1
|
Ren Y, Alkildani S, Burckhardt K, Köwitsch A, Radenkovic M, Stojanovic S, Najman S, Jung O, Liu L, Barbeck M. The influence of different crosslinking agents onto the physical properties, integration behavior and immune response of collagen-based barrier membranes. Front Bioeng Biotechnol 2025; 12:1506433. [PMID: 39834629 PMCID: PMC11743487 DOI: 10.3389/fbioe.2024.1506433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
This study investigates the mechanical properties as well as in vitro and in vivo cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial in vitro cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further in vivo study. Cross-linking enhances the tensile strength and collagenase resistance, effectively prolonging the membrane's standing time in vivo. Using (immune-) histochemistry and histomorphometrical analyses, the cellular inflammatory responses, tissue integration and vascularization patterns at 10-, 30-, and 90-day post-implantation in a subcutaneous implantation model in rats were analyzed. The PC membrane elicited the mildest inflammatory cell levels, akin to the RF membrane, while other groups induced an M1-dominated macrophage response and numerous multinucleated giant cells throughout the study period. EC membranes maintained structural stability up to 30 days post-implantation, similar to the GA group, whereas others collapsed prematurely. Concurrent with membrane collapse, transmembrane vascularization occurred across all groups. Histopathological and histomorphometry results reveal the intricate interplay of inflammatory cell populations in vascularization. These findings offer valuable insights into the pivotal role of cross-linkers in modulating mechanical properties and tissue responses of collagen membranes.
Collapse
Affiliation(s)
- Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | | | | | | | - Milena Radenkovic
- Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
- BerlinAnalytix GmbH, Berlin, Germany
| |
Collapse
|
2
|
Li R, Xu S, Guo Y, Cao C, Xu J, Hao L, Luo S, Chen X, Du Y, Li Y, Xie Y, Gao W, Li J, Xu B. Application of collagen in bone regeneration. J Orthop Translat 2025; 50:129-143. [PMID: 40171103 PMCID: PMC11960539 DOI: 10.1016/j.jot.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 04/03/2025] Open
Abstract
At present, there is a significant population of individuals experiencing bone deficiencies caused by injuries, ailments affecting the bones, congenital abnormalities, and cancer. The management of substantial bone defects a significant global orthopedic challenge due to the intricacies involved in promoting and restoring the growth of fresh osseous tissue. Autografts are widely regarded as the "gold standard" for repairing bone defects because of their superior tissue acceptance and ability to control osteogenesis. However, patients undergoing autografts may encounter various challenges, including but not limited to hernia, bleeding, nerve impairment, tissue death. Therefore, researchers in regenerative medicine are striving to find alternatives. Collagen is the most abundant protein in the human body, and its triple helix structure gives it unique characteristics that contribute to its strength and functionality in various tissues. Collagen is commonly processed into various forms such as scaffolds, sponges, membranes, hydrogels, and composite materials, due to its unique compatibility with the human body, affinity for water, minimal potential for immune reactions, adaptability, and ability to transport nutrients or drugs. As an alternative material in the field of bone regeneration, collagen is becoming increasingly important. The objective of this review is to provide a comprehensive analysis of the primary types and sources of collagen, their processes of synthesis and degradation, as well as the advancements made in bone regeneration research and its potential applications. A comprehensive investigation into the role of collagen in bone regeneration is undertaken, providing valuable points of reference for a more profound comprehension of collagen applications in this field. The concluding section provides a comprehensive overview of the prospective avenues for collagen research, underscoring their promising future and highlighting their significant potential in the field of bone regeneration. The Translational Potential of this Article. The comprehensive exploration into the diverse functions and translational potential of collagen in bone regeneration, as demonstrated in this review, these findings underscore their promising potential as a treatment option with significant clinical implications, thus paving the way for innovative and efficacious therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Rou Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Shiqing Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Yanning Guo
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Cong Cao
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Jingchen Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Lijun Hao
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Sai Luo
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Xinyao Chen
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Yuyang Du
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou 510515, PR China
| | - Yong Xie
- Department of Cardiac Surgery, The First Affiliated Hospital of Tsinghua University, Beijing 100036, PR China
| | - Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Jing Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Baohua Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
3
|
On SW, An HW, Lee SM, Choi YI, Woo J, Hong SO, Choi JY. Safety and efficacy of Mg-Dy membrane with poly-L-lactic acid coating for guided bone regeneration. Sci Rep 2024; 14:25522. [PMID: 39462023 PMCID: PMC11513034 DOI: 10.1038/s41598-024-77211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to evaluate safety and efficacy of a poly-L-lactic acid (PLLA)-coated magnesium (Mg)-Dysprosium (Dy) membrane in guided bone regeneration (GBR) using a rabbit calvarium model. The microstructure of the Mg-Dy membrane surface and thickness of the PLLA coating were examined. In vitro degradation and cytotoxicity test was conducted. The in vivo study used 24 white male rabbits with two 8 mm-diameter defects created on the calvaria; 12 defects were randomly assigned per group: (1) Negative control, (2) positive control, (3) uncoated Mg, and (4) PLLA-coated Mg group. Specimens were harvested at 4, 8, and 12 weeks postoperatively for radiological, histological, and histomorphometric analyses. The PLLA-coated Mg-Dy membrane showed a low degree of degradation, indicating that the coating exerted a protective effect. In the cytotoxicity test, no deformed or degenerated cells were observed. In the in vivo study, radiographic and histomorphometric analyses indicated favorable new bone formation and maintenance of the graft material for PLLA-coated Mg group. PLLA-coated Mg group, compared to the uncoated counterpart, restored the bony contour more completely, without inducing significant inflammatory response. Our results support the safety and efficacy of PLLA-coated Mg-Dy membranes for GBR both in vitro and in vivo.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hyun-Wook An
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Sang Min Lee
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Young In Choi
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Jaeman Woo
- Department of Dentistry, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Sung Ok Hong
- Department of Oral and Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Dental Hospital at Gangdong, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Oral and Maxillofacial surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Shanbhag S, Al-Sharabi N, Fritz-Wallace K, Kristoffersen EK, Bunæs DF, Romandini M, Mustafa K, Sanz M, Gruber R. Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. J Funct Biomater 2024; 15:302. [PMID: 39452600 PMCID: PMC11508515 DOI: 10.3390/jfb15100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen membranes (Geistlich Bio-Gide®, Wolhusen, Switzerland) were exposed to pooled human serum in vitro and, after thorough washing, subjected to protein extraction either in conjunction with protein enrichment or via a conventional surfactant-based method. The extracted proteins were analyzed via liquid chromatography with tandem mass spectrometry. Bioinformatic analysis of global profiling, gene ontology, and functional enrichment of the identified proteins was performed. Overall, a total of 326 adsorbed serum proteins were identified. The enrichment and conventional methods yielded similar numbers of total (315 vs. 309), exclusive (17 vs. 11), and major bone-related proteins (18 vs. 14). Most of the adsorbed proteins (n = 298) were common to both extraction groups and included several growth factors, extracellular matrix (ECM) proteins, cell adhesion molecules, and angiogenesis mediators involved in bone regeneration. Functional analyses revealed significant enrichment of ECM, exosomes, immune response, and cell growth components. Key proteins [transforming growth factor-beta 1 (TGFβ1), insulin-like growth factor binding proteins (IGFBP-5, -6, -7)] were exclusively detected with the enrichment-based method. In summary, native collagen membranes exhibited a high protein adsorption capacity in vitro. While both extraction methods were effective, the enrichment-based method showed distinct advantages in detecting specific bone-related proteins. Therefore, the use of multiple extraction methods is advisable in studies investigating protein adsorption on biomaterials.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Niyaz Al-Sharabi
