1
|
Gonçalves ASC, Fernandes JR, Saavedra MJ, Guimarães NM, Pereira C, Simões M, Borges A. New insights on antibacterial mode of action of blue-light photoactivated berberine and curcumin-antibiotic combinations against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2025; 52:104514. [PMID: 39920956 DOI: 10.1016/j.pdpdt.2025.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Antimicrobial photodynamic inactivation (aPDI), using photosensitisers in combination with antibiotics, is a promising multi-target strategy to address antibiotic resistance, particularly in wound infections. This study aimed to elucidate the antibacterial mode of action of combinations of berberine (Ber) or curcumin (Cur) with selected antibiotics (Ber-Ab or Cur-Ab) under blue light irradiation (420 nm) against Staphylococcus aureus, including methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Multiple physiological parameters were assessed using complementary assays (fluorometry, epifluorescence microscopy, flame emission and atomic absorption spectroscopy, zeta potential, flow cytometry, and the plate agar method) to examine the effect on ROS production, membrane integrity, DNA damage, motility and virulence factors of S. aureus. Results indicated that blue light photoactivated Ber-Ab and Cur-Ab combinations led to substantial ROS generation, even at low concentrations, causing oxidative stress that severely impacted bacterial membrane integrity (approximately 90 % in MRSA and 40 % in MSSA). Membrane destabilization was further confirmed by elevated intercellular potassium release (≈ 2.00 and 2.40 µg/mL in MRSA and MSSA, respectively). Furthermore, significant DNA damage was observed in both strains (≈ 50 %). aPDI treatment with blue light also reduced S. aureus pathogenicity by impairing motility and inhibiting key virulence factors such as proteases, lipases, and gelatinases, all of which play key roles in the infectious process. Overall, Ber-Ab combinations demonstrated the highest efficacy across all parameters tested, highlighting for the first time the multi-target therapeutic potential of this phytochemical-based aPDI strategy to combat antibiotic-resistant S. aureus infections and improve wound infection treatment outcomes.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - José R Fernandes
- CQVR-Vila Real Chemistry Center, University of Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801, Vila Real, Portugal
| | - Maria José Saavedra
- Antimicrobials, Biocides and Biofilms Unit (AB2Unit), Laboratory of Medical Microbiology, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Animal and Veterinary Research Center (CECAV)-Al4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Center Interdisciplinar of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)-Inov4Agro, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Nuno M Guimarães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Cristiana Pereira
- Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal; Environmental Hygiene and Human Biomonitoring Unit, Department of Health Protection, d, Luxembourg
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Hu X, Yan L, Zhang M. UV-radiation manufacturing of natural macromolecular products salecan and tannic acid-based functional gel material as superadsorbent for toluidine blue remediation. Int J Biol Macromol 2024; 280:135881. [PMID: 39321518 DOI: 10.1016/j.ijbiomac.2024.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Adsorbent materials constructed from natural macromolecular products are favored because of their wide range of sources, biodegradability, and environmental friendliness. Salecan is a novel extracellular polysaccharide with ideal physicochemical and biological activities. Here, we have designed a polymer gel through UV-initiated polymerization of [2-(Methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) in the mixture of salecan and tannic acid. Photopatterned polymerization process allowed in situ formation of gel adsorbent in a mild reaction condition with energy-efficient manner. Batch experiments for toluidine blue (TB) adsorption were carried out as a function of initial dye concentration, solution pH, contact time, and gel dosage to examine the adsorption capacity, potential mechanism, and removal efficiency. Adsorption behavior exhibited a pH-dependence pattern, which was closely related to their swelling and morphological properties. Adsorption process was in conformity to pseudo-second-order kinetic and Langmuir isotherm models, unlocking a chemical adsorption behavior and monolayer-type removal. The maximum adsorption was 490.2 mg/g, which could be considered a superiorly competing value. Additionally, the UV-gel still showed desirable recyclability and maintained the adsorption effectiveness over 95 % after five regeneration cycles. This study opened up new prospects in preparing high performance adsorbent for TB decontamination and laid the foundation for polysaccharide-based adsorption material research.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Meng Zhang
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| |
Collapse
|
3
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
4
|
Ramfol R, van Vuuren S. The interactive effects of medicinal dyes with conventional antimicrobials against skin pathogens. J Appl Microbiol 2024; 135:lxae147. [PMID: 38955371 DOI: 10.1093/jambio/lxae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
AIMS This study aimed to explore potential synergistic effects of medicinal dyes with antimicrobials against pathogens responsible for skin infections. METHODS AND RESULTS Antimicrobial testing was conducted using minimum inhibitory concentrations and minimum bactericidal/fungicidal concentration assays. The fractional inhibitory index (ΣFIC) of combinations was calculated, and isobolograms were constructed on selected combinations. Toxicity studies were conducted using the brine-shrimp lethality assay. Combination (1:1 ratio) studies noted that 26% of dye-antibiotic combinations were synergistic against the Gram-positive strains, 15% against the Gram-negative strains, and 14% against the yeasts. The Mercurochrome: Betadine® combination noted synergy at ratios against all the Staphylococcus aureus strains with ΣFIC values ranging from 0.05 to 0.48. The combination of Gentian violet with Gentamycin noted a 15-fold decrease in toxicity, and a selectivity index of 977.50 against the Escherichia coli (DSM 22314) strain. Time-kill studies were conducted on the combinations with the highest safe selectivity index (SI) value and lowest safe SI value i.e. Gentian violet with Gentamycin and Malachite green with Neomycin. Both combinations demonstrated better antimicrobial activity in comparison to the independent values and the controls. CONCLUSION This study highlights the potential for medicinal dye combinations as a treatment for skin infections.
Collapse
Affiliation(s)
- Rhea Ramfol
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
5
|
Silva RC, Buzzá HH, Ducas ESA, Oliveira KT, Bagnato VS, Souza GRL, Almeida LM, Gonçalves PJ. Synergic vascular photodynamic activity by methylene blue-curcumin supramolecular assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123281. [PMID: 37625276 DOI: 10.1016/j.saa.2023.123281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
A supramolecular assembly was obtained by combining methylene blue (MB) with a natural plant extract, curcumin (Curc), in a stoichiometric ratio of 1:4 in aqueous solution (90% PBS + 10% ethanol) at room temperature. The MB-Curc supramolecular assembly was evidenced by absorption and fluorescence spectroscopies, and the stoichiometry and bonding constant were obtained using Cieleńs model. Its stability and photostability were evaluated by chromatographic analysis and UV-Vis absorption. The MB-Curc avoids the aggregation of both isolated compounds and efficiently produces singlet oxygen (ΦΔ= 0.52 ± 0.03). Its potential for photodynamic antiangiogenic treatments was evaluated through the vascular effect observed in chicken chorioallantoic membrane (CAM) assay. The results showed intense damage in CAM vascular network by MB-Curc after irradiation, which is higher than the effect of isolated compounds, indicating a synergistic vascular effect. This combination can be essential to prevent cancer revascularization after photodynamic application and improve the efficacy of this approach. The characteristics exhibited by MB-Curc make it a potential candidate for use in cancer treatments through photodynamic antiangiogenic therapy.
Collapse
Affiliation(s)
- Rodrigo C Silva
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil.
| | - Hilde H Buzzá
- Instituto de Física de São Carlos, Universidade de São Paulo (IFSC, USP), São Carlos, SP, Brazil; Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eli S A Ducas
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Kleber T Oliveira
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Vanderlei S Bagnato
- Instituto de Física de São Carlos, Universidade de São Paulo (IFSC, USP), São Carlos, SP, Brazil; Hagler Fellow, Texas A&M University, College Station, United States
| | - Guilherme R L Souza
- Instituto de Ciências Biológicas, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Luciane M Almeida
- Universidade Estadual de Goiás (UEG), Campus Anápolis de Ciências Exatas e Tecnológicas, Anápolis, GO, Brazil
| | - Pablo J Gonçalves
- Instituto de Química, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Instituto de Física, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| |
Collapse
|
6
|
Mathur A, Parihar AS, Modi S, Kalra A. Photodynamic therapy for ESKAPE pathogens: An emerging approach to combat antimicrobial resistance (AMR). Microb Pathog 2023; 183:106307. [PMID: 37604213 DOI: 10.1016/j.micpath.2023.106307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
The increase in antimicrobial resistance, particularly in ESKAPE pathogens, has resulted in the dire need for new therapeutic approaches. ESKAPE is an acronym for a group of bacteria that are responsible for a majority of nosocomial and community acquired infections. The acronym stands for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. These pathogens are known for their ability to develop resistance to multiple antibiotics, making them difficult to treat thus posing a significant threat to public health. In light of the alarming consequences of antimicrobial resistance, it has been estimated that, in the absence of a substantial increase in the rate of development of new effective drugs, the number of casualties related to these infections will increase from about 700,000 in 2016 up to nearly 10,000,000 in 2050 [1]. One potential strategy to treat these pathogens is photodynamic therapy (PDT). In the early 20th century, Oscar Raab observed the phototoxicity of acridine red against Paramecium caudatum, while Tappenier and Jesionek demonstrated the photodynamic effects of eosin for treating cutaneous diseases. These discoveries laid the foundation for Photodynamic Therapy (PDT), which utilizes a non-toxic photosensitizer (PS) followed by targeted light irradiation for treatment [2]. PDT involves the use of a photosensitizer, a light source, and oxygen to eliminate highly active infectious pathogens such as bacteria, viruses, and fungi. PDT is known to possess several advantages including localized treatment and fewer side effects. Various photosensitizers and light sources have been assessed in different strains, showing promising results suggesting PDT to be a promising potential treatment option. PDT utilizes PS compounds with suitable light absorption that showcase effective results against the pathogens in vitro and in vivo, including BODIPY derivatives, Methylene Blue, and other dyes like porphyrin derivatives, phthalocyanines, indole derivatives, Photophrin, etc., inhibiting the growth of infections, for both in planktonic cells and in biofilms. Combination of PDT with other therapies like efflux pump inhibitors or quorum sensing inhibitors has also proven to be efficacious. However, this domain further needs to be assessed before it reaches the society.
