1
|
Khatri S, Albright JA, Byrne RA, Quinn M, Zhu AS, Arcand PH, Daniels AH, Owens BD. Association of Vitamin D Deficiency With Distal Biceps Injury: A Retrospective Analysis of 336,320 Patients. Sports Health 2024:19417381241273453. [PMID: 39189103 PMCID: PMC11569649 DOI: 10.1177/19417381241273453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND This study explores the association between vitamin D deficiency and distal biceps tendon injuries, illustrating that, although vitamin D deficiency is associated with prolonged hospital stays and various musculoskeletal problems, its connection to distal biceps tendon injuries is unknown. HYPOTHESIS Vitamin D deficiency is associated with an elevated risk of distal biceps injury but not with increased rates of subsequent surgery or revision surgery. STUDY DESIGN Case-control study. LEVEL OF EVIDENCE Level 3. METHODS A 1:1 matched retrospective comparative study of 336,320 vitamin-D-deficient patients was performed using PearlDiver data (between January 1, 2011 and October 31, 2018). Cohorts, with a mean age of 55.7 ± 13.2 years, underwent multivariate logistic regression to calculate distal biceps tendon injury and surgical repair incidence according to age and sex, while controlling for demographics and comorbidities. RESULTS The 1-year incidence of distal biceps tendinopathy in vitamin-D-deficient patients was 118 per 100,000 person-years (95% CI) compared with 44.3 per 100,000 person-years in matched controls. Male patients with vitamin D deficiency were at a greater risk for distal biceps tendinopathy after 1 and 2 years (adjusted odds ratio [aOR] = 2.81, 2.08-3.83; aOR = 2.80, 2.21-3.56). Female patients were also at a greater risk after both years (aOR = 1.69, 1.27-2.27; aOR = 1.57, 1.26-1.96). Vitamin D deficiency was not associated with an elevated risk of surgical repair or revision surgery. CONCLUSION In a nationwide cohort, a diagnosis of vitamin D deficiency elevated the risk of distal biceps tendinopathy but did not raise the rate of surgical repair or revision. As a result, prevention strategies in the form of vitamin supplementation should be increased for athletes.Clinical Relevance: These findings emphasize the clinical relevance of monitoring vitamin D levels in patients at risk for musculoskeletal injuries, and providing adequate care to those involved in high-demand physical activities.Strength of Recommendation: B.
Collapse
Affiliation(s)
- Surya Khatri
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - J. Alex Albright
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Rory A. Byrne
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Matthew Quinn
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Angela S. Zhu
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | | | - Alan H. Daniels
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Brett D. Owens
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Orthopaedic Surgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
2
|
Gür B, Afacan B, Çevik Ö, Köse T, Emingil G. Gingival crevicular fluid periodontal ligament-associated protein-1, sclerostin, and tumor necrosis factor-alpha levels in periodontitis. J Periodontol 2023; 94:1166-1175. [PMID: 37006132 DOI: 10.1002/jper.22-0750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND In periodontitis, the equilibrium between bone formation and resorption skews in favor of bone loss. Periodontal ligament-associated protein-1 (PLAP-1) and sclerostin play a significant role in the suppression of bone formation. Tumor necrosis factor-alpha (TNF-α) is a central proinflammatory cytokine related to periodontal bone loss. This study aims to assess gingival crevicular fluid (GCF) PLAP-1, sclerostin, and TNF-α levels in individuals with periodontal disease. METHODS Seventy-one individuals diagnosed with generalized stage III grade C periodontitis (n = 23), gingivitis (n = 24), and periodontal health (n = 24) were included in the study. Full-mouth clinical periodontal measurements were performed. PLAP-1, sclerostin, and TNF-α total amounts in GCF were quantified by ELISA. Nonparametric methods were used for the data analyses. RESULTS Periodontitis group exhibited significantly higher GCF PLAP-1, sclerostin and TNF-α levels compared with gingivitis and periodontally healthy groups (p < 0.05). GCF PLAP-1 and TNF-α levels of gingivitis group were higher than healthy controls (p < 0.05) whereas GCF sclerostin levels were similar in two groups (p > 0.05). Significant positive correlations were found between GCF PLAP-1, sclerostin and TNF-α levels and all clinical parameters (p < 0.01). CONCLUSIONS To our knowledge, this is the first study showing GCF PLAP-1 levels in periodontal health and disease. Increased GCF PLAP-1 and sclerostin levels and their correlations with TNF-α in periodontitis imply that those molecules might be involved in the pathogenesis of periodontal disease. Further studies in larger mixed cohorts are needed to enlighten the possible role of PLAP-1 and sclerostin in periodontal bone loss.
Collapse
Affiliation(s)
- Berkay Gür
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, İzmir Ege University, İzmir, Turkey
| |
Collapse
|
3
|
Lei F, Ni J, Hu JL, Guo DN, Fan J. Different doses of vitamin D supplementation to nonsurgical treatment for vitamin-D-insufficient patients with diabetic periodontitis and the effect on gingival BMP-2 levels. Kaohsiung J Med Sci 2023; 39:1030-1037. [PMID: 37395326 DOI: 10.1002/kjm2.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epidemiological data show people with diabetes mellitus (DM) have three-fold increase in risk of periodontitis. A vitamin D insufficiency can affect the progression of DM and periodontitis. This study evaluated the effects of different-dose vitamin D supplementation to nonsurgical periodontal therapy for vitamin-D-insufficient diabetic patients coexisting with periodontitis and changes of gingival bone morphogenetic protein-2 (BMP-2) levels. The study included 30 vitamin-D-insufficient patients receiving nonsurgical treatment followed by administration of 25,000 international units (IU) vitamin D3 per week (the low-VD group) and 30 patients receiving 50,000 UI vitamin D per week (the high-VD group). The decreases of probing pocket depth, clinical attachment loss, bleeding index, and periodontal plaque index values of patients after the six-month supplementation of 50,000 UI vitamin D3 per week to nonsurgical treatment were more significant than those after the six-month supplementation of 25,000 UI vitamin D3 per week to nonsurgical treatment. It was found that 50,000 IU per week vitamin D supplementation for 6 months could lead to a better glycemic control for vitamin-D-insufficient diabetic patients coexisting with periodontitis after nonsurgical periodontal therapy. Increased levels of serum 25(OH) vitamin D3 and gingival BMP-2 were found in both low- and high-dose VD groups, and the high-dose VD group exhibited higher levels than the low-dose VD group. Vitamin D supplementation in large doses for 6 months tended to improve the treatment of periodontitis and increase gingival BMP-2 levels in diabetic patients coexisting with periodontitis who were vitamin D deficient.
