1
|
de Souza Rosa H, Moreno BB, Zanardi-Lamardo E, de Aragão Soares Griz J, Moreira LB, Medeiros ID, Castro ÍB. Cigarette butt leachates induce alterations in gene expression and damage in health status of tropical oysters. MARINE POLLUTION BULLETIN 2025; 215:117858. [PMID: 40120359 DOI: 10.1016/j.marpolbul.2025.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Cigarette butts (CB) are among the most frequent debris in marine litter collected in coastal areas. They are potential sources of chemical contamination by leaching process, posing risks to biota. This study aimed to evaluate the short-term impacts of CB leachates on the oyster Crassostrea brasiliana. The animals were exposed in the laboratory to different leached dilutions and assessed for bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), their general health status by neutral red retention time (NRRT), and variation in expression of genes related to xenobiotic biotransformation. The results showed that CB leachates at very low dilutions impaired the general health status of oysters, with significant reductions in NRRT at 24 h (dilution 0.1 %), and that persisted at 96 h (dilution 0.01 %). Therefore, a single cigarette butt was able to make toxic 250 l of seawater after 24 h release, and 2500 l after 96hs. The gene expression indicated a decrease in gill transcripts (CYP2-like, GSTΩ, and HSP70) of C. brasiliana exposed for 24 h, with no marked trend at 96 h. Despite the low PAHs bioaccumulation, the damages observed in lysosomal membranes followed by the decreased expression of key genes involved in xenobiotic biotransformation, and the protection of protein stability, represent evidence of early effects caused by cigarette residues on marine organisms from tropical environments.
Collapse
Affiliation(s)
- Hytalo de Souza Rosa
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, Brazil
| | | | - Eliete Zanardi-Lamardo
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Júlia de Aragão Soares Griz
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Igor Dias Medeiros
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, Brazil.
| |
Collapse
|
2
|
Sambade IM, Estêvão J, Pampín M, Cruz A, Guévélou E, Blanco A, Câmara F, Gómez‐Garrido J, Cruz F, Bargelloni L, Carboni S, Alioto T, Costas B, Fernández‐Boo S, Martínez P. Signatures of Selection for Resistance/Tolerance to Perkinsus olseni in Grooved Carpet Shell Clam ( Ruditapes decussatus) Using a Population Genomics Approach. Evol Appl 2025; 18:e70106. [PMID: 40365167 PMCID: PMC12070250 DOI: 10.1111/eva.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The grooved carpet shell clam (Ruditapes decussatus) is a bivalve of high commercial value distributed throughout the European coast. Its production has suffered a decline caused by different factors, especially by the parasite Perkinsus olsenii. Improving production of R. decussatus requires genomic resources to ascertain the genetic factors underlying resistance/tolerance to P. olsenii. In this study, the first reference genome of R. decussatus was assembled through long- and short-read sequencing (1677 contigs; 1.386 Mb) and further scaffolded at chromosome level with Hi-C (19 superscaffolds; 95.4% of assembly). Repetitive elements were identified (32%) and masked for annotation of 38,276 coding- and 13,056 non-coding genes. This genome was used as a reference to develop a 2bRAD-Seq 13,438 SNP panel for a genomic screening on six shellfish beds distributed across the Atlantic Ocean and Mediterranean Sea. Beds were selected by perkinsosis prevalence and the infection level was individually evaluated in all the samples. Genetic diversity was significantly higher in the Mediterranean than in the Atlantic region. The main genetic breakage was detected between those regions (FST = 0.224), being the Mediterranean more heterogeneous than the Atlantic. Several loci under divergent selection (394 outliers; 261 genomic windows) were detected across shellfish beds. Samples were also inspected to detect signals of selection for resistance/tolerance to P. olsenii by using infection-level and population-genomics approaches, and 90 common divergent outliers for resistance/tolerance to perkinsosis were identified and used for gene mining. Candidate genes and markers identified provide invaluable information for controlling perkinsosis and for improving production of the grooved carpet shell clam.
Collapse
Affiliation(s)
- Inés M. Sambade
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | - João Estêvão
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
- Aquatic Animal Health (A2S)CIIMAR—University of PortoPortoPortugal
| | - Marina Pampín
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | | | | | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | - Francisco Câmara
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Jessica Gómez‐Garrido
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Fernando Cruz
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | | | | | - Tyler Alioto
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Benjamin Costas
- Aquatic Animal Health (A2S)CIIMAR—University of PortoPortoPortugal
| | | | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| |
Collapse
|
3
|
Liu Y, Wu S, Chen L, Teng X, Shi H, Xue C, Li Z. Metabolic profiles and protein expression responses of Pacific oyster (Crassostrea gigas) to polystyrene microplastic stress. Food Chem 2025; 462:140961. [PMID: 39208724 DOI: 10.1016/j.foodchem.2024.140961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The underlying toxicity mechanisms of microplastics on oysters have rarely been explored. To fill this gap, the present study investigated the metabolic profile and protein expression responses of oysters to microplastic stress through metabolomics and biochemical analyses. Oysters were exposed to microplastics for 21 days, and the results indicated that the microplastics induced oxidative stress, with a significant decrease in SOD activity in the 0.1 mg/L exposure group. Metabolomics revealed that exposure to microplastics disturbed many metabolic pathways, such as amino acid metabolism, lipid metabolism, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, and that different concentrations of microplastics induced diverse metabolomic profiles in oysters. Overall, the current study provides new reference data and insights for assessing food safety and consumer health risks caused by microplastic contamination.
Collapse
Affiliation(s)
- Yu Liu
- School of Food Science and Technology, Hainan University, Hainan 570228, PR China; College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Shuai Wu
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Lipin Chen
- School of Food Science and Technology, Hainan University, Hainan 570228, PR China; College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China.
| | - Xiaoyu Teng
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Haohao Shi
- School of Food Science and Technology, Hainan University, Hainan 570228, PR China; College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
4
|
Prossner KM, Redman AD, Prosser CM, Parkerton TF, Unger MA. Rapid screening of shellfish tainting from oil spills using an antibody-based biosensor. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:270-281. [PMID: 39887280 PMCID: PMC11790208 DOI: 10.1093/etojnl/vgae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 02/01/2025]
Abstract
Tainting of shellfish by polyaromatic hydrocarbons (PAHs) following an oil spill poses possible health risks as well as socioeconomic impacts. Traditional screening approaches for evaluating PAH contamination have limitations that can prevent timely, objective spill response decisions. The objective of this study was to investigate the relationship between PAH concentrations measured in the oyster, Crassostrea virginica, interstitial fluid using a rapid antibody-based biosensor method, with PAH concentrations in oyster tissues determined using conventional gas chromatography-mass spectrometry analysis. To accomplish this objective, bioconcentration tests were performed to simulate oil spill exposures using a crude and heavy fuel oil containing different PAH compositions. This design allowed both the PAH concentration and composition in water and, subsequently, accumulated by oysters to be varied over time. Oysters sampled during uptake and depuration phases were analyzed using biosensor and conventional analysis methods to generate comparative data. Results indicated that biosensor measurements of oysters captured the kinetics of PAH accumulation during uptake and depuration phases. Further, significant positive correlations were observed between biosensor interstitial fluid and lipid-normalized PAH tissue concentrations. However, quantitative predictions appear to be modulated by the contamination source and target analyte list for tissue analysis. Thus, the biosensor can be applied for rapidly evaluating relative PAH contamination between biota samples and offers a promising new analytical tool for oil spill monitoring and fisheries management contexts. A generic model was also developed from study and literature data to predict PAH half-lives from bivalve tissues. These predictions can help inform field monitoring of shellfish and estimate recovery times required to achieve pre-spill conditions.
Collapse
Affiliation(s)
- Kristen M Prossner
- Virginia Institute of Marine Science, Aquatic Health Sciences, William & Mary, Gloucester Point, VA, United States
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, United States
| | | | | | - Michael A Unger
- Virginia Institute of Marine Science, Aquatic Health Sciences, William & Mary, Gloucester Point, VA, United States
| |
Collapse
|
5
|
Brascher TC, de Bortoli L, Toledo-Silva G, Zacchi FL, Razzera G. In silico structural features of the CgNR5A: CgDAX complex and its role in regulating gene expression of CYP target genes in Crassostrea gigas. CHEMOSPHERE 2024; 361:142443. [PMID: 38815811 DOI: 10.1016/j.chemosphere.2024.142443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.
Collapse
Affiliation(s)
- Theo Cardozo Brascher
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Leonardo de Bortoli
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratório de Genômica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
6
|
Geng Q, Zou L, Guo M, Peng J, Li F, Bi Y, Jiang S, Qin H, Tan Z. Insights into the combined toxicity and mechanisms of BDE-47 and PFOA in marine blue mussel: An integrated study at the physiochemical and molecular levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106999. [PMID: 38875954 DOI: 10.1016/j.aquatox.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
The coexistence of multiple emerging contaminants imposes a substantial burden on the ecophysiological functions in organisms. The combined toxicity and underlying mechanism requires in-depth understanding. Here, marine blue mussel (Mytilus galloprovincialis L.) was selected and exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctanoic acid (PFOA) individually and in combination at environmental related concentrations to elucidate differences in stress responses and potential toxicological mechanisms. Characterization and comparison of accumulation, biomarkers, histopathology, transcriptomics and metabolomics were performed. Co-exposure resulted in differential accumulation patterns, exacerbated histopathological alterations, and different responses in oxidative stress and biomarkers for xenobiotic transportation. Moreover, the identified differentially expressed genes (DEGs) and differential metabolites (DEMs) in mussels were found to be annotated to different metabolic pathways. Correlation analyses further indicated that DEGs and DEMs were significantly correlated with the above biomarkers. BDE-47 and PFOA altered the genes and metabolites related to amino acid metabolism, energy and purine metabolism, ABC transporters, and glutathione metabolism to varying degrees, subsequently inducing accumulation differences and combined toxicity. Furthermore, the present work highlighted the pivotal role of Nrf2-keap1 detoxification pathway in the acclimation of M. galloprovincialis to reactive oxygen species (ROS) stress induced by BDE-47 and PFOA. This study enabled more comprehensive understanding of combined toxic mechanism of multi emerging contaminants pollution.