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Katarina Fritz-Wallace
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway
| | - Dagmar Fosså Bunæs
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
- ETEP Research Group, University Complutense of Madrid, 28040 Madrid, Spain
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
5
|
Yum H, Han HS, Lee JT, Cho YD, Kim S. Bone regeneration using activin A/BMP2 chimera (AB204) with collagen membrane in rats with calvarial defects. J Periodontal Implant Sci 2024; 54:309-321. [PMID: 38725424 PMCID: PMC11543331 DOI: 10.5051/jpis.2303820191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 01/05/2024] [Indexed: 11/07/2024] Open
Abstract
PURPOSE Collagen has long been recognized as an excellent carrier for growth factors, and membrane-type collagen has been widely applied in dentistry for guided bone regeneration. This study was conducted to examine the effects of an activin A/BMP2 chimera (AB204) combined with a collagen membrane (CM) on bone repair in a rat calvarial defect model. METHODS A unilateral calvarial defect measuring 5.0 mm was surgically created in 32 Sprague-Dawley rats. The rats were then randomly assigned to 1 of 4 groups, each consisting of 8 animals: control (untreated), CM (treated with a CM only), CM/bone morphogenetic protein 2 (BMP2) (treated with a CM and 1.0 μg of BMP2), and CM/AB204 (treated with a CM and 1.0 μg of AB204). Bone regeneration was evaluated using micro-computed tomography (CT) and histological analysis at 2 and 4 weeks following surgery. RESULTS Micro-CT analysis revealed that bone formation in the CM/BMP2 and CM/AB204 groups was superior to that observed in the control and CM groups at both 2 and 4 weeks postoperatively. BMP2 induced greater bone regeneration than AB204 at 2 weeks; however, AB204 resulted in a greater bone volume at 4 weeks, achieving the highest values recorded. No significant differences were found between the CM/BMP2 and CM/AB204 groups at either time point (P>0.05). On histological examination, new bone formation was evident in both CM/BMP2 and CM/AB204 groups. CONCLUSIONS Within the limitations of this study, the findings indicate that AB204 may enhance osteogenic potential when used in combination with CM for bone regeneration.
Collapse
Affiliation(s)
- Haeji Yum
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Hee-Seung Han
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Jung-Tae Lee
- One-Stop Specialty Center, Seoul National University, Dental Hospital, Seoul, Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea.
| | - Sungtae Kim
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea.
| |
Collapse
|
6
|
Qinyuan D, Zhuqing W, Qing L, Yunsong L, Ping Z, Xiao Z, Yuting N, Hao L, Yongsheng Z, Longwei L. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration. BIOMATERIALS ADVANCES 2024; 159:213804. [PMID: 38412627 DOI: 10.1016/j.bioadv.2024.213804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Although several bioactive 3D-printed bone scaffolds loaded with multiple kinds of biomolecules for enhanced bone regeneration have been recently developed, the manipulation of on-demand release profiles of different biomolecules during bone regeneration remains challenging. Herein, a 3D-printed dual-drug-loaded biomimetic scaffold to regulate the host stem cell recruitment and osteogenic differentiation in a two-stage process for bone regeneration was successfully fabricated. First, a chemotactic small-molecule drug, namely, simvastatin (SIM) was directly incorporated into the hydroxyapatite/collagen bioink for printing and could be rapidly released during the early stage of bone regeneration. Further, near-infrared (NIR)-light-responsive polydopamine-coated hydroxyapatite nanoparticles were designed to deliver the osteogenic drug, i.e., pargyline (PGL) in a controllable manner. Together, our scaffold displayed an on-demand sequential release of those two drugs and could optimize their therapeutic effects to align with the stem cell recruitment and osteoblastic differentiation, thereby promoting bone regeneration. The results confirmed the suitable mechanical strength, high photothermal conversion efficiency, good biocompatibility of our scaffold. The scaffold loaded with SIM could efficiently accelerate the migration of stem cells. In addition, the scaffold with on-demand sequential release promoted alkaline phosphatase (ALP) activity, significantly upregulated gene expression levels of osteogenesis-related markers, and enhanced new-bone-formation capabilities in rabbit cranial defect models. Altogether, this scaffold not only offers a promising strategy to control the behavior of stem cells during bone regeneration but also provides an efficient strategy for controllable sequential release of different biomolecule in bone tissue engineering.
Collapse
Affiliation(s)
- Dong Qinyuan
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Wan Zhuqing
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Li Qing
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liu Yunsong
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhang Ping
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhang Xiao
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Niu Yuting
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liu Hao
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Zhou Yongsheng
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Lv Longwei
- National Center for Stomatology, National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| |
Collapse
|
7
|
Shamszadeh S, Shirvani A, Torabzadeh H, Asgary S. Effects of Growth Factors on the Differentiation of Dental Stem Cells: A Systematic Review and Meta-analysis (Part I). Curr Stem Cell Res Ther 2024; 19:523-543. [PMID: 35762556 DOI: 10.2174/1574888x17666220628125048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION To evaluate the biological interaction between dental stem cells (DSCs) and different growth factors in the field of regenerative endodontics. METHODS A systematic search was conducted in the electronic databases up to October 2021. This study followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Ex vivo studies evaluating the biological interactions of DSCs and growth factors were included. The meta-analysis was performed according to the type of growth factor. The outcomes were cell viability/ proliferation and mineralization. Standardized mean differences (SMDs) were estimated using the random-effect maximum-likelihood method (P < .05). Additional analysis was performed to find any potential source of heterogeneity. RESULTS Twenty articles were included in the systematic review; meta-analysis was performed for fibroblast growth factor-2 (FGF-2) and Transforming growth factor-ß1 (TGF-β1) (n = 5). Results showed that use of FGF-2 significantly increased cell proliferation on day 1-(SMD = 3.56, P = 0.00), 3-(SMD = 9.04, P = 0.00), 5-(SMD = 8.37, P = 0.01), and 7 (SMD=8.51, P=0.00) than the control group. TGF-ß1 increased alkaline phosphatase (ALP) activity more than control only on day 3 (SMD = 3.68, P = 0.02). TGF-β1 had no significant effect on cell proliferation on days 1 and 3 (P > 0.05) and on ALP activity on days 5 and 7 (P > 0.05). Meta-regression analysis showed that different covariates (i.e., cell type, passage number, and growth factors' concentration) could significantly influence the effect sizes at different follow- ups (P < 0.05). CONCLUSION Specific growth factors might enhance the proliferation and mineralization of DSCs; however, the obtained evidence was weak. Due to the high heterogeneity among the included studies, other growth factors' inhibitory/stimulatory effects on DSCs could not be evaluated.