Collapse
Affiliation(s)
- Fei Lei
- Department of Stomatology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jing Ni
- Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jin-Long Hu
- Department of Stomatology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Dan-Ni Guo
- Department of Stomatology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jing Fan
- Department of Stomatology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Vitamin D and Bone: A Story of Endocrine and Auto/Paracrine Action in Osteoblasts. Nutrients 2023; 15:nu15030480. [PMID: 36771187 PMCID: PMC9919888 DOI: 10.3390/nu15030480] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite its rigid structure, the bone is a dynamic organ, and is highly regulated by endocrine factors. One of the major bone regulatory hormones is vitamin D. Its renal metabolite 1α,25-OH2D3 has both direct and indirect effects on the maintenance of bone structure in health and disease. In this review, we describe the underlying processes that are directed by bone-forming cells, the osteoblasts. During the bone formation process, osteoblasts undergo different stages which play a central role in the signaling pathways that are activated via the vitamin D receptor. Vitamin D is involved in directing the osteoblasts towards proliferation or apoptosis, regulates their differentiation to bone matrix producing cells, and controls the subsequent mineralization of the bone matrix. The stage of differentiation/mineralization in osteoblasts is important for the vitamin D effect on gene transcription and the cellular response, and many genes are uniquely regulated either before or during mineralization. Moreover, osteoblasts contain the complete machinery to metabolize active 1α,25-OH2D3 to ensure a direct local effect. The enzyme 1α-hydroxylase (CYP27B1) that synthesizes the active 1α,25-OH2D3 metabolite is functional in osteoblasts, as well as the enzyme 24-hydroxylase (CYP24A1) that degrades 1α,25-OH2D3. This shows that in the past 100 years of vitamin D research, 1α,25-OH2D3 has evolved from an endocrine regulator into an autocrine/paracrine regulator of osteoblasts and bone formation.
Collapse
|
5
|
Caetano AJ, D'Agostino EM, Sharpe P, Nibali L. Expression of periodontitis susceptibility genes in human gingiva using single-cell RNA sequencing. J Periodontal Res 2022; 57:1210-1218. [PMID: 36170299 DOI: 10.1111/jre.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Single-cell transcriptomics was used to determine the possible cell-type specificity of periodontitis susceptibility genes. BACKGROUND The last decade has witnessed remarkable advances in the field of human genomics. Despite many advances, the genetic factors associated with or contributing to the periodontitis pathogenesis have only been identified to a limited extent and are often poorly validated. Confirming whether a given single nucleotide polymorphism has an association with periodontitis requires a robust mechanistic explanation on the functional consequences of a given genetic variant. METHODS We globally assessed the expression of 26 disease-associated genes identified by GWAS within the gingival mucosa. A total of 12 411 cells from 4 different donors were analysed. Differentially expressed genes were analysed using Seurat, a non-parametric Wilcoxon rank sum test. The minimum threshold for significance was defined as p < .05. RESULTS This exploration at a cellular-level suggests diverse populations contributing to disease pathogenesis, with macrophages expressing a higher number of the analysed disease-associated genes. IL1B, PTGS2, FCGR2A, IL10 and IL1A specifically showed a more restricted expression in the myeloid lineages. CONCLUSION This short report combines human genetics and single-cell genomics to better understand periodontitis by mapping variants to predict their cells of action and putative functions. These findings seem to suggest that innate cell dysfunction is linked to disease susceptibility.
Collapse
Affiliation(s)
- Ana J Caetano
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | | | - Paul Sharpe
- Faculty of Dentistry, Oral & Craniofacial Sciences, Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Luigi Nibali
- Periodontology Unit, Faculty of Dentistry, Oral Craniofacial Sciences, Centre for Host-Microbiome Interactions, King's College London, London, UK
| |
Collapse
|
6
|
Isola G, Palazzo G, Polizzi A, Murabito P, Giuffrida C, Lo Gullo A. Association of Systemic Sclerosis and Periodontitis with Vitamin D Levels. Nutrients 2021; 13:705. [PMID: 33672176 PMCID: PMC7926920 DOI: 10.3390/nu13020705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to analyze the association among systemic sclerosis (SSc), periodontitis (PT); we also evaluated the impact of PT and SSc on vitamin D levels. Moreover, we tested the association with potential confounders. A total of 38 patients with SSc, 40 subjects with PT, 41 subjects with both PT and SSc, and 41 healthy controls were included in the study. The median vitamin D levels in PT subject were 19.1 (17.6-26.8) ng/mL, while SSc + PT group had vitamin d levels of 15.9 (14.7-16.9) ng/mL, significantly lower with respect to SSc patients (21.1 (15.4-22.9) ng/mL) and to healthy subjects (30.5 (28.8-32.3) ng/mL) (p < 0.001). In all subjects, vitamin D was negatively associated with c-reactive protein (CRP) (p < 0.001) and with probing depth (PD), clinical attachment level (CAL), bleeding on probing (BOP), and plaque score (PI) (p < 0.001 for all parameters) and positively related to the number of teeth (p < 0.001). Moreover, univariate regression analysis demonstrated an association among high low-density lipoproteins (LDL) cholesterol (p = 0.021), CRP (p = 0.014), and PT (p < 0.001) and reduced levels of vitamin D. The multivariate regression analysis showed that PT (p = 0.011) and CRP (p = 0.031) were both predictors of vitamin D levels. Subjects with PT and SSc plus PT had significant lower vitamin D values with respect to SSc and to healthy subjects. In addition, PT seems negatively associated with levels of vitamin D in all analyzed patients.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Giuseppe Palazzo
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Paolo Murabito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.P.); (A.P.); (P.M.)
| | - Clemente Giuffrida
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.G.); (A.L.G.)
| | - Alberto Lo Gullo
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (C.G.); (A.L.G.)
| |
Collapse
|
7
|
Chen C, Adhikari R, White DL, Kim WK. Role of 1,25-Dihydroxyvitamin D 3 on Osteogenic Differentiation and Mineralization of Chicken Mesenchymal Stem Cells. Front Physiol 2021; 12:479596. [PMID: 33597893 PMCID: PMC7882605 DOI: 10.3389/fphys.2021.479596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/05/2021] [Indexed: 12/01/2022] Open
Abstract
1,25-dihydroxyvitamin D3 (1,25OHD) has been suggested to play an important role in osteogenic differentiation and mineralization. However, limited data have been reported in avian species. In the present study, the direct role of 1,25OHD on osteogenic differentiation and mineralization in chicken mesenchymal stem cells (cMSCs) derived from day-old broiler bones was investigated. cMSCs were treated with control media (C), osteogenesis media (OM), OM with 1, 5, 10, and 50 nM 1,25OHD, respectively. The messenger RNA (mRNA) samples were obtained at 24 and 48 h and 3 and 7 days to examine mRNA expression of key osteogenic genes [runt related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), collagen type I alpha 2 chain (COL1A2), bone gamma-carboxyglutamate protein (BGLAP), secreted phosphoprotein 1 (SPP1), and alkaline phosphatase (ALP)]. Cells were stained at 7, 14, and 21 days using Von Kossa (mineralization), Alizarin Red (AR; mineralization), and Alkaline Phosphatase (early marker) staining methods. From the mRNA expression results, we found a time-dependent manner of 1,25OHD on osteoblast differentiation and mineralization. In general, it showed an inhibitory effect on differentiation and mineralization during the early stage (24 and 48 h), and a stimulatory effect during the late cell stage (3 and 7 days). The staining showed 1,25OHD had an inhibitory effect on ALP enzyme activities and mineralization in a dosage-dependent manner up to 14 days. However, at 21 days, there was no difference between the treatments. This study provides a novel understanding of the effects of 1,25OHD on osteogenic differentiation and mineralization of cMSCs depending on cell stage and maturity.
