1
|
Lu X, Wu S, Ai H, Wu R, Cheng Y, Yun S, Chang M, Liu J, Meng J, Cheng F, Feng C, Cao J. Sparassis latifolia polysaccharide alleviated lipid metabolism abnormalities in kidney of lead-exposed mice by regulating oxidative stress-mediated inflammation and autophagy based on multi-omics. Int J Biol Macromol 2024; 278:134662. [PMID: 39128732 DOI: 10.1016/j.ijbiomac.2024.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Lead is a common environmental pollutant which can accumulate in the kidney and cause renal injury. However, regulatory effects and mechanisms of Sparassis latifolia polysaccharide (SLP) on lipid metabolism abnormality in kidney exposed to lead are not clarified. In this study, mice were used to construct an animal model to observe the histopathological changes in kidney, measure lead content, damage indicators, differentially expressed metabolites (DEMs) and genes (DEGs) in key signaling pathways that cause lipid metabolism abnormalities based on lipidomics and transcriptomics, which were later validated using qPCR and western blotting. Co-treatment of Pb and N-acetylcysteine (NAC) were used to verify the link between SLP and oxidative stress. Our results indicated that treatment with SLP identified 276 DEMs (including metabolism of glycerophospholipid, sphingolipid, glycerolipid and fatty acid) and 177 DEGs (including genes related to oxidative stress, inflammation, autophagy and lipid metabolism). Notably, regulatory effects of SLP on abnormal lipid metabolism in kidney were mainly associated with oxidative stress, inflammation and autophagy; SLP could regulate abnormal lipid metabolism in kidney by reducing oxidative stress and affecting its downstream-regulated autophagy and inflammatory to alleviate renal injury caused by lead exposure. This study provides a theoretical basis for SLP intervention in lead injury.
Collapse
Affiliation(s)
- Xingru Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shanshan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Honghu Ai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
2
|
Li X, Li Y, Chernick M, Hinton DE, Zheng N, Du C, Dong W, Wang S, Hou S. Single and mixture toxicity of cadmium and copper to swim bladder in early life stages of Japanese medaka (Oryzias latipes). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:27. [PMID: 38225481 DOI: 10.1007/s10653-023-01817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024]
Abstract
Toxicity observed in aquatic ecosystems often cannot be explained by the action of a single pollutant. Likewise, evaluation standards formulated by a single effect cannot truly reflect the environmental quality requirements. The study of mixtures is needed to provide environmental relevance and knowledge of combined toxicity. In this study, the embryos of Japanese medaka (Oryzias latipes) were treated with individual and binary mixture of copper (Cu) and cadmium (Cd) until 12 days post-fertilization (dpf). Hatching, mortality, development, histology and gene expression were assessed. Our results showed that the highest concentration mixture of Cd (10 mg/L) and Cu (1 mg/L) affected survival, hatching time and hatching success. Occurrence of uninflated swim bladder was the highest (value) with exposure to 10 mg/L Cd. Swim bladder was commonly over-inflated in a mixture (0.1 mg/L Cd + 1.0 mg/L Cu) exposure. Individuals exposed to the mixture (0.1 Cd + 1.0 Cu mg/L) showed up to a 7.69% increase in swim bladder area compared to the control group. The mixtures containing 0.1 or 10 mg/L Cd, each with 1.0 mg/L Cu resulted in significantly increased of Pbx1b expression, higher than any Cd or Cu alone (p < 0.01). In the co-exposure group (0.1/10 Cd + 1.0 Cu mg/L), Pbx1b expression was found at 12 dpf but not 7 dpf in controls. Higher concentrations of Cd may progressively reduce Pbx1b expression, potentially explaining why 75% of individuals in the 10 mg/L Cd group failed to inflate their swim bladders. Additionally, the swim bladder proved to be a valuable bio-indicator for biological evaluation.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Yunyang Li
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China.