Collapse
Affiliation(s)
| | | | - Simran Modi
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | | |
Collapse
|
7
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
8
|
Park GH, Lee SY, Lee JB, Chang BS, Lee JK, Um HS. Effect of photodynamic therapy according to differences in photosensitizers on Staphylococcus aureus biofilm on titanium. Photodiagnosis Photodyn Ther 2023; 41:103317. [PMID: 36738904 DOI: 10.1016/j.pdpdt.2023.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aimed to evaluate the antimicrobial effect of photodynamic therapy (PDT) against Staphylococcus aureus biofilm on a titanium surface and to compare the differences in the effect of PDT using toluidine blue O (TBO) and methylene blue (MB) as a photosensitizer. METHODS The bacterial strain S. aureus ATCC 25,923 was used. Sandblasted and acid-etched (SLA) disks were divided into the following six groups: phosphate buffer saline (PBS), TBO, MB, PBS with laser (PBS + L), TBO with laser (TBO + L), and MB with laser (MB + L). The laser group samples were irradiated by a cold diode laser for 60 s. After treatment, the number of surviving bacteria was calculated by counting the colony-forming units (CFUs) and confocal laser scanning microscopy (CLSM) was applied to observe the bacteria on the disk surface. RESULTS The TBO + L and MB + L groups showed significantly lower CFU/ml than the other groups (p < 0.01). The TBO + L group showed significantly lower CFU/ml than the MB + L group (p = 0.032). There was no significant difference between the PBS, TBO, MB, and PBS + L groups. Within the limitations of this in vitro study, PDT with TBO and MB can effectively reduce S. aureus biofilm on SLA titanium surfaces. TBO is more effective than MB as a photosensitizer. PDT with TBO may be applied to the treatment of peri‑implant disease in the future.
Collapse
Affiliation(s)
- Geun Hee Park
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Si Young Lee
- Department of Microbiology and Immunology, Gangneung-Wonju National University, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Jong-Bin Lee
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Beom-Seok Chang
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Jae-Kwan Lee
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea.
| | - Heung-Sik Um
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea.
| |
Collapse
|
9
|
Fabio GB, Martin BA, Dalmolin LF, Lopez RFV. Antimicrobial photodynamic therapy and the advances impacted by the association with nanoparticles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
11
|
Ong R, Cornish J, Wen J. Nanoparticular and other carriers to deliver lactoferrin for antimicrobial, antibiofilm and bone-regenerating effects: a review. Biometals 2022; 36:709-727. [PMID: 36512300 PMCID: PMC9745744 DOI: 10.1007/s10534-022-00455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Bone and joint infections are a rare but serious problem worldwide. Lactoferrin’s antimicrobial and antibiofilm activity coupled with its bone-regenerating effects may make it suitable for improving bone and joint infection treatment. However, free lactoferrin (LF) has highly variable oral bioavailability in humans due to potential for degradation in the stomach and small intestine. It also has a short half-life in blood plasma. Therefore, encapsulating LF in nanocarriers may slow degradation in the gastrointestinal tract and enhance LF absorption, stability, permeability and oral bioavailability. This review will summarize the literature on the encapsulation of LF into liposomes, solid lipid nanoparticles, nanostructured lipid carriers, polymeric micro and nanoparticles and hydroxyapatite nanocrystals. The fabrication, characterization, advantages, disadvantages and applications of each system will be discussed and compared.
Collapse
Affiliation(s)
- Ray Ong
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jillian Cornish
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jingyuan Wen
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| |
Collapse
|
12
|
A Novel Technique for Disinfection Treatment of Contaminated Dental Implant Surface Using 0.1% Riboflavin and 445 nm Diode Laser—An In Vitro Study. Bioengineering (Basel) 2022; 9:bioengineering9070308. [PMID: 35877359 PMCID: PMC9311919 DOI: 10.3390/bioengineering9070308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Antimicrobial photodynamic therapy (PDT) has been introduced as a potential option for peri-implantitis treatment. The aim of this study is to evaluate the antimicrobial effect of a novel technique involving a combination of 445 nm diode laser light with 0.1% riboflavin solution (used as a photosensitizing dye) as applied on a bacterial–fungal biofilm formed on implants and to compare the performance of this technique with that of the commonly used combination of 660 nm diode laser with 0.1% methylene blue dye. Methods: An in vitro study was conducted on 80 titanium dental implants contaminated with Staphylococcus aureus (SA) and Candida albicans (CA) species. The implants were randomly divided into four groups: negative control (NC), without surface treatment; positive control (PC), treated with a 0.2% chlorhexidine (CHX)-based solution; PDT1, 660 nm (EasyTip 320 µm, 200 mW, Q power = 100 mW, 124.34 W/cm2, 1240 J/cm2) with a 0.1% methylene blue dye; and PDT2, 445 nm (EasyTip 320 µm, 200 mW, Q power = 100 mW, 100 Hz, 124.34 W/cm2, 1.24 J/cm2) with a 0.1% riboflavin dye. Results: The PDT1 and PDT2 groups showed greater reduction of SA and CA in comparison to the NC group and no significant differences in comparison to the PC group. No statistically significant differences between the PDT1 and PDT2 groups were observed. Conclusions: A novel antimicrobial treatment involving a combination of 445 nm diode laser light with riboflavin solution showed efficiency in reducing SA and CA biofilm formation on dental implant surfaces comparable to those of the more commonly used PDT treatment consisting of 660 nm diode laser light with methylene blue dye or 0.2% CHX treatment.
Collapse
|
13
|
Chen T, Yang D, Lei S, Liu J, Song Y, Zhao H, Zeng X, Dan H, Chen Q. Photodynamic therapy-a promising treatment of oral mucosal infections. Photodiagnosis Photodyn Ther 2022; 39:103010. [PMID: 35820633 DOI: 10.1016/j.pdpdt.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
The treatment of oral mucosal infections is increasingly challenging owing to antibiotic resistance. Therefore, alternative antimicrobial strategies are urgently required. Photodynamic therapy (PDT) has attracted attention for the treatment of oral mucosal infections because of its ability to effectively inactivate drug-resistant bacteria, completely heal clinical infectious lesions and usually offers only mild adverse reactions. This review briefly summarizes relevant scientific data and published papers and discusses the potential mechanism and application of PDT in the treatment of oral mucosal infections.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yansong Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
14
|
Gümüşgöz Çelik G, Gonca S, Şahin B, Özdemir S, Atilla D, Gürek AG. Novel axially symmetric and unsymmetric silicon(IV) phthalocyanines having anti-inflammatory groups: synthesis, characterization and their biological properties. Dalton Trans 2022; 51:7517-7529. [PMID: 35506506 DOI: 10.1039/d2dt00652a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New asymmetric Si(IV)Pc (1), monomeloxicammonotriethyleneglycolmonomethylether (phthalocyaninano)silicone, axially ligated with meloxicam as a non-steroidal anti-inflammatory drug (NSAID), or triethylene glycol monomethyl ether and symmetric Si(IV)Pc (2), diclofenac(phthalocyaninano)silicone, axially ligated with two diclofenac as NSAID, were synthesized and characterized as antioxidant and antimicrobial agents together with polyoxo-SiPc (3), ditriethyleneglycolmonomethylether(phthalocyaninano)silicone, and SiPc(OH)2 (4), dihydroxy(phthalocyaninano)silicone. The photophysical and photochemical properties of these compounds were investigated. Then, antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferrous ion chelating activities, were performed for these Si(IV) phthalocyanine derivatives (1, 2, 3 and 4). The highest DPPH scavenging activity of 73.48% was achieved with compound 2 and the highest ferrous chelating ability of 66.42% was obtained with compound 3. The results of the antioxidant assays indicated that Pc derivatives 1, 2 and 3 have remarkable superoxide radical scavenging activities, and moderate 2,2-diphenyl-1-picrylhydrazyl activities and metal chelating activities. The antimicrobial effects of the Si(IV) phthalocyanine compounds were studied against six pathogenic bacteria and two pathogenic microfungi. The results for the antimicrobial activity of these compounds indicated that Enterococcus faecalis (ATCC 29212) was the most sensitive microorganism and Pseudomonas aeruginosa (ATCC 27853) and Legionella pneumophila subsp. pneumophila (ATCC 33152) were the most resistant microorganisms against the tested compounds. The DNA cleavage ability and microbial cell viability of these compounds were studied. The studied compounds demonstrated excellent DNA nuclease activity and exhibited 100% cell viability inhibition at 500 mg L-1. Also, the antimicrobial photodynamic therapy of the compounds was tested against Escherichia coli (ATCC 25922) and significant photodynamic antimicrobial activity was observed. In addition, the effect of phthalocyanines on biofilm inhibition produced by Staphylococcus aureus (ATCC 25923) was also tested and 3 showed excellent biofilm inhibition of 82.14%.