Collapse
Affiliation(s)
- Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Roshan Adhikari
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Dima Lynn White
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Chen C, White DL, Marshall B, Kim WK. Role of 25-Hydroxyvitamin D 3 and 1,25-Dihydroxyvitamin D 3 in Chicken Embryo Osteogenesis, Adipogenesis, Myogenesis, and Vitamin D 3 Metabolism. Front Physiol 2021; 12:637629. [PMID: 33597896 PMCID: PMC7882680 DOI: 10.3389/fphys.2021.637629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
A study was conducted to understand the effects of 25-hydroxyvitamin D3 (25OHD) and 1,25-dihydroxyvitamin D3 (1,25OHD) administration on the expression of key genes related to osteogenesis, adipogenesis, myogenesis, and vitamin D3 metabolism in the chicken embryo. A total of 120 fertilized Cobb 500 eggs were used in the current study and were reared under standard incubation conditions. On embryonic day 3 (ED 3), PBS (C), PBS with 40ng 1,25OHD (1,25D-L), 200ng 1,25OHD (1,25D-H), 40ng 25OHD (25D-L), or 200ng 25OHD (25D-H) were injected into the dorsal vein of developing embryos. Whole embryos were harvested at 1, 3, and 6h post-injection for gene expression analyses (n=8). Gene expression for key osteogenesis markers (RUNX2: runt-related transcription factor 2; BMP2: bone morphogenetic protein 2; COL1A2: collagen type I alpha 2 chain; BGLAP: bone gamma-carboxyglutamate protein; SPP1: secreted phosphoprotein 1; and ALP: alkaline phosphatese), adipogenesis markers (PPAR-γ: peroxisome proliferator-activated receptor gamma; FASN: fatty acid synthase; and FABP4: fatty acid binding protein 4), myogenesis markers (MYOG: myogenin; MYOD1: myogenic differentiation 1; and MYF5: myogenic factor 5), and the enzyme responsible for vitamin D3 inactivation (CYP24A1: cytochrome P450 family 24 subfamily A member 1) were measured using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Data were normalized by the ΔΔCT method and analyzed using a one-way ANOVA. Results indicated that at 1h post-injection, no differences were found among treatments. At 3h, the early osteogenesis differentiation marker, ALP, was increased by 1,25D-H and 25D-H, and 25D-H also stimulated the expression of adipogenesis markers (FAPB4 and FASN). In contrast, the expression of myogenesis markers (MYOD1 and MYF5) was suppressed by 25OHD or 1,25OHD treatments, respectively. At 6h, a late osteogenic differentiation marker, SPP1, was increased by 25D-H. MYOD1 and MYF5 were continuously suppressed by 25OHD treatments or 1,25D-H. The evidence of vitamin D3 metabolite retention was assessed by measuring CYP24A1 expression. At 1h, there were no differences in CYP24A1 expression. At 3h, all treatments upregulated CYP24A1 expression relative to control (PBS) embryos. However, at 6h, only the 25D-H group retained higher CYP24A1 expression compared to the other treatments. In conclusion, the results suggested both 1,25OHD and 25OHD induced chicken embryo osteogenesis and adipogenesis, but inhibited myogenesis during early chicken embryo development. The higher dosage of 25OHD showed a possibility of a longer retention time in the embryos.
Collapse
Affiliation(s)
- Chongxiao Chen
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Dima Lynn White
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Brett Marshall
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Chen Y, Guan Q, Han X, Bai D, Li D, Tian Y. Proteoglycans in the periodontium: A review with emphasis on specific distributions, functions, and potential applications. J Periodontal Res 2021; 56:617-632. [PMID: 33458817 DOI: 10.1111/jre.12847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Proteoglycans (PGs) are largely glycosylated proteins, consisting of a linkage sugar, core proteins, and glycosaminoglycans (GAGs). To date, more than 40 kinds of PGs have been identified, and they can be classified as intracellular, cell surface, pericellular, and extracellular PGs according to cellular locations. To illustrate, extracellular PGs are known for regulating the homeostasis of the extracellular matrix; cell-surface PGs play a role in mediating cell adhesion and binding various growth factors. In the field of periodontology, PGs are implicated in cellular proliferation, migration, adhesion, contractility, and anoikis, thereby exerting a profound influence on periodontal tissue development, wound repair, the immune response, biomechanics, and pathological process. Additionally, the expression patterns of some PGs are dynamic and cell-specific. Therefore, determining the roles and spatial-temporal expression patterns of PGs in the periodontium could shed light on treatments for wound healing, tissue regeneration, periodontitis, and gingival overgrowth. In this review, close attention is paid to the distributions, functions, and potential applications of periodontal PGs. Related genetically modified animal experiments and involved signal transduction cascades are summarized for improved understanding of periodontal PGs. To date, however, there is a large amount of speculation on this topic that requires rigorous experiments for validation.
Collapse
Affiliation(s)
- Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuyue Guan
- Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhang H, Zeng Q, Bai S, Wang J, Ding X, Xuan Y, Su Z, Fraley GS, Yao B, Zhang K. Dietary supplementation of 25-hydroxycholecalciferol increases tibial mass by suppression bone resorption in meat ducks. ANIMAL NUTRITION 2020; 6:467-479. [PMID: 33364463 PMCID: PMC7750870 DOI: 10.1016/j.aninu.2020.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/12/2020] [Indexed: 11/27/2022]
Abstract
Leg problems often result from the rapid weight gain and poor bone quality in modern ducks, leading to a high risk of fractures and continuous pain. We hypothesized that improving bone quality in combination with delaying weight gain via a low nutrient density (LND) diet probably reverses these skeletal abnormalities. Studies indicated that 25-hydroxycholecalciferol (25-OH-D3), a vitamin D3 metabolite, is effective in treating bone-related disorders. Therefore, Exp. 1 evaluated the effects of 25-OH-D3 on tibial mass of meat ducks. Male meat ducklings were fed a standard nutrient density diet (containing a regular vitamin regimen) without or with 25-OH-D3 at 0.069 mg/kg for 35 d. The results showed that 25-OH-D3 supplementation improved the mineral content, microarchitecture and mechanical properties of tibias, and this companied by a decreased serum bone resorption marker and a concomitant decrement in osteoclast-specific marker genes expression. Subsequently, Exp. 2 was conducted to examine the impacts of 25-OH-D3 incorporating an LND diet on tibial quality of ducks under 2 different vitamin regimens (regular and high). Ducklings were allocated to a 2 × 2 factorial arrangement with 2 kinds of vitamin premixes and without or with 25-OH-D3 at 0.069 mg/kg in LND diets. The high premix had higher levels of all vitamins except biotin than the regular premix. The results demonstrated that high vitamin diets exhibited more significant effects than regular vitamin diets on inhibiting bone turnover and increasing minerals deposition. Tibial mineral content, microarchitecture, and strength of birds under the regular vitamin regimen were increased by 25-OH-D3 supplementation; However, these positive effects were not observed in ducks under the high vitamin regimen. To conclude, 25-OH-D3 supplementation improves tibial mass by suppressing osteoclast-mediated bone resorption in meat ducks, and this positive impact only was observed in regular but not high vitamin regimen when birds fed an LND diet.
