1
|
Wang K, Chen W, Zhao F, Li C, Xing X, Xu L. Occurrence and health risk assessment of phthalate ester pollution in mulched farmland soil at a national scale, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138276. [PMID: 40239526 DOI: 10.1016/j.jhazmat.2025.138276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Phthalate esters (PAEs), widely used as plasticizers in mulching films, are emerging contaminants of concern in farmland soils. However, systematic data on their pollution characteristics and health risks in long-term mulched soils across China remain limited. In this study, 53 typically mulched farmland soil samples from 29 provinces were analyzed using gas chromatography-tandem mass spectrometry to investigate PAEs occurrence, spatial distribution, drivers, and risks. Method validation showed recoveries of 76.3-111.6 % for 16 PAEs, with limits of detection and quantification ranging from 0.2-3.7 ng/mL and 0.1-0.8 ng/mL, respectively. Results revealed Σ16PAE concentrations of 108-2970 μg/kg (mean: 852 μg/kg), with elevated levels in southern/eastern China. Di-isobutyl phthalate and di-butyl phthalate (DBP) showed 100 % detection rates, while DBP dominated contamination (mean: 323 μg/kg). Redundancy analysis identified precipitation and polyethylene microplastic abundance as key drivers. Although non-carcinogenic risks (hazard quotients <1) were low, di(2-ethylhexyl) phthalate posed carcinogenic risks exceeding 10⁻⁴ in 11.3 % of samples. This nationwide assessment highlights the urgency to regulate PAEs emissions from plastic mulch residues and prioritize child health protection in agricultural policies.
Collapse
Affiliation(s)
- Kang Wang
- School of Environmental Studies & State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Chen
- School of Environmental Studies & State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China
| | - Fang Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinli Xing
- School of Environmental Studies & State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China.
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Arain MB, Soylak M. Synthesis of magnetic multi-walled carbon nanotubes with layered double hydroxide (M-MWCNTs@MnAl-LDH) nanocomposite as an adsorbent for lead extraction. Food Chem 2025; 463:141311. [PMID: 39332356 DOI: 10.1016/j.foodchem.2024.141311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
MnAl layered double hydroxide hybrid with magnetic-multiwalled carbon nanotubes was synthesized by a hydrothermal method and used for the extraction of Pb(II) (lead) from spices and water samples in the dispersive solid phase microextraction (dSPμE) technique using FAAS. The as-prepared adsorbent MMWCNTs@MnAl-LDH was characterized by XRD, FTIR, EDX, and SEM techniques. Various analytical parameters were optimized, including pH 8, adsorbent dosage of 5 mg, HNO3 eluent concentration of 1 mol L-1, eluent volume of 3 mL, eluent time of 60 s, and sample volume of 20 mL, for quantitative lead recoveries, with an LOD of 0.314 μg L-1, an LOQ of 1.048 μg L-1, and PF of 11.53. Under the optimized conditions, the linearity ranges from 0.5 to 500 μg L-1 (R2 = 0.9997). For the validation test of the established dSPμE procedure, Certified reference materials (CRMs) were used, yielding satisfactory recovery results ranging from 97.8 to 102.7 %. The method was applied to determine lead in turmeric, tap water, and industrial water samples.
Collapse
Affiliation(s)
- Muhammad Balal Arain
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan.
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; Turkish Academy of Sciences (TUBA), Çankaya, Ankara, Türkiye.
| |
Collapse
|
3
|
Siddiqui I, Owais M, Husain Q. Antimicrobial effects of peptides from fenugreek and ginger proteins using Fe 3O 4@PDA-MWCNT conjugated trypsin by improving enzyme stability & applications. Int J Biol Macromol 2024; 282:137197. [PMID: 39489254 DOI: 10.1016/j.ijbiomac.2024.137197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Trypsin was immobilized onto a newly formulated nanocomposite (NC) comprising magnetic (Fe3O4) multiwalled carbon nanotubes (MWCNTs) anchored with polydopamine (PDA). The fabricated NC and the NC-bound trypsin were subjected to comprehensive characterization using various biophysical techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The NC-bound trypsin exhibited significantly enhanced thermostability and increased tolerance to various organic solvents and denaturants. The enzymatic activity of trypsin was notably augmented through its coupling with the nano support, yielding an effectiveness factor (η) of 2.65. Fenugreek and ginger protein hydrolysates, prepared using both native and NC-bound enzyme, were evaluated for their antimicrobial activities. The analysis revealed that peptides generated by NC-bound trypsin showed higher antimicrobial activity (~ 10) in most cases compared to peptides obtained by using native trypsin. This strategy presents an innovative methodology for the production of potential biopeptides, with the prospect of their incorporation into pharmaceutical and therapeutic sectors through the utilization of NC-bound trypsin in protein hydrolysis.
Collapse
Affiliation(s)
- Irfanah Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| | - Mohammad Owais
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Li Q, Li J, Jiao Y, Yang X, Yang D, Zhong Z, Yang Y. Aptamer-functionalized Fe 3O 4/MWCNTs@Mo-CDs nanozyme for rapid colorimetric detection toward Escherichia coli. Talanta 2024; 277:126265. [PMID: 38805947 DOI: 10.1016/j.talanta.2024.126265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The pathogenic bacteria induced foodborne disease has been detrimental to public health worldwide. Herein, the peroxidase (POD)-like Fe3O4/MWCNTs@Mo-CDs (FMMC) nanozyme was applied for the detection of Escherichia coli (E. coli). The E. coli aptamer was conjugated with the surface of the FMMC, which effectively enhanced the POD-like activity attributing to the higher affinity to the substrate, and then specific capture of E. coli in food matrices, leading to the reduction of POD-like activity. Therefore, a robust and facile colorimetric aptasensor was developed for detecting E. coli with a wide linear range of 101-106 CFU/mL, low LOQ of 101 CFU/mL and LOD of 0.978 CFU/mL. The aptasensor demonstrated the satisfied selectivity for E. coli compared to the other strains. This method possessed the potential application for fast in situ screening of foodborne pathogens in food products.
Collapse
Affiliation(s)
- Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China.
| | - Jitao Li
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming, 650500, Yunnan, PR China
| | - Yang Jiao
- Yunnan Lunyang Technology Co., Ltd. Kunming 650000, PR China
| | - Xiaolan Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, Yunnan Minzu University, Kunming, 650500, Yunnan, PR China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Zitao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China.
| |
Collapse
|
5
|
Zhang Q, Wang L, Wu Q. Occurrence and combined exposure of phthalate esters in urban soil, surface dust, atmospheric dustfall, and commercial food in the semi-arid industrial city of Lanzhou, Northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124170. [PMID: 38759748 DOI: 10.1016/j.envpol.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
A total of 138 samples including urban soil, surface dust, atmospheric dustfall, and commercial food were collected from the semi-arid industrial city of Lanzhou in Northwest China, and 22 phthalate esters (PAEs) were analyzed in these samples by gas chromatography-mass spectrometry for the pollution characteristics, potential sources, and combined exposure risks of PAEs. The results showed that the total concentration of 22 PAEs (Ʃ22PAEs) presented surface dust (4.94 × 104 ng/g) ≫ dustfall (1.56 × 104 ng/g) ≫ food (2.14 × 103 ng/g) ≫ urban soil (533 ng/g). Di-n-butyl phthalate (DNBP), di-isobutyl phthalate, di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate/di-isodecyl phthalate were predominant in the environmental media and commercial food, being controlled by priority (52.1%-65.5%) and non-priority (62.1%) PAEs, respectively. Elevated Ʃ22PAEs in the urban soil and surface dust was found in the west, middle, and east of Lanzhou. Principal component analysis indicated that PAEs the urban soil and surface dust were related with the emissions of products containing PAEs, atmosphere depositions, and traffic and industrial emissions. PAEs in the foods were associated with the growth and processing environment. The health risk assessment of United States Environmental Protection Agency based on the Chinese population exposure parameters indicated that the total exposure dose of 22 PAEs was from 0.111 to 0.226 mg/kg/day, which were above the reference dose (0.02 mg/kg/day) and tolerable daily intake (TDI, 0.05 mg/kg/day) for DEHP (0.0333-0.0631 mg/kg/day), and TDI (0.01 mg/kg/day) for DNBP (0.0213-0.0405 mg/kg/day), implying that the exposure of PAEs via multi-media should not be ignored; the total non-carcinogenic risk of six priority PAEs was below 1 for the three environmental media (1.21 × 10-5-2.90 × 10-3), while close to 1 for food (4.74 × 10-1-8.76 × 10-1), suggesting a potential non-carcinogenic risk of human exposure to PAEs in food; the total carcinogenic risk of BBP and DEHP was below 1 × 10-6 for the three environmental media (9.13 × 10-10-5.72 × 10-7), while above 1 × 10-4 for DEHP in food (1.02 × 10-4), suggesting a significantly carcinogenic risk of human exposure to DEHP in food. The current research results can provide certain supports for pollution and risk prevention of PAEs.