Collapse
Affiliation(s)
- Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Zou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yujie Bi
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shuqi Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hanlin Qin
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Ferreira CP, Moreira RS, Bastolla CLV, Saldaña-Serrano M, Lima D, Gomes CHAM, Bainy ACD, Lüchmann KH. Transcriptomic investigation and biomarker discovery for zinc response in oysters Crassostrea gasar. Mar Genomics 2024; 75:101109. [PMID: 38603950 DOI: 10.1016/j.margen.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 μg L-1 Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 μg L-1, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 μg L-1. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Multicentric PostGraduate Program in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages 88520-000, Brazil
| | - Renato S Moreira
- Federal Institute of Santa Catarina, Gaspar 89111-009, Brazil; Bioinformatic Laboratory, Federal University of Santa Catarina, Florianópolis 88040-970, Brazil
| | - Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
8
|
Nobre CR, Moreno BB, Alves AV, Fontes MK, Campos BGD, Silva LFD, Maranho LA, Duarte LFDA, Abessa DMDS, Choueri RB, Gusso-Choueri PK, Pereira CDS. Microplastics and 17α Ethinylestradiol: How Do Different Aquatic Invertebrates Respond to This Combination of Contaminants? TOXICS 2024; 12:319. [PMID: 38787099 PMCID: PMC11125900 DOI: 10.3390/toxics12050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
The synthetic hormone 17α ethinyl estradiol (EE2) is a molecule widely used in female contraceptives and recognized as a contaminant of attention (Watch List) in the European Union due to its high consumption, endocrine effects and occurrence in aquatic environments. Its main source of introduction is domestic sewage where it can be associated with other contaminants such as microplastics (MPs). Due to their characteristics, they can combine with each other and exacerbate their isolated effects on biota. This study evaluated the combined effects of microplastics (MPs) and 17α ethinylestradiol (EE2) on two tropical estuarine invertebrate species: Crassostrea gasar and Ucides cordatus. Polyethylene particles were spiked with EE2 and organisms were exposed to three treatments, categorized into three groups: control group (C), virgin microplastics (MPs), and spiked microplastics with EE2 (MPEs). All treatments were evaluated after 3 and 7 days of exposure. Oysters exhibited changes in phase 2 enzymes and the antioxidant system, oxidative stress in the gills, and reduced lysosomal membrane stability after exposure to MPs and MPEs. Crabs exposed to MPs and MPEs after seven days showed changes in phase 1 enzymes in the gills and changes in phases 1 and 2 enzymes in the hepatopancreas, such as disturbed cellular health. The combined effects of microplastics and EE2 increased the toxicity experienced by organisms, which may trigger effects at higher levels of biological organization, leading to ecological disturbances in tropical coastal ecosystems.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Mayana Karoline Fontes
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Bruno Galvão de Campos
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Leticia Fernanda da Silva
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Luciane Alves Maranho
- Morphofunctional Laboratory, University of Ribeirão Preto (UNAERP), Avenida Dom Pedro I, 3.300, Guarujá 11440-003, Brazil
| | | | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (UNESP), Litoral Paulista Campus, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente 11330-900, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
| | - Paloma Kachel Gusso-Choueri
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, Santos 11045-907, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Santos Campus (UNIFESP-Santos), Rua Maria Máximo, 168, Santos 11030-100, Brazil
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Rua Oswaldo Cruz, 266, Santos 11045-907, Brazil
| |
Collapse
|
9
|
Lin H, Wei Y, Li S, Mao X, Qin J, Su S, He T. Changes in transcriptome regulations of a marine rotifer Brachionus plicatilis under methylmercury stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101177. [PMID: 38104474 DOI: 10.1016/j.cbd.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg), a heavy metal pollutant worldwide, can be transformed into methylmercury (MeHg) by various aquatic microorganisms in water, thus accumulating along the aquatic food chain and posing a particular challenge to human health. Zooplankton plays a crucial role in aquatic ecosystems and serves as a major component of the food chain. To evaluate the effects of MeHg on the rotifer Brachionus plicatilis and reveal the underlying mechanism of these effects, we exposed B. plicatilis to MeHg by either direct immersion or by feeding with MeHg-poisoned Chlorella pyrenoidesa, respectively, and conducted a transcriptomic analysis. The results showed that B. plicatilis directly exposed to MeHg by immersion showed significant enrichment of the glutathione metabolism pathway for detoxification of MeHg. In addition, the exposure to MeHg by feeding induced a significant enrichment of lysosome and notch signaling pathways of rotifers, supporting the hypothesis that MeHg can induce autophagy dysfunction in cells and disturb the nervous system of rotifers. In two different routes of MeHg exposure, the pathway of cytochrome P450 in rotifers showed significant enrichment for resisting MeHg toxicity. Our results suggest further studies on the potential mechanism and biological responses of MeHg toxicity in other links of the aquatic food chain.
Collapse
Affiliation(s)
- Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Yanlin Wei
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Songzhang Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| | - Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| |
Collapse
|
10
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
11
|
Jafari F, Naeemi AS, Sohani MM, Noorinezhad M. Effect of elevated temperature, sea water acidification, and phenanthrene on the expression of genes involved in the shell and pearl formation of economic pearl oyster (Pinctada radiata). MARINE POLLUTION BULLETIN 2023; 196:115603. [PMID: 37793272 DOI: 10.1016/j.marpolbul.2023.115603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Our study aims to examine the effect of some stressors on the gene expression levels of shell matrix proteins in a pearl oyster. Oysters were exposed to the different combinations of the temperature, pH, and phenanthrene concentration is currently measured in the Persian Gulf and the predicted ocean warming and acidification for 28 days. The expression of all the studied genes was significantly downregulated. Time and temperature had the greatest effects on the decreases in n19 and n16 genes expression, respectively. Aspein and msi60 genes expression were highly influenced by pH. Pearlin was affected by double interaction temperature and phenanthrene. Moreover, a correlation was observed among the expression levels of studied genes. This study represents basic data on the relationship between mRNA transcription genes involved in the shell and pearl formation and climate changes in pollutant presence conditions and acclimatizing mechanism of the oyster to the future scenario as well.
Collapse
Affiliation(s)
- Fatemeh Jafari
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran
| | - Akram Sadat Naeemi
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran.
| | - Mohammad Mehdi Sohani
- University of Guilan, Faculty of Agricultural Sciences, Department of Biotechnology, Rasht, Iran
| | - Mohsen Noorinezhad
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| |
Collapse
|
12
|
Bernardini I, Quagliariello A, Peruzza L, Martino ME, Dalla Rovere G, Iori S, Asnicar D, Ciscato M, Fabrello J, Corami F, Cecchetto M, Giubilato E, Carrer C, Bettiol C, Semenzin E, Marcomini A, Matozzo V, Bargelloni L, Milan M, Patarnello T. Contaminants from dredged sediments alter the transcriptome of Manila clam and induce shifts in microbiota composition. BMC Biol 2023; 21:234. [PMID: 37880625 PMCID: PMC10601118 DOI: 10.1186/s12915-023-01741-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The reuse of dredged sediments in ports and lagoons is a big issue as it should not affect the quality and the equilibrium of ecosystems. In the lagoon of Venice, sediment management is of crucial importance as sediments are often utilized to built-up structures necessary to limit erosion. However, the impact of sediment reuse on organisms inhabiting this delicate area is poorly known. The Manila clam is a filter-feeding species of high economic and ecological value for the Venice lagoon experiencing a drastic decline in the last decades. In order to define the molecular mechanisms behind sediment toxicity, we exposed clams to sediments sampled from different sites within one of the Venice lagoon navigable canals close to the industrial area. Moreover, we investigated the impacts of dredged sediments on clam's microbial communities. RESULTS Concentrations of the trace elements and organic chemicals showed increasing concentrations from the city of Venice to sites close to the industrial area of Porto Marghera, where PCDD/Fs and PCBs concentrations were up to 120 times higher than the southern lagoon. While bioaccumulation of organic contaminants of industrial origin reflected sediments' chemical concentrations, metal bioaccumulation was not consistent with metal concentrations measured in sediments probably due to the activation of ABC transporters. At the transcriptional level, we found a persistent activation of the mTORC1 signalling pathway, which is central in the coordination of cellular responses to chemical stress. Microbiota characterization showed the over-representation of potential opportunistic pathogens following exposure to the most contaminated sediments, leading to host immune response activation. Despite the limited acquisition of new microbial species from sediments, the latter play an important role in shaping Manila clam microbial communities. CONCLUSIONS Sediment management in the Venice lagoon will increase in the next years to maintain and create new canals as well as to allow the operation of the new mobile gates at the three Venice lagoon inlets. Our data reveal important transcriptional and microbial changes of Manila clams after exposure to sediments, therefore reuse of dredged sediments represents a potential risk for the conservation of this species and possibly for other organisms inhabiting the Venice lagoon.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
- Aquatic Bioscience, Huntsman Marine Science Centre, 1 Lower Campus Road, E5B 2L7, St Andrews, New Brunswick, Canada
| | - Maria Ciscato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Fabiana Corami
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
- Institute of Polar Sciences, CNR-ISP, Foscari University of Venice, Campus Scientifico - CaVia Torino, 155, 30172, Venice-Mestre, Italy
| | - Martina Cecchetto
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Claudio Carrer
- Thetis S.P.a. C/o laboratorio del Provveditorato Interregionale Alle Opere Pubbliche Per Il Veneto, Il Trentino Alto Adige E Il Friuli Venezia Giulia, Venice-Mestre, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics, and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice-Mestre, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy.
- NFBC, National Future Biodiversity Center, Palermo, Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Dell'Università 16, Agripolis, 35020, Legnaro, PD, Italy
- NFBC, National Future Biodiversity Center, Palermo, Italy
| |
Collapse
|
13
|
Vilke JM, Moser JR, Ferreira CP, Bebianno MJ, Zacchi FL, Bastolla CLV, Rosa CAVL, Corrêa JN, Jorge MB, Bainy ACD, Lüchmann KH. Field study of metal concentrations and biomarker responses in resident oysters of an estuarine system in southern Brazil. CHEMOSPHERE 2023:139288. [PMID: 37348614 DOI: 10.1016/j.chemosphere.2023.139288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Pollutant exposure is considered an important factor responsible for the decline in marine biodiversity of Latin American coastal ecosystems. This threat has been detected in an estuarine system in southern Brazil, which prompted an investigation into the long-term biological effects of a chronic metal contamination on resident oysters from the Laguna Estuarine System (LES). Here, we present the species- and size-specific variations of biomarker responses (catalase, glucose-6-phosphate dehydrogenase, glutathione S-transferase, and protein carbonylation) in the gills and digestive gland of Crassostrea gigas and Crassostrea gasar. In parallel, concentrations of eight metals (Al, Cd, Cr, Cu, Fe, Mn, Pb, Zn) in soft tissues were measured. Our analyses revealed that the metal levels exhibited decreasing order in both species: Zn > Fe > Al > Cu > Mn > Cd. Except for Cu and Al, metal concentrations did not differ between oyster species. Biomarker results highlighted that C. gasar presented higher antioxidant responses, whereas C. gigas showed increased biotransformation upon exposure to LES pollutants, which varied according to the tissue. However, C. gasar showed a significant higher content of protein carbonylation but was not related to metals. In our research approach, the observation of metals presence and biomarkers-related responses are considered biologically relevant from an ecotoxicological perspective and serve as a baseline for future pollution studies in estuaries of Latin America. Finally, we recommend adopting a suite of biomarkers in both C. gasar and C. gigas, regardless their size and weight, as sentinel organisms in future regional biomonitoring studies in southern Brazil.
Collapse
Affiliation(s)
- Juliano M Vilke
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages, 88520-000, Brazil; Centre for Marine and Environmental Research - CIMA, University of Algarve, Campus de Gambelas, Faro, 8000-139, Portugal
| | - Juliana R Moser
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Clarissa P Ferreira
- Multicenter Program in Postgraduate in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages, 88520-000, Brazil
| | - Maria J Bebianno
- Centre for Marine and Environmental Research - CIMA, University of Algarve, Campus de Gambelas, Faro, 8000-139, Portugal
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Carlos A V L Rosa
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Jacyara N Corrêa
- Laboratory of Ecotoxicology - LABECOTOX, Federal University of Maranhão, São Luís, 65080-805, Brazil
| | - Marianna B Jorge
- Laboratory of Ecotoxicology - LABECOTOX, Federal University of Maranhão, São Luís, 65080-805, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, 88035-001, Brazil.
| |
Collapse
|
14
|
Martyniuk V, Khoma V, Matskiv T, Yunko K, Gnatyshyna L, Stoliar O, Faggio C. Combined effect of microplastic, salinomycin and heating on Unio tumidus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104068. [PMID: 36680920 DOI: 10.1016/j.etap.2023.104068] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) and heating (T) suspected to modulate biological effects of aquatic contaminants. Salinomycin (Sal) is veterinary antibiotic and anticancer agent. The goal of this study was to examine the multistress effect of MP, Sal and T on the bioindicator bivalve mollusc. The Unio tumidus were treated with MP (1 mg L-1), Sal (0.6 µg L-1), their combination under 18° C (Mix) and 25° C (MixT) for 14 days. The digestive glands were analyzed. MP and Sal did not cause changes of Mn- and Cu,Zn-SOD, lipid peroxidation and Cyp-450-depended EROD levels, whereas catalase, GST and protein carbonyls (Sal-group) increased compared to control. In the Mix-group, enzymes, particularly EROD and GST (by 34% and 115% respectively) were up-regulated. However, in the MixT-group, they were corresponding to control or lesser (EROD, catalase). Our findings emphasize the need to take into account multistress interactions in the MP environmental risk assessment.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 S Agata -Messina, Italy.
| |
Collapse
|
15
|
Roznere I, An V, Robinson T, Banda JA, Watters GT. Contaminants of emerging concern in the Maumee River and their effects on freshwater mussel physiology. PLoS One 2023; 18:e0280382. [PMID: 36724160 PMCID: PMC9891515 DOI: 10.1371/journal.pone.0280382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/26/2022] [Indexed: 02/02/2023] Open
Abstract
Contaminants of emerging concern pose a serious hazard to aquatic wildlife, especially freshwater mussels. The growing number of contaminants in aquatic systems requires scientists and managers to prioritize contaminants that are most likely to elicit a biological response for further monitoring and toxicological testing. The objectives of this study were to identify a sub-category of contaminants most likely to affect Pyganodon grandis and to describe alterations in metabolites and gene expression between various sites. Mussels were deployed in cages for two weeks at four sites along the Maumee River Basin, Ohio, USA. Water samples were analyzed for the presence of 220 contaminants. Hemolymph samples were collected for metabolomics and analyzed using mass spectrometry. Contaminants that significantly covaried with metabolites were identified using partial least-squares (PLS) regression. Tissue samples were collected for transcriptomics, RNA was sequenced using an Illumina HiSeq 2500, and differential expression analysis was performed on assembled transcripts. Of the 220 targeted contaminants, 69 were detected in at least one water sample. Of the 186 metabolites detected in mussel hemolymph, 43 showed significant differences between the four sites. The PLS model identified 44 contaminants that significantly covaried with changes in metabolites. A total of 296 transcripts were differentially expressed between two or more sites, 107 received BLAST hits, and 52 were annotated and assigned to one or more Gene Ontology domains. Our analyses reveal the contaminants that significantly covaried with changes in metabolites and are most likely to negatively impact freshwater mussel health and contribute to ongoing population declines in this group of highly endangered animals. Our integration of "omics" technologies provides a broad and in-depth assessment of the short-term effects of contaminants on organismal physiology. Our findings highlight which contaminants are most likely to be causing these changes and should be prioritized for more extensive toxicological testing.