Collapse
|
11
|
Isola G, Alibrandi A, Rapisarda E, Matarese G, Williams RC, Leonardi R. Association of vitamin D in patients with periodontitis: A cross-sectional study. J Periodontal Res 2020; 55:602-612. [PMID: 32173876 DOI: 10.1111/jre.12746] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/13/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Vitamin D has been considered to possess anti-inflammatory and antimicrobial activity, which may be a link for the known interaction of periodontitis (CP) and coronary heart disease (CHD). This study investigated the association between serum vitamin D levels and periodontitis in patients with CP and with CHD. Furthermore, the objective was to determine whether periodontitis and CHD had an impact on serum vitamin D levels. MATERIAL AND METHODS Using a cross-sectional design, a total of 46 patients with CP, 45 patients with CHD, 45 patients with both CP and CHD, and 43 healthy patients were enrolled in the present study. RESULTS Patients in the CP (17.4 ± 5.2 ng/mL) and in the CP + CHD (16.5 ± 5.6 ng/mL) group presented a significantly lower mean serum level of 25(OH)vitamin D compared to patients in the CHD (24.6 ± 3.7 ng/mL) and healthy control groups (29.9 ± 5.4 ng/mL) (P < .001). 25(OH)vitamin D levels were positively correlated with the number of teeth and negatively with C-reactive protein (CRP) and all periodontal parameters (P < .001). In all patients, there was a proportional increase of 25(OH)vitamin D levels with a progressive increase in number of teeth (P-trend <.001) while there were a proportional decrease in 25(OH)vitamin D levels with a progressive increase in clinical attachment level (CAL, P-trend = .001), probing depth (PD, P-trend = .006), and bleeding sites (BOP, P-trend <.001) levels. CONCLUSION Patients with CP and CP + CHD presented significantly lower serum levels of vitamin D compared to CHD and healthy controls. Moreover, the presence of CP negatively influenced serum vitamin D levels.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Catania, Italy
| | - Angela Alibrandi
- Department of Economical, Business and Environmental Sciences and Quantitative Methods, University of Messina, Messina, Italy
| | - Ernesto Rapisarda
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Catania, Italy
| | - Giovanni Matarese
- Department of Biomedical, Odontostomatological Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Ray C Williams
- Department of Periodontology, UNC-Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Rosalia Leonardi
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Non-Autogenous Innovative Reconstruction Method Following Mandibulectomy. ACTA ACUST UNITED AC 2020; 56:medicina56070326. [PMID: 32630080 PMCID: PMC7404549 DOI: 10.3390/medicina56070326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Plexiform ameloblastoma is a locally aggressive odontogenic tumor, rare in the anterior mandible. The treatment of choice is resection with 1-3 cm free margins. In most of reported cases, the affected mandible is reconstructed by autogenic bone graft or osseocutaneous microvascular free flap in order to return function and esthetics. CASE DESCRIPTION A 2 cm diameter exophytic ameloblastoma, located in the anterior mandible of a 50-year-old male was resected and reconstructed in a unique manner-allogenic bone block, recombinant human bone morphogenetic protein (rhBMP) and xenograft particles via transcutaneous submental approach. After bone maturation, dental implants were placed and restored by fixed prosthetics. PRACTICAL IMPLICATIONS Mandible reconstruction modalities have a crucial influence on patient quality of life, function and esthetics. Allogenic bone block combined with rhBMP and xenograft particles can replace the traditional autogenous bone in certain circumstances. A submental transcutaneous "tent pole" approach can improve the success rate of the reconstruction procedure.
Collapse
|
13
|
Zhang P, Zhang Y, Liu Q, Zhang Y, Ji Y, Xu X. 1,25(OH) 2D 3 supports the osteogenic differentiation of hPDLSCs under inflammatory conditions through inhibiting PLAP-1 expression transcriptionally. Int Immunopharmacol 2019; 78:105998. [PMID: 31837573 DOI: 10.1016/j.intimp.2019.105998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Periodontal ligament-associated protein-1 (PLAP-1) is a newly identified negative regulator which is the mineralization of human periodontal ligament stem cells (hPDLSCs). The aim of the present study is to determine whether 1α, 25-dihydroxyvitamin D3 (1,25(OH)2D3) could enhances the osteoblastic differentiation of hPDLSCs under inflammatory condition, and if PLAP-1 is involved in this process. MATERIALS AND METHODS hPDLSCs were in combination or alone cultured with lipopolysaccharide (LPS) and 1,25(OH)2D3, in osteo-inductive medium. The expression levels of osteoblastic markers and PLAP-1 of hPDLCs during osteo-inductive culture were assessed by western blot and real-time quantitative PCR(qRT-PCR). The potential vitamin D receptor elements (VDREs) which were located in PLAP-1 promoter region were identified and confirmed. RESULTS The data showed that LPS inhibited osteoblastic differentiation and induced the expression of PLAP-1 in hPDLSCs. The increasing addition of 1,25(OH)2D3 reversed the LPS-induced inhibition of osteoblastic differentiation of hPDLSCs through the suppression of PLAP-1 expression. Moreover, a potential VDRE within the PLAP-1 promoter region was identified and shown to bind with VDR by chromatin immunoprecipitation (ChIP) assays. This negative region was also found to mediate suppressor reporter gene activity. CONCLUSIONS 1,25(OH)2D3 could enhances the osteogenic differentiation of hPDLSCs under inflammatory condition through inhibiting PLAP-1 expression transcriptionally.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China; The Center of Esthetic Dentistry, Jinan Stomatological Hospital, Jinan 250001, China
| | | | - Qing Liu
- Taian Maternity and Child Care Hospital, Taian 271000, China
| | - Yunpeng Zhang
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yawen Ji
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China.
| |
Collapse
|
14
|
Tendinopathy: Pathophysiology, Therapeutic Options, and Role of Nutraceutics. A Narrative Literature Review. ACTA ACUST UNITED AC 2019; 55:medicina55080447. [PMID: 31394838 PMCID: PMC6723894 DOI: 10.3390/medicina55080447] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
Tendinopathies are very common in general population and a huge number of tendon-related procedures take place annually worldwide, with significant socio-economic repercussions. Numerous treatment options are commonly used for tendon disorders. Besides pharmacological and physical therapy, nutrition could represent an additional tool for preventing and treating this complex pathology that deserve a multidisciplinary approach. In recent years, nutraceutical products are growing up in popularity since these seem to favor the prevention and the healing processes of tendon injuries. This narrative literature review aims to summarize current understanding and the areas of ongoing research about the management of tendinopathies with the help of oral supplementation.