Collapse
Affiliation(s)
- Sayna Shamszadeh
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Shirvani
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Torabzadeh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Adamuz-Jiménez A, Manzano-Moreno FJ, Vallecillo C. Regeneration Membranes Loaded with Non-Antibiotic Anti-2 Microbials: A Review. Polymers (Basel) 2023; 16:95. [PMID: 38201760 PMCID: PMC10781067 DOI: 10.3390/polym16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Both guided bone and guided tissue regeneration are techniques that require the use of barrier membranes. Contamination and infection of the surgical area is one of the most feared complications. Some current lines of research focus on functionalizing these membranes with different antimicrobial agents. The objective of this study was to carry out a review of the use and antibacterial properties of regeneration membranes doped with antimicrobials such as zinc, silver, chlorhexidine, and lauric acid. The protocol was based on PRISMA recommendations, addressing the PICO question: "Do membranes doped with non-antibiotic antimicrobials have antibacterial activity that can reduce or improve infection compared to membranes not impregnated with said antimicrobial?" Methodological quality was evaluated using the RoBDEMAT tool. A total of 329 articles were found, of which 25 met the eligibility criteria and were included in this review. Most studies agree that zinc inhibits bacterial growth as it decreases colony-forming units, depending on the concentration used and the bacterial species studied. Silver compounds also decreased the secretion of proinflammatory cytokines and presented less bacterial adhesion to the membrane. Some concentrations of chlorhexidine that possess antimicrobial activity have shown high toxicity. Finally, lauric acid shows inhibition of bacterial growth measured by the disk diffusion test, the inhibition zone being larger with higher concentrations. Antimicrobial agents such as zinc, silver, chlorhexidine, and lauric acid have effective antibacterial activity and can be used to dope regenerative membranes in order to reduce the risk of bacterial colonization.
Collapse
Affiliation(s)
- Ana Adamuz-Jiménez
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (A.A.-J.); (C.V.)
| | - Francisco-Javier Manzano-Moreno
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (A.A.-J.); (C.V.)
- Biomedical Group (BIO277), Department of Stomatology, University of Granada, 18071 Granada, Spain
- Instituto Investigación Biosanitaria, 18012 Granada, Spain
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (A.A.-J.); (C.V.)
| |
Collapse
|
9
|
Mizraji G, Davidzohn A, Gursoy M, Gursoy U, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000 2023; 93:56-76. [PMID: 37855164 DOI: 10.1111/prd.12502] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 10/20/2023]
Abstract
Dental implants revolutionized the treatment options for restoring form, function, and esthetics when one or more teeth are missing. At sites of insufficient bone, guided bone regeneration (GBR) is performed either prior to or in conjunction with implant placement to achieve a three-dimensional prosthetic-driven implant position. To date, GBR is well documented, widely used, and constitutes a predictable and successful approach for lateral and vertical bone augmentation of atrophic ridges. Evidence suggests that the use of barrier membranes maintains the major biological principles of GBR. Since the material used to construct barrier membranes ultimately dictates its characteristics and its ability to maintain the biological principles of GBR, several materials have been used over time. This review, summarizes the evolution of barrier membranes, focusing on the characteristics, advantages, and disadvantages of available occlusive barrier membranes and presents results of updated meta-analyses focusing on the effects of these membranes on the overall outcome.
Collapse
Affiliation(s)
- Gabriel Mizraji
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Ulvi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Lior Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
11
|
Mubarak R, Adel-Khattab D, Abdel-Ghaffar KA, Gamal AY. Adjunctive effect of collagen membrane coverage to L-PRF in the treatment of periodontal intrabony defects: a randomized controlled clinical trial with biochemical assessment. BMC Oral Health 2023; 23:631. [PMID: 37667213 PMCID: PMC10476412 DOI: 10.1186/s12903-023-03332-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The innovation of leukocyte platelet-rich fibrin (L-PRF) has added enormous impact on wound healing dynamics especially the field of periodontal regeneration. The release of growth factors (GF) is thought to improve the clinical outcomes in infrabony defects. The aim of this study was to evaluate the clinical effect of covering L-PRF contained infrabony defects with collagen membranes (CM), and to compare their GF release profile to uncovered L-PRF defects and open flap debridement (OFD). METHODS Thirty non- smoking patients with infrabony pockets participated to be randomly assigned to OFD group (n = 10), L-PRF group (n = 10), or L-PRF protected CM group (n = 10). Plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL) and the radiographic defect base fill (DBF) were measured at baseline and at 6 month following surgical intervention. Gingival crevicular fluid samples were obtained on days 1, 3, 5, 7, 14, 21 and 30 days following surgery for the Platelet Derived Growth Factor-BB (PDGF-BB) and Vascular Endothelial Growth Factors (VEGF) release profile evaluation. RESULTS For all patients, a statistically significant (P ≤ 0.05) reduction in PI, GI, PD and CAL were reported throughout the study period. Differences between the three treatment modalities were not statistically significant. PRF + CM showed a statistically significant DBF compared to OFD and L-PRF groups at follow up. Quantitative analysis of PDGF-BB and VEGF levels demonstrated a statistically significant (P < 0.001) decline between measurement intervals for all groups with no statistically significant differences between the three groups. CONCLUSION Within the limitations of this study, L-PRF coverage with CM may augment defect base fill through its mechanical protective effect without enhancement in the release profile of VEGF and PDGF. The non-significant intergroup differences question the validity of the claimed extra physiologic concentration of GF offered by L-PRF harvests. TRIAL REGISTRATION The present study was registered at ClinicalTrials.gov (NCT05496608), (11/08/2022).
Collapse
Affiliation(s)
- Ramy Mubarak
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Oral and Dental Medicine, Future University, Cairo, Egypt.
| | - Doaa Adel-Khattab
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Khaled A Abdel-Ghaffar
- Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry Ain Shams University, Cairo, Egypt
| | - Ahmed Youssef Gamal
- Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry Ain Shams University, Cairo, Egypt
- Faculty of Dentistry, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
12
|
Du Q, Sun J, Zhou Y, Yu Y, Kong W, Chen C, Zhou Y, Zhao K, Shao C, Gu X. Fabrication of ACP-CCS-PVA composite membrane for a potential application in guided bone regeneration. RSC Adv 2023; 13:25930-25938. [PMID: 37664206 PMCID: PMC10472212 DOI: 10.1039/d3ra04498j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
The barrier membranes of guided bone regeneration (GBR) have been widely used in clinical medicine to repair bone defects. However, the unmatched mechanical strength, unsuitable degradation rates, and insufficient regeneration potential limit the application of the current barrier membranes. Here, amorphous calcium phosphate-carboxylated chitosan-polyvinyl alcohol (ACP-CCS-PVA) composite membranes are fabricated by freeze-thaw cycles, in which the ATP-stabilized ACP nanoparticles are uniformly distributed throughout the membranes. The mechanical performance and osteogenic properties are significantly improved by the ACP incorporated into the CCS-PVA system, but excess ACP would suppress cell proliferation and osteogenic differentiation. Our work highlights the pivotal role of ACP in GBR and provides insight into the need for biomaterial fabrication to balance mechanical strength and mineral content.