Collapse
Affiliation(s)
- Qian Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Qianlan Wu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
6
|
Liu F, Hu N, Wang A, Ma D, Shan Y, Jiao W. Structure-dependent degradation of phthalate esters with persulfate oxidation activated by thermal in soil. ENVIRONMENTAL RESEARCH 2024; 253:119167. [PMID: 38762006 DOI: 10.1016/j.envres.2024.119167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Phthalate esters (PAEs) have become one of the most concerned emerging organic pollutants in the world, due to the toxicity to human health, and hard to remove it efficiently. In this study, the degradation performance of DBP and DEHP in the soil by water bath heating activated sodium persulfate (PS) method under different factors were studied, in which the degradation rate of DBP and DEHP were improved with the increasing of temperature, PS concentration and water/soil ratio, and higher diffusion efficiency treatments methods, due to the improved mass transfer from organic phase to aqueous media. However, the degradation rate of DEHP was much lower than that of DBP, because DEHP in the soil was more difficult to contact with SO4•- for reaction on soil surface, and the degradation rate of PAEs in soil was significantly lower than that in water. Redundancy analysis of degradation rate of DBP and DEHP in water demonstrated that the key factors that determine the degradation rate is time for DBP, and cosolvent dosage for DEHP, indicating that the solubility and diffusion rate of PAEs from soil to aqueous are predominance function. This study provides comprehensive scenes in PAEs degradation with persulfate oxidation activated by thermal in soil, reveal the difference of degradation between DBP and DEHP is structure-dependent. So that we provide fundamental understanding and theoretical operation for subsequent filed treatment of various structural emerging pollutants PAEs contaminated soil with thermal activated persulfate.
Collapse
Affiliation(s)
- Feng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Naiwen Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anyu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Li L, Lu Y, Wang C, Cheng L. Fabrication of Magnetic Molecularly Imprinted Polymers for Selective Extraction of Dibutyl Phthalates in Food Matrices. Foods 2024; 13:1397. [PMID: 38731768 PMCID: PMC11083936 DOI: 10.3390/foods13091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a novel magnetic molecularly imprinted polymeric material (Fe3O4@MOF@MIP-160) with a metal-organic backbone (Fe3O4@MOF) carrier was prepared using dibutyl phthalate (DBP) as a template. The material can be used for the efficient, rapid, and selective extraction of trace amounts of phthalic acid esters (PAEs) in food and can detect them via gas chromatography-mass spectrometry (GC-MS). The synthesis conditions of the materials were optimized to prepare the Fe3O4@MOF@MIP160 with the highest adsorption performance. Transmission electron microscopy (TEM), Fourier Transform Infrared Spectra (FT-IR), Vibration Sample Magnetic (VSM), and the Brunauer-Emmett-Teller (BET) method were used to characterize the materials. Compared with Fe3O4@MOF and the magnetic non-imprinted polymeric material (Fe3O4@MOF@NIP), Fe3O4@MOF@MIP-160 possesses the advantages of easy and rapid manipulation of magnetic materials, the advantages of high specific surface area and the stability of metal-organic frameworks, and the advantages of high selectivity of molecularly imprinted polymers. Fe3O4@MOF@MIP-160 has good recognition and adsorption capacity for di-butyl phthalate (DBP) and diethylhexyl phthalate (DEHP): the adsorption capacity for DBP and DEHP is 260 mg·g-1 and 240.2 mg·g-1, and the adsorption rate is fast (reaching equilibrium in about 20 min). Additionally, Fe3O4@MOF@MIP160 could be recycled six times, making it cost-effective, easy to operate, and time-saving as compared to traditional solid-phase extraction materials. The phthalate ester content in drinking water, fruit juice, and white wine was analyzed, with recoveries ranging from 70.3% to 100.7%. This proved that Fe3O4@MOF@MIP160 was suitable for detecting and removing PAEs from food matrices.
Collapse
Affiliation(s)
| | | | | | - Lei Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; (L.L.); (Y.L.); (C.W.)
| |
Collapse
|
8
|
Guo W, Zhang Z, Zhu R, Li Z, Liu C, Xiao H, Xiao H. Pollution characteristics, sources, and health risks of phthalate esters in ambient air: A daily continuous monitoring study in the central Chinese city of Nanchang. CHEMOSPHERE 2024; 353:141564. [PMID: 38417490 DOI: 10.1016/j.chemosphere.2024.141564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.
Collapse
Affiliation(s)
- Wei Guo
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Ziyue Zhang
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Renguo Zhu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Zicong Li
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Cheng Liu
- School of Water Resources and environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Hongwei Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huayun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Mao S, He C, Niu G, Ma Y. Effect of aging on the release of di-(2-ethylhexyl) phthalate from biodegradable and petroleum-based microplastics into soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116006. [PMID: 38295739 DOI: 10.1016/j.ecoenv.2024.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Due to microplastics (MPs) being widely distributed in soil, the use of advanced oxidation to remediate organic-contaminated soils may accelerate the aging of MPs in soil and impact the release of di-(2-ethylhexyl) phthalate (DEHP), a potential carcinogen used as a plasticizer in plastics, from MPs. In this study, persulfate oxidation (PO) and temperature treatment (TT) were used to treat biodegradable and petroleum-based MPs, including polylactic acid (PLA), polyvinyl chloride (PVC), and polystyrene (PS). The methods used for evaluating the characteristics changes of MP were X-ray diffraction (XRD) analysis and water contact angle measurement. The effects of aging on DEHP release from MPs were investigated via soil incubation. The results showed PO and TT led to increased surface roughness, oxygen-containing functional group content, and hydrophilicity of the MPs with prolonged aging, consequently accelerating the release of DEHP from the MPs. Interestingly, PLA aged faster than PVC and PS under similar conditions. After 30 days of PO treatment, DEHP release from PLA into the soil increased 0.789-fold, exceeding the increase from PVC (0.454-fold) and PS (0.287-fold). This suggests that aged PLA poses a higher ecological risk than aged PVC or PS. Furthermore, PO treatment resulted in the oxidation and degradation of DEHP on the MP surface. After 30 days of PO treatment, the DEHP content in PLA, PVC, and PS decreased by 19.1%, 25.8%, and 23.5%, respectively. Specifying the types of MPs studied and the environmental conditions would provide a more precise context for the results. These findings provide novel insights into the fate of biodegradable and petroleum-based MPs and the potential ecotoxicity arising from advanced oxidation remediation in contaminated soils.
Collapse
Affiliation(s)
- Shaohua Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Guoyao Niu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yangyang Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Dueñas-Moreno J, Vázquez-Tapia I, Mora A, Cervantes-Avilés P, Mahlknecht J, Capparelli MV, Kumar M, Wang C. Occurrence, ecological and health risk assessment of phthalates in a polluted urban river used for agricultural land irrigation in central Mexico. ENVIRONMENTAL RESEARCH 2024; 240:117454. [PMID: 37865321 DOI: 10.1016/j.envres.2023.117454] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The escalating global concern on phthalate esters (PAEs) stems from their status as emerging contaminants, marked by their toxicity and their potential to harm both the environment and human health. Consequently, this study aimed to evaluate the occurrence, spatial distribution, and ecological and health risks associated with PAEs in the Atoyac River, an urban waterway in central Mexico that receives untreated and poorly treated urban and industrial wastewater. Of the 14 PAEs analyzed in surface water samples collected along the river mainstream, nine were detected and quantified by GC-MS. The concentration of each detected PAE ranged from non-detected values to 25.7 μg L-1. Di (2-ethylhexyl) phthalate (DEHP) and di-n-hexyl phthalate (DnHP) were detected in all sampling sites, with concentrations ranging from 8.1 to 19.4 μg L-1 and from 6.3 to 15.6 μg L-1, respectively. The cumulative Σ9PAEs concentrations reached up to 81.1 μg L-1 and 96.0 μg L-1 in sites downstream to high-tech industrial parks, pinpointing industrial wastewater as the primary source of PAEs. Given that the river water is stored in a reservoir and used for cropland irrigation, this study also assessed the ecological and human health risks posed by PAEs. The findings disclosed a high ecological risk to aquatic organisms exposed to di-n-octyl phthalate (DOP), dicyclohexyl phthalate (DCHP), benzyl butyl phthalate (BBP), DEHP, and DnHP. Additionally, a high carcinogenic (CR > 10-4) and noncarcinogenic (HQ > 10) risk for the DEHP exposure through ingestion of crops irrigated with river water was identified for both children and adults. These data on PAEs provide valuable insights for the Mexican government's future strategies in regulating these pollutants in water bodies, thereby minimizing the environmental and human health risks that they pose.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Ivón Vázquez-Tapia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico.
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Wang H, Li C, Yan G, Zhang Y, Wang H, Dong W, Chu Z, Chang Y, Ling Y. Seasonal distribution characteristics and ecological risk assessment of phthalate esters in surface sediment of Songhua River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122567. [PMID: 37717898 DOI: 10.1016/j.envpol.2023.122567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Phthalic acid esters (PAEs) are typical industrial chemicals used in China. PAEs have received considerable attention because of their ubiquity and potential hazard to humans and the ecology. The spatiotemporal distributions of six PAEs in the surface sediments of the Songhua River in the spring (March), summer (July), and autumn (September) are investigated in this study. The total concentration of phthalic acid esters (∑6PAEs) ranges from 1.62 × 102 ng g-1 dry weight (dw) to 3.63 × 104 ng g-1·dw, where the amount in the spring is substantially higher (p < 0.01) than those in the autumn and summer. Seasonal variations in PAEs may be due to rainfall and temperature. The ∑6PAEs in the Songhua River's upper reaches are significantly higher than those in the middle and lower reaches (p < 0.05). Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the two most abundant PAEs. The ecological hazard of five PAEs is assessed using the hazard quotient method. DBP and DEHP pose moderate or high ecological risks to aquatic organisms at various trophic levels. PAEs originate primarily from industrial, agricultural, and domestic sources. Absolute principal components-multiple linear regression results indicate that agricultural sources are the most dominant contributor to the ∑6PAEs (53.7%). Guidelines for controlling PAEs pollution in the Songhua River are proposed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
12
|
Fu Q, Li J, Wang X, Sun-Waterhouse D, Sun X, Waterhouse GIN, Wu P. Covalent organic framework-based magnetic solid-phase extraction coupled with gas chromatography-tandem mass spectrometry for the determination of trace phthalate esters in liquid foods. Mikrochim Acta 2023; 190:383. [PMID: 37697171 DOI: 10.1007/s00604-023-05958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Covalent organic framework-coated magnetite particles (Fe3O4@COF) were synthesized and applied as the adsorbent to the selective capture of phthalate esters (PAEs) in liquid foods. Combined with the magnetic solid-phase extraction (MSPE) technology, a gas chromatography-tandem mass spectrometry (GC-MS/MS) method was employed for the separation and quantification of PAEs. Following optimization of the magnetic extraction and elution parameters, the developed analytical method offered a satisfactory linear range (0.1-5 μg L-1) with determination coefficients ranging from 0.9934 to 0.9975 for the five different PAEs studied. The limits of detection (LOD) were in the range 1.9-12.8 ng L-1. The recoveries ranged from 70.0 to 119.8% with a relative standard deviation (RSD) less than 9.7%. Density functional theory (DFT) calculations established that the dominant adsorption mechanism used by the COF to bind PAEs involved π-π stacking interactions. Results encourage the wider use of COF-based adsorbents and MSPE methods in the analytical determination of PAEs in foods.