Collapse
Affiliation(s)
- Gizem Gümüşgöz Çelik
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Turkey, TR-33343 Yenisehir, Mersin, Turkey
| | - Belgin Şahin
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey.
| | - Devrim Atilla
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| |
Collapse
|
15
|
Shahmoradi S, Shariati A, Zargar N, Yadegari Z, Asnaashari M, Amini SM, Darban-Sarokhalil D. Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagnosis Photodyn Ther 2021; 35:102398. [PMID: 34133959 DOI: 10.1016/j.pdpdt.2021.102398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Selenium Nanoparticles (SeNPs) were reported as an agent that may enhance the effectiveness of Photodynamic Antimicrobial Chemotherapy (PACT). This in vitro study evaluates the effect of SeNPs on the efficacy of Methylene Blue (MB)-induced PACT against the biofilm formated in 96-well plates and the dentine tubule biofilm of Enterococcus faecalis. METHODS Chitosan coated SeNPs were synthesized using chemical reduction method and were characterized by Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). Twenty-four-hour biofilms of E. faecalis were developed on 96-well plates and treated with SeNPs, MB, and Light-Emitting Diode (LED). Also, three-week biofilms of E. faecalis were formed on 67 specimens of dentinal tubules, and the antibacterial effects of MB+SeNPs on these biofilms were studied. RESULTS The average hydrodynamic diameter of SeNPs was 80/3 nm according to DLS measurement. The combined use of MB and SeNPs significantly reduced Colony-Forming Units (CFUs) of one-day-old E. faecalis biofilms in comparison with the control group (P value < 0.05). Besides, combination therapy had the most antibacterial effect on root canal E. faecalis biofilms at both 200 and 400 µm depths of dentine tubules (P value < 0.001). Of note, about 50% of human fibroblast cells survived at a concentration of 128 µg/ml of SeNPs, compared to the control group. CONCLUSION The results demonstrated that the photodynamic therapy modified by SeNPs could be an effective disinfection alternative to the destruction of E. faecalis biofilms and root canal treatment.
Collapse
Affiliation(s)
- Samane Shahmoradi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Zargar
- School of Dentistry, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, Dental school, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Asnaashari
- Department of Endodontics, Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran university of medical sciences, Tehran, Iran.
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Pérez C, Zúñiga T, Palavecino CE. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther 2021; 34:102285. [PMID: 33836278 DOI: 10.1016/j.pdpdt.2021.102285] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive spherical bacterium that commonly causes various infections which can range from superficial to life-threatening. Hospital strains of S. aureus are often resistant to antibiotics, which has made their treatment difficult in recent decades. Other therapeutic alternatives have been postulated to overcome the drawbacks of antibiotic multi-resistance. Of these, photodynamic therapy (PDT) is a promising approach to address the notable shortage of new active antibiotics against multidrug-resistant S. aureus. PDT combines the use of a photosensitizer agent, light, and oxygen to eradicate pathogenic microorganisms. Through a systematic analysis of published results, this work aims to verify the usefulness of applying PDT in treating multidrug-resistant S.aureus infections. METHODS This review was based on a bibliographic search in various databases and the analysis of relevant publications. RESULTS There is currently a large body of evidence demonstrating the efficacy of photodynamic therapy in eliminating S.aureus strains. Both biofilm-producing strains, as well as multidrug-resistant strains. CONCLUSION We conclude that there is sufficient scientific evidence that PDT is a useful adjunct to traditional antibiotic therapy for treating S. aureus infections. Clinical application through appropriate trials should be introduced to further define optimal treatment protocols, safety and efficay.
Collapse
Affiliation(s)
- Camila Pérez
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Tania Zúñiga
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|
17
|
Snell SB, Gill AL, Haidaris CG, Foster TH, Baran TM, Gill SR. Staphylococcus aureus Tolerance and Genomic Response to Photodynamic Inactivation. mSphere 2021; 6:e00762-20. [PMID: 33408223 PMCID: PMC7845598 DOI: 10.1128/msphere.00762-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen with a clinical spectrum ranging from asymptomatic skin colonization to invasive infections. While traditional antibiotic therapies can be effective against S. aureus, the increasing prevalence of antibiotic-resistant strains results in treatment failures and high mortality rates. Photodynamic inactivation (PDI) is an innovative and promising alternative to antibiotics. While progress has been made in our understanding of the bacterial response to PDI, major gaps remain in our knowledge of PDI tolerance, the global cellular response, and adaptive genomic mutations acquired as a result of PDI. To address these gaps, S. aureus HG003 and isogenic mutants with mutations in agr, mutS, mutL, and mutY exposed to single or multiple doses of PDI were assessed for survival and tolerance and examined by global transcriptome and genome analyses to identify regulatory and genetic adaptations that contribute to tolerance. Pathways in inorganic ion transport, oxidative response, DNA replication recombination and repair, and cell wall and membrane biogenesis were identified in a global cellular response to PDI. Tolerance to PDI was associated with superoxide dismutase and the S. aureus global methylhydroquinone (MHQ)-quinone transcriptome network. Genome analysis of PDI-tolerant HG003 identified a nonsynonymous mutation in the quinone binding domain of the transcriptional repressor QsrR, which mediates quinone sensing and oxidant response. Acquisition of a heritable QsrR mutation through repeated PDI treatment demonstrates selective adaption of S. aureus to PDI. PDI tolerance of a qsrR gene deletion in HG003 confirmed that QsrR regulates the S. aureus response to PDI.IMPORTANCEStaphylococcus aureus can cause disease at most body sites, with illness ranging from asymptomatic infection to death. The increasing prevalence of antibiotic-resistant strains results in treatment failures and high mortality rates. S. aureus acquires resistance to antibiotics through multiple mechanisms, often by genetic variation that alters antimicrobial targets. Photodynamic inactivation (PDI), which employs a combination of a nontoxic dye and low-intensity visible light, is a promising alternative to antibiotics that effectively eradicates S. aureus in human infections when antibiotics are no longer effective. In this study, we demonstrate that repeated exposure to PDI results in resistance of S. aureus to further PDI treatment and identify the underlying bacterial mechanisms that contribute to resistance. This work supports further analysis of these mechanisms and refinement of this novel technology as an adjunctive treatment for S. aureus infections.
Collapse
Affiliation(s)
- Sara B Snell
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Constantine G Haidaris
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas H Foster
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Timothy M Baran
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
18
|
Antimicrobial Photodynamic Therapy with Chlorin e6 Is Bactericidal against Biofilms of the Primary Human Otopathogens. mSphere 2020; 5:5/4/e00492-20. [PMID: 32669474 PMCID: PMC7364218 DOI: 10.1128/msphere.00492-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Otitis media (OM), or middle ear disease, is the most prevalent bacterial infection in children and the primary reason for antibiotic use and surgical intervention in the pediatric population. Biofilm formation by the major bacterial otopathogens, Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae, has been shown to occur within the middle ears of OM patients and is a key factor in the development of recurrent disease, which may result in hearing impairment and developmental delays. Bacterial biofilms are inherently impervious to most antibiotics and present a significant challenge to the immune system. In this study, we demonstrate that antimicrobial photodynamic therapy (aPDT) using the photosensitizer chlorin e6 elicits significant bactericidal activity versus planktonic and biofilm-associated otopathogens and supports further analyses of this novel, efficacious, and promising technology as an adjunctive treatment for acute and recurrent OM. Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae (NTHi) are ubiquitous upper respiratory opportunistic pathogens. Together, these three microbes are the most common causative bacterial agents of pediatric otitis media (OM) and have therefore been characterized as the primary human otopathogens. OM is the most prevalent bacterial infection in children and the primary reason for antibiotic administration in this population. Moreover, biofilm formation has been confirmed as a primary mechanism of chronic and recurrent OM disease. As bacterial biofilms are inherently metabolically recalcitrant to most antibiotics and these complex structures also present a significant challenge to the immune system, there is a clear need to identify novel antimicrobial approaches to treat OM infections. In this study, we evaluated the potential efficacy of antibacterial photodynamic therapy (aPDT) with the photosensitizer chlorin e6 (Ce6) against planktonic as well as biofilm-associated M. catarrhalis, S. pneumoniae, and NTHi. Our data indicate aPDT with Ce6 elicits significant bactericidal activity against both planktonic cultures and established biofilms formed by the three major otopathogens (with an efficacy of ≥99.9% loss of viability). Notably, the implementation of a novel, dual-treatment aPDT protocol resulted in this disinfectant effect on biofilm-associated bacteria and, importantly, inhibited bacterial regrowth 24 h posttreatment. Taken together, these data suggest this novel Ce6-aPDT treatment may be a powerful and innovative therapeutic strategy to effectively treat and eradicate bacterial OM infections and, significantly, prevent the development of recurrent disease. IMPORTANCE Otitis media (OM), or middle ear disease, is the most prevalent bacterial infection in children and the primary reason for antibiotic use and surgical intervention in the pediatric population. Biofilm formation by the major bacterial otopathogens, Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae, has been shown to occur within the middle ears of OM patients and is a key factor in the development of recurrent disease, which may result in hearing impairment and developmental delays. Bacterial biofilms are inherently impervious to most antibiotics and present a significant challenge to the immune system. In this study, we demonstrate that antimicrobial photodynamic therapy (aPDT) using the photosensitizer chlorin e6 elicits significant bactericidal activity versus planktonic and biofilm-associated otopathogens and supports further analyses of this novel, efficacious, and promising technology as an adjunctive treatment for acute and recurrent OM.