Collapse
Affiliation(s)
- Qiaolin Du
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Jian Sun
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Yadong Yu
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Weijing Kong
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Chaoqun Chen
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Yifeng Zhou
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Ke Zhao
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Zhejiang University School of Medicine Hangzhou 310006 China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003 China
| |
Collapse
|
13
|
Toledano M, Vallecillo C, Serrera-Figallo MA, Vallecillo-Rivas M, Gutierrez-Corrales A, Lynch CD, Toledano-Osorio M. Doped Electrospinned Material-Guides High Efficiency Regional Bone Regeneration. Polymers (Basel) 2023; 15:polym15071726. [PMID: 37050340 PMCID: PMC10097153 DOI: 10.3390/polym15071726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The main target of bone tissue engineering is to design biomaterials that support bone regeneration and vascularization. Nanostructured membranes of (MMA)1-co-(HEMA)1/(MA)3-co-(HEA)2 loaded with 5% wt of SiO2-nanoparticles (Si-M) were doped with zinc (Zn-Si-M) or doxycycline (Dox-Si-M). Critical bone defects were effectuated on six New Zealand-bred rabbit skulls and then they were covered with the membranes. After six weeks, a histological analysis (toluidine blue technique) was employed to determine bone cell population as osteoblasts, osteoclasts, osteocytes, M1 and M2 macrophages and vasculature. Membranes covering the bone defect determined a higher count of bone cells and blood vessels than in the sham group at the top regions of the defect. Pro-inflammatory M1 appeared in a higher number in the top regions than in the bottom regions, when Si-M and Dox-Si-M were used. Samples treated with Dox-Si-M showed a higher amount of anti-inflammatory and pro-regenerative M2 macrophages. The M1/M2 ratio obtained its lowest value in the absence of membranes. On the top regions, osteoblasts were more abundant when using Si-M and Zn-Si-M. Osteoclasts were equally distributed at the central and lateral regions. The sham group and samples treated with Zn-Si-M attained a higher number of osteocytes at the top regions. A preferential osteoconductive, osteoinductive and angiogenic clinical environment was created in the vicinity of the membrane placed on critical bone defects.
Collapse
|
14
|
Jung N, Park J, Park SH, Oh S, Kim S, Cho SW, Kim JE, Moon HS, Park YB. Improving Bone Formation by Guided Bone Regeneration Using a Collagen Membrane with rhBMP-2: A Novel Concept. J Funct Biomater 2023; 14:jfb14030170. [PMID: 36976094 PMCID: PMC10056333 DOI: 10.3390/jfb14030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
We examined whether recombinant human bone morphogenetic protein-2 (rhBMP-2) when applied to collagen membranes, would reinforce them during guided bone regeneration. Four critical cranial bone defects were created and treated in 30 New Zealand white rabbits, including a control group, critical defect only; group 1, collagen membrane only; group 2, biphasic calcium phosphate (BCP) only; group 3, collagen membrane + BCP; group 4, collagen membrane with rhBMP-2 (1.0 mg/mL); group 5, collagen membrane with rhBMP-2 (0.5 mg/mL); group 6, collagen membrane with rhBMP-2 (1.0 mg/mL) + BCP; and group 7, collagen membrane with rhBMP-2 (0.5 mg/mL) + BCP. After a 2-, 4-, or 8-week healing period, the animals were sacrificed. The combination of collagen membranes with rhBMP-2 and BCP yielded significantly higher bone formation rates compared to the other groups (control group and groups 1-5 < groups 6 and 7; p < 0.05). A 2-week healing period yielded significantly lower bone formation than that at 4 and 8 weeks (2 < 4 = 8 weeks; p < 0.05). This study proposes a novel GBR concept in which rhBMP-2 is applied to collagen membranes outside instead of inside the grafted area, thereby inducing quantitatively and qualitatively enhanced bone regeneration in critical bone defects.
Collapse
Affiliation(s)
- Narae Jung
- Department of Clinical Dentistry, Oral Science Research Center, BK21 FOUR Project, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaehan Park
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Hyun Park
- Osong Research Institute, TaeWoong Medical Co., Ltd., 55-7 Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Seunghan Oh
- Department of Dental Biomaterials and Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong-Eun Kim
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hong Seok Moon
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Bum Park
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Vahdatinia F, Hooshyarfard A, Jamshidi S, Shojaei S, Patel K, Moeinifard E, Haddadi R, Farhadian M, Gholami L, Tayebi L. 3D-Printed Soft Membrane for Periodontal Guided Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1364. [PMID: 36836994 PMCID: PMC9967512 DOI: 10.3390/ma16041364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES The current study aimed to perform an in vivo examination using a critical-size periodontal canine model to investigate the capability of a 3D-printed soft membrane for guided tissue regeneration (GTR). This membrane is made of a specific composition of gelatin, elastin, and sodium hyaluronate that was fine-tuned and fully characterized in vitro in our previous study. The value of this composition is its potential to be employed as a suitable replacement for collagen, which is the main component of conventional GTR membranes, to overcome the cost issue with collagen. METHODS Critical-size dehiscence defects were surgically created on the buccal surface of the roots of canine bilateral mandibular teeth. GTR treatment was performed with the 3D-printed membrane and two commercially available collagen membranes (Botiss Jason® and Smartbrane-Regedent membranes) and a group without any membrane placement was considered as the control group. The defects were submerged with tension-free closure of the gingival flaps. Histologic and histometric analyses were employed to assess the periodontal healing over an 8-week experimental period. RESULTS Histometric evaluations confirmed higher levels of new bone formation in the 3D-printed membrane group. Moreover, in all defects treated with the membranes, the formation of periodontal tissues, bone, periodontal ligaments, and cementum was observed after 8 weeks, while in the control group, only connective tissue was found in the defect sites. There was no clinical sign of inflammation or recession of gingiva in any of the groups. SIGNIFICANCE The 3D-printed gelatin/elastin/sodium hyaluronate membrane can be safe and effective for use in GTR for periodontal tissue regeneration therapies, with better or comparable results to the commercial collagen membranes.
Collapse
Affiliation(s)
- Farshid Vahdatinia
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Amirarsalan Hooshyarfard
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran 1946853314, Iran
| | - Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Kishan Patel
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| | | | - Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health, Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Leila Gholami
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
16
|
Wu L, Kutas SK, Morrow BR, Hong L. Sustained release of dipyridamole from collagen membranes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Ren Y, Fan L, Alkildani S, Liu L, Emmert S, Najman S, Rimashevskiy D, Schnettler R, Jung O, Xiong X, Barbeck M. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci 2022; 23:ijms232314987. [PMID: 36499315 PMCID: PMC9735671 DOI: 10.3390/ijms232314987] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Guided bone regeneration (GBR) has become a clinically standard modality for the treatment of localized jawbone defects. Barrier membranes play an important role in this process by preventing soft tissue invasion outgoing from the mucosa and creating an underlying space to support bone growth. Different membrane types provide different biological mechanisms due to their different origins, preparation methods and structures. Among them, collagen membranes have attracted great interest due to their excellent biological properties and desired bone regeneration results to non-absorbable membranes even without a second surgery for removal. This work provides a comparative summary of common barrier membranes used in GBR, focusing on recent advances in collagen membranes and their biological mechanisms. In conclusion, the review article highlights the biological and regenerative properties of currently available barrier membranes with a particular focus on bioresorbable collagen-based materials. In addition, the advantages and disadvantages of these biomaterials are highlighted, and possible improvements for future material developments are summarized.