Collapse
|
15
|
Bu J, Du J, Shi L, Feng W, Wang W, Guo J, Hasegawa T, Liu H, Wang X, Li M. Eldecalcitol effects on osteoblastic differentiation and function in the presence or absence of osteoclastic bone resorption. Exp Ther Med 2019; 18:2111-2121. [PMID: 31410166 PMCID: PMC6676146 DOI: 10.3892/etm.2019.7784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Eldecalcitol (ELD) is an active vitamin D3 analog, possesses anti-resorption properties and is an approved therapeutic drug for the treatment of osteoporosis in Japan. However, the effect of ELD on osteoblasts in a distinct cell microenvironment, including in the presence or absence of osteoclastic bone resorption, is undetermined. In the current study, the effect of bone resorption supernatant on the ELD-mediated regulation of viability, differentiation and receptor activator of ΝF-κB ligand/osteoprotegerin (RANKL/OPG) expression was assessed in MC3T3-E1 pre-osteoblast cells. The murine macrophage-like cell line RAW 264.7 was induced to differentiate into functional osteoblasts. Bone resorption supernatant was prepared by culturing osteoclast with a bovine cortical bone specimen. Mouse MC3T3-E1 cells were subsequently treated with ELD combined with differentiated osteoclast cell culture (OCS) or osteoclast bone resorption model supernatants. Cell counting kit-8, alkaline phosphatase (ALP) activity, reverse transcription-quantitative (RT-q) PCR and western blot analysis were used to assess cell viability, osteogenic activity and RANKL and OPG expression in MC3T3-E1 cells. The OCS and OCS + ELD treatment exhibited significantly increased MC3T3-E1 cell viability when compared with the control group. However, ELD, bone resorption culture supernatant (BRS) and ELD + BRS treatments significantly decreased MC3T3-E1 cell viability. The results of ALP activity analysis, RT-qPCR and western blot analysis demonstrated that ELD treatment and OCS decreased the osteogenic markers (ALP and RUNX2), however, BRS increased them. All treatments enhanced the expression of RANKL and RANKL/OPG ratio. The results of the current study revealed that ELD inhibits osteoblastic differentiation in vitro. However, in the presence of BRS, which mimics the local bone microenvironment in vivo, the net effect on osteogenesis was positive. Furthermore, osteoclasts and bone matrix-derived factors increased the RANKL/OPG ratio, thereby potentiating osteoclastic activity.
Collapse
Affiliation(s)
- Jie Bu
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China.,Department of Oral Maxillofacial Surgery, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Juan Du
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Lina Shi
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Wei Feng
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong 250012, P.R. China
| | - Wei Wang
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Jie Guo
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hongrui Liu
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Xuxia Wang
- Department of Oral Maxillofacial Surgery, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Patil VS, Mali RS, Moghe AS. Evaluation and comparison of Vitamin D receptors in periodontal ligament tissue of Vitamin D-deficient chronic periodontitis patients before and after supplementation of Vitamin D3. J Indian Soc Periodontol 2019; 23:100-105. [PMID: 30983779 PMCID: PMC6434724 DOI: 10.4103/jisp.jisp_173_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Vitamin D, an important hormone required by the body, exerts its biological effects through Vitamin D receptors (VDRs) present on target cells. Vitamin D is ineffective in tissues which lack VDR. Various tissues show the presence of VDRs. However, evidence for the presence of VDRs in human periodontal ligament tissue in fully erupted teeth in adults is lacking. The present study intends to evaluate the presence of VDRs in periodontal ligament (PDL) tissue and assess their response to serum Vitamin D3 levels in chronic periodontic patients. Materials and Methods: A total of 19 chronic periodontitis patients were enrolled in the study and tested for serum 25(OH)D3 levels. Deficient patients were supplemented with Vitamin D3. PDL tissue of these patients was isolated after tooth extraction before and after supplementation of Vitamin D3 and analyzed for the presence of VDR in PDL tissue by using enzyme-linked immunosorbent assay. Results: All the chronic periodontitis patients were found to be deficient in Vitamin D3. The mean serum 25(OH)D3 level before supplementation was 13.96 ng/mL which significantly increased to 35.12 ng/mL after supplementation of Vitamin D3 for 6 weeks. VDR analysis determined mean VDR conc. in PDL tissue to be -1.443 ng/mL, which increased to 2.38 ng/mL after supplementation. A concentration dependent correlation was seen between serum 25(OH)D3 levels and VDR conc. in PDL tissue after supplementation. Conclusions: The study determined Vitamin D Receptors (VDR) in PDL tissue after supplementation of Vitamin D. Thus in addition to the standard treatment modalities, Vitamin D3 supplementation would be an important factor for generation of adequate immune response.
Collapse
Affiliation(s)
- Vishakha Sarang Patil
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Pune, Maharashtra, India
| | - Rohini Salil Mali
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Pune, Maharashtra, India
| | - Alpana Subodh Moghe
- Department of Cell and Molecular Biology, Rajiv Gandhi Institute of Information Technology and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
17
|
Yang D, Anderson PH, Wijenayaka AR, Barratt KR, Triliana R, Stapledon CJM, Zhou H, Findlay DM, Morris HA, Atkins GJ. Both ligand and VDR expression levels critically determine the effect of 1α,25-dihydroxyvitamin-D 3 on osteoblast differentiation. J Steroid Biochem Mol Biol 2018; 177:83-90. [PMID: 28887147 DOI: 10.1016/j.jsbmb.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that 1α,25-dihydroxyvitamin D3 (1,25D) through vitamin D receptor (VDR) signalling has both catabolic and anabolic effects on osteoblast differentiation. However, the mechanism of these differential effects by 1,25D is not fully understood. In this study, mice with three different genetic backgrounds, representing a normal VDR level (wild-type, WT), VDR over-expression specifically in mature osteoblasts (ObVDR-B6) and global VDR knockout (VDRKO), were utilised to generate primary osteoblast-like cultures to further elucidate the effects of 1,25D on osteoblast differentiation. Our data confirm the importance of VDR in the late stage of osteogenic differentiation and also for the expression of factors critical for osteoblastic support of osteoclast formation. This study also demonstrates the differential effects of a pharmacological level of 1,25D (1nM) on the expression of osteogenic differentiation markers, including Ocn and Sost, depending on the relative level of VDR. Our findings suggest that 1,25D plays an inhibitory role in matrix mineralisation, possibly through the modulation of the tissue non-specific alkaline phosphatase to ectonucleotide pyrophosphatase/phosphodiesterase 1 axis, in a VDR level-dependent manner. We conclude that the relative VDR level and the 1,25D availability to cells, are important co-determinants for whether 1,25D plays a promoting or suppressive role in osteoblast-mediated osteogenic activity.