Collapse
|
19
|
Leelanarathiwat K, Katsuta Y, Katsuragi H, Watanabe F. Antibacterial activity of blue high-power light-emitting diode-activated flavin mononucleotide against Staphylococcus aureus biofilm on a sandblasted and etched surface. Photodiagnosis Photodyn Ther 2020; 31:101855. [PMID: 32512247 DOI: 10.1016/j.pdpdt.2020.101855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Because of high affinity to the titanium implant surface, Staphylococcus aureus (S. aureus) has been reported as key microorganism that cause the peri-implantitis, even though it is not the typical periodontal pathogenic bacterial strain. The aim of this study was to evaluate the antibacterial property of the aPDT device, using blue high-power LED light activated flavin mononucleotide, comparing to the previously proven aPDT method using methylene blue and red laser on S. aureus biofilm. METHODS Commercial pure titanium grade 4 modified surface with SLA were used to form S. aureus biofilm for 48 h. Two aPDT systems were used in this study; 1) HELBO®Blue Photosensitizer (Bredent medical), which is methylene blue (MB) activated by 670-nm red diode laser and 2) FotoSan® Blue agent Gel (CMS Dental), which contains flavin mononucleotide (FMN) activated by FotoSan® BLUE LAD (Light Activated Disinfection) light. The antibacterial tests were performed by total viable count, crystal violet assay, and direct observation methods. RESULTS Using the light activated-PS, the log reduction in CFU/mL compared to non-treatment was 1.23 ± 0.19 log10 and 1.23 ± 0.12 log10 (about 93 % of reduction) for MB and FMN, respectively. The significant difference in the reduction could be determined when comparing with using only light (p < 0.01). Regarding two aPDT systems, the decrease in amount of bacteria after treatment was not significantly different (p > 0.05). CONCLUSION The antibacterial activities of aPDT using blue high-power LED light activated flavin mononucleotide on S. aureus biofilm was comparable to those of previous research supporting aPDT using photoactivated MB.
Collapse
Affiliation(s)
- Kanda Leelanarathiwat
- Department of Prosthodontics, Faculty of Dentistry, Mahidol University, 6, Yothi Road, Ratchathewi District, Bangkok, 10400, Thailand.
| | - Yasuhiro Katsuta
- Department of Crown & Bridge Prosthodontics, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata-shi, Niigata, 951-8580, Japan.
| | - Hiroaki Katsuragi
- Department of Oral Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata-shi, Niigata, 951-8580, Japan.
| | - Fumihiko Watanabe
- Department of Crown & Bridge Prosthodontics, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata-shi, Niigata, 951-8580, Japan; Functional Occlusal Treatment, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata-shi, Niigata, 951-8580, Japan.
| |
Collapse
|
20
|
Fonseca G, Dourado D, Barreto M, Cavalcanti M, Pavelski M, Ribeiro L, Frigo L. Antimicrobial Photodynamic Therapy (aPDT) for decontamination of high-speed handpieces: A comparative study. Photodiagnosis Photodyn Ther 2020; 30:101686. [DOI: 10.1016/j.pdpdt.2020.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
|
21
|
Anane YA, Apalata T, Vasaikar S, Okuthe GE, Songca SP. In vitro antimicrobial photodynamic inactivation of multidrug-resistant Acinetobacter baumannii biofilm using Protoporphyrin IX and Methylene blue. Photodiagnosis Photodyn Ther 2020; 30:101752. [PMID: 32289462 DOI: 10.1016/j.pdpdt.2020.101752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acinetobacter baumannii is a challenging pathogen due to the rapid development of antimicrobial resistance and biofilm formation. The objective of this study was to evaluate the effect of antimicrobial photodynamic inactivation against biofilms of multidrug-resistant A. baumannii isolated from clinical, abattoir and aquatic sources. METHODS The isolates were tested for susceptibility to imipenem, meropenem, tigecycline and colistin using autoSCAN-4 automated system and rechecked by the E-test. Methylene blue, Protoporphyrin IX, and a halogen lamp were used in the in vitro assay against biofilms of the isolates. The antimicrobial photodynamic inactivation was assessed by counting colony-forming units (CFU). RESULTS The isolates from abattoir and aquatic sources were resistant to carbapenems (>64 μg/mL) but susceptible to tigecycline (2 μg/mL) and colistin (Abattoir, 0.35 μg/mL and Aquatic, 0.24 μg/mL), whereas the clinical isolate was susceptible to only colistin (0.5 μg/mL) using the E-test. The log survival percentages of the control group at a concentration of 20 μM were 5 × 10-6 % for Protoporphyrin IX and 2 × 10-6 % for Methylene blue. Therefore, Methylene blue showed higher bacterial reduction of 7.0 log10 colony forming units than 6.0 log10 for Protoporphyrin IX. No significant difference was observed with respect to the origin of isolates and the minimum inhibitory concentrations. CONCLUSION The results indicate that antimicrobial photodynamic inactivation could be an alternative strategy for the control of infections caused by multi-drug resistant A. baumannii by significantly reducing biofilm growth at a sub-lethal concentrations.
Collapse
Affiliation(s)
- Yaw Adjei Anane
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa.
| | - Teke Apalata
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa.
| | - Sandeep Vasaikar
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa
| | - Grace Emily Okuthe
- Department of Biological & Environmental Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa.
| | - Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, 2nd Floor, Francis Stock Building, Howard College Campus, UKZN, Durban, 4041, South Africa.
| |
Collapse
|
22
|
Cytotoxic effect and apoptosis pathways activated by methylene blue-mediated photodynamic therapy in fibroblasts. Photodiagnosis Photodyn Ther 2020; 29:101654. [DOI: 10.1016/j.pdpdt.2020.101654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 11/23/2022]
|
23
|
Tartaroti NC, Marques MM, Naclério-Homem MDG, Migliorati CA, Zindel Deboni MC. Antimicrobial photodynamic and photobiomodulation adjuvant therapies for prevention and treatment of medication-related osteonecrosis of the jaws: Case series and long-term follow-up. Photodiagnosis Photodyn Ther 2020; 29:101651. [PMID: 31923636 DOI: 10.1016/j.pdpdt.2020.101651] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Medication-Related Osteonecrosis of the Jaws (MRONJ) incidence are increasing among elderly. Treatment can be challenging. Prevent or treatment protocols that control evolution of the lesion are warranted. OBJECTIVE To observe long-term outcomes of two protocols based on photonics [antimicrobial photodynamic therapy (aPDT) and photobiomodulation (PBM)] for prevention and treatment of MRONJ lesions. METHODS In a prospective study, patients who needed oral surgery and had been exposed to antiresorptive drugs were long-term followed-up. For MRONJ prevention, immediately after tooth extraction aPDT was applied. For aPDT a 0.01 % methylene blue solution was applied inside socket for 5 min followed by irradiation with a diode laser [660 nm, 0.028cm2, 0.1 W, 3.57 W/cm2, 90 s and 9 J per point, 321 J/cm2, at least at in 3 points (laser probe was placed at central, and two equidistant points) and total energy of 27J]. Irradiation was repeated weekly until total tissue repair. MRONJ treatment included preoperative aPDT sessions until signs and symptoms of infection had reduced. Then, after necrotic bone removal, aPDT was applied inside surgical wounds and re-applied weekly until healing. Antibiotics were administered pre or postoperatively for no longer than 7 days. PBM therapy was applied with 808 nm diode laser, 0.028cm2, 0.1 W, 3.57 W/cm2, 30 s, 107 J/cm², 3 J and total energy of 12 J until evidence of remission. RESULTS Eighteen patients underwent preventive protocol, and none presented signs of MRONJ after a follow-up of at least 6 months. Seventeen patients presented with MRONJ underwent aPDT protocol and sixteen of them showed total regression of lesions. PRACTICAL IMPLICATIONS aPDT and PBM therapy protocols appear to be effective as adjuvant approach not only for preventing MRONJ development due to tooth extraction but for treating MRONJ lesions at early stages with no adverse effects.