Collapse
Affiliation(s)
- Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
| | - Lu Fan
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | | | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Stevo Najman
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
- Correspondence: ; Tel.: +49-(0)-176-81022467
| |
Collapse
|
18
|
Bilal B, Niazi R, Nadeem S, Farid MA, Nazir MS, Akhter T, Javed M, Mohyuddin A, Rauf A, Ali Z, Naqvi SAR, Muhammad N, Elkaeed EB, Ibrahium HA, Awwad NS, Hassan SU. Fabrication of Guided Tissue Regeneration Membrane Using Lignin-Mediated ZnO Nanoparticles in Biopolymer Matrix for Antimicrobial Activity. Front Chem 2022; 10:837858. [PMID: 35518713 PMCID: PMC9063929 DOI: 10.3389/fchem.2022.837858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Periodontal disease is a common complication, and conventional periodontal surgery can lead to severe bleeding. Different membranes have been used for periodontal treatment with limitations, such as improper biodegradation, poor mechanical property, and no effective hemostatic property. Guided tissue regeneration (GTR) membranes favoring periodontal regeneration were prepared to overcome these shortcomings. The mucilage of the chia seed was extracted and utilized to prepare the guided tissue regeneration (GTR) membrane. Lignin having antibacterial properties was used to synthesize lignin-mediated ZnO nanoparticles (∼Lignin@ZnO) followed by characterization with analytical techniques like Fourier-transform infrared spectroscopy (FTIR), UV–visible spectroscopy, and scanning electron microscope (SEM). To fabricate the GTR membrane, extracted mucilage, Lignin@ZnO, and polyvinyl alcohol (PVA) were mixed in different ratios to obtain a thin film. The fabricated GTR membrane was evaluated using a dynamic fatigue analyzer for mechanical properties. Appropriate degradation rates were approved by degradability analysis in water for different intervals of time. The fabricated GTR membrane showed excellent antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial species.
Collapse
Affiliation(s)
- Bushra Bilal
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Rimsha Niazi
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Muhammad Asim Farid
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Toheed Akhter
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Zulfiqar Ali
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, , Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Semi Pilot Plant, Nuclear Materials Authority, Cairo, Egypt
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
19
|
Red Seaweed (Gracilaria verrucosa Greville) Based Polyurethane as Adsorptive Membrane for Ammonia Removal in Water. Polymers (Basel) 2022; 14:polym14081572. [PMID: 35458322 PMCID: PMC9026328 DOI: 10.3390/polym14081572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Polyurethane membranes are widely developed polymers by researchers because they can be made from synthetic materials or natural materials. Red seaweed (Gracilaria verrucosa Greville) is a natural material that can be developed as a raw material for polyurethane membranes. This study used red seaweed biomass (RSB) as a raw material to manufacture polyurethane as an adsorptive membrane for removing ammonia in water. The membrane composition was determined using the Box–Behnken design from Response Surface Methodology with three factors and three levels. In the ammonia adsorption process, the adsorption isotherm was determined by varying the concentration, while the adsorption kinetics was determined by varying the contact time. Red seaweed biomass-based polyurethane membrane (PUM-RSB) can adsorb ammonia in water with an adsorption capacity of 0.233 mg/g and an adsorption efficiency of 16.2%. The adsorption efficiency followed the quadratic model in the Box–Behnken design, which resulted in the optimal composition of RSB 0.15 g, TDI 3.0 g, and glycerin 0.4 g with predicted and actual adsorption capacities of 0.224 mg/g and 0.226 mg/g. The ammonia adsorption isotherm using PUM-RSB follows the Freundlich isotherm, with a high correlation coefficient (R2) of 0.977, while the Langmuir isotherm has a low R2 value of 0.926. The Freundlich isotherm indicates that ammonia is adsorbed on the surface of the adsorbent as multilayer adsorption. In addition, based on the analysis of adsorption kinetics, the adsorption phenomenon follows pseudo-order II with a chemisorption mechanism, and it is assumed that the bond that occurs is between the anion –SO42− with the NH4+ cation to form ammonium sulfate (NH4)2SO4 and between isocyanates (NCO) with NH4+ cations to form substituted urea.
Collapse
|
20
|
Bee SL, Hamid ZAA. Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review. J Biomed Mater Res B Appl Biomater 2022; 110:2157-2182. [PMID: 35322931 DOI: 10.1002/jbm.b.35060] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative treatments targeted at reconstructing damaged periodontal tissue and bone caused by periodontitis. During GTR/GBR treatment, a barrier membrane is placed in the interface between the soft tissue and the periodontal defect to inhibit soft tissue ingrowth and creating a space for the infiltration of slow-growing bone cells into the defect site. Recently, asymmetric resorbable-based barrier membrane has received a considerable attention as a new generation of GTR/GBR membrane. Despite numerous literatures about asymmetric-based membrane that had been published, there is lacks comprehensive review on asymmetric barrier membrane that particularly highlight the importance of membrane structure for periodontal regeneration. In this review, we systematically cover the latest development and advancement of various kinds of asymmetric barrier membranes used in periodontal GTR/GBR application. Herein, the ideal requirements for constructing a barrier membrane as well as the rationale behind the asymmetric design, are firstly presented. Various innovative methods used in fabricating asymmetric barrier membrane are being further discussed. Subsequently, the application and evaluation of various types of asymmetric barrier membrane used for GTR/GBR are compiled and extensively reviewed based on the recent literatures reported. Based on the existing gap in this field, the future research directions of asymmetric resorbable-based barrier membrane such as its combination potential with bone grafts, are also presented.
Collapse
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
21
|
Toledano-Osorio M, Vallecillo C, Vallecillo-Rivas M, Manzano-Moreno FJ, Osorio R. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers (Basel) 2022; 14:polym14040840. [PMID: 35215754 PMCID: PMC8963018 DOI: 10.3390/polym14040840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Polymeric membranes are frequently used for bone regeneration in oral and periodontal surgery. Polymers provide adequate mechanical properties (i.e., Young’s modulus) to support oral function and also pose some porosity with interconnectivity to permit for cell proliferation and migration. Bacterial contamination of the membrane is an event that may lead to infection at the bone site, hindering the clinical outcomes of the regeneration procedure. Therefore, polymeric membranes have been proposed as carriers for local antibiotic therapy. A literature search was performed for papers, including peer-reviewed publications. Among the different membranes, collagen is the most employed biomaterial. Collagen membranes and expanded polytetrafluoroethylene loaded with tetracyclines, and polycaprolactone with metronidazole are the combinations that have been assayed the most. Antibiotic liberation is produced in two phases. A first burst release is sometimes followed by a sustained liberation lasting from 7 to 28 days. All tested combinations of membranes and antibiotics provoke an antibacterial effect, but most of the time, they were measured against single bacteria cultures and usually non-specific pathogenic bacteria were employed, limiting the clinical relevance of the attained results. The majority of the studies on animal models state a beneficial effect of these antibiotic functionalized membranes, but human clinical assays are scarce and controversial.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Francisco-Javier Manzano-Moreno
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
- Biomedical Group (BIO277), Department of Stomatology, Facultad de Odontología, University of Granada, 18071 Granada, Spain
- Instituto Investigación Biosanitaria ibs.GRANADA, University of Granada, C/Doctor Azpitarte 4, Planta, 18012 Granada, Spain
- Correspondence:
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| |
Collapse
|
22
|
Abstract
Bone regeneration is a central focus of maxillofacial research, especially when dealing with dental implants or critical sized wound sites. While bone has great regeneration potential, exogenous delivery of growth factors can greatly enhance the speed, duration, and quality of osseointegration, making a difference in a patient’s quality of life. Bone morphogenic protein 2 (BMP-2) is a highly potent growth factor that acts as a recruiting molecule for mesenchymal stromal cells, induces a rapid differentiation of them into osteoblasts, while also maintaining their viability. Currently, the literature data shows that the liposomal direct delivery or transfection of plasmids containing BMP-2 at the bone wound site often results in the overexpression of osteogenic markers and result in enhanced mineralization with formation of new bone matrix. We reviewed the literature on the scientific data regarding BMP-2 delivery with the help of liposomes. This may provide the ground for a future new bone regeneration strategy with real chances of reaching clinical practice.