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xin Wang
- Weifang Inspection and Testing Center, Weifang, 261000, People's Republic of China
| | | | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | | | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
13
|
Bhogal S, Grover A, Mohiuddin I. A Review of the Analysis of Phthalates by Gas Chromatography in Aqueous and Food Matrices. Crit Rev Anal Chem 2023; 54:3428-3452. [PMID: 37647342 DOI: 10.1080/10408347.2023.2250876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
As a commonly well-known industrial chemical, phthalates are produced in high volumes to be used in various consumer products (e.g., plasticizers, medical devices, construction materials, and toys) to enhance softness, durability, transparency, and flexibility. Phthalates are generally not chemically bonded to the polymer chain of the plastic in which they are mixed. Thus, they may leach, migrate, or evaporate into indoor/outdoor air, and foodstuffs. In this review, a comprehensive overview of several sample preparation methods coupled with gas chromatography for the analysis of phthalates in various kinds of complex matrices, with a focus on the last 20 years' worth of papers. The review begins by highlighting the environmental significance of phthalate pollution along with the various routes to their exposure to general population. Then, the discussion is extended to cover the pretreatment and extraction techniques for phthalates for their quantitation based on gas chromatographic approach. Finally, the present and future challenges for the detection of phthalates in aqueous and food matrices are discussed.
Collapse
Affiliation(s)
- Shikha Bhogal
- University Centre for Research and Development, Chandigarh University, Mohali, India
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Aman Grover
- Department of Chemistry, Punjabi University, Patiala, India
| | | |
Collapse
|
14
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
15
|
Soltani-Shahrivar M, Afkhami A, Madrakian T, Jalal NR. Sensitive and selective impedimetric determination of TNT using RSM-CCD optimization. Talanta 2023; 257:124381. [PMID: 36801757 DOI: 10.1016/j.talanta.2023.124381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Detection of trace amounts of 2,4,6-Trinitrotoluene as a widely used explosive in the military and industrial sectors is of vital importance due to security and environmental concerns. The sensitive and selective measurement characteristics of the compound still is considered a challenge for analytical chemists. Unlike conventional optical and electrochemical methods, the electrochemical impedance spectroscopy technique (EIS), has a very high sensitivity, but it faces a significant challenge in that it requires complex and expensive steps to modify the electrode surface with selective agents. We reported the design and construction of an inexpensive, simple, sensitive, and selective impedimetric electrochemical TNT sensor based on the formation of a Meisenheimer complex between magnetic multiwalled carbon nanotubes modified with aminopropyl triethoxysilane (MMWCNTs @ APTES) and TNT. The formation of the mentioned charge transfer complex at the electrode-solution interface blocks the electrode surface and disrupts the charge transfer in [(Fe (CN) 6)] 3-/4- redox probe system. Charge transfer resistance changes (ΔRCT) were used as an analytical response that corresponded to TNT concentration. To investigate the influence of effective parameters on the electrode response, such as pH, contact time, and modifier percentage, the response surface methodology based on central composite design (RSM-CCD) was used. The calibration curve was achieved in the range of 1-500 nM with a detection limit of 0.15 nM under optimal conditions, which included pH of 8.29, contact time of 479 s, and modifier percentage of 12.38% (w/w). The selectivity of the constructed electrode towards several nitroaromatic species was investigated, and no significant interference was found. Finally, the proposed sensor was able to successfully measure TNT in various water samples with satisfactory recovery percentages.
Collapse
Affiliation(s)
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | | | | |
Collapse
|
16
|
Amini S, Kandeh SH, Ebrahimzadeh H, Khodayari P. Electrospun composite nanofibers modified with silver nanoparticles for extraction of trace heavy metals from water and rice samples: An highly efficient and reproducible sorbent. Food Chem 2023; 420:136122. [PMID: 37059019 DOI: 10.1016/j.foodchem.2023.136122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Herein, a composite of polyacrylonitrile (PAN)/agar/silver nanoparticles (AgNPs) electrospun nanofibers was fabricated and applied as an efficient sorbent for thin-film micro-extraction (TFME) of five metal ions followed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Incorporating agar into the nanofibers followed by in situ photo-reductive reaction under UV-lamp resulted in highly uniform dispersion of AgNPs in the nanofibers. Under the optimized conditions, agreeable linearity was acquired in the range of 0.5-250.0 ng mL-1 (R2 ≥ 0.9985). The LODs (based on S/N = 3) were attained in the range of 0.2 to 0.5 ng mL-1. The relative standard deviations (RSDs) were between 4.5% and 5.6% (intra-day, n = 5) and 5.3%-5.9% (inter-day, n = 3) for three sequential days. The developed method was investigated with water and rice samples, and recoveries (93.9-98.0%) indicated that the PAN/agar/AgNPs could be a promising film for the adsorption of heavy metal ions in varied samples.
Collapse
Affiliation(s)
- Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Saberi R, Nasr-Esfahani M. Magnetic Carbon Nanotubes Mesoporous Silica Nanocomposite Functionalized with Palladium: Synthesis, Characterization, and Application as an Efficient Catalyst for Suzuki–Miyaura Reactions. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
18
|
Ravichandran R, Annamalai K, Annamalai A, Elumalai S. Solid State – Green Construction of Starch- beaded Fe3O4@Ag nanocomposite as Superior Redox Catalyst. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
19
|
Determination of phthalic acid esters (PAEs) along with probabilistic health risk assessment in fruit juice samples in Tehran, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44833-44844. [PMID: 36701052 DOI: 10.1007/s11356-023-25313-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
In the present study, magnetic solid phase extraction (MSPE) method and gas chromatography-mass spectrometry (GC/MS) technique were used to measure 6 PAE in fruit juice samples. The mean of total phthalic acid esters (ƩPAEs) in all samples was 3.55 ± 0.66 µg/L. The mean concentration of DEHP (bis(2-ethylhexyl) phthalate) in samples was 0.82 ± 0.31 µg/L, which was lower than the mentioned United States Environmental Protection Agency (USEPA) standard level in drinking water (6 μg/L for DEHP). The pineapple juice samples (4.44 ± 0.57 µg/L) and mango juice samples (2.77 ± 0. 1 µg/L) had maximum and minimum mean levels of ƩPAEs, respectively. Also, results showed that brand B (3.76 ± 0.87 µg/L) and samples in the time of expiration date (3.64 ± 0.72 µg/L) had the highest PAE levels. The rank order Chronic Daily Intake (95%) values for adults were DEHP ([Formula: see text]) > butylbenzyl phthalates (BBP) ([Formula: see text]) > diethyl phthalate (DEP) ([Formula: see text]) and for children were DEHP ([Formula: see text]) > BBP (9.07E-04) > DEP ([Formula: see text]), which were below the tolerable daily intake (TDI) value. The noncancer risk of PAEs based on the target hazard quotient (THQ) was acceptable (< 1). The results exhibited that the Incremental Lifetime Cancer Risk (ILCR) was below the permissible limit (< [Formula: see text]). Therefore, the risk of carcinogenicity and noncarcinogenicity of PAEs in juices does not have adverse effects on human health.
Collapse
|
20
|
Azari A, Nabizadeh R, Mahvi AH, Nasseri S. Integrated Fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: multi-criteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY 2022; 102:7329-7344. [DOI: 10.1080/03067319.2020.1828395] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ali Azari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
21
|
Magnetic NH 2-MIL-101(Al)/Chitosan nanocomposite as a novel adsorbent for the removal of azithromycin: modeling and process optimization. Sci Rep 2022; 12:18990. [PMID: 36347864 PMCID: PMC9643464 DOI: 10.1038/s41598-022-21551-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
In the present study, the magnetic NH2-MIL-101(Al)/chitosan nanocomposite (MIL/Cs@Fe3O4 NCs) was synthesized and used in the removal of azithromycin (AZT) from an aqueous solution for the first time. The as-synthesized MIL/Cs@Fe3O4 NCs was characterized by SEM, TEM, XRD, FTIR, BET, and VSM techniques. The effect of various key factors in the AZT adsorption process was modeled and optimized using response surface methodology based on central composite design (RSM-CCD). The low value of p-value (1.3101e-06) and RSD (1.873) parameters, along with the coefficient of determination > 0.997 implied that the developed model was well fitted with experimental data. Under the optimized conditions, including pH: 7.992, adsorbent dose: 0.279 g/L, time: 64.256 min and AZT concentration: 10.107 mg/L, removal efficiency and AZT adsorption capacity were obtained as 98.362 ± 3.24% and 238.553 mg/g, respectively. The fitting of data with the Langmuir isotherm (R2: 0.998, X2: 0.011) and Pseudo-second-order kinetics (R2: 0.999, X2: 0.013) showed that the adsorption process is monolayer and chemical in nature. ΔH° > 0, ΔS° > 0, and ∆G° < 0 indicated that AZT removal was spontaneous and endothermic in nature. The effect of Magnesium on AZT adsorption was more complicated than other background ions. Reuse of the adsorbent in 10 consecutive experiments showed that removal efficiency was reduced by about 30.24%. The performance of MIL/Cs@Fe3O4 NCs under real conditions was also tested and promising results were achieved, except in the treatment of AZT from raw wastewater.