Collapse
Affiliation(s)
- Natália Caroline Tartaroti
- Department of Oral and Maxillofacial Surgery- School of Dentistry - University of Sao Paulo FOUSP, Av. Prof. Lineu Prestes 2227, Butantã, São Paulo, 5508-000, São Paulo Brazil.
| | - Márcia Martins Marques
- Post Graduation Program - School of Dentistry - Ibirapuera University - UNIb, Av. Interlagos, 1329 - 4º - Chácara Flora, São Paulo, SP, 04661-100, Brazil.
| | - Maria da Graça Naclério-Homem
- Department of Oral and Maxillofacial Surgery- School of Dentistry - University of Sao Paulo FOUSP, Av. Prof. Lineu Prestes 2227, Butantã, São Paulo, 5508-000, São Paulo Brazil.
| | - Cesar Augusto Migliorati
- Department of Oral and Maxillofacial Diagnostic - University of Florida College of Dentistry, 1395 Center Drive, Rm D3-9 PO Box 100412 Gainesville, FL 32610-0412 USA.
| | - Maria Cristina Zindel Deboni
- Department of Oral and Maxillofacial Surgery- School of Dentistry - University of Sao Paulo FOUSP, Av. Prof. Lineu Prestes 2227, Butantã, São Paulo, 5508-000, São Paulo Brazil.
| |
Collapse
|
24
|
Shitomi K, Miyaji H, Miyata S, Sugaya T, Ushijima N, Akasaka T, Kawasaki H. Photodynamic inactivation of oral bacteria with silver nanoclusters/rose bengal nanocomposite. Photodiagnosis Photodyn Ther 2020; 30:101647. [PMID: 31904554 DOI: 10.1016/j.pdpdt.2019.101647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/28/2023]
Abstract
Antimicrobial photodynamic therapy (a-PDT) is a promising anti-infective technique for generation of singlet oxygen (1O2) to target dental disease. However, conventional organic photosensitizers have problems for clinical use in terms of cytotoxicity, quenching of a-PDT activity by self-dimerization, and the lack of long-term antibacterial effect. We herein propose silver nanoclusters/rose bengal nanocomposite (AgNCs/RB) as a novel photosensitizer with two primary antibacterial effects: (1) 1O2 generation by irradiated RB and (2) Ag+ ion release from AgNCs. AgNCs/RB irradiated with white light-emitting diode (LED) for a short irradiation time of 1 min significantly decreased the bacterial turbidity of Streptococcus mutans, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans (P < 0.05). In SEM, TEM and LIVE/DEAD staining images, photoexcited AgNCs/RB reduced S. mutans colonization, destroyed the cell membrane, and increased the number of dead cells. The antibacterial efficiency of photoexcited AgNCs/RB was greater than that of AgNCs or RB alone (P < 0.05), suggesting a synergistic effect of 1O2 and Ag+ ions from photoexcited AgNCs/RB. By contrast, photoexcited AgNCs/RB did not affect WST-8 and LDH activities and morphology of NIH3T3 mammalian cells, indicating low cytotoxicity. Interestingly, the antibacterial activity of AgNCs/RB on S. mutans was maintained even after the cessation of LED irradiation, indicating a long-term antibacterial effect due to released Ag+ ions. The present AgNCs/RB photosensitizers provide effective synergistic antibacterial effects for dental a-PDT via 1O2 and Ag+ ions coupled with low cytotoxicity.
Collapse
Affiliation(s)
- Kanako Shitomi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan.
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan
| | - Natsumi Ushijima
- Support Section for Education and Research, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan
| | - Tsukasa Akasaka
- Department of Biomedical, Dental Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8689, Japan.
| |
Collapse
|
25
|
Galo ÍDC, Carvalho JA, Santos JLMC, Braoios A, Prado RP. The ineffectiveness of antimicrobial photodynamic therapy in the absence of preincubation of the microorganisms in the photosensitizer. FISIOTERAPIA EM MOVIMENTO 2020. [DOI: 10.1590/1980-5918.033.ao04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction: Considering its potential as an alternative therapy to combat multiresistant bacteria, photodynamic therapy has been improved and better studied in recent years, and determining its optimized application patterns is important. Objective: This study aimed to evaluate the action of antimicrobial photodynamic therapy mediated by methylene blue in the absence of preincubation of infectious agents in the photosensitizer. Method: Standard strains of Staphylococcus aureus and Pseudomonas aeruginosa were used, which was or was not submitted to two methylene blue concentrations (0.1 μg/mL and 500 mg/mL) applied alone or in combination with a variety of red laser emission parameters (660 nm); in both cases, the streak was performed immediately after mixing between the photosensitizer and the solution containing the bacteria. Results: In the dishes with only methylene blue application neither antibacterial was produced, nor inhibition at the application points of the photodynamic therapy in the case of the bacterium Pseudomonas aeruginosa. However, in the cultures of Staphylococcus aureus in which laser emission was associated with the concentration of 500 mg/mL of the photosensitizer, inhibition was present at the laser application points. Conclusion: The time of exposure to the photosensitizer prior to the application of phototherapy seems to be an essential factor for the optimized action of photodynamic therapy, especially in the case of Gram-negative bacteria.
Collapse
|
26
|
Tran HA, Tran PA. Immobilization-Enhanced Eradication of Bacterial Biofilms and in situ Antimicrobial Coating of Implant Material Surface - an in vitro Study. Int J Nanomedicine 2019; 14:9351-9360. [PMID: 31819436 PMCID: PMC6890190 DOI: 10.2147/ijn.s219487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The aim of this study was to investigate a new method of in situ biofilm treatment for infected prostheses that remove bacterial biofilm and prevent reinfection through the use of an immobilizing agent in combination with the actions of biofilm-lysing enzymes and bactericidal antimicrobials. METHODS We investigated the combination of self-immobilization chemistry of dopamine with a biofilm-lysing enzyme, α-amylase (Am), and an antimicrobial agent, silver nitrate (Ag), to treat model Staphylococcus aureus (S. aureus) biofilms formed on titanium. The efficacy of biofilm removal and bacterial treatment was analyzed by crystal violet, colony-forming unit assays, confocal laser scanning microscopy, and scanning electron microscopy (SEM). To confirm the in situ coating of the titanium surface with antimicrobial Ag as a strategy to prevent bacterial recolonization, SEM in secondary electron mode (SE), backscatter electron mode, (BSE) and energy-dispersive spectroscopy (EDX) were used. The antimicrobial activity of the coated surface was evaluated by optical density measurement and colony-forming unit assays. RESULTS Polydopamine (PDA)-assisted treatment showed approximately a 2 log reduction in recoverable CFU and a 15% increase in biofilm removal efficacy compared to treatments that had only Am or Ag. More importantly, PDA-assisted treatment was found to immobilize Ag on the surface after the treatment, rendering them resistant to bacterial recolonization. CONCLUSION Our in vitro findings suggested that this PDA-assisted treatment and the surface immobilization-enhanced treatment concept could be promising in the development of advanced treatment for implant retention surgery for an infected prosthesis.
Collapse
Affiliation(s)
- Hien A Tran
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Interface Science and Materials Engineering (ISME) Group, QUT, Brisbane, Queensland, Australia
- Centre in Regenerative Medicine, QUT, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia
| | - Phong A Tran
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Interface Science and Materials Engineering (ISME) Group, QUT, Brisbane, Queensland, Australia
- Centre in Regenerative Medicine, QUT, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia
| |
Collapse
|
27
|
Poli PP, Souza FÁ, Ferrario S, Maiorana C. Adjunctive application of antimicrobial photodynamic therapy in the prevention of medication-related osteonecrosis of the jaw following dentoalveolar surgery: A case series. Photodiagnosis Photodyn Ther 2019; 27:117-123. [DOI: 10.1016/j.pdpdt.2019.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
|
28
|
Silva DF, Toledo Neto JL, Machado MF, Bochnia JR, Garcez AS, Foggiato AA. Effect of photodynamic therapy potentiated by ultrasonic chamber on decontamination of acrylic and titanium surfaces. Photodiagnosis Photodyn Ther 2019; 27:345-353. [PMID: 31279916 DOI: 10.1016/j.pdpdt.2019.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 01/19/2023]
Abstract
Photodynamic Therapy (PDT) is an alternative to surface decontamination that is based on the interaction between a non-toxic photosensitizer (PS) and a light source to allow for the formation of reactive oxygen species. The objective of this study was to test a new patented device - the "Ultrasonic Photodynamic Inactivation Device" (UPID) under the patent deposit MU-BR 20.2018.00.9356-3 - for the photodynamic inactivation on contaminated acrylic plates and titanium disk. This new low cost device contains light emitting diodes (LEDs) and was built in a stainless-steel container for better light distribution. In addition, 28 waterproof red LEDs plates, with a wavelength of 660 nm were used, containing three irradiators in each plate, for which the irradiation distribution and the spectral irradiance on all 6 internal faces of this device were calculated. The effect of red LED irradiation (660 nm) methylene blue (MB) (100 μmol/L) diluted in water or 70% alcohol on three types of microorganisms: Candida albicans ATCC 10231, Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. In order to estimate the effects of PDI, acrylic plates and Titanium disks were contaminated by bacterial suspensions (3 × 108 CFU/mL), then treated with a solution of MB for 30 min, followed by irradiation for 30 min (0.45 J/cm2). Microbial inhibition was evaluated by counting the number of colony forming units (CFU), compared to the control group. The results showed that the UPID promoted significant reduction (p < 0.001) of the microorganism when compared with the positive control. The new device promoted an effective microbial inhibition on the surfaces tested and, thus, makes possible new studies. The perspective is that this new device may be a low-cost and non-toxic alternative to the disinfection of biomedical devices, non-critical instruments and also for use in the food industry.