Collapse
Affiliation(s)
- Ieva Roznere
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
- Faculty of Biology, University of Latvia, Riga, Latvia
- * E-mail:
| | - Viktoriya An
- Department of Mathematics and Statistics, University of Wyoming, Laramie, Wyoming, United States of America
| | - Timothy Robinson
- Department of Mathematics and Statistics, University of Wyoming, Laramie, Wyoming, United States of America
| | - Jo Ann Banda
- U.S. Fish and Wildlife Service, Gloucester, Virginia, United States of America
| | - G. Thomas Watters
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
16
|
Dai W, Holmstrup M, Slotsbo S, Bakker R, Damgaard C, van Gestel CAM. Heat stress delays detoxification of phenanthrene in the springtail Folsomia candida. CHEMOSPHERE 2023; 311:137119. [PMID: 36334742 DOI: 10.1016/j.chemosphere.2022.137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Climate change has intensified the occurrence of heat waves, resulting in organisms being exposed to thermal and chemical stress at the same time. The effects of mild heat shock combined with sublethal concentrations of phenanthrene (PHE) on defense mechanisms in springtails Folsomia candida were investigated. The transcription of Heat Shock Protein 70 (HSP70) was significantly upregulated by heat shock but tended to reach the control levels after 42 h of recovery. The transcription of cytochrome P450 3A13 (CYP3A13) was upregulated 3-13 fold by PHE but suppressed by heat shock. The suppression by heat shock might contribute to the reduced detoxification of PHE during high-temperature exposure. In line with this, we found that the internal PHE concentration was approximately 70% higher in heat-shocked springtails than in animals kept at control temperature. In general, the transcription of genes encoding enzymes of detoxification phase Ⅱ (glutathione S-transferase 3) and phase Ⅲ (ABC transporter 1) and the activity of antioxidant defense enzymes (superoxide dismutase and catalase) were less influenced than genes encoding phase I detoxification mechanisms (CYP3A13). These results indicate that heat shock delays the detoxification of PHE in springtails.
Collapse
Affiliation(s)
- Wencai Dai
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark.
| | - Martin Holmstrup
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark
| | - Stine Slotsbo
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark
| | - Ruben Bakker
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Christian Damgaard
- Section of Terrestrial Ecology, Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4-6, 8000, Aarhus, Denmark
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Martins Dos Reis IM, Mattos JJ, Siebert MN, Zacchi FL, Velasquez Bastolla CL, Saldaña-Serrano M, Bícego MC, Taniguchi S, Araujo de Miranda Gomes CH, Rodrigues de Melo CM, Dias Bainy AC. Gender influences molecular and histological biomarkers in mature oysters Crassostrea gasar (Adanson, 1757) after pyrene exposure. CHEMOSPHERE 2023; 311:136985. [PMID: 36306960 DOI: 10.1016/j.chemosphere.2022.136985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Oysters are frequently used as sentinel organisms for monitoring effects of contaminants due to their sessile, filtering habits and bioaccumulation capacity. These animals can show elevated body burden of contaminants, such as pyrene (PYR). PYR can be toxic at a molecular level until the whole oyster, which can show reproductive and behavioral changes. Considering that biologic parameters, such as gender or reproductive stage can interfere in the toxic effects elicited by contaminants uptake, the aim of this study was to evaluate some molecular and histological responses in females and males of oyster Crassostrea gasar exposed to PYR (0.25 and 0.5 μM) for 24 h at the pre-spawning stage. PYR concentrations were analyzed in water and in tissues of female and male oysters. Gene transcripts related to biotransformation (CYP3475C, CYP2-like, CYP2AU1, CYP356A, GSTO-like, GSTM-like, SULT-like), stress (HSP70), and reproduction (Vitellogenin, Glycoprotein) were quantified in gills. In addition, histological analysis and histo-localization of CYP2AU1 mRNA transcripts in gills, mantle and digestive diverticulum were carried out. Females and males in pre-spawning stage bioconcentrated PYR in their tissues. Males were more sensitive to PYR exposure. CYP2AU1 transcripts were higher in males (p < 0.05), as well as tubular atrophy was observed only in males exposed to PYR (p < 0.05). As expected, vitellogenin transcripts were lower in males (p < 0.05). Given these results, it is suggested that levels of CYP2AU1 be a good biomarker of exposure to PYR in oyster C. gasar and that it is important to consider the gender for the interpretation of biomarker responses.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAq, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Federal Institute of Education Science and Technology of Santa Catarina - IFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo - USP, São Paulo, SP, Brazil
| | | | - Claudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusk, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Bastolla CLV, Saldaña-Serrano M, Lima D, Mattos JJ, Gomes CHAM, Cella H, Righetti BPH, Ferreira CP, Zacchi FL, Bícego MC, Taniguchi S, Bainy ACD. Molecular changes in oysters Crassostrea gigas (Thunberg, 1793) from aquaculture areas of Santa Catarina Island bays (Florianópolis, Brazil) reveal anthropogenic effects. CHEMOSPHERE 2022; 307:135735. [PMID: 35868530 DOI: 10.1016/j.chemosphere.2022.135735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities in coastal regions cause risks to the environmental and human health. Due to the carcinogenic and mutagenic potential, polycyclic aromatic hydrocarbons (PAH) are considered priority for monitoring. Most of the Brazilian production of Crassostrea gigas oysters are placed in the Bays of Santa Catarina Island. The aim of this study was to evaluate molecular responses (phase I and II of biotransformation and antioxidant defense) of C. gigas from six oyster farming areas potentially contaminated by sanitary sewage in Florianópolis Metropolitan (SC, Brazil): Santo Antônio de Lisboa, Sambaqui, Serraria, Caieira, Tapera, Imaruim. We evaluated the transcript levels of CYP1A1-like, CYP2-like, CYP2AU2-like, CYP356A1, GSTA1A-like, GSTO.4A-like, SULT-like, SOD-like and CAT-like by qRT-PCR. Only oysters from Caieira showed levels of thermotolerant coliforms allowed by the law. Chemicals analyses in soft tissues of oysters showed low to average levels of PAH in all monitored areas. Enhanced transcript levels of phase I (CYP1A1-like, CYP3564A1-like, CYP2-like and CYP2AU2-like) were observed in oysters from Serraria and Imaruí, suggesting higher biotransformation activity in these farming areas. Regarding phase II of biotransformation, GSTO.4A-like was up-regulated in oysters from Imaruí compared to Caieira and Santo Antônio de Lisboa. An upregulation of SOD-like and CAT-like were observed in oysters from Imaruí and Serraria, suggesting that oysters from these sites are facing higher prooxidant conditions compared to other areas. By integrating the biological and chemical data it is suggested that human-derived contaminants are affecting the oyster metabolism in some farming areas.
Collapse
Affiliation(s)
- Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center, NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Herculano Cella
- Laboratory of Algae Cultivation, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
19
|
Ferreira CP, Moreira RS, Toledo-Silva G, Schroeder DC, Bainy ACD, Lüchmann KH. Analysis of Crassostrea gasar transcriptome reveals candidate genes involved in metal metabolism. CHEMOSPHERE 2022; 307:136009. [PMID: 35977572 DOI: 10.1016/j.chemosphere.2022.136009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Oysters have been extensively employed for monitoring of metal pollution in dynamic aquatic ecosystems. Therefore, the use of specific biomarkers can assist in discriminating the ecotoxicological implications of different elements in such complex environments. In this study, we revisited the sequencing data of gills and digestive glands transcripts in the mangrove oyster Crassostrea gasar and generated a reference transcriptome assembly from multiple assemblers, seven in total. Overall, we were able to identify a total of 11,917 transcripts, with 86.6% of them being functionally annotated and 1.4 times more than the first annotation. We screened the annotated transcripts to identify genes potentially involved in metals' transport, storage, and detoxification. Our findings included genes related to Zn distribution in cells (Zn transporters - ZIP, ZnT), metallothionein (MT-I and MT-IV), GSH biosynthesis, Ca+ transporter (NCX and ATP2B), and Cu distribution in cells (ATP7, ATOX1, CCS, and laccase-like). These results provided a reference transcriptome for additional insights into the transcriptional profile of C. gasar and other bivalves to better understand the molecular pathways underpinning metal tolerance and susceptibility. The study also provided an auxiliary tool for biomonitoring metal contamination in dynamic environments as estuaries.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Multicentric Graduate Program in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages, 88520-000, Brazil
| | - Renato S Moreira
- Federal Institute of Santa Catarina - IFSC, Lages, 88506-400, Brazil
| | - Guilherme Toledo-Silva
- Genomics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA; School of Biological Sciences, University of Reading, Reading, UK
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, 88035-001, Brazil.
| |
Collapse
|
20
|
Sun M, Hu F, Wang T, Zhang T, Jing Y, Guo W, Chen Q, Liu G. Effect of temperature on the toxicokinetics and gene expression of the pacific cupped oyster Crassostrea gigas exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109252. [PMID: 34968742 DOI: 10.1016/j.cbpc.2021.109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
Abstract
In this study, we investigated the influence of temperature on the bioaccumulation and depuration of Crassostrea gigas exposed to Cd associated with its molecular responses. Oysters were acclimatized to different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 30 °C) for 14 d and then exposed to 10 μg/L Cd for 28 d, followed by a depuration period of 35 d. Oysters were sampled for chemical analysis by inductively coupled plasma mass spectrometry (ICP-MS) and for mRNA quantification by qPCR. In the digestive gland, gill, and mantle, the cadmium concentration at 10 °C was significantly lower than that at 25 °C and 30 °C in both the whole experiments. The use of a two-compartment model showed that the uptake rate k1 in the above three tissues increased with increasing temperatures ranging from 15 to 25 °C. The fastest elimination rates and shortest half-lives were observed at 15-25 °C. The induction of metallothionein (MT) only occurred in the digestive gland at 15 °C and 20 °C at the end of the accumulation phase. In the mantle and gills, the expression of P-glycoprotein (P-gp) was significantly induced at the end of the accumulation phase and significantly inhibited at the end of the depuration phase. In the digestive gland, the expression of P-gp was induced at the end of both the accumulation and depuration phases. Heat shock protein (hsp70) expression exhibited an overall increasing trend throughout the experiment.