Collapse
|
23
|
Tan Q, Li J, Liu Y, Zhu X, Shao W. Feasibility of Growth Factor Agent Therapy in Repairing Motor Injury. Front Pharmacol 2022; 13:842775. [PMID: 35145420 PMCID: PMC8821907 DOI: 10.3389/fphar.2022.842775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
Growth factors (GF), with the activity of stimulating cell growth, play a significant role in biology, medicine, and exercise physiology. In the process of exercise, human tissues are impacted, making cells suffer damage. Growth factor can accelerate the repair of damaged cells and regulate the synthesis of protein, so biological preparations of growth factors can be added to traditional therapies. A combination of growth factor biologics and conventional therapies may improve the efficiency of injury repair, but growth factor biologics may not produce any results. The feasibility of growth factor biologics in the treatment of motor injury was discussed. The research have shown that: 1) GF biological agent therapy is a very promising treatment for motor injury, which is based on the power of autologous growth factor (GFs) to accelerate tissue healing, promote muscle regeneration, increase angiogenesis, reduce fibrosis, and make the muscle injury rapid recovery. 2) There are various methods for delivering the higher dose of GF to the injured tissue, but most of them depend on the platelet release of GF. At the site of injury, there are several ways to deliver higher doses of GF to the injured tissue. 3) At present, the inhibition of GF is mainly through signal transduction inhibitors and inhibition of transcription factor production. 4) Pattern of GF during wound repair: GF directly regulates many key steps of normal wound repair, including inflammatory cell chemotaxis, division and proliferation of fibroblasts, keratinocytes and vascular endothelial cells, formation of new blood vessels, and synthesis and degradation of intercellular substances. 5) When GF promotes chronic wound healing, in most cases, certain GF can be used targeted only when in vivo regulation still cannot meet the need for repair.
Collapse
Affiliation(s)
- Qiaoyin Tan
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jiayu Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuwen Liu
- Department of General Surgery, The First Affiliated Hospital of Jiangxi Medical College, Shangrao, China
| | - Xiaojuan Zhu
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Weide Shao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Weide Shao,
| |
Collapse
|
24
|
Solomon SM, Sufaru IG, Teslaru S, Ghiciuc CM, Stafie CS. Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES 2022; 12:1042. [DOI: 10.3390/app12031042] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
Affiliation(s)
- Sorina-Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silvia Teslaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
25
|
Solomon SM, Sufaru IG, Teslaru S, Ghiciuc CM, Stafie CS. Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES-BASEL 2022. [DOI: https://doi.org/10.3390/app12031042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
|
26
|
Ul Hassan S, Bilal B, Nazir MS, Naqvi SAR, Ali Z, Nadeem S, Muhammad N, Palvasha BA, Mohyuddin A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem Biol Drug Des 2021; 98:1007-1024. [PMID: 34581497 DOI: 10.1111/cbdd.13959] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Chronic periodontal is a very common infection that instigates the destruction of oral tissue, and for its treatment, it is necessary to minimize the infection and the defects regeneration. Periodontium consists of four types of tissues: (a) cementum, (b) periodontal ligament, (c) gingiva, and 4) alveolar bone. In separated cavities, regenerative process also allows various cell proliferations. Guided tissue regeneration (GTR) is a potential procedure that favors periodontal regrowth; however, some limitations (such as ineffective hemostatic property, poor mechanical property, and improper biodegradation) are also associated with it. This review mainly emphasizes on the following areas: (a) a summarized overview of the periodontium and its immunological situations, (b) recently utilized treatments for regeneration of distinctive periodontal tissues; (c) an overview of GTR membranes available commercially, and the latest developments on the characterization and processing of GTR membrane material; and 4) the function of the different non-polymeric/polymeric materials, which are acting as drug carriers, antibacterial agents, nanoparticles, and periodontal barrier membranes to prevent periodontal inflammation and to improve the strength of the GTR membrane.
Collapse
Affiliation(s)
- Sadaf Ul Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan.,Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Bushra Bilal
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Zufiqar Ali
- Department of Chemical Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Aysha Mohyuddin
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
27
|
Vallecillo-Rivas M, Toledano-Osorio M, Vallecillo C, Toledano M, Osorio R. The Collagen Origin Influences the Degradation Kinetics of Guided Bone Regeneration Membranes. Polymers (Basel) 2021; 13:polym13173007. [PMID: 34503047 PMCID: PMC8433692 DOI: 10.3390/polym13173007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 01/28/2023] Open
Abstract
Collagen membranes are currently the most widely used membranes for guided bone regeneration; however, their rapid degradation kinetics means that the barrier function may not remain for enough time to permit tissue regeneration to happen. The origin of collagen may have an important effect on the resistance to degradation. The aim of this study was to investigate the biodegradation pattern of five collagen membranes from different origins: Biocollagen, Heart, Evolution X-fine, CopiOs and Parasorb Resodont. Membranes samples were submitted to different degradation tests: (1) hydrolytic degradation in phosphate buffer saline solution, (2) bacterial collagenase from Clostridium histolyticum solution, and (3) enzyme resistance using a 0.25% porcine trypsin solution. Immersion periods from 1 up to 50 days were performed. At each time point, thickness and weight measurements were performed with a digital caliper and an analytic microbalance, respectively. ANOVA and Student–Newman–Keuls tests were used for comparisons (p < 0.05). Differences between time-points within the same membranes and solutions were assessed by pair-wise comparisons (p < 0.001). The Evolution X-fine collagen membrane from porcine pericardium attained the highest resistance to all of the degradation tests. Biocollagen and Parasorb Resodont, both from equine origin, experienced the greatest degradation when immersed in PBS, trypsin and C. histolyticum during challenge tests. The bacterial collagenase solution was shown to be the most aggressive testing method.
Collapse
Affiliation(s)
- Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-243-789
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
- Medicina Clínica y Salud Pública PhD Programme, 18071 Granada, Spain
| | - Manuel Toledano
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.V.-R.); (C.V.); (M.T.); (R.O.)
| |
Collapse
|
28
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
29
|
Garot C, Bettega G, Picart C. Additive Manufacturing of Material Scaffolds for Bone Regeneration: Toward Application in the Clinics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006967. [PMID: 33531885 PMCID: PMC7116655 DOI: 10.1002/adfm.202006967] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 05/07/2023]
Abstract
Additive manufacturing (AM) allows the fabrication of customized bone scaffolds in terms of shape, pore size, material type and mechanical properties. Combined with the possibility to obtain a precise 3D image of the bone defects using computed tomography or magnetic resonance imaging, it is now possible to manufacture implants for patient-specific bone regeneration. This paper reviews the state-of-the-art of the different materials and AM techniques used for the fabrication of 3D-printed scaffolds in the field of bone tissue engineering. Their advantages and drawbacks are highlighted. For materials, specific criteria, were extracted from a literature study: biomimetism to native bone, mechanical properties, biodegradability, ability to be imaged (implantation and follow-up period), histological performances and sterilization process. AM techniques can be classified in three major categories: extrusion-based, powder-based and liquid-base. Their price, ease of use and space requirement are analyzed. Different combinations of materials/AM techniques appear to be the most relevant depending on the targeted clinical applications (implantation site, presence of mechanical constraints, temporary or permanent implant). Finally, some barriers impeding the translation to human clinics are identified, notably the sterilization process.