Collapse
Affiliation(s)
- Dongqing Yang
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Paul H Anderson
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia; Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Asiri R Wijenayaka
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kate R Barratt
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia; Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Rahma Triliana
- Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Catherine J M Stapledon
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, 2139, Australia
| | - David M Findlay
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Howard A Morris
- Discipline of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia; Endocrine Bone Research, Chemical Pathology, SA Pathology, Adelaide, SA, 5000, Australia; Musculoskeletal Biology Research, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic and Trauma Research, Discipline of Orthopaedics and Trauma, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
18
|
Yu X, Liu S, Wang W, Li S. Periodontal ligament‑associated protein‑1 delays rat periodontal bone defect repair by regulating osteogenic differentiation of bone marrow stromal cells and osteoclast activation. Int J Mol Med 2017; 41:1110-1118. [PMID: 29251314 DOI: 10.3892/ijmm.2017.3312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess the roles of periodontal ligament‑associated protein‑1 (PLAP‑1) in the osteogenic differentiation of rat bone marrow stromal cells (rBMSCs) and in osteoclast activation during the repair of rat periodontal bone defects. Male, 6‑week‑old, Wistar rats treated with periodontal bone defects were randomly assigned to 3 groups: The PLAP‑1‑transfected rBMSC group (PLAP‑1 group), the empty vector‑transfected rBMSC group (vector group) and the normal rBMSC group (control group). Specimens were obtained at 2, 4 and 6 weeks post‑surgery. Histological observation and micro‑computed tomography were applied to evaluate the repair effect. The bone defect areas of the mandible were dissected for western blotting and reverse transcription-quantitative polymerase chain reaction (RT‑qPCR). Osteogenesis‑associated proteins, including alkaline phosphatase (ALP), bone sialoprotein (BSP), runt-related transcription factor 2 (Runx2), Osterix (Osx) and osteocalcin (OC), as indicators of rBMSC‑induced osteogenesis, were examined by RT-qPCR and western blotting. Osteoclasts were identified and quantified using tartrate‑resistant acid phosphatase staining. Meanwhile, the receptor activator of nuclear factor κΒ ligand (RANKL)/οsteoprotegerin (OPG) ratio was quantified to assess osteoclast activation by western blotting. Τhe repair effect of the PLAP‑1 group was significantly worse than that of the vector and control groups. In the PLAP‑1 group, newly formed and mineralized bones were significantly less in quantity than that in the other two groups (P<0.05), and the expression of osteogenic proteins (ALP, BSP, Runx2, Osx and OC) was also reduced (P<0.01). However, there was no significant difference between the vector and control groups. The RANKL/OPG ratio was upregulated in the PLAP‑1 group due to decreased OPG protein expression and a simultaneous increase in RANKL protein expression (P<0.01), and more osteoclasts were activated in the PLAP‑1 group (P<0.01). In conclusion, the present study found that PLAP‑1 delays rat periodontal bone defect repair by inhibiting osteogenic differentiation and promoting osteoclast activation, mainly dependent on the upregulation of the RANKL/OPG ratio.
Collapse
Affiliation(s)
- Xijiao Yu
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Shu Li
- Shandong Provincial Key Laboratory of Dental Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
van Driel M, van Leeuwen JPTM. Vitamin D endocrinology of bone mineralization. Mol Cell Endocrinol 2017; 453:46-51. [PMID: 28606868 DOI: 10.1016/j.mce.2017.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
Abstract
Bone is a dynamic tissue that is strongly influenced by endocrine factors to restore the balance between bone resorption and bone formation. Bone formation involves the mineralization of the extracellular matrix formed by osteoblasts. In this process the role of vitamin D (1α,25(OH)2D3) is both direct and indirect. The direct effects are enabled via the Vitamin D Receptor (VDR); the outcome is dependent on the presence of other factors as well as origin of the osteoblasts, treatment procedures and species differences. Vitamin D stimulates mineralization of human osteoblasts but is often found inhibitory for mineralization of murine osteoblasts. In this review we will overview the current knowledge of the role of the vitamin D endocrine system in controlling the mineralization process in bone.
Collapse
Affiliation(s)
- Marjolein van Driel
- Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | | |
Collapse
|
20
|
Zhang WH, Li XL, Guo Y, Zhang Y. Proliferation and osteogenic activity of fibroblasts induced with fibronectin. ACTA ACUST UNITED AC 2017; 50:e6272. [PMID: 28832764 PMCID: PMC5561809 DOI: 10.1590/1414-431x20176272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine the proliferation and osteogenic activity of fibroblasts induced with fibronectin and their possible dose-dependent relationship. The fibroblasts obtained by tissue explants adherent method were induced with fibronectin at different concentrations of 0, 10, 20, 40, 60, and 80 μg/mL for 14 days. The 3H-thymidine and 3H-proline incorporation test was used to evaluate the synthesis of DNA and collagen by fibroblasts, respectively. The mineralized nodules and osteocalcin secretion, as vital osteogenic indicators, were detected with tetracycline labeling and 125I-labeled competitive immunoassay, respectively. Fibronectin significantly increased the synthesis of DNA and collagen by fibroblasts, especially at the concentration of 40 μg/mL (P<0.05). The increased secretion of osteocalcin in the supernatant was also statistically significant at the concentration of 40 μg/mL (P<0.05). The mineralized nodules with trabecula-like structure derived from induced fibroblasts were positive for tetracycline labeling. The granulation tissue-derived fibroblasts induced with fibronectin exhibited increased proliferative, functional and osteogenic potential. Fibroblasts are considered a possible in situ stem cell in tissue engineering.
Collapse
Affiliation(s)
| | - X-L Li
- Tianjin Hospital, Tianjin, China
| | - Y Guo
- Tianjin Hospital, Tianjin, China
| | - Y Zhang
- Tianjin Hospital, Tianjin, China
| |
Collapse
|
21
|
25-Hydroxy- and 1α,25-Dihydroxycholecalciferol Have Greater Potencies than 25-Hydroxy- and 1α,25-Dihydroxyergocalciferol in Modulating Cultured Human and Mouse Osteoblast Activities. PLoS One 2016; 11:e0165462. [PMID: 27893751 PMCID: PMC5125576 DOI: 10.1371/journal.pone.0165462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Despite differences in the phamacokinetics of 25-hydroxycholecalciferol (25(OH)D3) and 25-hydroxyergocalciferol (25(OH)D2) in man, the effects of these and their 1α-hydroxylated forms (1,25(OH)2D3 and 1,25(OH)2D2) on cellular activity of vitamin D-responsive cells have hardly been compared. We studied differences in the effects of these metabolites on cell number, gene transcription, protein expression and mineralisation of cultured human bone marrow-derived stromal cells (hBMSC) and rapidly mineralising mouse 2T3 osteoblasts. 50-1000 nM 25(OH) and 0.05-10 nM 1,25(OH)2 metabolites were used. At high concentrations, 25(OH)D2/D3 and 1,25(OH)2D2/D3 suppressed cell number in both human and mouse cells. The suppression was greater with cholecalciferol (D3) metabolites than with those of ergocalciferol (D2). In both cell types, 25(OH)D2 and 25(OH)D3 increased the expression of osteopontin, osteocalcin, collagen-1, receptor activator of nuclear factor kappa-B ligand, vitamin D receptor, CYP24A1 and CYP27B1 genes. Whereas there was little or no difference between the effects of 25(OH)D2 and 25(OH)D3 in hBMSCs, differences were observed in the magnitude of the effects of these metabolites on the expression of most studied genes in 2T3 cells. Alkaline phosphatase (ALP) activity was increased by 25(OH)D2/D3 and 1,25(OH)2D2/D3 in hBMSC and 2T3 cells, and the increase was greater with the D3 metabolites at high concentrations. In hBMSCs, mineralisation was also increased by 25(OH)D2/D3 and 1,25(OH)2D2/D3 at high concentrations, with D3 metabolites exerting a greater influence. In 2T3 cells, the effects of these compounds on mineralisation were stimulatory at low concentrations and inhibitory when high concentrations were used. The suppression at high concentrations was greater with the D3 metabolites. These findings suggest that there are differences in the effects of 25-hydroxy and 1α,25(OH)2 metabolites of D3 and D2 on human preosteoblasts and mouse osteoblasts, with the D3 metabolites being more potent in suppressing cell number, increasing ALP activity and influencing mineralisation.
