailability. The survival and growth toxicity tests revealed a stronger effect at 28 days compared to the 14 days of exposure, and full mortality of organisms at 1000 mg/L for both exposure times. The presence of SWCNT in the gut of survived organisms was observed. The present study demonstrates that the interaction with sediment should be considered when carbon nanotubes toxicity through water exposure is investigated.
Collapse
Affiliation(s)
- Messika Revel
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec.,National Research Council Canada, Montreal, Québec, Canada
| | - Michel Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec
| | | |
Collapse
|
12
|
Clar JG, Gustitus SA, Youn S, Silvera Batista CA, Ziegler KJ, Bonzongo JCJ. Unique toxicological behavior from single-wall carbon nanotubes separated via selective adsorption on hydrogels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3913-3921. [PMID: 25710331 DOI: 10.1021/es505925m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past decade, extensive research has been completed on the potential threats of single-wall carbon nanotubes (SWCNTs) to living organisms upon release to aquatic systems. However, these studies have focused primarily on the link between adverse biological effects in exposed test organisms on the length, diameter, and metallic impurity content of SWCNTs. In contrast, few studies have focused on the bioeffects of the different SWCNTs in the as-produced mixture, which contain both metallic (m-SWCNT) and semiconducting (s-SWCNT) species. Using selective adsorption onto hydrogels, high purity m-SWCNT and s-SWCNT fractions were produced and their biological impacts determined in dose-response studies with Pseudokirchneriella subcapitata as test organism. The results show significant differences in the biological responses of P. subcapitata exposed to high purity m- and s-SWCNT fractions. Contrary to the biological response observed using SWCNTs separated by density gradient ultracentrifugation, it is found that the high-pressure CO conversion (HiPco) s-SWCNT fraction separated by selective adsorption causes increased biological impact. These findings suggest that s-SWCNTs are the primary factor driving the adverse biological responses observed from P. subcapitata cells exposed to our as-produced suspensions. Finally, the toxicity of the s-SWCNT fraction is mitigated by increasing the concentration of biocompatible surfactant in the suspensions, likely altering the nature of surfactant coverage along SWCNT sidewalls, thereby reducing potential physical interaction with algal cells. These findings highlight the need to couple sample processing and toxicity response studies.
Collapse
Affiliation(s)
- Justin G Clar
- †Engineering School of Sustainable Infrastructure and Environment, Dept. of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Sarah A Gustitus
- †Engineering School of Sustainable Infrastructure and Environment, Dept. of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Sejin Youn
- †Engineering School of Sustainable Infrastructure and Environment, Dept. of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Carlos A Silvera Batista
- ‡Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kirk J Ziegler
- ‡Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Jean Claude J Bonzongo
- †Engineering School of Sustainable Infrastructure and Environment, Dept. of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
PEGylated carbon nanotubes impair retrieval of contextual fear memory and alter oxidative stress parameters in the rat hippocampus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:104135. [PMID: 25738149 PMCID: PMC4337111 DOI: 10.1155/2015/104135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/17/2022]
Abstract
Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.
Collapse
|
14
|
Ecotoxicology of Nanomaterials in Aquatic Systems. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-099948-7.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
15
|
Saleh NB, Afrooz ARMN, Bisesi JH, Aich N, Plazas-Tuttle J, Sabo-Attwood T. Emergent Properties and Toxicological Considerations for Nanohybrid Materials in Aquatic Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2014; 4:372-407. [PMID: 28344229 PMCID: PMC5304671 DOI: 10.3390/nano4020372] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
Conjugation of multiple nanomaterials has become the focus of recent materials development. This new material class is commonly known as nanohybrids or "horizon nanomaterials". Conjugation of metal/metal oxides with carbonaceous nanomaterials and overcoating or doping of one metal with another have been pursued to enhance material performance and/or incorporate multifunctionality into nano-enabled devices and processes. Nanohybrids are already at use in commercialized energy, electronics and medical products, which warrant immediate attention for their safety evaluation. These conjugated ensembles likely present a new set of physicochemical properties that are unique to their individual component attributes, hence increasing uncertainty in their risk evaluation. Established toxicological testing strategies and enumerated underlying mechanisms will thus need to be re-evaluated for the assessment of these horizon materials. This review will present a critical discussion on the altered physicochemical properties of nanohybrids and analyze the validity of existing nanotoxicology data against these unique properties. The article will also propose strategies to evaluate the conjugate materials' safety to help undertake future toxicological research on the nanohybrid material class.
Collapse
Affiliation(s)
- Navid B. Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; E-Mails: (N.B.S); (A.R.M.N.A.); (N.A.); (J.P.-T.)
| | - A. R. M. Nabiul Afrooz
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; E-Mails: (N.B.S); (A.R.M.N.A.); (N.A.); (J.P.-T.)
| | - Joseph H. Bisesi
- Department of Environmental and Global Health, Center for Human and Environmental Toxicology, University of Florida, Gainesville, FL 32611, USA; E-Mail:
| | - Nirupam Aich
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; E-Mails: (N.B.S); (A.R.M.N.A.); (N.A.); (J.P.-T.)
| | - Jaime Plazas-Tuttle
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; E-Mails: (N.B.S); (A.R.M.N.A.); (N.A.); (J.P.-T.)
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Human and Environmental Toxicology, University of Florida, Gainesville, FL 32611, USA; E-Mail:
| |
Collapse
|