Collapse
|
22
|
Physicochemical Properties and Antibacterial Activity of Gellan Gum Incorporating Zinc Oxide/Carbon Nanotubes Bionanocomposite Film for Wound Healing. Bioinorg Chem Appl 2022; 2022:3158404. [PMID: 36072280 PMCID: PMC9441347 DOI: 10.1155/2022/3158404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Wound healing dressing based on a natural polymer of gellan gum incorporating zinc oxide nanoparticles and multiwall carbon nanotubes (GG/ZnONP + MWCNT) bionanocomposite film was fabricated via the solution casting method. The physicochemical properties of the film were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). Moreover, the antibacterial properties of the bionanocomposite film were investigated for wound healing applications. The characterization results confirmed the reinforcement of the gellan gum (GG) matrix with zinc oxide nanoparticles (ZnONP) and multiwall carbon nanotubes (MWCNT), as an amorphous GG/ZnONP + MWCNT bionanocomposite film was obtained. SEM morphological analysis shows that the addition of ZnONP and MWCNT nanofillers changed the film microstructure into a sponge-like structure that is more suitable for fluid uptake and thus more useful for wound healing. The GG/ZnONP + MWCNT bionanocomposite film demonstrated good antibacterial activity against all strains tested. Furthermore, macroscopic analysis shows that the wound treated with GG/ZnONP + MWCNT bionanocomposite film recovered completely (100%) in 14 days, compared to pure GG film (90.76%) and negative control (77.40%). As a result, the GG/ZnONP + MWCNT bionanocomposite film could be a promising wound dressing material.
Collapse
|
23
|
Sobhi HR, Mohammadzadeh F, Behbahani M, Yeganeh M, Esrafili A. Application of a modified MWCNT-based d-µSPE procedure for determination of bisphenols in soft drinks. Food Chem 2022; 385:132644. [PMID: 35287103 DOI: 10.1016/j.foodchem.2022.132644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
Herein, a facile dispersive micro-solid phase extraction (d-µSPE) procedure using carboxylated multi-walled carbon nanotubes modified with silver nanoparticles (Ag/MWCNTs-COOH) was successfully developed for the adsorption and subsequent determination of low levels of two well-known contaminants, namely bisphenol A and S (BPA and BPS) in water and soft drink samples. The detection and measurement of the above-mentioned compounds were performed by HPLC-UV instrument. The applied d-µSPE procedure has several advantages such as rapidity, high degree of sensitivity, precision and efficiency. A combination of polar/non-polar interactions seems to play a key role in the adsorption process. Under the optimized conditions, the calibration curves were linear over the concentration range of 1-500 µg/L for the both targets. The practical limit of quantifications (LOQ) for the both analytes were determined to be 1.0 µg/L. The average relative recoveries obtained from the fortified samples varied between 92 and 110% with the relative standard deviations (RSD%) of 2.9-9.5%.
Collapse
Affiliation(s)
| | | | - Mohammad Behbahani
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Iran
| |
Collapse
|
24
|
Khalatbary M, Sayadi MH, Hajiani M, Nowrouzi M, Homaeigohar S. Green, Sustainable Synthesis of γ-Fe 2O 3/MWCNT/Ag Nano-Composites Using the Viscum album Leaf Extract and Waste Car Tire for Removal of Sulfamethazine and Bacteria from Wastewater Streams. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162798. [PMID: 36014663 PMCID: PMC9412352 DOI: 10.3390/nano12162798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/02/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) decorated with Ag nanoparticles (NPs) are bifunctional adsorbent nanomaterials with antibacterial activity. They can be magnetically recovered from wastewater in case of coupling with γ-Fe2O3. In this study, for the first time, an environmentally friendly technique was applied to prepare a nanocomposite (NC) material composed of γ-Fe2O3/MWCNT/Ag by using Bridgestone disposable tires and Viscum album leaves extract. γ-Fe2O3/MWCNTs/Ag NC was employed for the removal of sulfamethazine (SMT) from aqueous solutions. Under the optimized conditions determined via the Taguchi method, the highest SMT adsorption capacity of the γ-Fe2O3/MWCNT/Ag NC was measured to be 47.6 mg/g. The experimental data fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm. The thermodynamic parameters implied that the adsorption process was endothermic. In addition to adsorption of the drug pollutant, the NC demonstrated a superior antibacterial activity against Gram-positive bacteria. The reusability test also showed that over 79% SMT can be removed using γ-Fe2O3/MWCNTs/Ag NC even after four adsorption cycles. Taken together, γ-Fe2O3/MWCNTs/Ag NC was proven to be a promising antibacterial nano-adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Mansooreh Khalatbary
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand P.O. Box 97175/615, Iran
| | - Mohammad Hossein Sayadi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand P.O. Box 97175/615, Iran
| | - Mahmood Hajiani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand P.O. Box 97175/615, Iran
| | - Mohsen Nowrouzi
- Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169-13798, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
25
|
Al-Musawi TJ, Mengelizadeh N, Taghavi M, Shehu Z, Balarak D. Capability of copper-nickel ferrite nanoparticles loaded onto multi-walled carbon nanotubes to degrade acid blue 113 dye in the sonophotocatalytic treatment process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51703-51716. [PMID: 35246794 DOI: 10.1007/s11356-022-19460-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In this study, copper-nickel ferrite (CuNiFe2O4) nanoparticles were successfully loaded onto multi-walled carbon nanotubes (MWCNTs) by using the coprecipitation method and used as new catalysts (MWCNT-CuNiFe2O4) in the sonophotocatalytic degradation process of the acid blue 113 (AB113) dye. The success of the MWCNT-CuNiFe2O4 synthesis and its properties were determined by analyzing it using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). A high efficiency of dye removal (100%), total organic carbon (93%), and chemical oxygen demand (95%) were achieved with the following conditions: pH of dye solution = 5, MWCNT-CuNiFe2O4 dosage = 0.6 g/L, AB113 dye concentration = 50 mg/L, UV light intensity = 36 W, ultrasonic wave frequency = 35 kHz, and treatment time = 30 min. The kinetic results revealed that the efficiency of the sonophotocatalytic process using MWCNT-CuNiFe2O4 was higher than that of the sonolysis, photolysis, photocatalysis, and sonocatalysis processes. Scavenging studies demonstrated that the holes (h+) and hydroxyl radical (•OH) were the main reactive species for the AB113 dye degradation. The stability and recyclability of MWCNT-CuNiFe2O4 were confirmed with eight consecutive cycles for a maximum efficiency of more than 92%. The high rate of BOD5/COD indicated that the sonophotocatalytic process had the potential to degrade the dye into degradable compounds. The toxicity study with an Escherichia coli growth inhibition rate emphasized that MWCNT-CuNiFe2O4 in the sonophotocatalytic degradation process of the AB113 dye had a significant effect on reducing toxicity, when compared to processes of photolysis and photocatalysis. During the sonophotocatalytic process using MWCNT-CuNiFe2O4, the AB113 dye was mineralized into CO2, H2O, NH4+, NO3-, and SO42-. The results of the present study proved that the MWCNT-CuNiFe2O4-based sonophotocatalytic process was a promising dye degradation technology to protect the aquatic environment.
Collapse
Affiliation(s)
- Tariq J Al-Musawi
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nezamaddin Mengelizadeh
- Department of Environmental Health Engineering, Evas Faculty of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahmoud Taghavi
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zaccheus Shehu
- Department of Chemistry, Faculty of Science, Gombe State University, Gombe, Nigeria
| | - Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
26
|
Forward osmosis performance of thin film composite membrane composed of electrospun polysulfone fiber coated by Fe3O4/fCNT-embedded polyamide active layer. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1135-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Khalili F, Shariatifar N, Dehghani MH, Yaghmaeian K, Nodehi RN, Yaseri M, Arabameri M. The analysis and probabilistic health risk assessment of polycyclic aromatic hydrocarbons in cereal products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31099-31109. [PMID: 35000169 DOI: 10.1007/s11356-021-17337-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
The analysis and probabilistic health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in cereal products were done by using magnetic solid-phase extraction (MSPE) method and gas chromatography/mass spectrometric (GC/MS). The results of method showed LOQ and LOD of PAHs compounds were 0.105-0.180 and 0.035-0.060 µg/kg, and the recorded values were 4.3-12.1 and 6.1-20.3% for repeatability and reproducibility with an estimated recovery of 94.4-103.4%. In this study, we analyzed kind of bread (Barbari, Sangak, Baguette, Taftoon, Lavash), macaroni, lasagna, and cooked rice that mean of total PAHs were 98.2, 121.7, 134.9, 166.3, 176.3, 176.2, 130.1, and 248.3 μg/kg, respectively. Further, the correlation between the type and amount of 16 PAHs with cereal products samples evaluated with multivariate principal component analysis and heat map visualization. The highest incremental lifetime cancer risk (ILCR) was found in cooked rice (7.80E-6), while the lowest ILCR was found in Lasagna (2.35E-07). In conclusion, the PAHs content in the tested products were in low health risk ranges (1 × 10-6 < ILCR < 1 × 10-4), and all of the cereal products sold in Tehran are considered safe for consumers. Therefore, cereal products should be regularly evaluated and monitored by regulatory agencies to reduce contaminants in these high-consumption products.