Collapse
Affiliation(s)
- Ming Sun
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Fanguang Hu
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Tianming Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Tianwen Zhang
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Yuanyuan Jing
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Wen Guo
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Qun Chen
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China
| | - Guangbin Liu
- Marine Science Institute of Shandong Province, Qingdao 266104, PR China.
| |
Collapse
|
21
|
Tian J, Li Y, Fu H, Ren L, He Y, Zhai S, Yang B, Li Q, Liu N, Liu S. Physiological role of CYP17A1-like in cadmium detoxification and its transcriptional regulation in the Pacific oyster, Crassostrea gigas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149039. [PMID: 34328900 DOI: 10.1016/j.scitotenv.2021.149039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most harmful heavy metals due to its persistence and bioaccumulation through the food chains, posing health risks to human. Oysters can bioaccumulate and tolerate high concentrations of Cd, providing a great model for studying molecular mechanism of Cd detoxification. In a previous study, we identified two CYP genes, CYP17A1-like and CYP2C50, that were potentially involved in Cd detoxification in the Pacific oyster, Crassostrea gigas. In this work, we performed further investigations on their physiological roles in Cd detoxification through RNA interference (RNAi). After injection of double-stranded RNA (dsRNA) into the adductor muscle of oysters followed by Cd exposure for 7 days, we observed that the expressions of CYP17A1-like and CYP2C50 in interference group were significantly suppressed on day 3 compared with control group injected with PBS. Moreover, the mortality rate and Cd content in the CYP17A1-like dsRNA interference group (dsCYP17A1-like) was significantly higher than those of the control on day 3. Furthermore, the activities of antioxidant enzymes, including SOD, CAT, GST, were significantly increased in dsCYP17A1-like group, while were not changed in dsCYP2C50 group. More significant tissue damage was observed in gill and digestive gland of oysters in RNAi group than control group, demonstrating the critical role of CYP17A1-like in Cd detoxification. Dual luciferase reporter assay revealed three core regulatory elements of MTF-1 within promoter region of CYP17A1-like, suggesting the potential transcriptional regulation of CYP17A1-like by MTF-1 in oysters. This work demonstrated a critical role of CYP17A1-like in Cd detoxification in C. gigas and provided a new perspective toward unravelling detoxification mechanisms of bivalves under heavy metal stress.
Collapse
Affiliation(s)
- Jing Tian
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yongjing Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Yameng He
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shangyu Zhai
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
Yang Z, Sun F, Liao H, Zhang Z, Dou Z, Xing Q, Hu J, Huang X, Bao Z. Genome-wide association study reveals genetic variations associated with ocean acidification resilience in Yesso scallop Patinopecten yessoensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105963. [PMID: 34547702 DOI: 10.1016/j.aquatox.2021.105963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA), which refers to a gradual decrease in seawater pH due to the absorption of atmospheric carbon dioxide, profoundly affects the growth, development and survival of bivalves. Relatively limited studies have assessed the resilience of bivalve to OA. In the present study, Patinopecten yessoensis, an economically and ecologically significant species, were exposed to low pH (pH = 7.5) for 4 weeks. Forty-seven scallops that died in the first week were considered pH-sensitive population, and 20 that were alive at the end of the experiment were considered pH-tolerant population. A genome-wide association study was conducted to identify the genomic loci associated the resilience of P. yessoensis to OA. Twenty-one single nucleotide polymorphisms were significantly associated with resilience, which were distributed in 11 linkage groups. Within the linkage disequilibrium block region (± 300 kb) surrounding the 21 SNPs, 193 candidate genes were successfully identified. Particularly, five associated SNPs were directly located on five genes, including SP24, CFDH, 5HTR3, HSDL1 and ZFP346. The GO enrichment and KEGG pathway analyses showed that the molecular response of P. yessoensis to OA mainly involved neural signal transmission, energy metabolism and redox reaction. Candidate genes were expressed during larval development and in adult tissues. Furthermore, the expression of 30 candidate genes changed significantly under low pH stress in the mantle. Our results reveal certain SNPs and candidate genes that could elucidate the different responses of P. yessoensis to OA. The genetic variations indicated molecular resilience in P. yessoensis populations, which may enable adaptation to future acidification stress.
Collapse
Affiliation(s)
- Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanhua Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, China
| | - Zhengrui Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zheng Dou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| |
Collapse
|
23
|
Park JC, Lee JS. Genome-wide identification of heat shock proteins in harpacticoid, cyclopoid, and calanoid copepods: Potential application in marine ecotoxicology. MARINE POLLUTION BULLETIN 2021; 169:112545. [PMID: 34111604 DOI: 10.1016/j.marpolbul.2021.112545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Constant evolution of omics-technologies has provided access to identification of various important gene families. Recently, genome assemblies on widely used ecotoxicological model species, including rotifers and copepods have been completed and representative detoxification-related gene families have been discovered for biomarker genes. However, despite ubiquitous presence of stress-response proteins, limited information on full genome-wide report on heat shock proteins (Hsps) is available. Various studies have demonstrated multiple cellular functions of Hsps in living organisms as an important biomarker in response to abiotic and biotic stressors, however, full genome-wide identification of Hsps, particularly in aquatic invertebrates, has not been reported. This is the first study to report the entire Hsps and basal gene expression levels in three regional-specific copepods: Tigriopus japonicus and kingsejongensis, Paracyclopina nana, and Eurytemora affnis, and how each Hsp family gene is regulated at a basal level.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
24
|
Jiang W, Fang J, Du M, Gao Y, Fang J, Jiang Z. Integrated transcriptomics and metabolomics analyses reveal benzo[a]pyrene enhances the toxicity of mercury to the Manila clam, Ruditapes philippinarum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112038. [PMID: 33636467 DOI: 10.1016/j.ecoenv.2021.112038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg2+) and benzo[a]pyrene (BaP) are ubiquitous and persistent pollutants with multiple toxicities in bivalve molluscs. Here, the toxicological responses in the gills of Manila clams, Ruditapes philippinarum, to Hg2+ (10 μg L-1), BaP (3 μg L-1), and their mixture were analysed using transcriptomics and metabolomics approaches. Comparisons of the transcriptomes and metabolomes of Hg2+-and/or BaP-treated clams with control animals revealed the involvement of the detoxification metabolism, immune defence, energy-related pathways, and osmotic regulation in the stress response of R. philippinarum. Exposure to Hg2+ alone primarily enhanced the detoxification and energy metabolic pathways by significantly increasing the expression of genes associated with heat-shock proteins and oxidative phosphorylation. However, co-exposure to Hg2+ and BaP caused greater immunotoxicity and disrupted detoxification metabolism, the TCA cycle, glycolysis, and ATP generation. The expression levels of cytochrome P450 1A1 (CYP1A1), multidrug resistance-associated protein 1 (MRP1), and myosin (MYO), and the activity of electron transport system (ETS) in gills were detected, supporting the underlying toxic mechanisms of Hg2+ and BaP. We suggest that the presence of BaP enhances the toxicity of Hg2+ by 1) hampering the detoxification of Hg2+, 2) increasing the immunotoxicity of Hg2+, and 3) constraining energy availability for clams.
Collapse
Affiliation(s)
- Weiwei Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jinghui Fang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Meirong Du
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yaping Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianguang Fang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Zengjie Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
25
|
Ferreira CP, Piazza TB, Souza P, Lima D, Mattos JJ, Saldaña-Serrano M, Piazza RS, Jorge MB, Bianchini A, Taniguchi S, Sasaki ST, Montone RC, Bícego MC, Bainy ACD, Lüchmann KH. Integrated biomarker responses in oysters Crassostrea gasar as an approach for assessing aquatic pollution of a Brazilian estuary. MARINE ENVIRONMENTAL RESEARCH 2021; 165:105252. [PMID: 33465683 DOI: 10.1016/j.marenvres.2021.105252] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The Laguna Estuarine System (LES), southern Brazil, suffers impacts from anthropogenic activities, releasing contaminants into the ecosystem. This study evaluated changes in biochemical and molecular biomarkers and contaminants concentrations in oysters Crassostrea gasar transplanted and kept for 1.5 and 7 days at three potentially contaminated sites (S1, S2, and S3) at LES. Metals varied spatiotemporally; S1 exhibited higher Ag and Pb concentrations, whereas Cd was present in S3. S2 was a transition site, impacted by Ag, Pb, or Cd, depending on the period. Organic contaminants concentrations were higher before transplantation, resulting in the downregulation of biotransformation genes transcripts levels. Phase II-related genes transcripts and metals showed positive correlations. Decreased levels of HSP90-like transcripts and antioxidant enzymes activity were related to increased pollutant loads. Integrated biomarker response index (IBR) analysis showed S1 and S3 as the most impacted sites after 1.5 and 7 days, respectively. Regardless of the scenario, LES contaminants pose a significant threat to aquatic biota.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Thiago B Piazza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Patrick Souza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Rômi S Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Marianna B Jorge
- Laboratory of Ecotoxicology - LABECOTOX, Federal University of Maranhão, São Luís, 65080-805, Brazil
| | - Adalto Bianchini
- Institute of Biological Sciences - ICB, Federal University of Rio Grande, Rio Grande, 96203-900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, Brazil; Institute of Humanities, Arts and Sciences, Formation Center in Environmental Science, Federal University of Southern Bahia, Porto Seguro, 45810-000, Brazil
| | - Rosalinda C Montone
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo, 05508-120, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, 88035-001, Brazil.
| |
Collapse
|
26
|
Thongbuakaew T, Suwansa-Ard S, Chaiyamoon A, Cummins SF, Sobhon P. Sex steroids and steroidogenesis-related genes in the sea cucumber, Holothuria scabra and their potential role in gonad maturation. Sci Rep 2021; 11:2194. [PMID: 33500499 PMCID: PMC7838161 DOI: 10.1038/s41598-021-81917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
The sea cucumber Holothuria scabra is an economically valuable marine species which is distributed throughout the Asia-Pacific region. With the natural population declining due to over fishing, aquaculture of this species is deemed necessary. Hence, it is essential to understand the mechanisms regulating the reproduction in order to increase their populations. Sex steroids, including estrogens, androgens and progestogens, play an important role in reproduction in most vertebrates and several invertebrates. It has been proposed that sea cucumbers have the same sex steroids as vertebrates but the steroidogenic pathway in the sea cucumbers is still unclear. In this study, we demonstrated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) that sex steroids (estradiol, progesterone, and testosterone) were present in H. scabra neural and gonadal tissues. In silico searches of available sea cucumber transcriptome data identified 26 steroidogenesis-related genes. Comparative analysis of encoded proteins for the steroidogenic acute regulatory protein (HscStAR), CYP P450 10, 17 and 3A (HscCYP10, HscCYP17, HscCYP3A) and hydroxysteroid dehydrogenases (Hsc3β-HSD, Hsc17β-HSD) with other species was performed to confirm their evolutionary conservation. Gene expression analyses revealed widespread tissue expression. Real-time PCR analysis revealed that HscStAR, HscCYP10, Hsc3β-HSD, and Hsc17β-HSD gene expressions were similar to those in ovaries and testes, which increased during the gonad maturation. HscCYP17 mRNA was increased during ovarian development and its expression declined at late stages in females but continued high level in males. The expression of the HscCYP3A was high at the early stages of ovarian development, but not at other later stages in ovaries, however it remained low in testes. Moreover, a role for steroids in reproduction was confirmed following the effect of sex steroids on vitellogenin (Vtg) expression in ovary explant culture, showing upregulation of Vtg level. Collectively, this study has confirmed the existence of steroids in an echinoderm, as well as characterizing key genes associated with the steroidogenic pathway. We propose that sex steroids might also be associated with the reproduction of H. scabra, and the identification of biosynthetic genes enables future functional studies to be performed.