Collapse
Affiliation(s)
- Douglas Fernandes Silva
- Health Science Center - Dentistry, Paraná Northern State University - UENP, Jacarezinho, PR, Brazil; Medical and Dental Institute of Phototherapy Foggiato, Jacarezinho, PR, Brazil.
| | - João Lopes Toledo Neto
- Health Science Center - Dentistry, Paraná Northern State University - UENP, Jacarezinho, PR, Brazil.
| | - Milena Ferreira Machado
- Health Science Center - Dentistry, Paraná Northern State University - UENP, Jacarezinho, PR, Brazil.
| | - Jetter Ribeiro Bochnia
- Department of Prosthodontics and Dental Materials, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | - Augusto Alberto Foggiato
- Health Science Center - Dentistry, Paraná Northern State University - UENP, Jacarezinho, PR, Brazil; Medical and Dental Institute of Phototherapy Foggiato, Jacarezinho, PR, Brazil.
| |
Collapse
|
29
|
Anju VT, Paramanantham P, Siddhardha B, Sruthil Lal SB, Sharan A, Alyousef AA, Arshad M, Syed A. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus. Int J Nanomedicine 2019; 14:3861-3874. [PMID: 31213806 PMCID: PMC6549752 DOI: 10.2147/ijn.s202734] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Infections associated with medical devices that are caused by biofilms remain a considerable challenge for health care systems owing to their multidrug resistance patterns. Biofilms of Pseudomonas aeruginosa and Staphylococcus aureus can result in life-threatening situations which are tough to eliminate by traditional methods. Antimicrobial photodynamic inactivation (aPDT) constitutes an alternative method of killing deadly pathogens and their biofilms using reactive oxygen species (ROS). This study investigated the efficacy of enhanced in vitro aPDT of P. aeruginosa and S. aureus using malachite green conjugated to carboxyl-functionalized multi-walled carbon nanotubes (MGCNT). Both the planktonic cells and biofilms of test bacteria were demonstrated to be susceptible to the MGCNT conjugate. These MGCNT conjugates may thus be employed as a facile strategy for designing antibacterial and anti-biofilm coatings to prevent the infections associated with medical devices. Methods: Conjugation of the cationic dye malachite green to carbon nanotube was studied by UV-visible spectroscopy, high-resolution transmission electron microscopy, and Fourier transform infrared spectrometry. P. aeruginosa and S. aureus photodestruction were studied using MGCNT conjugate irradiated for 3 mins with a red laser of wavelength 660 nm and radiant exposure of 58.49 J cm-2. Results: Upon MGCNT treatment, S. aureus and P. aeruginosa were reduced by 5.16 and 5.55 log10 , respectively. Compared to free dye, treatment with MGCNT afforded improved phototoxicity against test bacteria, concomitant with greater ROS production. The results revealed improved biofilm inhibition, exopolysaccharide inhibition, and reduced cell viability in test bacteria treated with MGCNT conjugate. P. aeruginosa and S. aureus biofilms were considerably reduced to 60.20±2.48% and 67.59±3.53%, respectively. Enhanced relative MGCNT phototoxicity in test bacteria was confirmed using confocal laser scanning microscopy. Conclusion: The findings indicated that MGCNT conjugate could be useful to eliminate the biofilms formed on medical devices by S. aureus and P. aeruginosa.
Collapse
Affiliation(s)
- V T Anju
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Parasuraman Paramanantham
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - S B Sruthil Lal
- Department of Physics, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry 605014, India
| | - Alok Sharan
- Department of Physics, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry 605014, India
| | - Abdullah A Alyousef
- Microbiology Research Group, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Mohammed Arshad
- Microbiology Research Group, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Darabpour E, Doroodmand MM, Halabian R, Imani Fooladi AA. Sulfur-Functionalized Fullerene Nanoparticle as an Inhibitor and Eliminator Agent on Pseudomonas aeruginosa Biofilm and Expression of toxA Gene. Microb Drug Resist 2019; 25:594-602. [PMID: 30461338 DOI: 10.1089/mdr.2018.0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, nanotechnology-based therapeutic platforms have been directed toward developing nanoparticles with unique properties to combat biofilms. In this study, we evaluated the antibiofilm activity of the sulfur-functionalized fullerene nanoparticles (SFF Nps) against Pseudomonas aeruginosa and also analyzed the effect of this nanoparticle on the expression of exotoxin A (toxA) gene. The functionalized fullerenes were prepared by chemical vapor deposition method. We assessed the potential of SFF Nps to inhibit biofilm formation and eradicate preformed biofilms. Also, the effect of this nanoparticle on the expression of toxA gene was investigated by real-time PCR. The minimum biofilm inhibitory concentration of SFF Nps was 1 mg/mL. The minimum biofilm-eradication concentration of SFF Nps on the young (24- and 48-hr old) and older (72- and 96-hr old) biofilms was 2 and 4 mg/mL, respectively. Field emission electron scanning microscopy images confirmed the potent ability of SFF Nps to eradicate biofilm of P. aeruginosa. The expression of toxA was downregulated in the presence of SFF Nps. In conclusion, considering the ability of SFF Nps to kill P. aeruginosa biofilm and downregulate the expression of exotoxin A, this nanoparticle can be used for treatment of both chronic and acute P. aeruginosa infections.
Collapse
Affiliation(s)
- Esmaeil Darabpour
- 1 Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Raheleh Halabian
- 1 Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- 1 Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Abstract
The emergence of antimicrobial drug resistance requires development of alternative therapeutic options. Multidrug-resistant strains of Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp. are still the most commonly identified antimicrobial-resistant pathogens. These microorganisms are part of the so-called 'ESKAPE' pathogens to emphasize that they currently cause the majority of hospital acquired infections and effectively 'escape' the effects of antibacterial drugs. Thus, alternative, safer and more efficient antimicrobial strategies are urgently needed, especially against 'ESKAPE' superbugs. Antimicrobial photodynamic inactivation is a therapeutic option used in the treatment of infectious diseases. It is based on a combination of a photosensitizer, light and oxygen to remove highly metabolically active cells.
Collapse
|
32
|
Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol 2019; 309:1-12. [DOI: 10.1016/j.ijmm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
|
33
|
Wainwright M. Synthetic, small-molecule photoantimicrobials - a realistic approach. Photochem Photobiol Sci 2018; 17:1767-1779. [PMID: 29905338 DOI: 10.1039/c8pp00145f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/08/2018] [Indexed: 12/28/2022]
Abstract
The search for suitable, low-molecular weight photoantimicrobials for use in infection control has strong foundations in conventional antiseptic research from the early-mid 20th Century. Many examples of dyes exist having conventional antimicrobial activity among the azine, acridine and triphenylmethane families which have since also been found to exhibit photosensitising capabilities. The prior employment of these examples in human antisepsis provides a practical basis in terms of low host toxicity, while extant structure-activity relationships for conventional antimicrobial activity can support the development of similar relationships for photoactivated cell killing. The range of chromophores covered allows progress to be made both in topical and deeper, fluid-involved infections.
Collapse
Affiliation(s)
- Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| |
Collapse
|
34
|
Foggiato AA, Silva DF, Castro RCFR. Effect of photodynamic therapy on surface decontamination in clinical orthodontic instruments. Photodiagnosis Photodyn Ther 2018; 24:123-128. [PMID: 30219341 DOI: 10.1016/j.pdpdt.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
The objective was to develop, characterize and test a box containing light emission diode (LED), Patent Deposit MU-BR20.2017.002297-3, which was named "Photodynamic Inactivation Device" (PID) and verify if it's suitable in microbial reduction or disinfection action of solid surfaces using PID. The equipment was made in a container of polypropylene with a lid of the same material and, for a better use of irradiation the internal part was covered with a layer of reflective aluminum. In addition, sixty boards of red LED 660 nm wavelength, containing three radiators each, for which the distribution of irradiation and spectral irradiance in all of the six internal faces were calculated in this device. That way, a low cost alternative was tested over three types of microorganisms present on the human microbiota: two strains Gram-positive (Gram +), Staphylococcus aureus and Streptococcus mutans and one strain Gram-negative (Gram -), Escherichia coli, inoculated in orthodontic instruments previously autoclaved. To assess the Photodynamic Inactivation (PDI) over these bacteria, instruments were contaminated by bacterial suspensions (3 × 10⁸ CFU/mL) and ulterior treatment with a solution of 100 μmol/L of MB for 20 min, and irradiated for another 20 min (energy density of 026 J/cm²). Microbial reduction was assessed by number counting of Colony Forming Units (CFU). At the end, microbial reduction of the surface of orthodontic metal instruments was compared with the positive group of each group. Results showed that PID caused a significant reduction (p < 0.05) of the microbial charge stuck in the orthodontic instruments. Thus, the photo prototype of the drawing is appropriate for phototherapy studies, granting it´s advantageous to the low level light therapy as well as for the antimicrobial photodynamic therapy. The perspective is that PID may potentialize the dissemination of phototherapy studies for determining its proper use in health science. And, thus, propose a low cost and atoxic alternative for disinfection of biomedical appliances as non-critical instruments, allowing also for use in the food industry.