Collapse
Affiliation(s)
- Fariba Khalili
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Arabameri
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
28
|
Baranovskaya VS, Berlina AN, Eremin SA. A Fluorescence Polarization Immunoassay Procedure for Determining Dibutyl Phthalate in Water. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wang Q, Zhu S, Xi C, Zhang F. A Review: Adsorption and Removal of Heavy Metals Based on Polyamide-amines Composites. Front Chem 2022; 10:814643. [PMID: 35308790 PMCID: PMC8931339 DOI: 10.3389/fchem.2022.814643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the problem of heavy metal pollution has become increasingly prominent, so it is urgent to develop new heavy metal adsorption materials. Compared with many adsorbents, the polyamide-amine dendrimers (PAMAMs) have attracted extensive attention of researchers due to its advantages of macro-molecular cavity, abundant surface functional groups, non-toxicity, high efficiency and easy modification. But in fact, it is not very suitable as an adsorbent because of its solubility and difficulty in separation, which also limits its application in environmental remediation. Therefore, in order to make up for the shortcomings of this material to a certain extent, the synthesis and development of polymer composite materials based on PAMAMs are increasingly prominent in the direction of solving heavy metal pollution. In this paper, the application of composites based on PAMAMs and inorganic or organic components in the adsorption of heavy metal ions is reviewed. Finally, the prospects and challenges of PAMAMs composites for removal of heavy metal ions in water environment are discussed.
Collapse
|
30
|
Moazzen M, Shariatifar N, Arabameri M, Hosseini H, Ahmadloo M. Measurement of Polycyclic Aromatic Hydrocarbons in Baby Food Samples in Tehran, Iran With Magnetic-Solid-Phase-Extraction and Gas-Chromatography/Mass-Spectrometry Method: A Health Risk Assessment. Front Nutr 2022; 9:833158. [PMID: 35252309 PMCID: PMC8891379 DOI: 10.3389/fnut.2022.833158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
Baby food is one of the most sensitive foods available, which is closely monitored for carcinogens. In this study, 16 Polycyclic Aromatic Hydrocarbon (PAH) compounds were evaluated by using the method of magnetic-solid-phase-extraction and gas-chromatography/mass-spectrometry (MSPE/GC-MS). The recovery, limit of detection (LOD), and limit of quantification (LOQ) of PAH compounds were 93.4–101.6%, 0.06–1.12, and 0.18–3.38 μg/kg, respectively. The results indicated the mean of total PAHs in all samples was 3.73 ± 0.8 μg/kg, and the mean of Benzo[a]pyrene (BaP) was 0.29 ± 0.14 μg/kg that were lower than the USA-Environmental Protection Agency (USEPA) standard level (1 μg/kg, BaP in baby foods). In addition, our results showed that mixed five cereal-based baby food had a maximum mean of ΣPAHs (5.06 ± 0.68 μg/kg) and mixed wheat and date-based baby food had a minimum mean of ΣPAHs (3.03 ± 0.41 μg/kg). The carcinogenic risk due to PAH in the tested baby foods sold in Iran was adequately low, and all examined products were safe for consumers. Therefore, it can be said that the consumption of baby foods does not pose a threat to consumers.
Collapse
Affiliation(s)
- Mojtaba Moazzen
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Nabi Shariatifar
| | - Majid Arabameri
- Food Safety Research Center (salt), School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadloo
- Department of Food Safety and Hygiene, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
31
|
Yu X, Zhong T, Zhang Y, Zhao X, Xiao Y, Wang L, Liu X, Zhang X. Design, Preparation, and Application of Magnetic Nanoparticles for Food Safety Analysis: A Review of Recent Advances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:46-62. [PMID: 34957835 DOI: 10.1021/acs.jafc.1c03675] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review (with 126 references) aims at providing an updated overview of the recent developments and innovations of the preparation and application of magnetic nanoparticles for food safety analysis. During the past two decades, various magnetic nanoparticles with different sizes, shapes, and surface modifications have been designed, synthesized, and characterized with the prospering development of material science. Analytical scientists and food scientists are among the ones who bring these novel materials from laboratories to commercial applications. Powerful and versatile surface functional groups and high surface to mass ratios make these magnetic nanoparticles useful tools for high-efficiency capture and preconcentration of certain molecules, even when they exist in trace levels or complicated food matrices. This is why more and more methods for sensitive detection and quantification of hazards in foods are developed based on these magic magnetic tools. In this review, the principles and superiorities of using magnetic nanoparticles for food pollutant analysis are first introduced, like the mechanism of magnetic solid phase extraction, a most commonly used method for food safety-related sample pretreatment. Their design and preparation are presented afterward, alongside the mechanisms underlying their application for different analytical purposes. After that, recently developed magnetic nanoparticle-based methods for dealing with food pollutants such as organic pollutants, heavy metals, and pathogens in different food matrices are summarized in detail. In the end, some humble outlooks on future directions for work in this field are provided.
Collapse
Affiliation(s)
- Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Yujia Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
32
|
Liu Y, Song W, Zhou D, Han F, Gong X, Pan P. A new core–shell magnetic mesoporous surface molecularly imprinted composite and its application as an MSPE sorbent for determination of phthalate esters. RSC Adv 2022; 12:7253-7261. [PMID: 35424702 PMCID: PMC8982323 DOI: 10.1039/d1ra09405j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 01/16/2023] Open
Abstract
In this study, a new core–shell magnetic mesoporous surface molecularly imprinted polymer (Fe3O4@SiO2@mSiO2-MIPs) which has specific adsorption and rapid adsorption rate for phthalate esters (PAEs) was prepared by a convenient method. Based on this composite as a magnetic solid phase extraction (MSPE) material, a rapid, efficient and sensitive matrix dispersion magnetic solid-phase extraction gas chromatography-mass spectrometry method (DMSPE-GC/MS) was developed for the determination of PAEs in multiple liquid samples. It is the first time that Fe3O4@SiO2@mSiO2-MIPs have been prepared by bonding amino groups on the surface of a double layer silicon substrate with diisononyl phthalate (DINP) as virtual template and 3-(2-aminoethyl)-aminopropyl trimethoxymethylsilane (TSD) as functional monomer. FT-IR, TEM, EDS, SEM, XRD, BET and VSM were used to characterize the composite. The adsorption isotherm and kinetics of Fe3O4@SiO2@mSiO2-MIPs showed that it possessed fast adsorption rates (approximately 5 min to reach equilibrium), high adsorption capacities (523.9 mg g−1) and good recognition of PAEs. The real samples were preconcentrated by Fe3O4@SiO2@mSiO2-MIPs, under the optimum DMSPE-GC/MS conditions. Validation experiments showed that the method presented good linearity (R2 > 0.9971), satisfactory precision (RSD < 5.7%) and high recovery (92.1–105.8%), and the limits of detection ranged from 1.17 ng L−1 to 3.03 ng L−1. The results indicated that the novel method had good sensitivity, high efficiency and wide sample application and was suitable for the determination of PAEs in liquid drink samples such as water, alcohol, beverages and so on. A new core–shell magnetic mesoporous surface molecularly imprinted polymer (Fe3O4@SiO2@mSiO2-MIPs) which has specific adsorption for phthalate esters was synthesized by a facile and convenient method.![]()
Collapse
Affiliation(s)
- Yuxin Liu
- Technology Center of Hefei Customs, Hefei 230022, P. R. China
| | - Wei Song
- Technology Center of Hefei Customs, Hefei 230022, P. R. China
| | - Dianbing Zhou
- Technology Center of Hefei Customs, Hefei 230022, P. R. China
| | - Fang Han
- Technology Center of Hefei Customs, Hefei 230022, P. R. China
| | - Xiaoming Gong
- Technology Center of Jinan Customs, Jinan 250000, P. R. China
| | - Pan Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui, P. R. China
| |
Collapse
|
33
|
Singh K, Kumar A. Physiochemical aspects for the adsorption behavior of sodium carboxymethyl cellulose onto mesoporous granular fine quartz surface from its aqueous solutions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1878373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kaman Singh
- Advanced Centre of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow-U.P., India
| | - Ashok Kumar
- Advanced Centre of Surface Chemistry, Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow-U.P., India
| |
Collapse
|
34
|
Moradi S, Shariatifar N, Akbari-adergani B, Molaee Aghaee E, Arbameri M. Analysis and health risk assessment of nitrosamines in meat products collected from markets, Iran: with the approach of chemometric. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1361-1371. [PMID: 34900272 PMCID: PMC8617244 DOI: 10.1007/s40201-021-00692-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/09/2021] [Indexed: 05/05/2023]
Abstract
The aim of study was evaluate of the concentration and health risk of nitrosamines in 150 meat products samples by using gas chromatography coupled with mass spectrometry (GC/MS), with the chemometric approach. Among the identified nitrosamines, the levels of N-nitrosopyrrolidine (NPYR), N-nitrosopiperidine (NPIP), and total nitrosamines in meat sausages samples were significantly higher than chicken sausages (p < 0.05). Principal component analysis and heat map visualization confirmed meat percentage and sausages type (meat or chicken) which had significant effects on nitrosamines content. The NPIP and NPYR intake was 1.17E-07 and 2.12E-07 mg/kg bw/day, respectively. The Monte Carlo simulation results indicated that the 95th percentile from NPIP and NPYR based on ILCR index were 9.07E-07 and 4.72E-07, respectively. In conclusion, the carcinogenic risk of nitrosamines was considerably lower than the safe risk limit (CR > 1E-4) recommended by United States Environmental Protection Agency for Iranian population.