Collapse
Affiliation(s)
| | - Saowaros Suwansa-Ard
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Scott F Cummins
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
27
|
Liu Q, Yang C, He J, Meng X, Cao L, Liu B. Depuration cadmium on physiological status and biological response of Chlamys farreri using the combination of ZnSO4, EDTA-Na2 and sodium citrate. CHEMOSPHERE 2021; 263:127802. [PMID: 33297000 DOI: 10.1016/j.chemosphere.2020.127802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
Effective removal of cadmium (Cd) from Chlamys farreri by introducing ZnSO4, EDTA-Na2, and sodium citrate into seawater has previously been reported. However, some mechanisms underlying this removal are not clear. To address this lack of clarity, the present study aimed to investigate the changes of Cd forms in Chlamys farreri from treatment of these additives and analyze the physiological and biochemical responses by comparing the changes over treatment time in Catalase (CAT), Superoxide dismutase (SOD), and Glutathione s-transferase (GST) activity, as well as Malonaldehyde (MDA) concentration and glycogen level. Three forms of Cd, including protein -Cd, liberated Cd, and amino acid/peptide -Cd, were found, and they were sorted according to their Cd content into the following groups: protein -Cd > liberated Cd > amino acid/peptide-Cd. The removal rates of the three forms of Cd were 43.2%, 59.5%, and 59.0%, respectively, using ZnSO4 and EDTA-Na2. Additionally, a significant increase in Zn content was observed, which may suggest that reduction of bound Cd was partly due to the displacement of Cd by Zn. Moreover, Cd depuration using the additives can mitigate oxidative stress only in the first 12 h. Glycogen content continued to reduce over time, inferring that the healthy status of Chlamys farreri under treatment of the additives containing Zn can only be maintained within 12 h for excreting Cd when linking these physiological responses with the ability of the additives to remove Cd only in a short time, i.e. 12 h. The results indicated that Cd should be removed from Chlamys farreri for practical reasons.
Collapse
Affiliation(s)
- Qingkang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chao Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jing He
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
28
|
Ye Q, Huang JH, Li M, Li HY, Liu JS, Lu S, Yang WD. Responses of cytochrome P450, GST and MXR in the mussel Perna viridis to the exposure of Aureococcus anophagefferens. MARINE POLLUTION BULLETIN 2020; 161:111806. [PMID: 33126142 DOI: 10.1016/j.marpolbul.2020.111806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The brown tide formed by a microscopic alga called Aureococcus anophagefferens has a devastating effect on filter-feeding bivalves, however, the related toxic principle remains an open question. In this study, we found that A. anophagefferens cells could motivate detoxification associated genes including CYP450, GST, P-gp and MVP, and induce SOD activity in the mussel Perna viridis. D1-like and D2-like receptors were expressed at high level in the gills of P. viridis, however, D2-like receptor transcript was too low to detect in digestive gland. The exposure of A. anophagefferens did not lead to any significant alterations in the expression of D1-like and D2-like receptors in both gills and digestive gland. These findings suggested that A. anophagefferens exhibited cytotoxicity toward bivalves, but did not obviously disrupt the dopamine system at transcriptional level in the acute exposure. Further studies are warranted to explore the nature of toxic compounds in A. anophagefferens affected bivalves.
Collapse
Affiliation(s)
- Qian Ye
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Jia-Hui Huang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Meng Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Songhui Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Ramsøe A, Clark MS, Sleight VA. Gene network analyses support subfunctionalization hypothesis for duplicated hsp70 genes in the Antarctic clam. Cell Stress Chaperones 2020; 25:1111-1116. [PMID: 32436134 PMCID: PMC7591643 DOI: 10.1007/s12192-020-01118-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/01/2022] Open
Abstract
A computationally predicted gene regulatory network (GRN), generated from mantle-specific gene expression profiles in the Antarctic clam Laternula elliptica, was interrogated to test the regulation and interaction of duplicated inducible hsp70 paralogues. hsp70A and hsp70B were identified in the GRN with each paralogue falling into unique submodules that were linked together by a single shared second neighbour. Annotations associated with the clusters in each submodule suggested that hsp70A primarily shares regulatory relationships with genes encoding ribosomal proteins, where it may have a role in protecting the ribosome under stress. hsp70B, on the other hand, interacted with a suite of genes involved in signalling pathways, including four transcription factors, cellular response to stress and the cytoskeleton. Given the contrasting submodules and associated annotations of the two hsp70 paralogues, the GRN analysis suggests that each gene is carrying out additional separate functions, as well as being involved in the traditional chaperone heat stress response, and therefore supports the hypothesis that subfunctionalization has occurred after gene duplication. The GRN was specifically produced from experiments investigating biomineralization; however, this study shows the utility of such data for investigating multiple questions concerning gene duplications, interactions and putative functions in a non-model species.
Collapse
Affiliation(s)
- Abigail Ramsøe
- BioArCh, Department of Archaeology, University of York, York, YO1 7EP, UK
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Victoria A Sleight
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
30
|
Gardon T, Morvan L, Huvet A, Quillien V, Soyez C, Le Moullac G, Le Luyer J. Microplastics induce dose-specific transcriptomic disruptions in energy metabolism and immunity of the pearl oyster Pinctada margaritifera. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115180. [PMID: 32673975 DOI: 10.1016/j.envpol.2020.115180] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 μm) at 0.25, 2.5, and 25 μg L-1, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.
Collapse
Affiliation(s)
- Tony Gardon
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Lucie Morvan
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Virgile Quillien
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France; Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Claude Soyez
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Gilles Le Moullac
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Jérémy Le Luyer
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France.
| |
Collapse
|
31
|
Dos Reis IMM, Siebert MN, Zacchi FL, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Melo CMRD, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gigas (Thunberg, 1789) elicited by pyrene and fluorene: Molecular, biochemical and histological approach - Part II. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105565. [PMID: 32682195 DOI: 10.1016/j.aquatox.2020.105565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Pyrene (PYR) and fluorene (FLU) are among the sixteen priority Polycyclic Aromatic Hydrocarbons (PAH) of the United States Environmental Protection Agency and are both frequently detected in contaminated sites. Due to the importance of bivalve mollusks in biomonitoring programs and the scarce information on the biotransformation system in these organisms, the aim of this study was to investigate the effect of PYR and FLU at the transcriptional level and the enzymatic activities of some biotransformation systems in the Pacific oyster Crassostrea gigas, and to evaluate the histological effects in their soft tissues. Oysters C. gigas were exposed for 24 h and 96 h to PYR (0.25 and 0.5 μM) and FLU (0.6 and 1.2 μM). After exposure, transcript levels of cytochrome P450 coding genes (CYP1-like, CYP2-like, CYP2AU2, CYP356A1, CYP17α-like), glutathione S tranferase genes (omega GSTO-like and microsomal, MGST-like) and sulfotransferase gene (SULT-like), and the activity of ethoxyresorufin O-deethylase (EROD), Glutathione S-transferase (GST) and microssomal GST (MGST) were evaluated in gills. Histologic changes were also evaluated after the exposure period. PYR and FLU bioconcentrated in oyster soft tissues. The half-life time of PYR in water was lower than fluorene, which is in accordance to the higher lipophilicity and bioconcentration of the former. EROD activity was below the limit of detection in all oysters exposed for 96 h to PYR and FLU. The reproductive stage of the oysters exposed to PYR was post-spawn. Exposure to PYR caused tubular atrophy in digestive diverticula, but had no effect on transcript levels of biotransformation genes. However, the organisms exposed for 96 h to PYR 0.5 μM showed higher MGST activity, suggesting a protective role against oxidative stress in gills of oysters under higher levels of PYR in the tissues. Increased number of mucous cells in mantle were observed in oysters exposed to the higher FLU concentration, suggesting a defense mechanisms. Oysters exposed for 24 h to FLU 1.2 μM were in the ripe stage of gonadal development and showed higher transcript levels of CYP2AU2, GSTO-like and SULT-like genes, suggesting a role in the FLU biotransformation. In addition, after 96 h of exposure to FLU there was a significant increase of mucous cells in the mantle of oysters but no effect was observed on the EROD, total GST and MGST activities. These results suggest that PAH have different effects on transcript levels of biotransformation genes and enzyme activities, however these differences could also be related to the reproductive stage.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Cláudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
32
|
Nobre CR, Moreno BB, Alves AV, de Lima Rosa J, da Rosa Franco H, Abessa DMDS, Maranho LA, Choueri RB, Gusso-Choueri PK, Pereira CDS. Effects of Microplastics Associated with Triclosan on the Oyster Crassostrea brasiliana: An Integrated Biomarker Approach. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:101-110. [PMID: 32279094 DOI: 10.1007/s00244-020-00729-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, microplastics (MPs) may serve as a vector between triclosan and aquatic organisms. The current study sought to evaluate the effects of the interaction between microplastics and triclosan based on a mechanistic approach in which the oyster Crassostrea brasiliana was used as a model. The organisms were exposed to three conditions: the control, microplastic (MP), and microplastic contaminated with triclosan (MPT). The organisms were exposed for 3 or 7 days. After the exposure time, hemolymph was sampled for performing the neutral red retention time assay and, subsequently, the gills, digestive glands, and adductor muscles were dissected for measuring biomarkers responses (EROD, DBF, GST, GPx, GSH, lipid peroxidation, DNA strand breaks, and AChE). Our results demonstrate combined effects of MPs associated with triclosan on oyster physiology and biochemistry, as well as on lysosomal membrane stability. These results contribute to understanding the effects of contaminants of emerging concern and microplastics on aquatic organisms.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University, São Vicente, São Paulo, Brazil
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Jonas de Lima Rosa
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil
| | | | | | | | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Biosciences Institute, São Paulo State University, São Vicente, São Paulo, Brazil
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil.
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil.