Collapse
Affiliation(s)
- Augusto Alberto Foggiato
- Health Science Center - Dentistry, Paraná Northern State University - UENP, Jacarezinho, PR, Brazil; São Leopoldo Mandic Dental Research Institute, Campinas, SP, Brazil.
| | - Douglas Fernandes Silva
- Health Science Center - Dentistry, Paraná Northern State University - UENP, Jacarezinho, PR, Brazil
| | | |
Collapse
|
35
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
36
|
Rout B, Liu CH, Wu WC. Increased anti-biofilm efficacy of toluidine blue on Staphylococcus species after nano-encapsulation. Photodiagnosis Photodyn Ther 2018; 21:190-200. [DOI: 10.1016/j.pdpdt.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 02/04/2023]
|
37
|
Gao Y, Mai B, Wang A, Li M, Wang X, Zhang K, Liu Q, Wei S, Wang P. Antimicrobial properties of a new type of photosensitizer derived from phthalocyanine against planktonic and biofilm forms of Staphylococcus aureus. Photodiagnosis Photodyn Ther 2018; 21:316-326. [PMID: 29307772 DOI: 10.1016/j.pdpdt.2018.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/22/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bacterial infection is a common clinical problem. Community-associated Staphylococcus aureus (S. aureus) infections can cause extensive tissue damage and necrosis. Photodynamic antimicrobial chemotherapy (PACT) has recently attracted attention as a feasible bacterial therapy. Octa-cationic zinc phthalocyanines are newly identified photosensitizers derived from phthalocyanines bearing 1, 2-ethanediamine groups and quaternized derivatives with different numbers of positive charges (ZnPcn+, n = 4 or 8). Here we report the antimicrobial effects of ZnPcn+-mediated PACT on planktonic and biofilm cultures of S. aureus. METHODS ZnPcn+ uptake was detected by photometry after alkaline lysis. Dark-toxicity and light-mediated antimicrobial effects of the drug was determined by the plate count method. The production of intracellular reactive oxygen species (ROS) was detected by flow cytometry. SYTO 9 and propidium iodide (PI) were used to detect the bacterial cell membrane permeability. DNA damage after ZnPcn+-PACT was analyzed by flow cytometry and PI staining. The destruction of biofilm was evaluated by scanning electron microscope (SEM). RESULTS The study of uptake showed that the relative fluorescence intensity of ZnPcn+ in S. aureus peaked at 15 min. Generation of reactive oxygen species (ROS) by ZnPcn+ was enhanced in PACT treatment groups. SYTO 9 and PI staining indicated that cell membrane was damaged. Flow cytometry and PI staining revealed DNA damage. Biofilms were damaged in PACT treatment groups. CONCLUSIONS Our results suggest that light-activated ZnPcn+ can efficiently inhibit planktonic and biofilm cultures of S. aureus.
Collapse
Affiliation(s)
- Yiru Gao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Bingjie Mai
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Ao Wang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Wenyuan Road No.1, Nanjing, 210046, China
| | - Min Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Wenyuan Road No.1, Nanjing, 210046, China.
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi, China.
| |
Collapse
|
38
|
de Oliveira SC, Monteiro JS, Pires-Santos GM, Sampaio FJP, Soares AP, Soares LGP, Pinheiro AL. LED antimicrobial photodynamic therapy with phenothiazinium dye against Staphylococcus aureus : An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:46-50. [DOI: 10.1016/j.jphotobiol.2017.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
|
39
|
Liang H, Xu J, Liu Y, Zhang J, Peng W, Yan J, Li Z, Li Q. Optimization of hydrogel containing toluidine blue O for photodynamic therapy by response surface methodology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Almeida PP, Pereira ÍS, Rodrigues KB, Leal LS, Marques AS, Rosa LP, da Silva FC, da Silva RAA. Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice. Lasers Med Sci 2017. [PMID: 28646389 DOI: 10.1007/s10103-017-2247-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections caused by Staphylococcus aureus lead to skin infections, as well as soft tissues and bone infections. Given the communal resistance to antibiotics developed by strains of this bacterium, photodynamic therapy emerges as a promising alternative treatment to control and cure infections. Females of the Balb/C mice were infected with 108 CFU of methicillin-resistant S. aureus (MRSA) and divided into four distinct groups: P-L- (negative control group), P+L- (group exposed only to curcumin), P-L+ (group exposed only to LED incidence of 450 nm, 75 mW/cm2, and 54 J/cm2 for 10 min), and P+L+ (group exposed to curcumin followed by 10 min of LED irradiation) (n = 24). The mice were euthanized 48 and 72 h after infection, and biologic materials were collected for analysis of the bacterial load, peripheral blood leukocyte counts, and draining lymph nodes cell counts. The normalization of data was checked and the ANOVA test was applied. The bacterial load in the draining lymph node of P+L+ group was lower when compared to the control groups 72 h post infection (p < 0.0001), indicating that the LED incidence associated with curcumin controls of the staphylococci intradermal infection. The number of the total lymph node cells shows to be lower than control groups in the two availed times (p < 0.01). The histological analysis and the counting of white blood cells did not show differences among cells in the blood and in the tissue of infection. This is the first report showing that photodynamic therapy may be effective against MRSA infection in a murine model of intradermal infection.
Collapse
Affiliation(s)
| | | | | | - Lorena Santos Leal
- Multidisciplinary Health Institute, UFBA, Vitória da Conquista, BA, Brazil
| | | | | | | | - Robson Amaro Augusto da Silva
- Multidisciplinary Health Institute, UFBA, Vitória da Conquista, BA, Brazil.,Multidisciplinary Health Institute, Federal University of Bahia, Rio de Contas Street, 58 Candeias, Vitoria da Conquista, BA, CEP 45029-094, Brazil
| |
Collapse
|
41
|
Enhancement of photodynamic inactivation of Staphylococcus aureus biofilms by disruptive strategies. Lasers Med Sci 2017; 32:1757-1767. [PMID: 28612299 DOI: 10.1007/s10103-017-2253-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023]
Abstract
Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers and visible light. On the one hand, near-infrared treatment (NIRT) has also bactericidal and dispersal effects on biofilms. In addition, dispersal biological tools such as enzymes have also been employed in antibiotic combination treatments. The aim of this work was to use alternative approaches to increase the PDI efficacy, employing combination therapies aimed at the partial disruption of the biofilms, thus potentially increasing photosensitizer or oxygen penetration and interaction with bacteria. To that end, we applied toluidine blue (TB)-PDI treatment to Staphylococcus aureus biofilms previously treated with NIRT or enzymes and investigated the outcome of the combined therapies. TB employed at 0.5 mM induced per se 2-log drop in S. aureus RN6390 biofilm viability. Each NIRT (980-nm laser) and PDI (635-nm laser) treatment induced a further reduction of 1-log of viable counts. The combination of successive 980- and 635-nm laser treatments on TB-treated biofilms induced additive effects, leading to a 4.5-log viable count decrease. Proteinase K treatment applied to S. aureus of the Newman strain induced an additive effect on PDI mortality, leading to an overall 4-log decrease in S. aureus viability. Confocal scanning laser microscopy after biofilm staining with a fluorescent viability test and scanning electron microscopy observations were correlated with colony counts. The NIRT dose employed (227 J/cm2) led to an increase from 21 to 47 °C in the buffer temperature of the biofilm system, and this NIRT dose also induced 100% keratinocyte death. Further work is needed to establish conditions under which biofilm dispersal occurs at lower NIRT doses.
Collapse
|
42
|
Miyata S, Miyaji H, Kawasaki H, Yamamoto M, Nishida E, Takita H, Akasaka T, Ushijima N, Iwanaga T, Sugaya T. Antimicrobial photodynamic activity and cytocompatibility of Au 25(Capt) 18 clusters photoexcited by blue LED light irradiation. Int J Nanomedicine 2017; 12:2703-2716. [PMID: 28435253 PMCID: PMC5388257 DOI: 10.2147/ijn.s131602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has beneficial effects in dental treatment. We applied captopril-protected gold (Au25(Capt)18) clusters as a novel photosensitizer for aPDT. Photoexcited Au clusters under light irradiation generated singlet oxygen (1O2). Accordingly, the antimicrobial and cytotoxic effects of Au25(Capt)18 clusters under dental blue light-emitting diode (LED) irradiation were evaluated. 1O2 generation of Au25(Capt)18 clusters under blue LED irradiation (420–460 nm) was detected by a methotrexate (MTX) probe. The antimicrobial effects of photoexcited Au clusters (0, 5, 50, and 500 μg/mL) on oral bacterial cells, such as Streptococcus mutans, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis, were assessed by morphological observations and bacterial growth experiments. Cytotoxicity testing of Au clusters and blue LED irradiation was then performed against NIH3T3 and MC3T3-E1 cells. In addition, the biological performance of Au clusters (500 μg/mL) was compared to an organic dye photosensitizer, methylene blue (MB; 10 and 100 μg/mL). We confirmed the 1O2 generation ability of Au25(Capt)18 clusters through the fluorescence spectra of oxidized MTX. Successful application of photoexcited Au clusters to aPDT was demonstrated by dose-dependent decreases in the turbidity of oral bacterial cells. Morphological observation revealed that application of Au clusters stimulated destruction of bacterial cell walls and inhibited biofilm formation. Aggregation of Au clusters around bacterial cells was fluorescently observed. However, photoexcited Au clusters did not negatively affect the adhesion, spreading, and proliferation of mammalian cells, particularly at lower doses. In addition, application of Au clusters demonstrated significantly better cytocompatibility compared to MB. We found that a combination of Au25(Capt)18 clusters and blue LED irradiation exhibited good antimicrobial effects through 1O2 generation and biosafe characteristics, which is desirable for aPDT in dentistry.