Collapse
Affiliation(s)
- Samin Moradi
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Akbari-adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Ebrahim Molaee Aghaee
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Arbameri
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
35
|
Rezaei H, Moazzen M, Shariatifar N, Khaniki GJ, Dehghani MH, Arabameri M, Alikord M. Measurement of phthalate acid esters in non-alcoholic malt beverages by MSPE-GC/MS method in Tehran city: chemometrics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51897-51907. [PMID: 33993444 DOI: 10.1007/s11356-021-14290-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Phthalic acid esters (PAEs) are compounds that are used in the bottle as the main plasticizers. Therefore, the possibility of releasing phthalate esters into beverages is very high and there is a concern to consumer health and monitoring organizations. The aim of this research was to assess the phthalic acid esters (di-n-octyl phthalate (DNOP), butyl benzyl phthalate (BBP), dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), bis(di-ethylhexyl) phthalate (DEHP), and total PAEs) in bottled non-alcoholic malt beverages (n = 120) by multi-walled carbon nanotubes were magnetized with iron (MWCNT-Fe3O4) using gaschromatography/mass spectrometry (GC-MS). The results showed that the highest and the lowest levels of total phthalate esters in samples were 9483.93 and 2412.50 ng/L, respectively. The mean of DEHP which has also been found to be carcinogenic in all samples was lower than 5944.73 ng/L. The highest concentration of DEHP in four samples was upper than 8957.87 ng/L. Perceived limit of detection (LOD) ranged from 13 to 30 ng/L and the limit of quantification (LOQ) ranged from 39 to 90 ng/L. Multivariate techniques and heat map visualization were used to assess the correlation among the type and levels of PAEs with the brand, color, product date, pH, sugar, volume, and gas pressure. Therefore, based on heat map and principal component analysis (PCA) results, the DEHP and total PAEs were the closest accessions, indicating that these variables had similar trends. Based on the results, it can be stated that due to the low average of total phthalate esters in non-alcoholic malt beverages, there is no serious health hazard of these compounds for humans.
Collapse
Affiliation(s)
- Hannah Rezaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Moazzen
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Arabameri
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Mahsa Alikord
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Pourreza N, Zadeh-Dabbagh R. Vortex-assisted Dispersive Solid-phase Extraction Using Schiff-base Ligand Anchored Nanomagnetic Iron Oxide for Preconcentration of Phthalate Esters and Determination by Gas Chromatography and Flame Ionization Detector. ANAL SCI 2021; 37:1213-1220. [PMID: 33390412 DOI: 10.2116/analsci.20p363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phthalate esters are synthetic chemicals that are widely used in plastic industries as plasticizer. They are harmful to humans and could be carcinogenic. In this research, a new nanosorbent was prepared via a Schiff-base reaction between p-dimethylaminobenzaldehyde and Fe3O4@SiO2-NH2 nanoparticles. A characterization of the sorbent was performed by Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. A modified nanosorbent has a core shell structure, and shows a great tendency towards the sorption of phthalate esters. Hence, it was utilized for the dispersive solid-phase extraction of six phthalate esters and determination by gas chromatography-flame ionization detection. Several variables, such as the pH, sorbent amount, salt effects, extraction and desorption time, extraction solvent type and volume, were investigated to establish the optimal conditions. Calibration graphs were linear in the range of 1.0 - 150.0 μg L-1 for dimethyl phthalate, bis-(2-ethylhexyl) phthalate, di-n-octyl phthalate and 0.1 - 200.0 μg L-1 for diethyl phthalate, di-n-butyl phthalate and butyl benzyl phthalate, respectively. The obtained limits of detections (S/N = 3) were in the range of 0.02 - 0.31 μg L-1. Application of the method for the enrichment and determination of phthalate esters in mineral water, natural low fat yogurt and sodium chloride infusion (0.9%, w/v) was investigated.
Collapse
Affiliation(s)
- Nahid Pourreza
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz
| | - Reza Zadeh-Dabbagh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz
| |
Collapse
|
37
|
Development of a bimodal sensor based on upconversion nanoparticles and surface-enhanced Raman for the sensitive determination of dibutyl phthalate in food. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Kermani M, Shahsavani A, Ghaderi P, Kasaee P, Mehralipour J. Optimization of UV-Electroproxone procedure for treatment of landfill leachate: the study of energy consumption. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:81-93. [PMID: 34150220 PMCID: PMC8172731 DOI: 10.1007/s40201-020-00583-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/05/2020] [Indexed: 05/15/2023]
Abstract
With increased population, treatment of solid waste landfill and its leachate is of major concern. Municipal landfill leachate shows variable, heterogeneous and incontrollable characteristics and contains wide range highly concentrated organic and inorganic compounds, in which hampers the application of a solo method in its treatment. Among different approaches, biological treatment can be used, however it is not effective enough to elimination all refractory organics, containing fulvic-like and humic-like substance. In this experimental study, the UV Electroperoxone process as a hybrid procedure has been employed to treat landfill leachate. The effect of various parameters such as pH, electrical current density, ozone concentration, and reaction time were optimized using central composite design (CCD). In the model fitting, the quadratic model with a P-Value less than 0.5 was suggested (< 0.0001). The R2, R2 adj, and R2 pre were determined equal to 0.98,0.96, and 0.91 respectively. Based on the software prediction, the process can remove 83% of initial COD, in the optimum condition of pH = 5.6, ozone concentration of 29.1 mg/l. min, the current density of 74.7 mA/cm2, and process time of 98.6 min. In the optimum condition, 55/33 mM H2O2 was generated through electrochemical mechanism. A combination of ozonation, photolysis and electrolysis mechanism in this hybrid process increases COD efficiency removal up 29 percent which is higher than the sum of separated mechanisms. Kinetic study also demonstrated that the UV-EPP process follows pseudo-first order kinetics (R2 = 0.99). Based on our results, the UV-EPP process can be informed as an operative technique for treatment of old landfills leachates.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Ghaderi
- Master of Environment Engineering Water and Wastewater, West Tehran Branch Islamic Azad University, Tehran, Iran
| | - Pooria Kasaee
- Master of Civil Engineering, Azad University of Tehran West Branch, Tehran, Iran
| | - Jamal Mehralipour
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Pesaran Afsharian Y, Hedayatpour M, Jamshidi S. Amoxicillin separation from aqueous solution by negatively charged silica composite membrane. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:121-131. [PMID: 34150223 PMCID: PMC8172706 DOI: 10.1007/s40201-020-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Silica composite membranes were successfully prepared by acid/ base-catalyzed sol-gel method and characterized by SEM, FTIR, AFM and contact angle Low isoelectric point of the silica layers provided negatively charged composite membranes, resulting electrostatic repulsion forces between membrane surface and amoxicillin molecules at higher pHs. The rejection rate of amoxicillin was studied systematically at different pHs, solute concentrations, transmembrane pressures and temperatures. It was found that acid-catalyzed membrane has higher amoxicillin rejection ratio compared to base-catalyzed membrane. Especially, acid-catalyzed membrane achieved the highest rejection of 90% at the transmembrane pressure of 6 bar, 45 °C, pH = 10, and initial feed concentration of 50 ppm. Long term stability exhibit that the membrane performance in permeation flux was steady for up to 100 h. However, the AMX rejection of 89% was maintained for over 250 h in acid-catalyzed membrane. It was concluded that the use of negatively charged ceramic membranes is promising for removal of amoxicillin from water resources.
Collapse
Affiliation(s)
| | - Mehrab Hedayatpour
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sona Jamshidi
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
40
|
Ravi T, Sundararaman S. Adsorptive Separation of Hexavalent Chromium From its Aqueous and Real Water Mixtures Using Thermally Treated Country Eggshell Coated With Magnetite Nanoparticles. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
41
|
Magnetite-Based Catalyst in the Catalytic Wet Peroxide Oxidation for Different Aqueous Matrices Spiked with Naproxen–Diclofenac Mixture. Catalysts 2021. [DOI: 10.3390/catal11040514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Magnetite supported on multiwalled carbon nanotubes catalysts were synthesized by co-precipitation and hydrothermal treatment. The magnetic catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectrometry, thermogravimetric analysis and N2 physisorption. The catalysts were then tested for their ability to remove diclofenac (DCF) and naproxen (NAP) from an aqueous solution at different conditions (pH, temperature, and hydrogen peroxide) to determine the optimum conditions for chemical oxidation. The optimization of the process parameters was conducted using response surface methodology (RSM) coupled with Box–Behnken design (BBD). By RSM–BBD methodology, the optimal parameters (1.75 mM H2O2 dosage, 70 °C and pH 6.5) were determined, and the removal percentages of NAP and DCF were 19 and 54%, respectively. The NAP–DCF degradation by catalytic wet peroxide oxidation (CWPO) was caused by •OH radicals. In CWPO of mixed drug solutions, DCF and NAP showed competitive oxidation. Hydrophobic interactions played an important role during the CWPO process. On the other hand, the magnetic catalyst reduced its activity after the second cycle of reuse. In addition, proof of concept and disinfection tests performed at the operating conditions showed results following the complexity of the water matrices. In this sense, the magnetic catalyst in CWPO has adequate potential to treat water contaminated with NAP–DCF mixtures.