| |
Collapse
|
33
|
Ferreira CP, Lima D, Souza P, Piazza TB, Zacchi FL, Mattos JJ, Jorge MB, Almeida EA, Bianchini A, Taniguchi S, Sasaki ST, Montone RC, Bícego MC, Bainy ACD, Lüchmann KH. Short-term spatiotemporal biomarker changes in oysters transplanted to an anthropized estuary in Southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136042. [PMID: 31905594 DOI: 10.1016/j.scitotenv.2019.136042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Estuarine ecosystems are increasingly being affected by pollution caused by anthropogenic activities. In this study, Crassostrea gasar oysters were transplanted and maintained for seven days at three sites (S1, S2, and S3) in the Laguna Estuarine System (LES)-situated in southern Brazil-that has been exposed to multiple anthropic stresses. On the basis of the concentrations of metal and organic pollutants in oysters, we identified marked spatial variations in pollutant levels, with S3 showing the highest concentration of Ag, Fe, Ni, Zn, and total polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and linear alkylbenzenes (LABs), followed by S2 and S1. Along with the concentrations of pollutants, a set of biomarkers was analyzed. Oysters maintained at S3 showed enhanced protective defenses in gills, as observed by the increased levels of superoxide dismutase (SOD-like) and heat shock protein 90 (HSP90-like) transcripts and catalase (CAT) activity, concomitant with reduced lipid peroxidation (MDA) levels. Decreased antioxidant activities together with increased MDA levels are indicative of the digestive gland being more susceptible to pollutant-induced oxidative damage. Oysters transplanted into LES showed lower levels of cytochrome P450 transcripts (CYP356A1-like and CYP2AU1), and decreased glutathione S-transferase (GST) enzyme activity, suggesting lower biotransformation capacity. By integrating information regarding the concentration of metal and organic pollutants with that of molecular as well as biochemical biomarkers, our study provides novel insights into pollutant exposure and the potential biological impacts of such exposure on estuarine organisms in southern Brazil.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Patrick Souza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Thiago B Piazza
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Flávia L Zacchi
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Marianna B Jorge
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Adalto Bianchini
- Institute of Marine Science - ICMar, University of Rio Grande do Sul, Rio Grande 96203-900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Silvio T Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil; Institute of Humanities, Arts and Sciences, Formation Center in Environmental Science, Federal University of Southern Bahia, Porto Seguro 45810-000, Brazil
| | - Rosalinda C Montone
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
34
|
Zacchi FL, Dos Reis IMM, Siebert MN, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gasar (Adanson, 1757) elicited by pyrene and fluorene: molecular, biochemical and histological approach - Part I. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105318. [PMID: 31590133 DOI: 10.1016/j.aquatox.2019.105318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the main contaminants in aquatic environments. PAHs can affect organisms due to their carcinogenic, mutagenic and/or teratogenic characteristics. Depending on the PAHs, concentration, and period of exposure, biological damage can occur leading to histopathologic alterations. This study aimed to evaluate the molecular, biochemical and histological responses of the oyster Crassostrea gasar exposed to pyrene (0.25 and 0.5 μM) and fluorene (0.6 and 1.2 μM), after exposure for 24 and 96 h. Concentrations of both PAHs were quantified in the water and in oyster tissues. Transcript levels of phase I (CYP3475C1, CYP2-like, CYP2AU1 and CYP356A) and phase II (GSTO-like, MGST-like and SULT-like) biotransformation-related genes and the activities of ethoxyresorufin-O-deethylase (EROD), total and microsomal glutathione S-transferase (GST and MGST) were evaluated in the gills. Also, histological changes and localization of mRNA transcripts CYP2AU1 in gills, mantle, and digestive diverticula were evaluated. Both PAHs accumulated in oyster tissues. Pyrene half-life in water was significantly lower than fluorene. Transcript levels of all genes were higher in oysters exposed to of pyrene 0.5 μM (24 h). Only CYP2AU1 gene was up-regulated by fluorene exposure. EROD and MGST activities were higher in oysters exposed to pyrene. Tubular atrophy in the digestive diverticula and an increased number of mucous cells in the mantle were observed in oysters exposed to pyrene. CYP2AU1 transcripts were observed in different tissues of pyrene-exposed oysters. A significant correlation was observed between tubular atrophy and the CYP2AU1 hybridization signal in oysters exposed to pyrene, suggesting the sensibility of the species to this PAH. These results suggest an important role of biotransformation-related genes and enzymes and tissue alterations associated to pyrene metabolism but not fluorene. In addition, it reinforces the role of CYP2AU1 gene in the biotransformation process of PAHs in the gills of C. gasar.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
35
|
Ferreira CP, Lima D, Paiva R, Vilke JM, Mattos JJ, Almeida EA, Grott SC, Alves TC, Corrêa JN, Jorge MB, Uczay M, Vogel CIG, Gomes CHAM, Bainy ACD, Lüchmann KH. Metal bioaccumulation, oxidative stress and antioxidant responses in oysters Crassostrea gasar transplanted to an estuary in southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:332-344. [PMID: 31176220 DOI: 10.1016/j.scitotenv.2019.05.384] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
The present study assessed the spatial and temporal variations on metal bioaccumulation and biochemical biomarker responses in oysters Crassostrea gasar transplanted to two different sites (S1 and S2) at the Laguna Estuarine System (LES), southern Brazil, over a 45-days period. A multi-biomarker approach was used, including the evaluation of lipid peroxidation (MDA) levels, and antioxidant defense enzymes (CAT, GPx, GR and G6PDH) and phase II biotransformation enzyme (GST) in the gills and digestive gland of oysters in combination with the quantification of Al, Cd, Cu, Pb, Fe, Ni and Zn in both tissues. The exposed oysters bioaccumulated metals, especially Al, Cd and Zn in gills and digestive gland, with most prominent biomarker responses in the gills. Results showed that GPx, GR and G6PDH enzymes offered an increased and coordinated response possibly against metal (Zn, Ni, Cd and Cu) contamination in gills. GST was inversely correlated to Cd levels, being its activity significantly lowered over the 45-d exposure periods at S2. On contrary, in digestive gland GST was slightly positively correlated to Cd, revealing a compensatory mechanism between tissues to protect oysters' cells against oxidative damages, since MDA levels also decreased. CAT also appeared to be involved in the cellular protection against oxidative stress, being increased in gills. However, CAT was negatively correlated to Al levels, which might suggest a possible inhibitory effect of this metal in the gills of C. gasar. Differences between tissues were evident by the Integrative Biomarker Responses version 2 (IBRv2) indexes, which showed different pattern between tissues when studying the sites and exposure periods separately. This study provided evidence for the effectiveness of using a multi-biomarker approach in oyster C. gasar to monitor estuarine metal pollution.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Raphaella Paiva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Juliano M Vilke
- Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Suelen C Grott
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Thiago C Alves
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Jacyara N Corrêa
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Marianna B Jorge
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Mariana Uczay
- Animal and Food Production Department, Santa Catarina State University, Lages 88520-000, Brazil
| | - Carla I G Vogel
- Animal and Food Production Department, Santa Catarina State University, Lages 88520-000, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
36
|
Lima D, Mattos JJ, Piazza RS, Righetti BPH, Monteiro JS, Grott SC, Alves TC, Taniguchi S, Bícego MC, de Almeida EA, Bebianno MJ, Medeiros ID, Bainy ACD. Stress responses in Crassostrea gasar exposed to combined effects of acute pH changes and phenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:585-593. [PMID: 31078849 DOI: 10.1016/j.scitotenv.2019.04.450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Ocean acidification is a result of the decrease in the pH of marine water, caused mainly by the increase in CO2 released in the atmosphere and its consequent dissolution in seawater. These changes can be dramatic for marine organisms especially for oysters Crassostrea gasar if other stressors such as xenobiotics are present. The effect of pH changes (6.5, 7.0 and 8.2) was assessed on the transcript levels of biotransformation [cytochromes P450 (CYP2AU1, CYP2-like2) and glutathione S-transferase (GSTΩ-like)] and antioxidant [superoxide dismutase (SOD-like), catalase (CAT-like) and glutathione peroxidase (GPx-like)] genes, as well as enzyme activities [superoxide dismutase, (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferases transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH)] and lipid peroxidation (MDA) in the gills of Crassostrea gasar exposed to 100 μg·L-1 of phenanthrene (PHE) for 24 and 96 h. Likewise, the PHE burdens was evaluated in whole soft tissues of exposed oysters. The accumulation of PHE in oysters was independent of pH. However, acidification promoted a significant decrease in the transcript levels of some protective genes (24 h exposure: CYP2AU1 and GSTΩ-like; 96 h exposure: CAT-like and GPx-like), which was not observed in the presence of PHE. Activities of GST, CAT and SOD enzymes increased in the oysters exposed to PHE at the control pH (8.2), but at a lower pH values, this activation was suppressed, and no changes were observed in the G6PDH activity and MDA levels. Biotransformation genes showed better responses after 24 h, and antioxidant-coding genes after 96 h, along with the activities of antioxidant enzymes (SOD, CAT), probably because biotransformation of PHE increases the generation of reactive oxygen species. The lack of change in MDA levels suggests that antioxidant modulation efficiently prevented oxidative stress. The effect of pH on the responses to PHE exposure should be taken into account before using these and any other genes as potential molecular biomarkers for PHE exposure.
Collapse
Affiliation(s)
- Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Rômi S Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Bárbara Pacheco Harrison Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jhonatas S Monteiro
- Marine Biotechnology Laboratory, Marine Sciences Institute, Federal University of São Paulo (IMar-UNIFESP), Santos 11070-100, Brazil
| | - Suelen Cristina Grott
- Center of Aquatic Toxicology Studies, Department of Natural Sciences, University of Blumenau, Blumenau, SC, Brazil
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Eduardo Alves de Almeida
- Center of Aquatic Toxicology Studies, Department of Natural Sciences, University of Blumenau, Blumenau, SC, Brazil
| | - Maria J Bebianno
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil; CIMA, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Igor D Medeiros
- Marine Biotechnology Laboratory, Marine Sciences Institute, Federal University of São Paulo (IMar-UNIFESP), Santos 11070-100, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
37
|
Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:750-757. [PMID: 30933772 DOI: 10.1016/j.envpol.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | - Orson Mestanza
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Juan Pablo Isaza
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
38
|
Fernandes FA, Dutra BK, Mosele F, Araujo ASR, Ferreira GD, Belló-Klein A, Kucharski LC, Vinagre AS, Da Silva RSM. Redox and metabolic strategies developed by anterior and posterior gills of the crab Neohelice granulata after short periods of hypo- or hyper-osmotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:457-464. [PMID: 29800839 DOI: 10.1016/j.scitotenv.2018.05.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to identify the response pattern of redox balance, Na+/K+ATPase activity and HSP70 expression in the posterior and anterior gills of the crab Neohelice granulata submitted to hypo- or hyper-osmotic stress for 1 h and 6 h. After 1 h of either type of osmotic stress, there was an increase in catalase activity, but a decrease in GSSG/GSH ratio (oxidized to reduced glutathione ratio) and Na+/K+ATPase activity in both gill sets. H2O2 levels decreased only in the posterior gills. H2O2 levels and Na+/K+ATPase activity remained reduced after 6 h of exposure to either type of osmotic stress in both gill sets. The GSSG/GSH ratio returned to initial levels after 6 h of hyper-osmotic stress, whereas it increased 10 times in both gill sets after hypo-osmotic stress. Furthermore, HSP70 protein expression increased in posterior gills after 6 h of hypo-osmotic stress. H2O2 levels in tank water decreased after hypo-osmotic challenge and increased after 6 h of hyper-osmotic stress, indicating increased H2O2 excretion. Therefore, N. granulata gills have redox, metabolic and molecular strategies to deal with rapid osmotic challenges, an important environmental parameter that influences juvenile and adult crab distribution and abundance within different populations.
Collapse
Affiliation(s)
- F A Fernandes
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil; Laboratório de Ictiologia, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha - Campus São Vicente do Sul (IFFAR), Brazil
| | - B K Dutra
- Laboratório de Ictiologia, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha - Campus São Vicente do Sul (IFFAR), Brazil
| | - F Mosele
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, ICBS, UFRGS, Brazil
| | - A S R Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, ICBS, UFRGS, Brazil
| | - G D Ferreira
- Departamento de Fisiologia, Federal University of Pelotas (UFPEL), Brazil
| | - A Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, ICBS, UFRGS, Brazil
| | - L C Kucharski
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil
| | - A S Vinagre
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil.
| | - R S M Da Silva
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil
| |
Collapse
|
39
|
Zacchi FL, Flores-Nunes F, Mattos JJ, Lima D, Lüchmann KH, Sasaki ST, Bícego MC, Taniguchi S, Montone RC, de Almeida EA, Bainy ACD. Biochemical and molecular responses in oysters Crassostrea brasiliana collected from estuarine aquaculture areas in Southern Brazil. MARINE POLLUTION BULLETIN 2018; 135:110-118. [PMID: 30301007 DOI: 10.1016/j.marpolbul.2018.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Biochemical and molecular responses were evaluated in oysters Crassostrea brasiliana collected from three oyster farms, at Guaratuba Bay, southern Brazil, forming a pollutant gradient: Farm 1 (reference site - farther from the urban area), Farm 2 (intermediate site) and Farm 3 (nearest to the urban area). Oxidative stress markers, DNA damage and transcript levels of CYP2AU1, CYP2-like1, CYP2-like2, SULT-like, GPx-like, SOD-like, CAT-like, GSTmicrosomal-like, GSTomega-like, FABP-like and ALAd-like genes were analyzed in the gills. The levels of polycyclic aromatic hydrocarbons, linear alkylbenzenes and polychlorinated biphenyls were also evaluated in the soft tissues of the oysters and in the sediment of the Farms. Higher GSTomega-like, CYP2AU1 and FABP-like transcript levels, GR and G6PDH activities and lipid peroxidation levels were observed in oysters from Farms 2 and 3, suggesting pollutant effects on oysters. Alterations in oxidative stress markers also suggest a response against a prooxidant condition in C. brasiliana due to pollutant effects.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim Hahn Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Rosalinda Carmela Montone
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil.
| |
Collapse
|
40
|
Lima D, Zacchi FL, Mattos JJ, Flores-Nunes F, Gomes CHADM, de Mello ÁCP, Siebert MN, Piazza CE, Taniguchi S, Sasaki ST, Bícego MC, Bebianno MJ, de Almeida EA, Bainy ACD. Molecular and cellular effects of temperature in oysters Crassostrea brasiliana exposed to phenanthrene. CHEMOSPHERE 2018; 209:307-318. [PMID: 29933167 DOI: 10.1016/j.chemosphere.2018.06.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Exposure of aquatic organisms to polycyclic aromatic hydrocarbons (PAH), such as phenanthrene (PHE), may increase the production of reactive oxygen species (ROS) and cause changes in the biotransformation systems. In addition, changes in water temperature can cause adverse effects in the organisms. Estuarine species, like the oyster Crassostrea brasiliana, can adapt and tolerate temperature variation. To evaluate the influence of temperature on biological responses of C. brasiliana exposed to PHE, oysters were maintained at three temperatures (18, 24 and 32 °C) for 15 days and co-exposed afterwards to 100 μg.L-1 of PHE for 24 and 96 h. Levels of PHE in the water and oyster tissues were determined, respectively after 24 and 96 h. In addition, thermal stress, biotransformation and oxidative stress-related genes were analyzed in oyster gills, together with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferases (GST) and levels of lipid peroxidation. Oyster accumulated significant levels of PHE. HSP70-like transcripts were affected by PHE exposure only at 32 °C. Transcript levels of cytochrome P450 isoforms (CYP2-like2 and CYP2AU1) were down-regulated in oysters exposed to PHE for 24 h at 32 °C. GSTΩ-like transcript levels were also down-regulated in the PHE-exposed group at 32 °C. After 96 h, CYP2-like2 transcripts were higher in the PHE exposed groups at 32 °C. Oysters kept at 18 °C showed higher levels of SOD-like transcripts, together with higher GST, GPx and G6PDH activities, associated to lower levels of lipoperoxidation. In general the biological responses evaluated were more affected by temperature, than by co-exposure to PHE.