Collapse
Affiliation(s)
- Charlotte Garot
- CEA, Université de Grenoble Alpes, CNRS, ERL 5000, IRIG Institute, 17 rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR 5628, LMGP, 3 parvis Louis Néel F-38016 Grenoble, France
| | - Georges Bettega
- Service de chirurgie maxillo-faciale, Centre Hospitalier Annecy-Genevois, 1 avenue de l’hôpital, F-74370 Epagny Metz-Tessy, France
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France
| | - Catherine Picart
- CEA, Université de Grenoble Alpes, CNRS, ERL 5000, IRIG Institute, 17 rue des Martyrs, F-38054, Grenoble, France
- CNRS and Grenoble Institute of Engineering, UMR 5628, LMGP, 3 parvis Louis Néel F-38016 Grenoble, France
| |
Collapse
|
30
|
Growth Factors in Oral Tissue Engineering: New Perspectives and Current Therapeutic Options. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8840598. [PMID: 33506039 PMCID: PMC7808803 DOI: 10.1155/2021/8840598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
The present investigation is aimed at systematically analyzing the recent literature about the innovative scaffold involved in the reconstructive surgeries by applying growth factors and tissue engineering. An extensive review of the contemporary literature was conducted according to the PRISMA guidelines by accessing the PubMed, Embase, and Scopus Elsevier databases. Authors performed the English language manuscript research published from 2003 to 2020. A total of 13 relevant studies were included in the present review. The present systematic review included only papers with significant results about correlation between scaffold, molecular features of growth factor, and reconstructive surgeries in oral maxillofacial district. The initial research with filters recorded about 1023 published papers. Beyond reading and considering of suitability, only 42 and then 36 full-text papers were recorded for the revision. All the researches recorded the possibility of using growth factors on rebuilding atrophic jaws. Different growth factors like morphogenetic factors, cytokines, and inflammatory ones and their application over different scaffold materials were recorded. Further investigations should be required in order to state scientific evidence about a clear advantage of applying tissue engineering for therapeutic purpose.
Collapse
|
31
|
Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties. Colloids Surf B Biointerfaces 2020; 197:111438. [PMID: 33166935 DOI: 10.1016/j.colsurfb.2020.111438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023]
Abstract
The aim of the work was to determine the effects of the chemical functionalization of hyaluronic acid (HA) with pendant aliphatic tails at different lengths and free amino groups in terms of chemical reactivity, degradation rate, drug-eluting features, and surface properties when processed as electrospun membranes (EM) evaluating the osteoinductive potential for a possible application as guided bone regeneration (GBR). To this end, a series of HA derivatives with different aliphatic tails (DD-Cx mol% ≈ 12.0 mol%) and decreasing derivatization of free amino groups (DDEDA mol% from 70.0 to 30.0 mol%) were first synthesized, namely Hn. Then dexamethasone-loaded Hn EM, i.e. HnX were prepared from aqueous polymeric solutions with polyvinyl alcohol (PVA), as a non-ionogenic linear flexible polymeric carrier, and the multifunctional 2-hydroxypropyl- cyclodextrin (HPCD) which acted as a rheological modifier, a stabilizer of Taylor's cone, and a solubilizing agent. A comprehensive characterization of the membranes was carried out through ATR-IR, XRD, and WCA measurements. According to the in vitro hydrolytic and enzymatic degradation and drug release in different aqueous media for two months, the insertion of alkyl pendant grafts and the crosslinking process provided tuneable additional resistance to the whole membrane suitably for the final application of the membranes. Cell culture showed the cytocompatibility and cell proliferation until 7 days. Osteogenic differentiation and mineralization of pre-osteoblastic MC3T3 cells occurred for most of membranes after 35 days as valued by measuring ALP activity (50 nmol 4-np/h/nf DNA) and the deposition of calcium (120-140 μg ml-1).
Collapse
|
32
|
Stutz C, Strub M, Clauss F, Huck O, Schulz G, Gegout H, Benkirane-Jessel N, Bornert F, Kuchler-Bopp S. A New Polycaprolactone-Based Biomembrane Functionalized with BMP-2 and Stem Cells Improves Maxillary Bone Regeneration. NANOMATERIALS 2020; 10:nano10091774. [PMID: 32911737 PMCID: PMC7558050 DOI: 10.3390/nano10091774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
Oral diseases have an impact on the general condition and quality of life of patients. After a dento-alveolar trauma, a tooth extraction, or, in the case of some genetic skeletal diseases, a maxillary bone defect, can be observed, leading to the impossibility of placing a dental implant for the restoration of masticatory function. Recently, bone neoformation was demonstrated after in vivo implantation of polycaprolactone (PCL) biomembranes functionalized with bone morphogenic protein 2 (BMP-2) and ibuprofen in a mouse maxillary bone lesion. In the present study, human bone marrow derived mesenchymal stem cells (hBM-MSCs) were added on BMP-2 functionalized PCL biomembranes and implanted in a maxillary bone lesion. Viability of hBM-MSCs on the biomembranes has been observed using the "LIVE/DEAD" viability test and scanning electron microscopy (SEM). Maxillary bone regeneration was observed for periods ranging from 90 to 150 days after implantation. Various imaging methods (histology, micro-CT) have demonstrated bone remodeling and filling of the lesion by neoformed bone tissue. The presence of mesenchymal stem cells and BMP-2 allows the acceleration of the bone remodeling process. These results are encouraging for the effectiveness and the clinical use of this new technology combining growth factors and mesenchymal stem cells derived from bone marrow in a bioresorbable membrane.
Collapse
Affiliation(s)
- Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Pediatric Dentistry, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - François Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Pediatric Dentistry, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Periodontology, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Georg Schulz
- Core Facility Micro- and Nanotomography, Biomaterials Science Center (BMC), Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland;
| | - Hervé Gegout
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg (UDS), 8 rue Ste Elisabeth, 67000 Strasbourg, France
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Pediatric Dentistry, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Oral Medicine and Oral Surgery, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative NanoMedicine (RNM), FMTS, 67000 Strasbourg, France; (C.S.); (M.S.); (F.C.); (O.H.); (H.G.); (N.B.-J.); (F.B.)