| | - Chenyang Du
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Inner Mongolia University for Nationalities, Hohhot, 028000, Inner Mongolia, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, Jilin, China
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| |
Collapse
|
3
|
Zhang S, Chen A, Deng H, Jiang L, Liu X, Chai L. Intestinal response of Rana chensinensis larvae exposed to Cr and Pb, alone and in combination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114774. [PMID: 36931087 DOI: 10.1016/j.ecoenv.2023.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Although numerous investigations on the adverse impact of Cr and Pb have been performed, studies on intestinal homeostasis in amphibians are limited. Here, single and combined effects of Cr (104 μg/L) and Pb (50 μg/L) on morphological and histological features, bacterial community, digestive enzymes activities, as well as transcriptomic profile of intestines in Rana chensinensis tadpoles were assessed. Significant decrease in the relative intestine length (intestine length/snout-to-vent length, IL/SVL) was observed after exposure to Pb and Cr/Pb mixture. Intestinal histology and digestive enzymes activities were altered in metal treatment groups. In addition, treatment groups showed significantly increased bacterial richness and diversity. Tadpoles in treatment groups were observed to have differential gut bacterial composition from controls, especially for the abundance of phylum Proteobacteria, Firmicutes, Verrucomicrobia, Actinobacteria, and Fusobacteria as well as genus Citrobacter, Anaerotruncus, Akkermansia, and Alpinimonas. Moreover, transcriptomic analysis showed that the transcript expression profiles of GPx and SOD isoforms responded differently to Cr and/or Pb exposure. Besides, transcriptional activation of pro-apoptotic and glycolysis-related genes, such as Bax, Apaf 1, Caspase 3, PK, PGK, TPI, and GPI were detected in all treatment groups but downregulation of Bcl2 in Pb and Cr/Pb mixture groups. Collectively, these results suggested that Cr and Pb exposure at environmental relevant concentration, alone and in combination, could disrupt intestinal homeostasis of R. chensinensis tadpoles.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
4
|
Fort DJ, Todhunter KJ, Wolf JC, Long K, Poland CA, McGrath M, Baken S, Mackie C. Influence of systemic copper toxicity on early development and metamorphosis in Xenopus laevis. J Appl Toxicol 2023; 43:431-445. [PMID: 36070670 DOI: 10.1002/jat.4393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
The primary objective of the present study was to examine the influence of early systemic toxicity resulting from copper (Cu) exposure on metamorphic processes in Xenopus laevis. A 28-day exposure study with copper, initiated at developmental stage 10, was performed using test concentrations of 3.0, 9.0, 27.2, 82.5, and 250 μg Cu/L. The primary endpoints included mortality, developmental stage, embryo-larval malformation, behavioral effects, hindlimb length (HLL), growth (snout-vent length [SVL] and wet body weight), and histopathology. The 28-day LC50 value with 95% confidence intervals was 61.2 (51.4-72.9) μg Cu/L with 250 μg Cu/L resulting in complete lethality. Developmental arrest in the 82.5 and delay in the 27.2 μg Cu/L treatments was observed as early as study day 10 continuing throughout the remainder of exposure. SVL-normalized HLL, body weight, and SVL in the 27.2 and 82.5 μg Cu/L treatments were significantly decreased relative to control. At 82.5 μg Cu/L, and thyroid gland size was markedly reduced when compared with controls consistent with the stage of developmental and growth arrest. Concentration-dependent findings in the intestine, liver, gills, eyes, and pharyngeal mucosa were consistent with non-endocrine systemic toxicity. These were prevalent in the 9.0 and 27.2 μg Cu/L treatment groups but were minimally evident or absent in the 82.5 μg/L group, which was attributed to developmental arrest. In conclusion, developmental delay in larvae exposed to 27.2 and 82.5 μg Cu/L was the result of systemic toxicity occurring in early development prior hypothalomo-pituitary-thyroid axis (HPT)-driven metamorphosis and was not indicative of endocrine disruption.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Inc., Stillwater, Oklahoma, USA
| | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | - Kevin Long
- Regulatory Compliance Limited, Loanhead, Midlothian, UK
| | - Craig A Poland
- Regulatory Compliance Limited, Loanhead, Midlothian, UK.,Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Stijn Baken
- European Copper Institute, Brussels, Belgium
| | - Carol Mackie