Collapse
Affiliation(s)
- Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Carlos Henrique Araújo de Miranda Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Álvaro Cavaler Pessoa de Mello
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Maria João Bebianno
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil; CIMA, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
41
|
Sun M, Liu G, Lin H, Zhang T, Guo W. Effect of salinity on the bioaccumulation and depuration of cadmium in the pacific cupped oyster, Crassostrea gigas. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:88-97. [PMID: 29986282 DOI: 10.1016/j.etap.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
As a euryhaline species, the oyster Crassostrea gigas can adapt rapid and dramatic salinity fluctuations, and show physiological mechanisms of adaption to tolerant salinity changes. They are continuously exposed to Cd because they are filter feeders and their mobility is poor. In order to understand the influence of salinity on the molecular responses of C. gigas exposed to Cd, oysters were acclimatized to different salinities (13, 20, 27, and 34) for 14 days and then exposed to 10 μg/L Cd for 28 d, followed by a depuration period of 35 d. Control groups were kept at the same salinities without Cd. Oysters were sampled for chemical analysis by inductively coupled plasma mass spectrometry (ICP-MS) and for mRNA quantification by qPCR. The rank order of the mean concentrations of Cd in oyster tissues was digestive gland > mantle > adductor muscle. Use of a two-compartment model showed that in the three tissues, Cd uptake rates (k1) in digestive gland (13.525-35.430 d-1) also increased as salinity decreased. However, no difference was observed in Cd uptake rates of C.gigas in the three higher salinities in mantle (11.703-17.250 d-1). Cd depuration rates (k2) (0.0139 - 0.0127 d-1 in mantle and 0.0111-0.0134 d-1 in digestive gland) followed a reverse trend. There was not a relationship between k2 and salinity in adductor muscle. In response to Cd contamination, MT was significantly up-regulated by Cd at all salinities, and P-gp was significantly up-regulated in mantle, while down-regulated in digestive gland, which means a disruption of the protein synthesis at high concentration. At depuration phase, MT level was higher in digestive gland and mantle, and its expression was higher at S13 than that at S34. No relationship was found between the P-gp gene expression level and concentrations of cadmium in tissues in either accumulation phase or depuration phase. In accumulation phase, the MT gene expression level was positively correlated with the concentration of cadmium in both the digestive gland and the mantle, while the relationship was weakened in depuration phase, suggesting an effort to create a detoxification mechanism.
Collapse
Affiliation(s)
- Ming Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China; Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China
| | - Guangbin Liu
- Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, PR China
| | - Tianwen Zhang
- Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China
| | - Wen Guo
- Marine Biology Institute of Shandong Province, Qingdao, 266104, PR China.
| |
Collapse
|
42
|
Müller GDAES, Lüchmann KH, Razzera G, Toledo-Silva G, Bebianno MJ, Marques MRF, Bainy ACD. Proteomic response of gill microsomes of Crassostrea brasiliana exposed to diesel fuel water-accommodated fraction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:109-118. [PMID: 29906693 DOI: 10.1016/j.aquatox.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Diesel fuel water-accommodated fraction (diesel-WAF) is a complex mixture of organic compounds that may cause harmful effects to marine invertebrates. Expression of microsomal proteins can be changed by oil exposure, causing functional alterations in endoplasmic reticulum (ER). The aim of this study was to investigate changes in protein expression signatures in microsomes of oysterl Crassostrea brasiliana (=C.gasar) gill after exposure to 10% diesel-WAF for 24 and 72 h. Protein expression signatures of gills of oysters exposed to diesel-WAF were compared to those of unexposed oysters using two-dimensional electrophoresis (2-DE) to identify differentially expressed proteins. A total of 458 protein spots with molecular weights between 30-75 kDa were detected by 2-DE in six replicates of exposed oyster proteomes compared to unexposed ones. Fourteen differentially expressed proteins (six up-regulated and eight down-regulated) were identified. They are: proteins related to xenobiotic biotransformation (cytochrome P450 6 A, NADPH-cytochrome P450 reductase); cytoskeleton (α-tubulin, β-tubulin, gelsolin); processing and degradation of proteins pathways (thioredoxin domain-containing protein E3 ubiquitin-protein ligase MIB2); involved in the biosynthesis of glycolipids and glycoproteins (beta-1,3-galactosyltransferase 1); associated with stress responses (glutamate receptor 4 and 14-3-3 protein zeta, corticotropin-releasing factor-binding protein); plasmalogen biosynthesis (fatty acyl-CoA reductase 1), and sodium-and chloride-dependent glycine transporter 2 and glyoxylate reductase/hydroxypyruvate reductase. Different patterns of protein responses were observed between 24 and 72 h-exposed groups. Expression pattern of microsomal proteins provided a first insight on the potential diesel-WAF effects at protein level in microsomal fraction of oyster gills and indicated new potential biomarkers of exposure and effect. The present work can be a basis for future ecotoxicological studies in oysters aiming to elucidate the molecular mechanisms behind diesel-WAF toxicity and for environmental monitoring programs.
Collapse
Affiliation(s)
- Gabrielle do Amaral E Silva Müller
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Karim Hahn Lüchmann
- Laboratory of Biochemistry and Molecular Biology - LBBM, Fishery Engineering Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Guilherme Razzera
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Maria João Bebianno
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; Centre of Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil.
| |
Collapse
|
43
|
Meng J, Wang WX, Li L, Zhang G. Tissue-specific molecular and cellular toxicity of Pb in the oyster (Crassostrea gigas): mRNA expression and physiological studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:257-268. [PMID: 29562214 DOI: 10.1016/j.aquatox.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/07/2023]
Abstract
Lead (Pb) is one of the ubiquitous and toxic elements in aquatic environment. In oysters, gills and digestive glands are the main target organs for Pb-induced toxicity, but there is limited information on the molecular mechanisms underlying its toxicity. The present study investigated the Pb-induced toxicity mechanisms in the Pacific oyster (Crassostrea gigas) based on transcriptome, phenotypic anchoring, and validation of targeted gene expression. Gene ontology and pathway enrichment analyses revealed the differential Pb toxicity mechanisms in the tissues. In the gills, Pb disturbed the protein metabolism, with the most significant enrichment of the "protein processing in endoplasmic reticulum" pathway. The main mechanism comprised of a Pb-stimulated calcium (Ca2+) increase by the up-regulation of transporter-Ca-ATPase expression. The disturbed Ca2+ homeostasis then further induced high expressions of endoplasmic reticulum (ER) chaperones, leading to ER stress in the oysters. Unfolded proteins induced ER associated degradation (ERAD), thereby preventing the accumulation of folding-incompetent glycoproteins. However, Pb mainly induced oxidative reduction reactions in the digestive gland with high accumulation of lipid peroxidation products and high expression of antioxidant enzymes. Further, Pb induced fatty acid β-oxidation and CYP450 catalyzed ω-oxidation due to increased metabolic expenditure for detoxification. The increased content of arachidonic acid indicated that Pb exposure might alter unsaturated fatty acid composition and disturb cellular membrane functions. Taken together, our results provided a new insight into the molecular mechanisms underlying Pb toxicity in oysters.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| |
Collapse
|
44
|
Pazos AJ, Ventoso P, Martínez-Escauriaza R, Pérez-Parallé ML, Blanco J, Triviño JC, Sánchez JL. Transcriptional response after exposure to domoic acid-producing Pseudo-nitzschia in the digestive gland of the mussel Mytilus galloprovincialis. Toxicon 2017; 140:60-71. [PMID: 29031804 DOI: 10.1016/j.toxicon.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/28/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023]
Abstract
Bivalve molluscs are filter feeding species that can accumulate biotoxins in their body tissues during harmful algal blooms. Amnesic Shellfish Poisoning (ASP) is caused by species of the diatom genus Pseudo-nitzschia, which produces the toxin domoic acid. The Mytilus galloprovincialis digestive gland transcriptome was de novo assembled based on the sequencing of 12 cDNA libraries, six obtained from control mussels and six from mussels naturally exposed to domoic acid-producing diatom Pseudo-nitzschia australis. After de novo assembly 94,727 transcripts were obtained, with an average length of 1015 bp and a N50 length of 761 bp. The assembled transcripts were clustered (homology > 90%) into 69,294 unigenes. Differential gene expression analysis was performed (DESeq2 algorithm) in the digestive gland following exposure to the toxic algae. A total of 1158 differentially expressed unigenes (absolute fold change > 1.5 and p-value < 0.05) were detected: 686 up-regulated and 472 down-regulated. Several membrane transporters belonging to the family of the SLC (solute carriers) were over-expressed in exposed mussels. Functional enrichment was performed using Pfam annotations obtained from the genes differentially expressed, 37 Pfam families were found to be significantly (FDR adjusted p-value < 0.1) enriched. Some of these families (sulfotransferases, aldo/keto reductases, carboxylesterases, C1q domain and fibrinogen C-terminal globular domain) could be putatively involved in detoxification processes, in the response against of the oxidative stress and in immunological processes. Protein network analysis with STRING algorithm found alteration of the Notch signaling pathway under the action of domoic acid-producing Pseudo-nitzschia. In conclusion, this study provides a high quality reference transcriptome of M. galloprovincialis digestive gland and identifies potential genes involved in the response to domoic acid.
Collapse
Affiliation(s)
- Antonio J Pazos
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Pablo Ventoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Roi Martínez-Escauriaza
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - M Luz Pérez-Parallé
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón s/n Apdo 13, Vilanova de Arousa, 36620, Spain
| | - Juan C Triviño
- Sistemas Genómicos, Ronda G. Marconi 6, Paterna, Valencia, 46980, Spain
| | - José L Sánchez
- Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
45
|
Nogueira DJ, Mattos JJ, Dybas PR, Flores-Nunes F, Sasaki ST, Taniguchi S, Schmidt ÉC, Bouzon ZL, Bícego MC, Melo CMR, Toledo-Silva G, Bainy ACD. Effects of phenanthrene on early development of the Pacific oyster Crassostrea gigas (Thunberg, 1789). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:50-61. [PMID: 28800408 DOI: 10.1016/j.aquatox.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Phenanthnere (PHE) is a polycyclic aromatic hydrocarbon continuously discarded in the marine environment and bioavailable to many aquatic species. Although studies about PHE toxicity have been documented for adult oysters, the effects on early developmental stages are poorly characterized in bivalves. In this study, the effects of PHE (0.02 and 2.0μg.L-1) were evaluated on the embryogenesis and larval development of Crassostrea gigas. Toxicity bioassays, growth and deformities assessment, analysis of shell calcium abundance and transcript levels of genes related to xenobiotic biotransformation (CYP2AU2, CYP30C1), immune system (Cg-Tal) and tissue growth and shell formation (Ferritin, Insulin-like, Cg-Try, Calmodulin and Nacrein) were assayed in D-shape larvae after 24h of PHE exposure. At the highest concentration (2.0μg.L-1), PHE decreased the frequency of normal development (19.7±2.9%) and shell size (53.5±2.8mm). Developmental deformities were mostly related to abnormal mantle and shell formation. Lower calcium levels in oyster shells exposed to PHE 2.0μg.L-1 were observed, suggesting effects on shell structure. At this same PHE concentration, CYP30C1, Cg-Tal, Cg-Tyr, Calmodulin were upregulated and CYP2AU2, Ferritin, Nacrein, and Insulin-Like were downregulated compared to control larvae. At the lowest PHE concentration (0.02μg.L-1), it was observed a minor decrease in normal larval development (89,6±6%) and the remaining parameters were not affected. This is the first study to provide evidences that exposure to PHE can affect early oyster development at the molecular and morphological levels, possibly threatening this bivalve species.