Collapse
|
42
|
LIAO Y, HUANG X, WANG Z, GAN R. [Research progress in the application of magnetic solid phase extraction based on carbon based magnetic materials in food analysis]. Se Pu 2021; 39:368-375. [PMID: 34227756 PMCID: PMC9404120 DOI: 10.3724/sp.j.1123.2020.05038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 12/07/2022] Open
Abstract
Trace toxic substances in food pose a serious threat to human health, and need to be detected and analyzed to ensure food safety. However, there are many kinds of toxic substances in food, with small amounts and complex matrices, making it necessary to select an appropriate sample pretreatment technology for extraction and purification. There are some disadvantages to sample pretreatment methods such as solid phase extraction and liquid-liquid extraction, in terms of poor selectivity, significant influence of matrix interference, large sample requirement, long extraction time, use of a large amount of harmful organic solvents, and cumbersome and time-consuming operation. Magnetic solid phase extraction (MSPE) combines the advantages of magnetic separation and traditional SPE technology, avoids time-consuming column loading, and can extract the target analyte efficiently. Because of its advantages, in that it has simple operation, is time-saving and fast, requires no centrifugal filtration, and is environmentally friendly, it is considered an efficient sample pretreatment technology and applied in food analysis. The adsorption capacity and selectivity of the magnetic adsorbent used in MSPE are the key factors affecting the extraction efficiency and selectivity of MSPE, and play a key role in the accuracy of the established method. Carbon-based magnetic materials are a type of new functional magnetic materials prepared by the co-precipitation of carbon-based materials (carbon nanotubes, graphene, metal-organic framework-derived carbon, or activated carbon) and magnetic materials. In order to endow carbon-based magnetic materials with the advantages of both, carbon materials and magnetic materials, while also reflecting the advantages of high specific surface area, good stability, low cost, environmental friendliness, excellent physical and chemical properties, high porosity, and high adsorption capacity, proper functional modification is needed. Carbon-based magnetic materials modified by functionalization can efficiently enrich organic and inorganic analytes with different properties, and have seen significant progress in environmental analysis, biological detection, pollution control, and other fields. In recent years, MSPE technology based on carbon-based magnetic materials has been gradually applied in food analysis and pretreatment, but its use is still in infancy and holds immense application potential. Reference to more than 50 papers published in SCI and Chinese core journals over the past four years reveals that carbon-based materials include carbon nanotubes modified by functional groups, reagents, or materials; graphene, graphene oxide, and reduced graphene oxide; carbon derived from a gold organic framework; activated carbon biochar; and nanodiamond. The harmful substances in food samples include esters, mycotoxins, polycyclic aromatic hydrocarbons, antibiotics, alkaloids, phenols, vitamins, and antibiotics. Based on the classification of carbon-based materials, this review reveals that carbon-based magnetic materials have good preconcentration ability for harmful substances in food samples. MSPE can be combined with GC-MS, liquid chromatography-high resolution mass spectrometry (LC-HRMS), ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS), ultra high performance liquid chromatography-Q-Exactive high resolution mass spectrometry (UHPLC-Q-Exactive HRMS), high performance liquid chromatography-diode array detection (HPLC-DAD), gas chromatography micro-electron capture detection (GC-μECD), high performance liquid chromatography fluorescence with post-column photochemical derivatization (HPLC-PCD-FLD), and HPLC-UV to analyze food samples. These combined technologies have high accuracy and recovery. However, the synthesis methods of carbon-based magnetic materials such as carbon nanotubes and graphene, incur high energy consumption and high cost, and involve complex processes, which limit their application. Therefore, a carbon-based magnetic adsorbent with low cost, high selectivity, and high extraction efficiency was developed by further exploring functional modification with biochar as a carbon base. This is a very promising direction to develop MSPE technology utilizing biochar-based magnetic materials for food sample pretreatment. This review provides a theoretical basis and technical support for the wide application of carbon-based magnetic materials in MSPE technology for food analysis.
Collapse
|
43
|
Ortega-Zamora C, Jiménez-Skrzypek G, González-Sálamo J, Hernández-Borges J. Extraction of phthalic acid esters from soft drinks and infusions by dispersive liquid-liquid microextraction based on the solidification of the floating organic drop using a menthol-based natural deep eutectic solvent. J Chromatogr A 2021; 1646:462132. [PMID: 33894455 DOI: 10.1016/j.chroma.2021.462132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/21/2023]
Abstract
In this work, a natural deep eutectic solvent (NADES) consisting of L-menthol and acetic acid in a 1:1 molar ratio has been applied as extraction solvent for the dispersive liquid-liquid microextraction based on the solidification of the floating organic drop (DLLME-SFO) of a group of nine phthalic acid esters (dipropyl phthalate, DPP; butyl benzyl phthalate, BBP; dibutyl phthalate, DBP; dicyclohexyl phthalate, DCHP; diisopentyl phthalate, DIPP; di-n-pentyl phthalate, DNPP; di(2-ethylhexyl) phthalate, DEHP; diisononyl phthalate, DINP; and diisodecyl phthalate, DIDP) from three common infusions (camomile, pennyroyal mint, and linden teas) and three soft drinks (green tea, tonic, and lime and lemon drink), using dihexyl phthalate (DHP) and di-n-octyl phthalate (DNOP) as internal standards. After the DLLME-SFO procedure, analyses were carried out by high-performance liquid chromatography with UV detection. Method calibration showed good linearity for all the analytes and matrices, with determination coefficients (R2) higher than 0.9910. Relative recovery values were between 71 and 125 %, with relative standard deviation values in the range 1-22 % for the six types of samples, while the limits of quantification of the method were in the range 4.3-51.1 µg/L for infusions and in the range 3.5-33.3 µg/L for soft drinks. Several samples purchased in different local supermarkets were analysed, finding DPP, DBP, DIPP, DEHP and DINP, although only DPP, DBP and DEHP could be quantified in some of them.
Collapse
Affiliation(s)
- Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n. 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
44
|
Kiani A, Ahmadloo M, Moazzen M, Shariatifar N, Shahsavari S, Arabameri M, Hasani MM, Azari A, Abdel‐Wahhab MA. Monitoring of polycyclic aromatic hydrocarbons and probabilistic health risk assessment in yogurt and butter in Iran. Food Sci Nutr 2021; 9:2114-2128. [PMID: 33841828 PMCID: PMC8020939 DOI: 10.1002/fsn3.2180] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/07/2022] Open
Abstract
This study was conducted to determine the polycyclic aromatic hydrocarbons (PAHs) levels and health risk of yogurt and butter samples collected from Tehran using MSPE/GC-MS (magnetic solid-phase extraction/gas chromatography-mass spectrometry). The results revealed that the limit of detection (LOD) and limit of quantification (LOQ) were ranged from 0.040 to 0.060 and 0.121 to 0.181 μg/kg, respectively; with recoveries ranged from 86.1% to 100.3%. The highest mean of total PAHs was higher in butter (6.87 ± 1.21 μg/kg) than in yogurt (3.82 ± 0.54 μg/kg). The level of benzo (a)pyrene in all samples was lower than of standard levels of the European Union (EU). The highest value of all PAHs in samples was recorded in the winter season and also in the expiration date. The percentile 95% of the total hazard quotient (THQ) due to the consumption of yogurt and butter recorded 1.33E-02 and 3.69E-04 in adults and 6.12E-02 and 1.75E-03 in children, respectively. The percentile of 95% incremental lifetime of cancer risk (ILCR) due to the ingestion of yogurt and butter recorded 1.17E-06 and 2.02E-08 for adults and 5.51E-06 and 9.46E-08 for children, respectively. The rank order of 7 PAHs in adult and children based on P95% Hazard Quotient (HQ) in all samples was benzo(a)anthracene (BaA) > pyrene (P) > fluorene (F) > fluoranthene (Fl) > acenaphthylene (Ace) > anthracene (A) > naphthalene (NA). According to the Monte Carlo Simulation (MCS) method, health-risk assessment showed that children and adults are not at significant health risk.