Collapse
|
22
|
Pande VV, Chousalkar KC, Bhanugopan MS, Quinn JC. Super pharmacological levels of calcitriol (1,25-(OH)2D3) inhibits mineral deposition and decreases cell proliferation in a strain dependent manner in chicken mesenchymal stem cells undergoing osteogenic differentiation in vitro. Poult Sci 2016; 94:2784-96. [PMID: 26500277 PMCID: PMC4988625 DOI: 10.3382/ps/pev284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biologically active form of vitamin D3, calcitriol (1,25-(OH)2D3), plays a key role in mineral homeostasis and bone formation and dietary vitamin D3 deficiency is a major cause of bone disorders in poultry. Supplementary dietary cholecalciferol (25-hydroxyvitamin D, 25-OH), the precursor of calcitriol, is commonly employed to combat this problem; however, dosage must be carefully determined as excess dietary vitamin D can cause toxicity resulting in a decrease in bone calcification, hypercalcinemia and renal failure. Despite much research on the therapeutic administration of dietary vitamin D in humans, the relative sensitivity of avian species to exogenous vitamin D has not been well defined. In order to determine the effects of exogenous 1,25-(OH)2D3 during avian osteogenesis, chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) were exposed to varying doses of 1,25-(OH)2D3 during in vitro osteogenic differentiation and examined for markers of early proliferation and osteogenic induction. Similar to humans and other mammals, poultry BM-MSCs were found to be highly sensitive to exogenous 1,25-(OH)2D3 with super pharmacological levels exerting significant inhibition of mineralization and loss of cell proliferation in vitro. Strain related differences were apparent, with BM-MCSs derived from layers strains showing a higher level of sensitivity to 1,25-(OH)2D3 than those from broilers. These data suggest that understanding species and strain specific sensitivities to 1,25-(OH)2D3 is important for optimizing bone health in the poultry industry and that use of avian BM-MSCs are a useful tool for examining underlying effects of genetic variation in poultry.
Collapse
Affiliation(s)
- Vivek V Pande
- School of Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5173, Australia
| | - Kapil C Chousalkar
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5173, Australia
| | - Marie S Bhanugopan
- School of Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University). Wagga Wagga, NSW 2678, Australia
| | - Jane C Quinn
- School of Animal and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University). Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
23
|
Scott A, Nordin C. Do Dietary Factors Influence Tendon Metabolism? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:283-9. [DOI: 10.1007/978-3-319-33943-6_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Yang D, Turner AG, Wijenayaka AR, Anderson PH, Morris HA, Atkins GJ. 1,25-Dihydroxyvitamin D3 and extracellular calcium promote mineral deposition via NPP1 activity in a mature osteoblast cell line MLO-A5. Mol Cell Endocrinol 2015; 412:140-7. [PMID: 26054750 DOI: 10.1016/j.mce.2015.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
While vitamin D supplementation is common, the anabolic mechanisms that improve bone status are poorly understood. Under standard mineralising conditions including media ionised calcium of 1.1 mM, 1,25-dihydroxyvitamin D3 (1,25D) enhanced differentiation and mineral deposition by the mature osteoblast/pre-osteocyte cell line, MLO-A5. This effect was markedly increased with a higher ionised calcium level (1.5 mM). Gene expression analyses revealed that 1,25D-induced mineral deposition was associated with induction of Enpp1 mRNA, coding for nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) and NPP1 protein levels. Since MLO-A5 cells express abundant alkaline phosphatase that was not further modified by 1,25D treatment or exposure to increased calcium, this finding suggested that the NPP1 production of pyrophosphate (PPi) may provide alkaline phosphatase with substrate for the generation of inorganic phosphate (Pi). Consistent with this, co-treatment with Enpp1 siRNA or a NPP1 inhibitor, PPADS, abrogated 1,25D-induced mineral deposition. These data demonstrate that 1,25D stimulates osteoblast differentiation and mineral deposition, and interacts with the extracellular calcium concentration. 1,25D regulates Enpp1 expression, which presumably, in the context of adequate tissue non-specific alkaline phosphatase activity, provides Pi to stimulate mineralisation. Our findings suggest a mechanism by which vitamin D with adequate dietary calcium can improve bone mineral status.
Collapse
Affiliation(s)
- Dongqing Yang
- Bone Cell Biology Group, Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, SA 5005, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew G Turner
- Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Musculoskeletal Biology Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Asiri R Wijenayaka
- Bone Cell Biology Group, Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul H Anderson
- Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Musculoskeletal Biology Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Howard A Morris
- Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Musculoskeletal Biology Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; Endocrine Bone Research, Chemical Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Gerald J Atkins
- Bone Cell Biology Group, Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
25
|
Sawada K, Takedachi M, Yamamoto S, Morimoto C, Ozasa M, Iwayama T, Lee CM, Okura H, Matsuyama A, Kitamura M, Murakami S. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells. Biochem Biophys Res Commun 2015; 464:299-305. [PMID: 26116772 DOI: 10.1016/j.bbrc.2015.06.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 01/09/2023]
Abstract
Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.
Collapse
Affiliation(s)
- Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Satomi Yamamoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masao Ozasa
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chun Man Lee
- Medical Center for Translational Research, Osaka University Hospital, Osaka, Japan
| | - Hanayuki Okura
- Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka, Japan
| | - Akifumi Matsuyama
- Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
26
|
Nebel D, Svensson D, Arosenius K, Larsson E, Jönsson D, Nilsson BO. 1α,25-dihydroxyvitamin D3 promotes osteogenic activity and downregulates proinflammatory cytokine expression in human periodontal ligament cells. J Periodontal Res 2014; 50:666-73. [PMID: 25495336 DOI: 10.1111/jre.12249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to assess the impact of 1α,25-dihydroxyvitamin D3 (vitamin D3) on osteogenic and inflammatory properties of human periodontal ligament (PDL) cells and investigate underlying mechanisms. MATERIAL AND METHODS Human PDL cells, obtained from four subjects, were stimulated with vitamin D3 for 4-48 h. The bone markers osteopontin and osteocalcin and proinflammatory cytokine/chemokine expression was determined by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Cytokine and chemokine expression was determined after stimulation with the inflammation promoter lipopolysaccharide (LPS) in the presence or absence of vitamin D3. Alkaline phosphatase activity was assessed using p-nitrophenylphosphate substrate. RESULTS Treatment with 30 ng/mL of vitamin D3, corresponding to an optimal plasma concentration of vitamin D, for 24 h had no effect on PDL cell number and morphology but increased PDL cell osteopontin and osteocalcin mRNA expression by about 70 and 40%, respectively, and, moreover, treatment with vitamin D3 for 48 h enhanced PDL cell alkaline phosphatase activity by about two times showing that vitamin D3 exerts pro-osteogenic effects in human PDL cells. Stimulation with LPS (1 μg/mL) for 4 h increased PDL cell interleukin (IL)-6 cytokine and chemokine ligand 1 (CXCL1) chemokine mRNA expression several fold. The LPS-induced increase in IL-6 and CXCL1 transcripts was attenuated by vitamin D3 (30 ng/mL). Treatment with vitamin D3 (3-300 ng/mL) for 24 h reduced the LPS-evoked increase in PDL cell IL-6 protein by about 50%. Vitamin D3 (30 ng/mL) had no effect on LPS-induced IL-1β and MCP-1 mRNA expression. CONCLUSIONS Vitamin D3 promotes osteogenic differentiation but also downregulates inflammation promoter-induced IL-6 cytokine and CXCL1 chemokine expression in human PDL cells, suggesting that vitamin D3 both stimulates bone regeneration and antagonizes inflammation in human periodontal tissue.