- Correspondence: ; Tel.: +33-619610523
| |
Collapse
|
33
|
Zhou T, Zheng K, Sui B, Boccaccini AR, Sun J. In vitro evaluation of poly (vinyl alcohol)/collagen blended hydrogels for regulating human periodontal ligament fibroblasts and gingival fibroblasts. Int J Biol Macromol 2020; 163:1938-1946. [PMID: 32910967 DOI: 10.1016/j.ijbiomac.2020.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Periodontitis is a chronic inflammatory disease that can destroy periodontal tissue. Guided tissue regeneration (GTR) is widely applied to treat periodontitis. However, the challenge is to develop a GTR membrane capable of simultaneously regenerating periodontal tissue and preventing epithelial downgrowth into the defect. Herein, blended hydrogels composed of polyvinyl alcohol (PVA) and fish collagen (Col) were prepared as GTR membranes. The morphology, Col release, and cellular behavior of the blended hydrogels were evaluated. The results showed that the surface porosity and Col release of the PVA/Col blended hydrogels were enhanced by increasing the Col concentration. The adhesion and proliferation of human periodontal ligament fibroblasts (HPDLFs) and human gingival fibroblasts (HGFs) on the PVA/Col blended hydrogels can be regulated by tuning the PVA/Col ratio. The PVA/Col (50:50) blended hydrogel exhibited the highest cell proliferation rate for HPDLFs with spread cell morphology; the lowest viability for HGFs was found on the PVA/Col (100:0) hydrogel. Thus, by controlling the ratio of PVA to Col, multifunctional PVA/Col blended hydrogels able to regulate the cellular behavior of HPDLFs and HGFs can be developed, demonstrating their potential as GTR membrances for guiding periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200023, PR China
| | - Kai Zheng
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Baiyan Sui
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| |
Collapse
|
34
|
Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater 2020; 5:297-308. [PMID: 32154444 PMCID: PMC7052441 DOI: 10.1016/j.bioactmat.2020.02.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss. Conventional clinical therapy for PD aims at eliminating infectious sources, and reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the restoration of lost tooth-supporting tissues, including periodontal ligament, alveolar bone, and cementum. This review discusses recent progresses of periodontal regeneration using tissue-engineering and regenerative medicine approaches. Specifically, we focus on the advances of biomaterials and controlled drug delivery for periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control of multi-drug delivery for the regeneration of cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide inspiration for the design and development of innovative biomaterials and delivery system for new regenerative periodontal therapy.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xianghong Luan
- Department of Periodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
35
|
Biofunctionalization of porcine-derived collagen matrices with platelet rich fibrin: influence on angiogenesis in vitro and in vivo. Clin Oral Investig 2020; 24:3425-3436. [DOI: 10.1007/s00784-020-03213-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Abstract
Objectives
Porcine-derived collagen matrices (CM) can be used for oral tissue regeneration, but sufficient revascularization is crucial. The aim of this study was to analyze the influence of platelet-rich fibrin (PRF) on angiogenesis of different CM in vitro and in vivo.
Materials and methods
Three different CM (mucoderm, jason, collprotect) were combined with PRF in a plotting process. Growth factor release (VEGF, TGF-β) was measured in vitro via ELISA quantification after 1,4 and 7 days in comparison to PRF alone. In ovo yolk sac (YSM) and chorion allantois membrane (CAM) model, angiogenic potential were analyzed in vivo with light- and intravital fluorescence microscopy after 24 h, then verified with immunohistochemical staining for CD105 and αSMA.
Results
Highest growth factor release was seen after 24 h for all three activated membranes in comparison to the native CM (VEGF 24 h: each p < 0.05; TGF-β: each p < 0.001) and the PRF (no significant difference). All activated membranes revealed a significantly increased angiogenic potential in vivo after 24 h (vessels per mm2: each p < 0.05; branching points per mm2: each p < 0.01; vessel density: each p < 0.05) and with immunohistochemical staining for CD105 (each p < 0.01) and αSMA (each p < 0.05).
Conclusions
PRF improved the angiogenesis of CM in vitro and in vivo.
Clinical relevance
Bio-functionalization of CM with PRF could easily implemented in the clinical pathway and may lead to advanced soft tissue healing.
Collapse
|
36
|
Li J, Zhou Z, Wen J, Jiang F, Xia Y. Human Amniotic Mesenchymal Stem Cells Promote Endogenous Bone Regeneration. Front Endocrinol (Lausanne) 2020; 11:543623. [PMID: 33133012 PMCID: PMC7562979 DOI: 10.3389/fendo.2020.543623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Bone regeneration has become a research hotspot and therapeutic target in the field of bone and joint medicine. Stem cell-based therapy aims to promote endogenous regeneration and improves therapeutic effects and side-effects of traditional reconstruction of significant bone defects and disorders. Human amniotic mesenchymal stem cells (hAMSCs) are seed cells with superior paracrine functions on immune-regulation, anti-inflammation, and vascularized tissue regeneration. The present review summarized the source and characteristics of hAMSCs and analyzed their roles in tissue regeneration. Next, the therapeutic effects and mechanisms of hAMSCs in promoting bone regeneration of joint diseases and bone defects. Finally, the clinical application of hAMSCs from current clinical trials was analyzed. Although more studies are needed to confirm that hAMSC-based therapy to treat bone diseases, the clinical application prospect of the approach is worth investigating.
Collapse
Affiliation(s)
- Jin Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Zhixuan Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jin Wen
- Department of Prosthodontics, School of Medicine, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- *Correspondence: Fei Jiang
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Yang Xia
| |
Collapse
|
37
|
Gümüşderelioğlu M, Sunal E, Tolga Demirtaş T, Kiremitçi AS. Chitosan-based double-faced barrier membrane coated with functional nanostructures and loaded with BMP-6. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:4. [PMID: 31832785 DOI: 10.1007/s10856-019-6331-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a chitosan-based, multifunctional and double-faced barrier membrane was developed for the periodontitis therapy. The porous surface of the membrane was coated with bone-like hydroxyapatite (HA) produced by microwave-assisted biomimetic method and enriched with bone morphogenetic factor 6 (BMP-6) to enhance the bioactivity of chitosan. This surface of the membrane was designed to be in contact with the hard tissue that was damaged due to periodontitis. Otherwise the nonporous surface of membrane, which is in contact with the inflammatory soft tissue, was coated with electrospun polycaprolactone (PCL) fibers to prevent the migration of epithelial cells to the defect area. PrestoBlue, Scanning Electron Microscope (SEM) and real-time PCR results demonstrated that while porous surface of the membrane was enhancing the proliferation and differentiation of MC3T3-E1 preosteoblasts, nonporous surface of membrane did not allow migration of epithelial Madine Darby Bovine Kidney (MDBK) cells. The barrier membrane developed here is biodegradable and can be easily manipulated, has osteogenic activity and inactivity for epithelial cells. Thus, by implanting this membrane to the damaged periodontal tissue, bone regeneration will take place and integrity of periodontal tissues will be preserved.
Collapse
Affiliation(s)
- Menemşe Gümüşderelioğlu
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey.
- Department of Bioengineering, Hacettepe University, Ankara, Turkey.
| | - Elif Sunal
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| | | | - Arlin S Kiremitçi
- Department of Restorative Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
38
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D. Composite Membranes of Poly(ε-caprolactone) with Bisphosphonate-Loaded Bioactive Glasses for Potential Bone Tissue Engineering Applications. Molecules 2019; 24:E3067. [PMID: 31450742 PMCID: PMC6749304 DOI: 10.3390/molecules24173067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO2-CaO-P2O5 and SiO2-SrO-P2O5) were synthesized and incorporated in PCL thin membranes by spin coating. To enhance the osteogenic effect of resulting membranes, the bioglasses were loaded with the bisphosphonate drug ibandronate prior to their incorporation in the polymeric matrix. The effect of the composition of the bioglasses as well as the presence of absorbed ibandronate on the physicochemical, cell attachment and differentiation properties of the PCL membranes was evaluated. Both fillers led to a decrease of the crystallinity of PCL, along with an increase in its hydrophilicity and a noticeable increase in its bioactivity. Bioactivity was further increased in the presence of a Sr substituted bioglass loaded with ibandronate. The membranes exhibited excellent biocompatibility upon estimation of their cytotoxicity on Wharton's Jelly Mesenchymal Stromal Cells (WJ-SCs), while they presented higher osteogenic potential in comparison with neat PCL after WJ-SCs induced differentiation towards bone cells, which was enhanced by a possible synergistic effect of Sr and ibandronate.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Central Macedonia, Greece
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", GR15341 Athens, Ag. Paraskevi Attikis, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, GR57001 Thermi, Central Macedonia, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|