Collapse
Affiliation(s)
- Amin Kiani
- Department of Public HealthSchool of Public HealthFasa University of Medical SciencesFasaIran
| | - Mahsa Ahmadloo
- Department of Food Safety and HygieneSchool of Public HealthQazvin University of Medical SciencesQazvinIran
| | - Mojtaba Moazzen
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Nabi Shariatifar
- Department of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Saeed Shahsavari
- Health Products Safety Research CenterQazvin University of Medical SciencesQazvinIran
| | - Majid Arabameri
- Food Safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| | - Mohammad Mahdi Hasani
- Department of Environmental Health EngineeringFaculty of HealthTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Ali Azari
- Department of Environmental Health EngineeringFaculty of HealthKashan University of Medical SciencesKashanIran
| | | |
Collapse
|
45
|
Wu D, Liu F, Tian T, Wu JF, Zhao GC. Copper ferrite nanoparticles as novel coating appropriated to solid-phase microextraction of phthalate esters from aqueous matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Schwaminger SP, Brammen MW, Zunhammer F, Däumler N, Fraga-García P, Berensmeier S. Iron Oxide Nanoparticles: Multiwall Carbon Nanotube Composite Materials for Batch or Chromatographic Biomolecule Separation. NANOSCALE RESEARCH LETTERS 2021; 16:30. [PMID: 33569639 PMCID: PMC7876204 DOI: 10.1186/s11671-021-03491-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Carbon-based materials are the spearhead of research in multiple fields of nanotechnology. Moreover, their role as stationary phase in chromatography is gaining relevance. We investigate a material consisting of multiwall carbon nanotubes (CNTs) and superparamagnetic iron oxide nanoparticles towards its use as a mixed-mode chromatography material. The idea is to immobilize the ion exchange material iron oxide on CNTs as a stable matrix for chromatography processes without a significant pressure drop. Iron oxide nanoparticles are synthesized and used to decorate the CNTs via a co-precipitation route. They bind to the walls of oxidized CNTs, thereby enabling to magnetically separate the composite material. This hybrid material is investigated with transmission electron microscopy, magnetometry, X-ray diffraction, X-ray photoelectron and Raman spectroscopy. Moreover, we determine its specific surface area and its wetting behavior. We also demonstrate its applicability as chromatography material for amino acid retention, describing the adsorption and desorption of different amino acids in a complex porous system surrounded by aqueous media. Thus, this material can be used as chromatographic matrix and as a magnetic batch adsorbent material due to the iron oxide nanoparticles. Our work contributes to current research on composite materials. Such materials are necessary for developing novel industrial applications or improving the performance of established processes.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| | - Markus W Brammen
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Florian Zunhammer
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Nicklas Däumler
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
47
|
García-Nicolás M, Arroyo-Manzanares N, Campillo N, Viñas P. Cellulose-ferrite nanocomposite for monitoring enniatins and beauvericins in paprika by liquid chromatography and high-resolution mass spectrometry. Talanta 2021; 226:122144. [PMID: 33676695 DOI: 10.1016/j.talanta.2021.122144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/20/2023]
Abstract
Paprika is considered a high-quality product being one of the most consumed spices in the world. Contamination with mycotoxins may appear due to inappropriate practices during processing or resulting from invading mould in the final manufactured products. A sample treatment based on dispersive magnetic solid-phase extraction (DMSPE) has been proposed for emerging mycotoxin determination, enniatins (ENNs) and beauvericins (BEAs), in paprika. Different magnetic nanoparticles were tested, and cellulose-ferrite nanocomposite was selected for the extraction and preconcentration of the mycotoxins. Nanocomposite was characterised using field emission scanning electron microscopy and energy dispersive X-ray spectroscopy in terms of morphology and elemental composition. High-resolution mass spectrometry allowed the quantification of the five main emerging mycotoxins and the monitoring of unexpected members of this class of toxic fungal secondary metabolites. The method has been validated, obtaining limits of quantification between 9.5 and 9.9 μg kg-1 and testing its trueness through recovery studies, with satisfactory values of between 89.5 and 97.7%. Relative standard deviations were calculated to evaluate the intra- and inter-day precision and values lower than 8% were obtained in all cases. The analysis of 26 samples, including conventional and organic, demonstrated the presence of ENNB1 at 12.0 ± 0.6 μg kg-1 in one of the samples studied. Other analogues ENNs and BEAs were not detected.
Collapse
Affiliation(s)
- María García-Nicolás
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
48
|
Huang L, Liu L, Huang W, Zhao B, Shen Z, Bao Y, Znad H. Recovery of lanthanum cations by functionalized magnetic multi-walled carbon nanotube bundles. RSC Adv 2021; 11:4751-4759. [PMID: 35424401 PMCID: PMC8694523 DOI: 10.1039/d0ra09902c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Rare-earth elements (REE), including La, are critical raw materials in many technological advancements. Collection of physically adsorbed REEs on clay minerals can be realized first by ion-exchange leaching, followed by adsorption enrichment. Ever increasing demand and limited resources of REEs have fueled the development of nanostructured adsorbents. In this paper, multi-walled carbon nanotubes (MWCNTs) were purified using concentrated H2SO4 and HNO3, then coupled with magnetic Fe3O4 nanoparticles to make low concentration La ion extraction from water possible. The MWCNT@Fe3O4 composites were further crosslinked with 0.1 wt% epichlorohydrin and functionalized with 0.5 wt% carbon disulfide to achieve a La3+ adsorption capacity of 23.23 mg g-1. We fully probed the morphology, crystallinity, chemical composition, and magnetic properties of the as-prepared adsorbent by scanning/transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, vibrating-sample magnetometry, and thermal gravimetry. These results indicated that the MWCNT@Fe3O4 nanohybrid may be a promising candidate for recovering La ions from aqueous solutions.
Collapse
Affiliation(s)
- Lijinhong Huang
- School of Architecture and Design, Jiangxi University of Science and Technology Ganzhou China
- Faculty of Science and Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University WA Australian
| | - Lihong Liu
- Faculty of Science and Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University WA Australian
| | - Wanfu Huang
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology Ganzhou China
| | - Bingxin Zhao
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology Ganzhou China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University China
| | - Yaqing Bao
- School of Resource and Environmental Engineering, Jiangxi University of Science and Technology Ganzhou China
| | - Hussein Znad
- Faculty of Science and Engineering, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University WA Australian
| |
Collapse
|
49
|
Egbosiuba TC, Abdulkareem AS, Kovo AS, Afolabi EA, Tijani JO, Bankole MT, Bo S, Roos WD. Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process. Sci Rep 2021; 11:75. [PMID: 33420137 PMCID: PMC7794394 DOI: 10.1038/s41598-020-79857-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
The efficient removal of toxic metals ions from chemical industry wastewater is considered problematic due to the existence of pollutants as mixtures in the aqueous matrix, thus development of advanced and effective treatment method has been identified as a panacea to the lingering problems of heavy metal pollution. In this study, KIAgNPs decorated MWCNTs nano adsorbent was developed using combination of green chemistry protocol and chemical vapor deposition techniques and subsequently characterized using UV-Vis, HRTEM, HRSEM, XRD, FTIR and XPS. The adsorptive efficiency of MWCNTs-KIAgNPs for the removal of Cr(VI), Ni(II), Fe(II), Cd(II) and physico-chemical parameters like pH, TDS, COD, BOD, nitrates, sulphates, chlorides and phosphates from chemical industrial wastewater was examined in both batch and fixed bed systems. The result exhibited successful deposition of KIAgNPs on the surface of MWCNTs as confirmed by the microstructures, morphology, crystalline nature, functional groups and elemental characteristics of the MWCNTs-KIAgNPs. Optimum batch adsorption parameters include; pH (3 for Cr(VI) and 6 for Ni(II), Fe(II) and Cd(II) ions), contact time (60 min), adsorbent dosage (40 mg) and temperature (318 K). The binding capacities were obtained as follows; Cr6+ (229.540 mg/g), Ni2+ (174.784 mg/g), Fe2+ (149.552) and Cd2+ (121.026 mg/g), respectively. Langmuir isotherm and pseudo-second order kinetic model best described the experimental data in batch adsorption, while the thermodynamic parameters validated the chemisorption and endothermic nature of the adsorption process. In continuous adsorption, the metal ions were effectively removed at low metal influent concentration, low flow rate and high bed depth, whereby the experimental data were designated by Thomas model. The high physico-chemical parameters in the wastewater were successfully treated in both batch and fixed bed systems to fall within WHO permissible concentrations. The adsorption/desorption study illustrated over 80% metal removal by MWCNTs-KIAgNPs even after 8th adsorption cycle. This study demonstrated excellent performance of MWCNTs-KIAgNPs for chemical industry wastewater treatment.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria.
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra, Nigeria.
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria.
| | - Ambali Saka Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Abdulsalami Sanni Kovo
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Eyitayo Amos Afolabi
- Department of Chemical Engineering, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Mercy Temitope Bankole
- Department of Chemistry, Federal University of Technology, PMB.65, Minna, Niger, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger, Nigeria
| | - Shufeng Bo
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Wiets Daniel Roos
- Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
50
|
Radoor S, Karayil J, Parameswaranpillai J, Siengchin S. Adsorption of methylene blue dye from aqueous solution by a novel PVA/CMC/halloysite nanoclay bio composite: Characterization, kinetics, isotherm and antibacterial properties. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1311-1327. [PMID: 33312644 PMCID: PMC7721857 DOI: 10.1007/s40201-020-00549-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 05/31/2023]
Abstract
Here the fabrication of a novel PVA/CMC/halloysite nanoclay membrane for the effective adsorption of cationic dye (methylene blue, MB) from aqueous environment is reported. The membranes were analyzed through scanning electron microscopy (SEM), optical microscopy (OM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), contact angle and universal testing machine (UTM) analysis. The adsorption behavior of the membrane in terms of nanoclay loading, contact time, initial concentration of MB, pH and temperature were also discussed. The membrane exhibits excellent removal efficiency (99.5%) for MB in the optimal conditions such as nanoclay dose = 6 wt%, initial dye concentration = 10 ppm, contact time = 240 min, pH = 10 and temperature = 30 °C. Three isotherm models (Freundlich, Langmuir and Temkin) were employed to analyze the dye adsorption data. The results revealed that the adsorption process could be described well with both Freundlich and Langmuir isotherm model. The kinetics of MB adsorption onto membrane follows pseudo-second-order model while thermodynamic parameter indicate that adsorption is feasible and endothermic in nature. The antibacterial studies revealed that the PVA/CMC/halloysite nanoclay membrane possess notable antibacterial property. Finally, the desorption studies showed that the membrane have good reusability even after four recycles.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok, 10800 Thailand
| | - Jasila Karayil
- Government Women’s Polytechnic College, Calicut, Kerala India
| | - Jyotishkumar Parameswaranpillai
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok, 10800 Thailand
| | - Suchart Siengchin
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok, 10800 Thailand
| |
Collapse
|