- Regulatory Compliance Limited, Loanhead, Midlothian, UK
| |
Collapse
|
5
|
Peluso J, Aronzon CM, Martínez Chehda A, Cuzziol Boccioni AP, Peltzer PM, De Geronimo E, Aparicio V, Gonzalez F, Valenzuela L, Lajmanovich RC. Environmental quality and ecotoxicity of sediments from the lower Salado River basin (Santa Fe, Argentina) on amphibian larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106342. [PMID: 36327688 DOI: 10.1016/j.aquatox.2022.106342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The lower Salado River basin receive agricultural, industrial and domestic waste water. So, the aim was to evaluate the quality of three sampling sites that belong to the Salado River basin (S1: Cululú stream; S2: Salado River, at Esperanza City, S3: Salado River at Santo Tomé City) based on physicochemical parameters, metals and pesticides analyses and ecotoxicity on Rhinella arenarum larvae. R. arenarum larvae (Gosner Stage -GS- 25) were chronically exposed (504h) to complex matrixes of surface water and sediment samples of each site for the determination of the survival rate. Biomarkers of oxidative stress, neurotoxicity and genotoxicity were analyzed in R. arenarum larvae (GS. 25) after exposure (96h) to the complex matrix of water and sediment. The water quality index showed a marginal quality for all sites, influenced mainly by low dissolved oxygen, high total suspended solid, phosphate, nitrite, conductivity, Pb, Cr and Cu levels. Metal concentrations were higher in sediment than in water samples (˜34-35000 times). In total, thirty different pesticides were detected in all water and sediment samples, S1 presented the greatest variety (26). Glyphosate and AMPA were detected in sediments from all sites, being higher in S3. N,N-Diethyl-meta-toluamide (DEET) and atrazine were detected in all water samples. Greatest mortality was observed in larvae exposed to samples from S1 from 288h (43.3%), reaching a maximum value of 50% at 408h. Oxidative stress and genotoxicity were observed in larvae exposed to S1 and S3 matrix samples. Neurotoxicity was observed in larvae exposed to all matrix samples. The integrated biomarker response index showed that larvae exposed to S1 and S3 were the most affected. According to the physicochemical data and the ecotoxicity assessment, this important river basin is significantly degraded and may represent a risk to aquatic biota, especially for R. arenarum larvae.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Agostina Martínez Chehda
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina
| | - Ana Paula Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Eduardo De Geronimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Virginia Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Florencia Gonzalez
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Lautaro Valenzuela
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
6
|
Chai L, Jabbie IS, Chen A, Jiang L, Li M, Rao H. Effects of waterborne Pb/Cu mixture on Chinese toad, Bufo gargarizans tadpoles: morphological, histological, and intestinal microbiota assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90656-90670. [PMID: 35871197 DOI: 10.1007/s11356-022-22143-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Coexistence of heavy metals in aquatic environments exert complex effects on amphibians. Here, the adverse effects of Pb (0.14 μM) combined with Cu at concentrations of 0, 0.25, and 1.0 μM were investigated in Bufo gargarizans tadpoles. Tadpoles were chronically exposed from Gosner stage (Gs) 26 to Gs 38, and morphology of tadpoles as well as intestinal histology and bacterial community were assessed. Our results indicated that Pb+Cu1.0 exposure induced significant retardation of somatic mass, total length, intestine mass, and intestine length as well as intestinal histological alterations. Pb+Cu0.25 and Pb+Cu1.0 exposure were associated with the loss of gut bacterial diversity. Proteobacteria and Bacteroidetes were two dominant phyla in tadpoles independently of heavy metal exposure, but the abundance of Proteobacteria increased significantly in Pb+Cu1.0 group and Bacteroidetes decreased significantly in all treatment groups. Furthermore, functional prediction indicated that metabolic disorders were associated with Pb+Cu0.25 and Pb+Cu1.0 exposure. Overall, relative limited shifts in intestinal bacterial diversity, composition, and functionality caused by Pb+Cu0 exposure, while coexistence of Pb and Cu induced gut dysbiosis and might further cause disturbance of metabolic homeostasis. The findings of this study provide insights into the effects of Pb and Cu coexistence on the health of amphibians.