Collapse
Affiliation(s)
- Diego J Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Patrick R Dybas
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Fabrıcio Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Éder C Schmidt
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Zenilda L Bouzon
- Laboratory of Plant Cell Biology, Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, SP 05508-120, Brazil
| | - Claudio M R Melo
- Laboratory of Marine Mollusks, Department of Aquaculture, Federal University of Santa Catarina, Florianópolis, SC 88051-000, Brazil
| | - Guilherme Toledo-Silva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
46
|
González-Fernández C, Albentosa M, Sokolova I. Interactive effects of nutrition, reproductive state and pollution on molecular stress responses of mussels, Mytilus galloprovincialis Lamarck, 1819. MARINE ENVIRONMENTAL RESEARCH 2017; 131:103-115. [PMID: 28967508 DOI: 10.1016/j.marenvres.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Marine bivalves including mussels Mytilus galloprovincialis are commonly used as sentinels for pollution monitoring and ecosystem health assessment in the coastal zones. Use of biomarkers to assess the pollution effects assumes that the effects of pollutants on the biomarkers exceed the natural background variability; yet this assumption has rarely been tested. We exposed mussels at different reproductive stages and nutritive states to two concentrations of a polycyclic aromatic hydrocarbon (fluoranthene, 3 and 60 μg L-1) for three weeks. Expression levels of the molecular biomarkers related to the detoxification and general stress response [cytochrome P450 oxidase (CYP450), glutathione S-transferases (GST-α; GST-S1; GST-S2), the multixenobiotic resistance protein P-glycoprotein (PgP), metallothioneins (MT10 and MT20), heat shock proteins (HSP22, HSP70-2; HSP70-3; HSP70-4), as well as mRNA expression of two reproduction-related genes, vitellogenin (Vitel) and vitelline coat lysin M7 (VCLM7)] were measured. The mussels' nutrition and reproductive state affected the baseline mRNA levels of molecular biomarkers and modulated the transcriptional responses of biomarker genes to the pollutant exposure. Thus, mussel physiological state could act as a confounding factor in the evaluation of the response of pollution through molecular biomarkers. The biomarker baseline levels must be determined across a range of physiological states to enable the use of biomarkers in monitoring programs.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero, 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| | - Marina Albentosa
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero, 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Inna Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
47
|
Coelho MPM, Moreira-de-Sousa C, de Souza RB, Ansoar-Rodríguez Y, Silva-Zacarin ECM, Fontanetti CS. Toxicity evaluation of vinasse and biosolid samples in diplopod midgut: heat shock protein in situ localization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22007-22017. [PMID: 28785943 DOI: 10.1007/s11356-017-9754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Large amounts of residues generated by agricultural, urban and industrial activities are dumped daily on the soil. This practice deserves special attention because it causes serious environmental problems. This study evaluated the toxic potential of the sugarcane vinasse, a by-product of the sugar-alcohol industry, and the biosolid, a residue produced by wastewater treatment plants, both widely used as fertilizers. The evaluation was performed through bioassays using a typical soil bioindicator, the diplopod Rhinocricus padbergi. The specimens were exposed to soils containing these residues in concentrations that are compatible with the Brazilian regulation for agricultural use. Semi-quantitative immunolabelling analyses of the stress protein HSP70 were performed on the midgut of the studied diplopods. There was a significant increase in the immunolabelling of HSP70 proteins as a response to xenobiotics from both residues, particularly in regions where the function of the cells is the detoxification of the organ (e.g. the hepatic cell layer and specific regions of the epithelium). Higher immunolabelling was observed in the specimens exposed to vinasse in comparison with the biosolid exposure. This demonstrates that the substances in the tested residues had proteotoxic action in the exposed animals and induced a cytoprotective response, which led to higher stress protein immunolabelling. Therefore, caution is needed for the use of such residues in agriculture.
Collapse
Affiliation(s)
- Maria Paula Mancini Coelho
- Department of Biology, Biosciences Institute, UNESP (São Paulo State University), Av. 24-A, 1515, Rio Claro, São Paulo, 13506-900, Brazil
| | - Cristina Moreira-de-Sousa
- Department of Biology, Biosciences Institute, UNESP (São Paulo State University), Av. 24-A, 1515, Rio Claro, São Paulo, 13506-900, Brazil
| | - Raphael Bastão de Souza
- Department of Biology, Biosciences Institute, UNESP (São Paulo State University), Av. 24-A, 1515, Rio Claro, São Paulo, 13506-900, Brazil
| | - Yadira Ansoar-Rodríguez
- Department of Biology, Biosciences Institute, UNESP (São Paulo State University), Av. 24-A, 1515, Rio Claro, São Paulo, 13506-900, Brazil
| | | | - Carmem Silvia Fontanetti
- Department of Biology, Biosciences Institute, UNESP (São Paulo State University), Av. 24-A, 1515, Rio Claro, São Paulo, 13506-900, Brazil.
| |
Collapse
|
48
|
Müller GDAES, de Lima D, Zacchi FL, Piazza RS, Lüchmann KH, Mattos JJ, Schlenk D, Bainy ACD. Analysis of transcriptional responses of normalizing genes on Crassostrea brasiliana under different experimental conditions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2190-2198. [PMID: 28160493 DOI: 10.1002/etc.3755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/29/2016] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Bivalves show remarkable plasticity to environmental changes and have been proposed as sentinel organisms in biomonitoring. Studies related to transcriptional analysis using quantitative real-time polymerase chain reaction (qRT-PCR) in these organisms have notably increased, imposing a need to identify and validate adequate reference genes for an accurate and reliable analysis. In the present study, 9 reference genes were selected from transcriptome data of Crassostrea brasiliana to identify their suitability as qRT-PCR normalizer genes. The transcriptional patterns were analyzed in gills of oysters under 3 different conditions: different temperatures (18, 24, or 32 °C) and phenanthrene (100 µg L-1 ) combined exposure; different salinities (10, 25, or 35‰) and phenanthrene combined exposure; and 10% of diesel fuel water-accommodated fraction (diesel-WAF) exposure. Reference gene stability was calculated using 5 algorithms (geNorm, NormFinder, BestKeeper, ΔCt, RefFinder). Transcripts of ankyrin-like (ANK), glyceraldehyde 3-phosphate dehydrogenase-like (GAPDH), and α-tubulin-like (TUBA) genes showed minor changes in different temperature/phenanthrene treatment. Transcripts of ANK, β-actin-like, and β-tubulin-like genes showed better stability at salinity/phenanthrene treatment, and ANK, TUBA, and 28S ribosomal protein-like genes showed the most stable transcription pattern in oysters exposed to diesel-WAF exposure. The present study constitutes the first systematic analysis of reference gene selection for qRT-PCR normalization in C. brasiliana. These genes could be employed in studies using qRT-PCR analysis under similar experimental conditions. Environ Toxicol Chem 2017;36:2190-2198. © 2017 SETAC.
Collapse
Affiliation(s)
| | - Daína de Lima
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Flávia Lucena Zacchi
- Aquaculture Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rômi Sharon Piazza
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Karim Hahn Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna, Santa Catarina, Brazil
| | - Jacó Joaquim Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside California, United States
| | - Afonso Celso Dias Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
49
|
Goncalves P, Thompson EL, Raftos DA. Contrasting impacts of ocean acidification and warming on the molecular responses of CO 2-resilient oysters. BMC Genomics 2017; 18:431. [PMID: 28578697 PMCID: PMC5457604 DOI: 10.1186/s12864-017-3818-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/25/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND This study characterises the molecular processes altered by both elevated CO2 and increasing temperature in oysters. Differences in resilience of marine organisms against the environmental stressors associated with climate change will have significant implications for the sustainability of coastal ecosystems worldwide. Some evidence suggests that climate change resilience can differ between populations within a species. B2 oysters represent a unique genetic resource because of their capacity to better withstand the impacts of elevated CO2 at the physiological level, compared to non-selected oysters from the same species (Saccostrea glomerata). Here, we used proteomic and transcriptomic analysis of gill tissue to evaluate whether the differential response of B2 oysters to elevated CO2 also extends to increased temperature. RESULTS Substantial and distinctive effects on protein concentrations and gene expression were evident among B2 oysters responding to elevated CO2 or elevated temperature. The combination of both stressors also altered oyster gill proteomes and gene expression. However, the impacts of elevated CO2 and temperature were not additive or synergistic, and may be antagonistic. CONCLUSIONS The data suggest that the simultaneous exposure of CO2-resilient oysters to near-future projected ocean pH and temperature results in complex changes in molecular processes in order to prevent stress-induced cellular damage. The differential response of B2 oysters to the combined stressors also indicates that the addition of thermal stress may impair the resilience of these oysters to decreased pH. Overall, this study reveals the intracellular mechanisms that might enable marine calcifiers to endure the emergent, adverse seawater conditions resulting from climate change.
Collapse
Affiliation(s)
- Priscila Goncalves
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Sydney Institute of Marine Science, Chowder Bay, Sydney, NSW, 2088, Australia.
| | - Emma L Thompson
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Sydney Institute of Marine Science, Chowder Bay, Sydney, NSW, 2088, Australia.,Present Address: School of Life and Environmental Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Sydney Institute of Marine Science, Chowder Bay, Sydney, NSW, 2088, Australia
| |
Collapse
|
50
|
Danielli NM, Trevisan R, Mello DF, Fischer K, Deconto VS, da Silva Acosta D, Bianchini A, Bainy ACD, Dafre AL. Upregulating Nrf2-dependent antioxidant defenses in Pacific oysters Crassostrea gigas: Investigating the Nrf2/Keap1 pathway in bivalves. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:16-26. [PMID: 28216009 DOI: 10.1016/j.cbpc.2017.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 01/28/2023]
Abstract
Analysis of the Pacific oyster Crassostrea gigas annotated genome revealed genes with conserved sequences belonging to typical cap 'n' collar Nrf2 domain, a major player in antioxidant protection, and domains belonging to Nrf2 cytoplasmic repressor (Keap1), but little is known about Nrf2/Keap1 induction in bivalves. C. gigas were exposed to waterborne 10 and 30μM curcumin, a known inducer of the mammalian Nrf2. Curcumin disappeared from the seawater after 10h, and accumulated in the gills (10h) and digestive gland (10-96h). A clear induction of glutathione (GSH)-related antioxidant defenses was observed at 96h in the gills of curcumin exposed animals (10 and 30μM), including GSH levels, and the activity of glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). This response was completely absent in the digestive gland, in line with the idea that bivalve gills act as a major site for antioxidant protection under acute exposure. The relative mRNA levels coding glutamate-cysteine ligase, GR, GPx2 and GSTpi were clearly induced by curcumin treatment (30μM, 24h). Curcumin pre-treatment for 96h increased oyster resistance to cumene hydroperoxide, but neither Nrf2 nor Keap1 genes were modulated by curcumin. However, the conserved sequences belonging to typical Nrf2 and Keap1 domains, and the notorious induction of antioxidant defense-related genes known to be controlled by Nrf2 in mammals, indicates a functional Nrf2/Keap1 pathway in bivalves, and curcumin seems to be a new tool to investigate the antioxidant response in bivalves.
Collapse
Affiliation(s)
- Naissa Maria Danielli
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil.
| | - Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Danielle Ferraz Mello
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Kelvis Fischer
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Vanessa Schadeck Deconto
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Daiane da Silva Acosta
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Adalto Bianchini
- Institute of Biological Sciences, Federal University of Rio Grande, 96203-900 Rio Grande, RS, Brazil
| | - Afonso Celso Dias Bainy
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Alcir Luiz Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|