Collapse
Affiliation(s)
- Saori Miyata
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka
| | - Masaki Yamamoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka
| | - Erika Nishida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo
| | - Hiroko Takita
- Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine
| | - Tsukasa Akasaka
- Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University
| | - Natsumi Ushijima
- Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine
| | - Toshihiko Iwanaga
- Department of Anatomy, Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Kita-ku, Sapporo
| |
Collapse
|
43
|
Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci 2017; 32:857-864. [PMID: 28283813 DOI: 10.1007/s10103-017-2185-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/02/2017] [Indexed: 02/03/2023]
Abstract
Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This study investigates the in vitro efficacy of photodynamic treatment (PDT) with methylene blue (MB) photoactivated with λ 635 nm diode laser and of λ 405 nm violet-blue LED phototreatment for the reduction of bacterial biofilm and lipopolysaccharide (LPS) adherent to titanium surface mimicking the bone-implant interface. Staphylococcus aureus biofilm grown on titanium discs with a moderately rough surface was subjected to either PDT (0.1% MB and λ 635 nm diode laser) or λ 405 nm LED phototreatment for 1 and 5 min. Bactericidal effect was evaluated by vital staining and residual colony-forming unit count. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, discs coated with Escherichia coli LPS were treated as above before seeding with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Both PDT and LED phototreatment induced a statistically significant (p < 0.05 or higher) reduction of viable bacteria, up to -99 and -98% (5 min), respectively. Moreover, besides bactericidal effect, PDT and LED phototreatment also inhibited LPS bioactivity, assayed as nitrite formation, up to -42%, thereby blunting host inflammatory response. Non-invasive phototherapy emerges as an attractive alternative in the treatment of peri-implantitis to reduce bacteria and LPS adherent to titanium implant surface without causing damage of surface microstructure. Its efficacy in the clinical setting remains to be investigated.
Collapse
|
44
|
Synthesis and physicochemical properties of polyacrylamide nanoparticles as photosensitizer carriers. Int J Pharm 2016; 512:213-218. [DOI: 10.1016/j.ijpharm.2016.08.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022]
|
45
|
Darabpour E, Kashef N, Mashayekhan S. Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: An in vitro study. Photodiagnosis Photodyn Ther 2016; 14:211-7. [PMID: 27118084 DOI: 10.1016/j.pdpdt.2016.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/03/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Biodegradable chitosan nanoparticles (CSNPs) with an intrinsic antimicrobial activity may be a good choice to improve the effectiveness of antimicrobial photodynamic inactivation (APDI). The aim of this study was to investigate the effect of CSNPs on the efficiency of methylene blue (MB)-mediated APDI of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. We also assessed the phototoxicity of MB+CSNPs towards human fibroblasts. METHODS CSNPs were prepared using ionic gelation method and characterized by dynamic light scattering (DLS) and field-emission scanning electron microscope (FESEM). Biofilms were developed in a 96-well polystyrene plate for 24h. In vitro phototoxic effect of MB+CSNPs (at final concentrations of 50μM MB) at fluence of 22.93J/cm(2)) on biofilms were studied. Appropriate controls were included. Also, in vitro cytotoxicity and phototoxicity of the above mixture was assessed on human dermal fibroblasts. RESULTS DLS and FESEM measurements confirmed the nanometric size of the prepared CSNPs. APDI mediated by the mixture of MB and CSNPs showed significant anti-biofilm photoinactivation (P<0.001, >3 and >2 log10 CFU reduction in S. aureus and P. aeruginosa biofilms, respectively) while MB-induced APDI led to approximately <1 log10 CFU reduction. At the same experimental conditions, only 25.1% of the fibroblasts were photoinactivated by MB+CSNPs. CONCLUSION Our findings showed that CSNPs enhanced the efficacy of MB-APDI; it may be due to the disruption of biofilm structure by polycationic CSNPs and subsequently deeper and higher penetration of MB into the biofilms.
Collapse
Affiliation(s)
- Esmaeil Darabpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Faculty of Science, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
46
|
Wainwright M, O'Kane C, Rawthore S. Phenothiazinium photosensitisers XI. Improved toluidine blue photoantimicrobials. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:68-71. [PMID: 27093001 DOI: 10.1016/j.jphotobiol.2016.03.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
The phenothiazinium derivative toluidine blue O (TBO) is widely employed as a photoantimicrobial agent in clinical trialling, particularly in dentistry. However, its activity against a range of pathogenic microbial species is not significantly different to that of the standard photoantimicrobial methylene blue. In the current study, derivatives of TBO with varying hydrocarbon substitution in chromophore position 2 were synthesised via the established anilinethiosulphonic route, using the mild oxidant silver(II) carbonate to allow substituent preservation. The resulting series of analogues demonstrated the expected increases in visible absorption wavelength and lipophilicity with increasing hydrocarbon content, as well as decreased aggregation for derivatives with bulkier substituents, and all produced singlet oxygen on illumination in vitro. Screening against a range of bacterial and fungal pathogens relevant to infection control showed remarkable increases in activity relative to the parent compound, particularly against the clinically important Gram-negative bacterium Pseudomonas aeruginosa. In addition, in order to demonstrate clinical relevance, the photoactivities of the new derivatives against microbial targets were compared to conventional antibacterial and antifungal drugs, as well as biocides commonly used for local disinfection. Activity here was also generally greater than that of the conventional agents used for comparison, considerably so relative to the local disinfectant agents.
Collapse
Affiliation(s)
- Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street Liverpool L3 3AF, United Kingdom.
| | - Ciara O'Kane
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street Liverpool L3 3AF, United Kingdom
| | - Sophie Rawthore
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street Liverpool L3 3AF, United Kingdom
| |
Collapse
|
47
|
Hafner S, Ehrenfeld M, Storz E, Wieser A. Photodynamic Inactivation of Actinomyces naeslundii in Comparison With Chlorhexidine and Polyhexanide--A New Approach for Antiseptic Treatment of Medication-Related Osteonecrosis of the Jaw? J Oral Maxillofac Surg 2015; 74:516-22. [PMID: 26450798 DOI: 10.1016/j.joms.2015.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
PURPOSE Local antimicrobial therapy is a fundamental principle in the treatment of lesions of medication-related osteonecrosis of the jaw. Antimicrobial photodynamic therapy (aPDT) as a local application for the treatment of microbial infections has become more widely used in recent years. In the mouth, the bone surface is in constant contact with saliva and thus cannot be kept sterile, making the development of strategies for disinfection even more important. Different methods currently in use include local rinses with chlorhexidine (CHX), polyhexanide (PHX), or aPDT. This study compared the efficiency of these 3 methods. MATERIALS AND METHODS The in vitro activity of 3 different agents against slowly growing Actinomyces naeslundii isolated from a patient with osteonecrosis was evaluated. PHX 0.04% solution, CHX 0.12% solution, and methylene blue (MB) based dye with a laser light of 660-nm wavelength (aPDT) were compared. RESULTS The decrease in colony-forming units by each method was measured using an in vitro killing assay based on a water-exposed surface in a well plate. MB dye with laser (10 seconds) decreased the bacterial load by more than 4 orders of magnitude and was superior to PHX and CHX exposure for 60 seconds. CONCLUSION Laser exposure alone and MB dye exposure alone decreased bacterial loads slightly, but less efficiently than 60-second exposure to PHX or CHX. The most effective means of decreasing colony-forming units was achieved by a combination of laser light and dye, which also can be used clinically.
Collapse
Affiliation(s)
- Sigurd Hafner
- Senior Resident, Department of Oral and Maxillofacial Surgery, University of Munich (LMU), Munich, Germany
| | - Michael Ehrenfeld
- Professor and Department Head, Department of Oral and Maxillofacial Surgery, University of Munich (LMU), Munich, Germany
| | - Enno Storz
- Scientific Assistant, Department of Bacteriology, Max von Pettenkofer Institute (LMU), Munich, Germany
| | - Andreas Wieser
- Senior Resident, Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich; Department of Bacteriology, Max von Pettenkofer Institute (LMU), Munich; German Center for Infection Research (DZIF), Munich, Germany; College of Public Health and Medical Science, Jimma University, Jimma, Ethiopia.
| |
Collapse
|