Collapse
Affiliation(s)
- Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Ibrahim Sory Jabbie
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Mengfan Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Huihui Rao
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
7
|
Brix KV, De Boeck G, Baken S, Fort DJ. Adverse Outcome Pathways for Chronic Copper Toxicity to Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2911-2927. [PMID: 36148934 PMCID: PMC9828004 DOI: 10.1002/etc.5483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoToxMiamiFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Department of Marine Biology and EcologyUniversity of MiamiMiamiFloridaUSA
| | | | | | | |
Collapse
|
8
|
Lu Y, Zhang Y, Guan Q, Xu L, Zhao S, Duan J, Wang Y, Xia Y, Xu Q. Exposure to multiple trace elements and miscarriage during early pregnancy: A mixtures approach. ENVIRONMENT INTERNATIONAL 2022; 162:107161. [PMID: 35219936 DOI: 10.1016/j.envint.2022.107161] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to some conventional trace elements has been found to be associated with miscarriage; however, evidence for combined exposure is inconclusive. Therefore, it is important to explore the joint associations between toxic and essential trace elements and miscarriage. METHODS This cross-sectional study measured a wide range of element levels in the whole blood of pregnant women by using inductively coupled plasma mass spectrometry. The associations between individual elements and miscarriage were appraised using logistic regression model. Multi-exposure models, including Bayesian kernel machine regression (BKMR) and weighted quantile sum regression (WQS), were used to explore the mixed exposure to elements. Furthermore, grouped weighted quantile sum (GWQS) considered multiple elements with different magnitudes and directions of associations. RESULTS In logistic regression, the odds ratios (ORs) with a 95% confidence interval (CI) in the highest quartiles were 5.45 (2.00, 15.91) for barium, 0.28 (0.09, 0.76) for copper, and 0.32 (0.12, 0.83) for rubidium. These exposure-outcome associations were confirmed and supplemented by BKMR, which indicated a positive association for barium and negative associations for copper and rubidium. In WQS, a positive association was found between mixed elements and miscarriage (OR: 1.71; 95% CI: 1.07, 2.78), in which barium (75.7%) was the highest weighted element. The results of GWQS showed that the toxic trace element group dominated by barium was significantly associated with increased ORs (OR: 2.71; 95% CI: 1.74, 4.38). Additionally, a negative association was observed between the essential trace element group and miscarriage (OR: 0.32; 95% CI: 0.18, 0.54), with rubidium contributing the most to the result. CONCLUSIONS As a toxic trace element, barium was positively associated with miscarriage both by individual and multiple evaluations, while essential trace elements, particularly rubidium and copper, exhibited negative associations. Our findings provide significant evidence for exploring the effects of trace elements on miscarriage.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lu Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Shuangshuang Zhao
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Xu J, Xu G, Fang J. Association Between Serum Copper and Stroke Risk Factors in Adults: Evidence from the National Health and Nutrition Examination Survey, 2011-2016. Biol Trace Elem Res 2022; 200:1089-1094. [PMID: 33954867 DOI: 10.1007/s12011-021-02742-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Copper as an essential trace element is hypothesized to be involved in stroke risk. However, the evidence for associations between copper and stroke risk factors such as lipid levels has been mixed. This study aimed to examine the relationships between serum copper and lipid levels among 3425 participants aged 20 years and older from the 2011-2016 National Health and Nutrition Examination Survey (NHANES). Data on administered questionnaires, serum copper concentrations, and lipid levels (total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were used. Associations between serum copper and lipid levels were evaluated using both multivariable linear regression and logistic regression models. In the linear regression models, total cholesterol and LDL cholesterol levels increased with increasing copper concentrations among women. Each 1 unit (μg/dL) increase in serum copper concentrations was associated with roughly 0.11 mg/dL higher total cholesterol (95%CI: 0.04-0.18; P < 0.05) and roughly 0.09 mg/dL higher LDL cholesterol (95%CI: 0.01-0.17; P < 0.05) among women, respectively. Serum copper was positively associated with high LDL cholesterol among women, and the multivariate-adjusted OR (95% CI) for the third quartile of serum copper concentrations was 4.25 (1.15-15.77) compared with the lowest quartile. Moreover, compared with the lowest quartile, the multivariate-adjusted OR (95% CI) for the third quartile of serum copper concentrations was 1.82 (1.16-2.85) for risk of having high total cholesterol among men. No significant association between serum copper and triglycerides levels was observed. These findings suggest that copper may impact stroke health via effects on lipid levels but need to be confirmed with prospective data.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Neurosurgery, Dongyang People's Hospital, 60 West Wuning Road, Jinhua, 322100, Zhejiang, China
| | - Guofeng Xu
- Department of Neurosurgery, Dongyang People's Hospital, 60 West Wuning Road, Jinhua, 322100, Zhejiang, China
| | - Junkang Fang
- Department of Neurosurgery, Dongyang People's Hospital, 60 West Wuning Road, Jinhua, 322100, Zhejiang, China.
| |
Collapse
|