Collapse
Affiliation(s)
- D Nebel
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - D Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - K Arosenius
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - E Larsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - D Jönsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - B O Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress. Biotechnol Lett 2014; 36:2559-69. [PMID: 25129046 DOI: 10.1007/s10529-014-1625-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/06/2014] [Indexed: 01/16/2023]
Abstract
Improper fluid shear stress (FSS) can cause serious damages to bone marrow mesenchymal stem cells (MSCs). Mechano-growth factor (MGF) E peptide pretreatment was proposed to protect MSCs against FSS damage in this study. MSCs were exposed to FSS for 30 min after they were pretreated with MGF E peptide for 24 h. Then, the effects of MGF E peptide on the viability, proliferation and cell apoptosis of MSCs were investigated. MGF E peptide pretreatment could recover the cellular metabolic activity of MSCs reduced by 72 dyne cm(-2) FSS and had a synergistic effect with FSS on the cellular metabolic viability of MSCs under 24 and 72 dyne cm(-2) FSS. These results suggested that MGF E peptide pretreatment could be an effective method for the protection of FSS damage in bone tissue engineering.
Collapse
|
28
|
Zhan Y, Samietz S, Holtfreter B, Hannemann A, Meisel P, Nauck M, Völzke H, Wallaschofski H, Dietrich T, Kocher T. Prospective Study of Serum 25-hydroxy Vitamin D and Tooth Loss. J Dent Res 2014; 93:639-44. [PMID: 24828383 DOI: 10.1177/0022034514534985] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/18/2014] [Indexed: 12/30/2022] Open
Abstract
Vitamin D deficiency and oral diseases (periodontitis, caries, and tooth loss) are highly prevalent in Germany. Previous studies suggested that vitamin D might be a modifiable and protective factor for periodontitis, caries, and tooth loss. However, prospective studies investigating such associations are limited. We explored the association between the concentration of serum 25-hydroxy vitamin D (25OHD) and incidence of tooth loss, progression of clinical attachment loss (CAL) ≥ 3 mm, and progression of restorative and caries status in a population-based longitudinal study. We analyzed data from 1,904 participants from the Study of Health in Pomerania with a five-year follow-up. Generalized estimating equation models were applied to evaluate tooth-specific associations between serum 25OHD and incidence of tooth loss, progression of CAL ≥ 3 mm, and progression of restorative and caries status. Age, sex, education, smoking status, alcohol drinking, waist circumference, dental visit frequency, reasons of dental visit, vitamin D or calcium supplements, and season of blood draw were considered as confounders. Serum 25OHD was inversely associated with incidence of tooth loss. A significant dose-response relationship (p = .0022) was observed across the quintiles of serum 25OHD. After adjusting for multiple confounders, each 10-µg/L increase of serum 25OHD was associated with a 13% decreased risk of tooth loss (risk ratio: 0.87; 95% confidence interval: 0.79, 0.96). The association was attenuated for changes of CAL ≥ 3 mm when adjusting for multiple confounders. No significant association was found between serum 25OHD and caries progression. Vitamin D might be a protective factor for tooth loss. The effect might partially be mediated by its effect on periodontitis.
Collapse
Affiliation(s)
- Y Zhan
- Unit of Periodontology, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - S Samietz
- Department of Prosthetic Dentistry, Gerodontology, and Biomaterials, Center of Oral Health, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - B Holtfreter
- Unit of Periodontology, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - A Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - P Meisel
- Unit of Periodontology, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - M Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - H Völzke
- Institute of Community Medicine, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - H Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - T Dietrich
- Department of Oral Surgery, School of Dentistry, University of Birmingham, Birmingham, UK
| | - T Kocher
- Unit of Periodontology, University Medicine, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
van de Peppel J, van Leeuwen JPTM. Vitamin D and gene networks in human osteoblasts. Front Physiol 2014; 5:137. [PMID: 24782782 PMCID: PMC3988399 DOI: 10.3389/fphys.2014.00137] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/20/2014] [Indexed: 12/27/2022] Open
Abstract
Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3) through the stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct effects on osteoblasts and bone formation have also been established. The vitamin D receptor (VDR) is expressed in osteoblasts and 1,25D3 modifies gene expression of various osteoblast differentiation and mineralization-related genes, such as alkaline phosphatase (ALPL), osteocalcin (BGLAP), and osteopontin (SPP1). 1,25D3 is known to stimulate mineralization of human osteoblasts in vitro, and recently it was shown that 1,25D3 induces mineralization via effects in the period preceding mineralization during the pre-mineralization period. For a full understanding of the action of 1,25D3 in osteoblasts it is important to get an integrated network view of the 1,25D3-regulated genes during osteoblast differentiation and mineralization. The current data will be presented and discussed alluding to future studies to fully delineate the 1,25D3 action in osteoblast. Describing and understanding the vitamin D regulatory networks and identifying the dominant players in these networks may help develop novel (personalized) vitamin D-based treatments. The following topics will be discussed in this overview: (1) Bone metabolism and osteoblasts, (2) Vitamin D, bone metabolism and osteoblast function, (3) Vitamin D induced transcriptional networks in the context of osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Jeroen van de Peppel
- Department of Internal Medicine, Bone and Calcium Metabolism Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
30
|
van Driel M, van Leeuwen JPTM. Vitamin D endocrine system and osteoblasts. BONEKEY REPORTS 2014; 3:493. [PMID: 24605210 DOI: 10.1038/bonekey.2013.227] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/04/2013] [Indexed: 01/12/2023]
Abstract
The interaction between vitamin D and osteoblasts is complex. In the current review we will give an overview of the current knowledge of the vitamin D endocrine system in osteoblasts. The presence of the vitamin D receptor in osteoblasts enables direct effects of 1α,25dihydroxyvitamin D3 (1α,25D3) on osteoblasts, but the magnitude of the effects is subject to the presence of many other factors. Vitamin D affects osteoblast proliferation, as well as differentiation and mineralization, but these effects vary with the timing of treatment, dosage and origin of the osteoblasts. Vitamin D effects on differentiation and mineralization are mostly stimulatory in human and rat osteoblasts, and inhibitory in murine osteoblasts. Several genes and mechanisms are studied to explain the effects of 1α,25D3 on osteoblast differentiation and bone formation. Besides the classical VDR, osteoblasts also express a membrane-localized receptor, and in vitro studies have shown that osteoblasts are capable of the synthesis of 1α,25D3.
Collapse
|
31
|
Abstract
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed.
Collapse
Affiliation(s)
- Brian L Foster
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|